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Here  we  provide  the  following  supplementary  material:  (1)  a  derivation  of  the  life-table 
estimator of the survivor function, (2) an overview of the Mantel-Haenzel test for comparing 
groups based on interval data, (3) some additional statistical details about exact-data methods for 
comparing groups, (4) an assessment of the effect of random seed loss, (5) a derivation of the 
recommended graphical procedure for assessing the proportional hazards (PH) assumption on 
which the Cox model is based, (6) a detailed exposition of the steps involved in applying the Cox 
model to the Japanese knotweed test data, and (7) sample R and SAS code for implementing the 
various methods of time-to-event analysis discussed in the text.

The life-table estimator of the survivor function

The basic life-table estimator given by equation (5) of the text can be derived as follows.  Let the 
initial number of seeds be N. Given observation times 0 = a0 < a1 < a2 < ∙∙∙ < am < ∞ (chosen in 
advance), let the intervals between observations be Ij = (aj−1, aj] for j = 1, 2, 3, …, m. We assume 
the  Ij are long enough relative to the rate at which germination events occur so that multiple 
events commonly occur within an interval. Let Dj be the number of germination events occurring 
within interval  Ij.  We assume the  Dj are known but the exact event times are unknown. The 
number  Dj of events occurring in interval  Ij = (aj−1, aj] is not known until observation time  aj. 
Seed losses also may occur, due, for example, to accidents while handling seeds on observation 
days. We assume the cumulative number  Wj of losses within each interval  Ij is known but the 
exact times at which they occur are unknown.

Let qj denote the probability that a particular seed germinates during interval Ij, given that it 
did not germinate previously. Then pj = 1 − qj is the probability that the seed fails to germinate 
(i.e.,  survives  the  germination  process)  during  interval  Ij,  given  that  it  did  not  germinate 
previously. In other words, pj is the probability that the germination time is greater than aj, given 
that  it  is  greater  than  aj−1.  Recalling  the  definition  of  the  survivor  function,  we  must  have 
S a0=S 0=1,  while for larger aj the elementary rules of conditional probability tell us that

S a j = S a j−1 p j , j = 1, 2, 3,  , m. (S.1)

Applying this relationship iteratively to times aj−1, aj−2, and so on, it follows that

S a j = S a j−1 p j = S a j−2 p j−1 p j = ⋯=∏
i=1

j

pi = ∏
i=1

j

1−qi . (S.2)
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If  no  seeds  are  lost  before  the  end of  an  experiment,  it  is  reasonable  to  estimate  qj by 
qi=Di / N i ,  where Ni is the number of seeds at risk of germination at the beginning of interval Ii 

and N1 = N. The resulting estimator S a j  for S a j  is then

Ŝ (a j)=∏
i=1

j

(1−Di / N i) , (S.3)

which is equation (5) of the text. This is the standard life-table estimator of the survivor function 
at observation times ai when no seed loss occurs. The usual modification to account for seed loss 
is outlined in the text.

Equation (S.3), and equations (5), (6), and (7) of the text, tell us how to estimate the survivor  
function  at  the  observation  times,  but  how do  we estimate  its  value  at  intermediate  times? 
Recalling that the observation times are intentionally chosen to ensure that multiple events occur 
in many of the intervals Ii, we do not want to assume that the germination process stops between 
successive  observation  times.  But  this  would  be  the  implication  of  assuming  the  survivor 
function is a step function that changes only at the observation times. (Note: the Kaplan-Meier 
estimator yields a step function, but it assumes the data are exact, implying that no germination 
events occur between recorded germination times.) It is more reasonable to assume events occur 
more or less uniformly during each interval  Ii, and therefore to estimate  S(t) for  ai <  t <  ai+1 

simply by linearly interpolating between S ai  and S a i1 . That is,

Ŝ (t )= φ (t ) Ŝ (a i+1) + [1−φ(t )] Ŝ (a i) = [1−φ(t) q̂ i+1] Ŝ (a i) , ai< t< ai+1 , (S.4)

where

φ(t )= (t−a i)/(a i+1−ai) (S.5)

and we used the fact that S ai1 =
S ai 1−qi1 . These equations can be used to calculate the 

median and other quantiles of the germination time distribution. For example, to find the median, 
we  find  the  pair  of  survivor-function  values  S ai  and  S ai1  that  bracket  0.5.  The 
corresponding observation times ai and ai+1 then bracket the median. Substituting these values in 
equations (S.4) and (S.5), setting Ŝ (t )=0.5 , and solving for t yields an estimate of the median.

Comparing groups using interval data

A useful discussion of methods for comparing groups based on interval data  is  provided by 
Elandt-Johnson and Johnson (1980). Though now somewhat dated, this is the only text we know 
that  presents  group-comparison methods for  interval  data;  all  other  texts  restrict  attention to 
methods for exact data. As in the case of estimators for the survivor function, however, the two 
types of methods can be expected to yield results that very similar if little or no seed loss occurs 
(see below).

Suppose there are  K ≥ 2 groups, and let us initially assume there are no seed losses. Let 
0 = a0 < a1 < a2 < ∙∙∙ < am < ∞ be the observation times, and let Ii = (ai−1, ai] for i = 1, 2, 3, …, m 
be the intervals between observations. Let Dij be the number of germination events in interval Ii 

in group j, let Nij be the number of seeds at risk in group j at the beginning of interval Ii, and let 
D i=∑ j

D ij  and N i=∑ j
N ij . Mantel and Haenszel (1959) noted that if the total number Di of 

germination events in all groups and the number Nij at risk in each group j are regarded as fixed 
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for  each  interval  Ii,  then  we  have  a  sequence  of  m contingency  tables,  each  of  size  K × 2 
(groups × germination status) with fixed row and column totals. Under the null hypothesis that 
the number of germination events in each time interval is independent of group, the expected 
number of germination events during interval Ii in group j is N ij Di / N i . Therefore, the sum Zj 

of the differences between the observed ( Dij ) and expected number of events over all  time 
intervals in group j is given by

Z j =∑
i=1

m

[ Dij−N ij ( D i / N i ) ] . (S.6)

Under the null hypothesis, the number of germination events in any K − 1 groups will follow a 
multivariate (or univariate, if K = 2) hypergeometric distribution, from which the variances and 
covariances of the Zj can be readily determined (e.g., Johnson et al., 1997). Let z be a vector of 
any K − 1 of the Zj, and let 

−1  be the inverse of the variance-covariance matrix. (Note: the Zj 

sum to  1,  so  any  K −  1 values  completely  determine  the  K-th.)  Then for  sufficiently  large 
samples, z will have an approximately multivariate normal distribution, and the quadratic form Q 
given by

Q = zT


−1 z (S.7)

therefore will be distributed approximately as chi squared with K − 1 degrees of freedom. This 
statistic is the basis for the Mantel-Haenszel test for homogeneity (K > 2) or pair-wise group 
differences (K = 2). It is best viewed as a test for differences in hazard rate, because the number 
of seeds at risk in each group and time interval is regarded as fixed.

3

Figure S.1. The effect of small amounts of random seed loss on Kaplan-Meier estimates of the 
survivor function. The original data are for Japanese knotweed seeds collected from all three study 
sites on date 3 and are the same as in panels A and C of Figure 5 of the text. Three Kaplan-Meier  
survivor functions (labeled 0,  5,  and  10) are shown for  each study site:  one for  0  lost  seeds 
(original data), and one each for 5 and 10 artificially created seed losses (see text for details). 



If seed losses occur during the experiment, they can be handled in the same way as in the 
life-table estimator for the survivor function (Elandt-Johnson and Johnson, 1980). Thus, we 
replace Nij with the adjusted or effective number Nij´ of seeds at risk. The usual choice of Nij´ is 
Nij − 0.5Wij, where Wij is the number of seeds lost during interval Ii in group j.

As  noted  in  the  text,  neither  R  nor  SAS  currently  provides  interval-data  methods  for 
comparing life-table survivor functions as part of their built-in functions or procedures for time-
to-event analysis. However, both R and SAS include a version of the Mantel-Haenszel test for 
exact data that is usually called the log-rank test. If it is applied to standard germination data, the 
log-rank test will give the same results as the Mantel-Haenszel test if there are no seed losses. 
(To see this, compare equation (S.8) below with equation (S.6), equating the various  n and  d 
values in equation (S.8) below to the corresponding N and D values in equation (S.6) and setting 
weight function W(t′i) = 1 for all i; the variance-covariance matrices are not shown but they, too, 
are identical in this case.) Moreover, values of the test statistics usually will remain very similar 
if a small proportion of seeds is randomly lost (roughly 5 % or less, say).

Comparing groups using exact data

Here we provide some additional details about methods for exact data that were not included in 
the text. Our presentation is based on the lucid account provided by Klein and Moeschberger 
(2003). 

Suppose there are K ≥ 2 groups, and let t1 < t2 < t3 < ∙∙∙ < tD be the D distinct event times when 
data from all groups are combined. Let dij be the number of events at time ti in group j, let nij be 
the number of seeds at  risk in group  j immediately prior to time  ti,  and let  d i=∑ j

d ij  and 

ni=∑ j
nij .  The most  commonly used nonparametric  tests  for comparing groups in  time-to-

event analysis are based on statistics Z j (t ' )  given by

Z j (t ' )=∑
i=1

D

w( ti) [d ij−nij ( d i /ni ) ] , (S.8)

where j = 1, 2, 3, …, K are the K groups being compared, w(ti) is a weight function, and t' is the 
largest time at which ni > 0 for all K groups (so that di/ni is defined for every group). As with the 
Mantel-Haenszel test discussed above, the total number di of germination events at time ti and the 
number of seeds at risk in each group j are regarded as fixed for each event time. The term in 
brackets represents the difference between the observed and expected number of events at the 
i- th event time in the j- th group under the null hypothesis that the groups do not differ at any of 
the event times. These terms are then weighted by w(ti) and summed over all event times.

The actual test statistic employed is constructed from any K − 1 of the Z j (t ' )  (the full set 
sums to zero and therefore is linearly dependent) and is given by quadratic form Q defined by

Q = zT
Σ

−1 z , (S.9)

where z is the column vector [Zj(t')] of length K − 1, zT is its transpose, and 
−1  is the inverse of 

the  estimated  variance-covariance  matrix  of  z. Under  the  null  hypothesis,  z will  have  an 
approximately multivariate normal distribution for large samples, and the distribution of Q will 
be approximately chi-squared with  K − 1 degrees of freedom (for additional details, see Klein 
and Moeschberger,  2003).  If  all  the  Z j (t ' )  values are  sufficiently  small  (i.e.,  observed and 
expected numbers of events are very similar at all event times), the value of Q will be close to 
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zero and the null hypothesis of no difference will be accepted. But if any Z j (t ' )  is sufficiently 
large, the value of Q also will be large and the null hypothesis will be rejected.

The various tests based on quadratic form Q differ only in the choice of weight function w(ti). 
The most-common tests and associated weight functions are listed in Table 1 of the text.

Effects of random seed loss

Seeds loss includes actual loss of seeds as well as intentional removal due to accidental damage 
while  handling,  mold  growth,  and  so  on.  To  assess  the  effect  of  such  occurrences  on 
nonparametric  estimates  of  the  survivor  function,  we  artificially  created  seed  losses  in  the 
Japanese knotweed test data as follows. Using an R script, we randomly chose either 5 or 10 of  
the 100 seeds from each of the three study sites on collection date 3. For each chosen seed, we 
determined the reported event or censoring time, then randomly chose an earlier time to assign as 
the loss time. The randomly created artificial loss time for each chosen seed was then substituted 
for the reported event or censoring time in the data and the survivor function was estimated.  
Figure S.1 shows representative examples for the Kaplan-Meier estimate. Examples like these 
suggest that random loss of 5 % or less of seeds usually has only a minor effect on the estimated 
survivor function. As the percentage of lost seeds increases, it becomes more likely that they will 
have  meaningful  effects  on  the  shape  or  location  of  the  estimated  survivor  function,  as  is 
arguably the case for study site 3 in Figure S.1 with 10 % seed loss.

As noted in the text, another effect of seed loss is that the estimated Kaplan-Meier and life-
table survivor functions will no longer be identical at the observation times, because losses are 
handled differently by the two methods. However, examples with artificially created seed losses 
suggest that the difference usually will be slight. For example, life-table estimates of survivor 
functions  for  the  data  used  to  create  Figure  S.1  differ  so  slightly  from  the  Kaplan-Meier 
estimates at the observation times that they are not visually different when plotted on the same 
panel.

Numerical results suggest that small amounts of random seed loss also have little effect on 
tests for group differences. For example, Table S.1 shows results of group comparisons for the 
same data used to create Figure S.1. Note that loss of 5 seeds from the initial total of 100 had a  
negligible effect on p values, while loss of 10 seeds increased p values by roughly a factor of 3 
for 2 of the 3 pair-wise comparisons.  Based on examples  such as  these,  a small  percentage 
(roughly  5  % or  less)  of  randomly lost  seeds  would  not  be  expected  to  alter  the  results  of 
statistical tests for group differences unless the evidence for or against group differences was 
equivocal to begin with.

A graphical test of the proportional hazards assumption

A common graphical method for checking the PH assumption is  to plot  −log(−log(S(t  |  x))) 
versus t or log(t) for different values of the covariate vector x (restricted to values of t such that 
0 < S(t) < 1 so the logarithms remain finite).  This method is  based on the survivor function, 
which has a simple form under the PH assumption. Specifically, using text equation (11) in text  
equation (4), we find that under the PH assumption,

S (t ∣x )= e
−∫0

t
h0(τ)d τ ψ(βT x)

= S 0( t)ψ(βT x) , (S.10)
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Table S.1. Results of group (site) comparisons for seeds collected on date 3 with artificial losses of 0, 5, and 10 seeds out of 100 initial seeds.  
Results are shown for the two tests from Table 1 of the text that produced the smallest and largest p values. Tests were performed with SAS 
procedure lifetest. The three p values for each pairwise test are Holm-adjusted for multiple comparisons.

Number of 
seeds lost Test

All 3 sites Sites 1 & 2 Sites 2 & 3 Sites 1 & 3

χ2 df p χ2 df p χ2 df p χ2 df p
0 Log-rank 41.3592 2 <0.0001 13.2885 1 0.0005 42.4257 1 <0.0001 8.5253 1 0.0035

Modified Peto-Peto 37.0556 2 <0.0001 13.1640 1 0.0006 38.5451 1 <0.0001 6.1864 1 0.0129
5 Log-rank 40.3026 2 <0.0001 12.9294 1 0.0006 41.3682 1 <0.0001 8.3128 1 0.0039

Modified Peto-Peto 36.2021 2 <0.0001 12.8097 1 0.0007 37.6639 1 <0.0001 6.1038 1 0.0135
10 Log-rank 31.0984 2 <0.0001 10.2454 1 0.0027 32.0542 1 <0.0001 6.0556 1 0.0139

Modified Peto-Peto 27.6700 2 <0.0001 10.2201 1 0.0028 28.8992 1 <0.0001 4.1815 1 0.0409



where S0(t) is the baseline survivor function given by

S0(t) = exp (−∫
0

t

h0(τ)d τ). (S.11)

It follows from equation (S.10) that

−log−log S  t ∣x =−log 
T x − log −log S 0 t . (S.12)

This function has two terms, the first involving covariates but not time, and the second involving 
time but not covariates. Therefore, under the PH assumption, different choices of the covariates 
will  produce  a  family  of  curves  that,  when  plotted  against  time,  have  different  elevations 
(determined by the first term) but the same shape (determined by the second term).

Applying the Cox model to Japanese knotweed data

Exploratory analysis of the data

Plotting nonparametric estimates of survivor functions for different treatment groups is a useful 
exploratory technique. The examples shown in Figures 4 and 5 of the text clearly suggest that 
both study site and collection date may have meaningful effects on the temporal pattern of 
germination.

Checking the proportional-hazards assumption

As  noted  above,  a  useful  method  for  assessing  the  PH  assumption  graphically  is  to  plot 
− log− logS t ∣x  versus  t or log(t) for different values of the covariates  x (restricted to 
values of  t such that 0 <  S(t) < 1), using the life-table or Kaplan-Meier estimate of survivor 
function  S(t).  The basis for this test  is equation (S.12).  Roughly parallel  curves for different 
values of the covariates indicate that the PH assumption is plausible, while curves that cross 
decisively (i.e., two curves change from being clearly distinct with one ordering to being clearly 
distinct  with  the  reverse  ordering)  indicate  the  opposite.  Since  this  method  is  based  on 
comparison of curves for discrete groups, it requires categorizing quantitative covariates.

Study  site  is  a  categorical  variable  with  three  categories,  while  collection  date  is  a 
quantitative  variable  with eight  distinct  values.  To obtain  discrete  collection-date  groups for 
comparison,  we  grouped  the  collection  dates  into  two  meaningful  categories:  1–4  (early 
collection dates) and 5–8 (late collection dates). Plots of − log− logS t ∣ z  versus log(t) are 
shown in Figure 6 of the text.  (These plots  were created by transforming the Kaplan-Meier 
survivor function produced by R function survfit().) The left panel shows curves for the three 
study sites, while the right panel shows curves for the early and late collection dates. In both 
cases, the spacing between the level parts of the step-functions remains similar over time, and we 
see no evidence of decisive crossing that clearly reverses their ordering. (The estimated survivor 
functions for sites 1 and 3 cross, but they are so similar that there is never any clear evidence that 
they  actually  differ,  and hence  no evidence  of  decisive  crossing.)  We conclude  that  the  PH 
assumption is plausible for all covariates.
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Checking for multicollinearity

We  assessed  multicollinearity  for  the  Japanese  knotweed  data  by  performing  a  regression 
analysis  using  R  function  glm() from  the  stats package  with  germination  time  as  the 
dependent variable and site and collection date as covariates, then using the vif() function from 
the HH package to estimate the variance inflation factor (VIF) for each covariate. The full set of 
covariates consists of the original study-site variable (which is categorical) and collection date 
(which  is  quantitative).  Since  there  are  only  two  covariates,  a  single  assessment  of 
multicollinearity suffices for the entire model-building process.

The VIF for covariate i, denoted VIFi , is given by

VIFi =
1

1−Ri
2 , (S.13)

where Ri
2  is the R2  value for the linear regression of covariate i on the remaining covariates. 

Thus,  the greater the proportion of variation in  covariate  i that  can be accounted for by the 
remaining covariates, the closer Ri

2  will be to 1 and the larger (or more inflated) VIFi will be. 
Note that multicollinearity only involves relationships among the covariates, so the relationship 
estimated by glm() between the dependent variable and the covariates is irrelevant;  glm() is 
used  simply  to  create  an  object  from  which  vif() can  determine  what  proportion  of  the 
variation in  each covariate  is  explained by the other  covariates  (i.e.,  Ri

2 ),  and from this  to 
determine VIFi.

A VIF greater than 5 is usually considered to be evidence of multicollinearity, and a value 
greater  than  10  is  considered  to  indicate  serious  multicollinearity.  When  we  check 
multicollinearity between the site and collection date variables, we find that VIF = 1 for both 
covariates, so there is no evidence of multicollinearity.

Testing covariates individually

We now insert the study site and collection date variables individually into the Cox model (using 
R function  coxph()) and assess statistical significance (the required  p values are reported by 
coxph()). Since study site has three categories, we define two indicator variables, x1 and x2, as 
follows:

x1={1, if site=Friends
0, otherwise.

x2={1, if site=Rising Sun
0, otherwise. (S.14)

(Note that x1 = x2 = 0 implies that site = Carroll.) Inserting x1 (Friends) as a covariate and testing 
the hypothesis that β1 = 0, we find that p < 0.00001. Removing x1 from the model, inserting x2 

(Rising Sun) as a covariate, and testing the hypothesis that β2 = 0, we again find that p < 0.00001. 
Therefore, both site variables are candidates for the multivariate Cox model.

The collection date variable is quantitative and therefore can be inserted in the Cox model as 
a single covariate, x3. Removing x2, inserting x3 as the sole covariate, and testing the hypothesis 
that β3 = 0, we once again find that p < 0.00001. Therefore, collection date is a candidate for the 
multivariate Cox model. 

Building a multivariable Cox model

As in the case of multiple regression analysis, various procedures are available for building a 
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“best” Cox model, and the basis for choosing among them is somewhat subjective. Standard 
statistical programs such as R and SAS allow one to employ, for example, Akaike’s information 
criterion (AIC), p values, likelihood ratio tests, or combinations of these methods. We illustrate 
the model-building process with the p-value method, using a forward-selection procedure.

Covariates  x1 (Friends site),  x2 (Rising Sun site), and  x3 (collection date) all were found to 
have highly statistically significant effects when inserted in the Cox model individually. Next we 
create a Cox model (continuing to use R function  coxph())  with the two covariates whose 
individual p values were smallest; namely, x3 (smallest p) and x1 (second smallest p). We test the 
individual hypotheses that β1 = 0 and β3 = 0 and in both cases find that p < 0.00001. We therefore 
retain both covariates in the model. Next we add covariate x2 to the model and test the individual 
hypotheses that βi = 0 for i = 1, 2, 3. We find that p < 0.00001 for x1 and x3 and p ≈ 0.0185 for x2. 
We  therefore  retain  all  three  covariates.  Finally,  we  sequentially  insert  the  two  estimable 
interaction terms (x4 = x1 × x3 and x5 = x2 × x3), starting with the two covariates with the smallest 
p values in the 3-variable model. In each case, we test the hypothesis that  βi = 0 and find that 
p > 0.1, and we therefore exclude both interaction terms. The final Cox model therefore includes 
all  three covariates but no pair-wise interactions.  Table 1 of the text summarizes the model, 
including the estimated values of coefficients β1, β2, and β3.

Note  that  assessment  of  multicollinearity  above  was  done  using  the  original  categorical 
covariate for study site rather than the multiple indicator variables by which it is represented in 
the Cox model.  This procedure ensures that  the multiple indicator  variables representing the 
original covariate will be included or excluded as a group, as they should be.

Interpreting the final model

The hazard function in the final Cox model has the following form:

h t ∣x = h0 t exp−1.276 x10.144 x20.330 x3 , (S.15)

where covariates x1 and x2 are indicator variables for study sites Friends and Rising Sun, and x3 is 
collection date.

To assess the effect of study site Friends on germination time while controlling for (i.e., 
removing) effects of collection date, we consider the ratio of the hazard function with x1 = 1, x2 = 
0, and x3 taking on any admissible value (in the numerator) to the hazard function with x1 = x2 = 0 
and  x3 fixed at the same value as in the numerator (in the denominator). The resulting hazard 
ratio is

HR = exp −1.276 = 0.28 . (S.16)

Now, choosing x1 = 1 and x2 = 0 for any x3 implies that the numerator applies to the Friends site 
for any chosen collection date, while choosing x1 = 0 and x2 = 0 with the same value of x3 implies 
that the denominator applies to the Carroll site for the same collection date. Thus, the hazard 
ratio in equation (S.16) indicates that for any given collection date, seeds from the Friends site 
have a hazard function for germination that is 0.28 times as large as (and thus is smaller than) the 
hazard function for seeds from the Carroll site. This shows that the slope coefficient for Friends 
implicitly specifies the effect of Friends relative to Carroll. Recalling equation (7) of the text, this 
result indicates that the survivor function for seeds from Friends will decrease slower with time 
since sowing than will the survivor function for seeds from Carroll for the same collection date, 
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and therefore seeds from Friends will tend to germinate later than seeds from Carroll.
The effect  of study site  Rising Sun with effects  of collection date controlled is  assessed 

similarly, except that the values of covariates x1 and x2 in the numerator are now x1 = 0 and x2 = 1. 
The resulting hazard ratio is

HR = exp 0.144 = 1.15 . (S.17)

Thus, for any given collection date, seeds from the Rising Sun site have a hazard function that is 
1.15  times as large as (and thus is greater than) the hazard function for the Carroll site, showing 
that the slope coefficient for Rising Sun implicitly specifies the effect of Rising Sun relative to 
Carroll. It follows that seeds from Rising Sun tend to germinate sooner than seeds from Carroll. 
In the same way, we can assess the effect of the Rising Sun site relative to that of the Friends site  
by choosing x1 = 0 and x2 = 1 in the numerator of the hazard ratio while choosing x1 = 1 and x2 = 0 
in the denominator. The hazard ratio is then

HR =
exp 0.144

exp−1.276
= exp 1.420 = 4.14 . (S.18)

Thus,  for  any  given  collection  date,  seeds  from Rising  Sun  have  a  hazard  function  that  is 
4.14 > 1  times as  large  as  the  hazard  function  for  Friends,  and seeds  from Rising  Sun will 
therefore tend to germinate sooner than seeds from Friends.

Finally, the effect of collection date with effects of study site controlled can be assessed as 
follows. We allow site covariates x1 and x2 to take on any admissible values but require the values 
in the numerator and denominator to be the same. Recalling that collection date is a quantitative 
covariate,  we  may  assess  its  effect  by  considering  the  effect  of  a  unit  increment,  which 
corresponds to collecting seeds 2 weeks later. Let x3  denote the value of x3 in the denominator 
of the hazard ratio. We allow  x3  to take on any individual value in {1, 2, 3, …, 7}, and we 
require the value of x3 in the numerator to be 1 greater than the value in the denominator; that is, 
x31 . Then the hazard ratio is given by

HR =
exp0.330  x31

exp 0.330 x3
= exp 0.330 = 1.39, (S.19)

which indicates that for any given study site, collecting seeds 2 weeks later over the study period 
increases the hazard function by a factor of 1.39 and therefore tends to reduce germination time.

Should the germination delay be removed?

Scott et al. (1984) assert that the Cox model should not be applied to germination data unless the  
initial  delay  is  removed  from observed  germination  times,  because  any  difference  in  delay 
associated with covariates will prevent in the hazard rates from being exactly proportional. In the 
Japanese  knotweed  example,  graphical  assessment  of  the  PH  assumption  revealed  no  clear 
violation.  Nevertheless,  visual  inspection  of  the  data  suggests  that  the  delay  in  onset  of 
germination may differ slightly among study sites and collection dates. We therefore decided to 
follow the advice of Scott et al. (1984) and re-run our analyses after removing the initial delay 
from germination times for the various seed groups.
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We  removed  germination  delays  as  follows.  For  each  of  the  24  treatment  groups,  we 
determined the shortest observed time to germination among the 100 seeds. In the absence of a 
delay,  the  first  germination  event  in  every  group  would  have  been  recorded  on  the  first 
observation day after the start  of the experiment. Therefore, letting  T i  denote the minimum 
observed germination time in treatment group i, and recalling that the time between observations 
was 2 days, we subtracted  T i−2  days from each recorded germination time for group  i. The 
minimum germination time in the adjusted data was then 2 days in every group.

We repeated the above model-building procedure using the adjusted data with no delay in 
germination. The results in every step in the procedure were the same. Thus, all three covariates 
showed highly significant effects when included in the model individually, with collection date 
having the  smallest  p value  and the  Friends  site  having the  second smallest.  Both of  these 
covariates  remained highly significant  when included together,  and all  three covariates  were 
significant when Rising Sun was included. Finally, neither of the two estimable interaction terms 
was significant. The final model, then, includes the same covariates as before and is summarized 
in  Table  S.2.  Comparing  this  table  with  text  Table  1  shows that  not  only  are  the  included 
covariates the same, but the estimates of coefficients  βi are similar, as well. Clearly, the only 
thing gained by analyzing the adjusted data is knowledge that our original analysis was robust to 
any minor differences in germination delay that might exist. This is exactly what is expected, 
based on the robustness of the Cox model and the fact that graphical assessment of the PH 
assumption revealed no clear violation.

Table S.2. Summary table of the final Cox model for the Japanese knotweed test data with the 
germination delay removed. SE denotes the standard error.

Covariate, xi Coefficient, βi exp(βi) SE of βi z p

x1 (Friends) −1.203 0.300 0.0784 −15.33 <0.00001

x2 (Rising Sun) 0.148 1.159 0.0610 2.42 0.01535

x3 (Collection Date) 0.311 1.365 0.0126 24.68 <0.00001

Including random effects

Applying the modified model-building procedure outlined above to these data, the first step is to 
include the fixed-effect covariates in a Cox model one at a time, while also including a gamma-
distributed frailty term (using the frailty() function in R for specifying the frailty term in the 
model formula of coxph()) along with each individual fixed-effect covariate. Thus, each Cox 
model at this stage of the analysis has both a fixed-effect covariate and a shared-frailty term, 
where  each of  the  120 replicates  is  assumed  to  be  subject  to  a  separate  gamma-distributed 
random effect that applies to all 20 seeds. We find that all three covariates (Friends site, Rising 
Sun site, and collection date) have significant effects (p < 0.01), and that the frailty effect is 
highly significant (p < 0.000001 in all three cases). We therefore include the frailty term in all 
remaining steps of building the model.

Next we consider the shared-frailty model with the two covariates whose p values were the 
smallest  in  the  one-covariate  models;  namely,  collection  date  (smallest  p)  and  Friends  site 
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(second smallest p). We find that both covariates have highly significant effects (p < 0.000001 in 
both cases) and therefore retain both in the model. We then include the third covariate (Rising 
Sun site) in the model and find that collection date and the Friends site remain highly significant  
but the Rising Sun site shows no evidence of significance (p ≈ 0.52). We therefore drop Rising 
Sun from the model.

Finally, we include the interaction between Friends and collection date in the model. We find 
weak but not compelling evidence for an effect (p ≈ 0.07) and therefore drop the interaction from 
the model.

The final model is summarized in Table 4 of the text. The main difference from the model 
summarized in text Table 3 is that the covariate representing the Rising Sun site is no longer 
included in the model. It will be recalled that the germination pattern for this site is roughly 
similar to that at the Carroll Park site for later collection dates, and that the site slope coefficients  
in the model implicitly represent effects relative to Carroll Park. Thus, random variation among 
replicates in the shared-frailty model results in a loss of ability to detect a difference between the 
Rising Sun and Carroll  Park sites.  Another way of saying this  is  that,  had the replicates we 
created for the frailty example been present in the real data,  combining data from replicates 
within  treatment  groups  (and  thereby  ignoring  within-treatment  variation  that  was  actually 
present) would have resulted in detecting a significant difference between the Rising Sun and 
Carroll  Park sites  that  is  not  detectable  when within-treatment  variation  due to  replicates  is 
accounted for. This additional effect created by ignoring within-treatment variation would be a 
false positive.

Code examples for nonparametric methods using R and SAS

R code and examples

Data formats

All functions in R package  survival use the standard data format for modern time-to-event 
analysis, which assumes the data are exact. Each data record corresponds to one seed and must 
have at least the following two fields: an event time (either censoring or germination) and a 
status  variable  whose  value  is  0  if  the  event  was  a  censoring  event  (lost  seed  during  the 
experiment, or ungerminated seed remaining at the end of the experiment) or 1 if the event was a 
germination event. If there are two or more experimental groups or covariates, then additional 
fields must be included to fully specify these for each seed. An example is shown in Table S.3.

The  lifetab() function in R package  KMsurv,  which is used to compute the life-table 
estimate of the survivor function, employs a different input data format that allows the user to 
ensure germination events are assigned to the proper intervals. Two types of input are required: 
(1)  an  array  of  interval  endpoints,  the  last  of  which  is  entered  as  NA (“not  available”)  and 
represents the “end” of the infinite interval following completion of the experiment, and (2) a 
table  of  germination  data  (with  a  header  row),  with each data  record (row) including fields 
specifying any experimental groups used (e.g., study site and collection date, in our test data), the 
total number of initial seeds in each group, the number of newly germinated seeds found on each 
observation day, and the number of ungerminated seeds remaining on the last observation day. It 
is also convenient to include a field specifying the total number of seeds that germinated during 
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the experiment. If any seeds were lost during the experiment, then each data record also should 
include the number of seed losses discovered on each observation day. The number of interval 
endpoints should be one greater than the number of values for germination events.

Table S.3. Data format employed in modern time-to-event analysis. In this example, there are 2 
site groups for each of 2 date groups, with 5 seeds per combination. Event times are listed in the 
“days” column, while the types of  corresponding events are indicated in the “status” column:  
status  1  =  germination,  status  0  =  censuring  due  to  loss  during  the  experiment  or  failure  to 
germinate by the end of the experiment.

date site days status

1 1 9 1

1 1 13 1

1 1 21 0

1 1 21 0

1 1 21 0

1 2 7 1

1 2 9 1

1 2 11 1

1 2 17 1

1 2 21 0

2 1 5 1

2 1 7 1

2 1 9 1

2 1 9 0

2 1 11 1

2 2 15 1

2 2 5 1

2 2 7 1

2 2 7 1

2 2 9 1

Life-table survivor function

The following R code assumes that germination data are in a CSV (comma-separated values) file 
named  Germ_data_lifetab.csv, located in the current working directory, and that there is 
only one experimental group, no seed losses occurred, the initial number of seeds is in a field 
named  n.planted,  the  cumulative  number  of  seeds  that  germinated  is  in  a  field  named 
n.germ.total, and the numbers of germinated seeds found on observation days are in fields 6 
through 16.

# Load KMsurv library
library(KMsurv)
# Read in germination data in lifetab format
data.df <- read.table("Germ_data_lifetab.csv", header=T, sep=",")
# Create vector of interval endpoints
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t.endpts <- c(0,1,3,5,7,9,11,13,15,17,19,21,NA)    
# Create vector of numbers of lost seeds in intervals, with the number for 

the last interval including ungerminated seeds that remain
nlost <-rep(0, length(t.endpts)-1)
nlost[length(nlost)] <- data.df$n.planted - data.df$n.germ.total
# Create vector of numbers of germination events in intervals
nevent <- c(as.vector(data.df[1, 6:16], mode="integer"), 0)
# Create life table
life.table <- lifetab(t.endpts, 100, nlost, nevent)
print(life.table)
# Plot the life-table survivor function
plot(t.endpts[1:12], life.table[, 5], type="o", pch=16, lwd=2, ylim=c(0,1), 

main="Life-Table Survivor Function", xlab="time [days]", ylab="probability 
of not germinating")

# Add approximate point-wise 95% confidence intervals
u95cl <- life.table[, 5] + qnorm(0.025, lower.tail=F)*life.table[, 8]
l95cl <- life.table[, 5] - qnorm(0.025, lower.tail=F)*life.table[, 8]
lines(t.endpts[1:12], pmin(u95cl,1), lwd=1, lty="61", col=gray(0.5))
lines(t.endpts[1:12], pmax(l95cl,0), lwd=1, lty="61", col=gray(0.5))

Kaplan-Meier survivor function

The following R code assumes that germination data are in a CSV file named Germ_data.csv 
located in the current working directory, and that the event times and status variables are named 
days and  status in the file’s header row. The Kaplan-Meier survivor function is fitted with 
function survfit(), a plot with 95 % confidence intervals is created in a window on the screen, 
and a summary is printed to the command window.

# Load survival library
library(survival)
# Read in germination data in standard format
data.df <- read.table("Germ_data.csv", header=T, sep=",")
# Fit Kaplan-Meier survivor function
km.fit <- survfit(Surv(days, status) ~ 1, data=data.df, type="kaplan-meier")
# Plot the survivor function
plot(km.fit, lwd=2, col="blue", conf.int=T, xlab="time [days]", 

ylab="probability of not germinating")
# Print summary table
print(summary(km.fit))

Comparison of Survivor Functions

The  following  R  code  uses  function  survdiff() from the  survival package  to  test  for 
homogeneity of a set of three survivor functions and to test for equality of two of the curves, in 
both cases using the log-rank test. The code assumes that germination data are in the same CSV 
file used in the previous example and uses data from fields named  days,  status,  site, and 
date, which specify the event times, status variable (germination or loss/censoring), study site, 
and collection date.

# Load survival library
library(survival)
# Read in germination data in standard format
data.df <- read.table("Germ_data.csv", header=T, sep=",")
# Log-rank tests
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# ... Assess all three sites for heterogeneity
test.123 <- survdiff(Surv(days, status)~site, data=data.df, subset={date==8})
# ... Compare sites 1 & 2 only
test.00.12 <- survdiff(Surv(days, status)~site, data=data.df, subset={date==8 

& site!=3})
# Print results on screen
print(test.00.123)
print(test.00.12)

SAS code and examples

Data Input

Germination data for time-to-event analysis must be in the standard format described above for R 
functions in the  survival package. In the following code example,  proc import is used to 
import data from a CSV file named workdata.csv.

proc import out= work.workdata datafile= "workdata.csv" replace;
getnames=yes;
mixed=no;
scantext=yes;
usedate=yes;
scantime=yes;
run;

Life-table survivor functions and comparisons

As  noted  in  the  text,  SAS  procedure  lifetest allows  one  to  estimate  life-table  survivor 
functions,  but  it  does  so  incorrectly  for  interval  data  generated  by  periodic  simultaneous 
observation unless the data or observation times are adjusted.  When estimating the life-table 
survivor function, SAS assumes the event data are exact events times, which are to be artificially 
grouped by arbitrary interval limits that are entered separately. Since the only available estimates 
of event times are the observation times, one is naturally inclined to enter them as the event 
times. And since these times are in fact the observation times, one is naturally inclined also to 
enter  them  again  as  observation  times.  This  procedure,  however,  will  result  in  erroneous 
assignment of germination events to the intervals following the correct intervals. It is therefore 
necessary either to subtract a small (compared to the time between observations) amount from 
each observation  time when entering  it  as  an event  time or  to  add a  small  amount  to  each 
observation time when entering it separately as an observation time. Either procedure forces the 
values entered as event times to be slightly less than the values entered as observation times, thus 
assigning events to the correct intervals.

The  following  SAS  code  uses  the  lifetest procedure  to  estimate  life-table  survivor 
functions for all study sites, using the lt method. Survivor-function plots are requested with the 
plots option.  The  failure  time  variable  is  days,  the  status  variable  (germination  event  or 
loss/censoring) is status, and the stratification variable is site. The strata function is used 
to compare survivor functions via the log-rank test. SAS performs comparisons using methods 
that assume exact data, even though the life-table survivor curves are requested. ods graphics 
on/off gives display curves in HTML format. The freq statement is used for life-table analysis 
to determine the total number of failures that occurred in a particular interval. The intervals 

15



option specifies endpoints of the observation intervals, which are adjusted here by adding 0.01 to 
the actual endpoints to ensure events are assigned to the proper intervals. The outsurv option 
creates an ouput SAS dataset called onea. 

ods graphics on;
proc lifetest data=one  method=lt intervals=(5.01 to 21.01 by 2) outsurv=onea 

plots=(s);
time days*status(0);
strata site/test=(all);
freq freq;
run;
ods graphics off;

Kaplan-Meier survivor functions and comparisons

The  following  SAS  code  uses  the  lifetest procedure  to  estimate  Kaplan-Meier  survivor 
functions for all study sites, using the  km method. Other options, variables, and functions are 
explained in the previous example.

ods graphics on;
proc lifetest data=one method=km plots=(s);
time days*status(0);
strata site/test=(all);
run;
ods graphics off;

Code examples for semiparametric methods using R and SAS

R code and examples

Data format

All functions in R package  survival use the standard data format for modern time-to-event 
analysis, which assumes the data are exact. Each data record corresponds to one seed and must 
have at least the following two fields: an event time (either censoring or germination) and a 
status  variable  whose  value  is  0  if  the  event  was  a  censoring  event  (lost  seed  during  the 
experiment, or ungerminated seed remaining at the end of the experiment), or 1 if the event was 
a germination event. If there are two or more experimental groups or covariates, then additional 
fields must be included to fully specify these for each seed. If the data contain replicates, then 
each replicate in the entire data set must be specified uniquely.

Checking the PH Assumption

The code below checks the PH assumption for categorical variable  site by first  estimating 
Kaplan-Meier  survivor  functions  with  the  survfit() function,  then  plotting  –log(-log(S(t)) 
versus log(t) for the three survivor functions by transforming the Kaplan-Meier estimates with 
user-defined function mlogmlog(). 
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# Load survival library
library(survival)
# Read in data
data.df <- read.table("Germ_data.csv", header=T, sep=",")
# Define function mlogmlog() to calculate -log(-log(S(t)))
mlogmlog <- function(y){-log(-log(y))}
# Estimate Kaplan-Meier survivor functions for each of the three sites, for 

all collection dates combined
fit.site <- survfit(Surv(days,status) ~ site, type="kaplan-meier", 

data=data.df)
# Plot -log(-log(S(t))) versus log(t)
plot(fit.site, mark.time=F, fun=mlogmlog, log="x", xlab="t [days]", ylab="-

log(-log(S(t)))”, lty=c("solid","longdash","dotted"), lwd=1.75)

Checking for multicollinearity

The following code checks for multicollinearity (or collinearity, in this case) between variables 
site and date, based on the VIF diagnostic.

# Load HH library
library(HH)
# Read in data
data.df <- read.table("Germ_data.csv", header=T, sep=",")
# Fit a generalized linear model predicting days from site and date
multicollinearitycheck <- glm(days ~ site + date, data=data.df)
# Check for multicollinearity among covariates
vif  <- vif(multicollinearitycheck)
# Print the results on the screen
print(vif)

Adding covariates to the Cox model

The following code tests  for effects  of indicator  variable  friends and quantitative variable 
date in a two-variable Cox model, using the coxph() function. It then adds an interaction term 
and tests for its effect.

# Load survival library
library(survival)
# Read in data
data.df <- read.table("Germ_data.csv", header=T, sep=",")
# Create a Cox model with two covariates
cox.date.friends <- coxph(Surv(days, status) ~ date + friends, data=data.df)
print(summary(cox.date.friends))
# Now add an interaction term
cox.date.friends.datefriends <- coxph(Surv(days, status) ~ date + friends + 

date:friends, data=data.df)
print(summary(cox.date.friends.datefriends ))

SAS code and examples

Data format and input

Germination data for time-to-event analysis must be in the standard format described above for 
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R. In the following code example, proc import is used to import data from a CSV file named 
workdata.csv.

proc import out= work.workdata datafile= "workdata.csv" replace;
getnames=yes;
mixed=no;
scantext=yes;
usedate=yes;
scantime=yes;
run;

Checking the PH Assumption

The following code checks the PH assumption for categorical variable site in the Cox model, 
using proc lifetest.

proc lifetest data=interndata1 method=KM plots=(LLS);
time days*status(0);
strata site;
title "Log-log survivor functions";
run;

Checking for multicollinearity

The following code checks for collinearity between variables site and date, using proc reg 
and the VIF diagnostic.

proc reg data = interndata1;
model days = site date / vif;
title "Multicollinearity check";
run;

Adding covariates to the Cox model

The following code tests for effects of the site and date variables, using proc phreg. It then 
adds an interaction term and tests for its effect.

/*Site and date*/
proc phreg data=interndata1;
model days*status(0)=site date;
run;
/*Interaction*/
proc phreg data=interndata1;
model days*status(0)=site date sitedate;
sitedate=site*date;
run;
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