
Signature Restriction for Polymorphic Algebraic Effects

(Supplementary Material)

Taro Sekiyama1, Takeshi Tsukada2, and Atsushi Igarashi3

1National Institute of Informatics & SOKENDAI
tsekiyama@acm.org
2Chiba University

tsukada@math.s.chiba-u.ac.jp
3Kyoto University

igarashi@kuis.kyoto-u.ac.jp

This is the supplementary material for “Signature Restriction for Polymorphic Algebraic Effects” submitted to
Journal of Functional Programming, providing the full definitions of the language, the polymorphic type system,
and the type-and-effect system and the full proofs of the properties presented in the article.

1 Definition

1.1 Syntax

Variables x, y, z, f, k Type variables α, β, γ Effect operations op
Base types ι ::= bool | int | ...
Types A,B,C,D ::= α | ι | A→ B | ∀α.A | A×B | A+B | A list
Constants c ::= true | false | 0 | + | ...
Terms M ::= x | c | λx.M | M1 M2 | #op(M) | handle M with H |

(M1,M2) | π1M | π2M |
inl M | inr M | case M of inlx→ M1; inr y → M2 |
nil | cons M | case M of nil → M1; consx→ M2 | fix f.λx.M

Handlers H ::= returnx→ M | H ; op(x, k)→ M
Values v ::= c | λx.M | (v1, v2) | inl v | inr v | nil | cons v

Typing contexts Γ ::= ∅ | Γ, x :A | Γ, α
Evaluation contexts E ::= [] | E M2 | v1 E | #op(E) | handle E with H |

(E ,M2) | (v1,E) | π1E | π2E |
inl E | inr E | case E of inlx→ M1; inr y → M2 |
cons E | case E of nil → M1; consx→ M2

Convention 1. This work follows the conventions as below.

• We write αI for α = α1, · · · , αn with I = {1, ..., n}. We often omit index sets (I and J) if they are not
important: for example, we often abbreviate αI to α. We apply this bold-font notation to other syntax
categories as well; for example, AI denotes a sequence of types.

• We write {s} to view the sequence s as a set by ignoring the order.

• We write ∀αI . A for ∀α1. ...∀αn . A with I = {1, ..., n}. We may omit index sets (∀α. A). We write ∀αI .AJ

for a sequence of types ∀αI . A1, . . . , ∀αI . An with J = {1, . . . , n}.

• We write Γ1,Γ2 for the concatenation of Γ1 and Γ2, and x :A and α for (∅, x :A), (∅,α), respectively.

1

• We write H return for the return clause in H and H (op) for the operation clause of op in H .

Definition 1 (Domain of typing contexts). We define dom(Γ) as follows.

dom(∅) def
= ∅

dom(Γ, x :A)
def
= dom(Γ) ∪ {x}

dom(Γ, α)
def
= dom(Γ) ∪ {α}

Definition 2 (Free type variables and type substitution in types). Free type variables ftv(A) in a type A and type
substitution B[A/α] of types A for type variables α in B are defined as usual. Type A is closed if and only if ftv(A)
is empty.

Assumption 1. We suppose that the metafunction ty assigns to each constant c a first-order closed type ty(c) of
the form ι1 → · · · → ιn . We also suppose that, for any ι, there exists the set Kι of constants of ι. For any constant
c, ty(c) = ι if and only if c ∈ Kι. The partial function ζ gives a denotation to pairs of constants. In particular,
for any constants c1 and c2: (1) ζ(c1, c2) is defined if and only if ty(c1) = ι0 → A and ty(c2) = ι0 for some ι0 and
A; and (2) if ζ(c1, c2) is defined, ζ(c1, c2) is a constant and ty(ζ(c1, c2)) = A where ty(c1) = ι0 → A for some ι0
and A.

Definition 3 (Polarity of type variable occurrence). The sets ftv(A)+ and ftv(A)− of type variables that occur
positively and negatively, respectively, in type A are defined by induction on A, as follows. We write ftv(A)± for
either ftv(A)+ or ftv(A)− and ftv(A)∓ for the other.

ftv(α)+
def
= {α}

ftv(α)−
def
= ∅

ftv(A→ B)±
def
= ftv(A)∓ ∪ ftv(B)±

ftv(∀α.A)±
def
= ftv(A)± \ {α}

ftv(A×B)±
def
= ftv(A)± ∪ ftv(B)±

ftv(A+B)±
def
= ftv(A)± ∪ ftv(B)±

ftv(A list)±
def
= ftv(A)±

The set ftv(A)+ns of type variables that occur non-strictly positively in type A is defined as follows.

ftv(α)+ns
def
= ∅

ftv(A→ B)+ns
def
= ftv(A)− ∪ ftv(B)+ns

ftv(∀α.A)+ns
def
= ftv(A)+ns \ {α}

ftv(A×B)+ns
def
= ftv(A)+ns ∪ ftv(B)+ns

ftv(A+B)+ns
def
= ftv(A)+ns ∪ ftv(B)+ns

ftv(A list)+ns
def
= ftv(A)+ns

Definition 4 (Type signature). The metafunction ty assigns to each effect operation op a type signature ty (op)
of the form ∀α1. ...∀αn . A ↪→ B for some n, where α1, ..., αn are bound in the parameter type A and arity type B.
It may be abbreviated to ∀αI . A ↪→ B or, more simply, to ∀α. A ↪→ B. We suppose that ∀α1. ...∀αn . A ↪→ B is
closed, i.e., ftv(A), ftv(B) ⊆ {α1, · · · , αn}.

Definition 5 (Signature restriction). An operation op with type signature ty (op) = ∀α. A ↪→ B satisfies the
signature restriction if and only if: (1) the occurrences of each type variable of α in the parameter type A are only
negative or strictly positive (i.e., {α} ∩ ftv(A)+ns = ∅); and (2) the occurrences of each type variable of α in the
arity type B are only positive (i.e., {α} ∩ ftv(B)− = ∅).

1.2 Semantics

Definition 6 (op-transparent evaluation contexts). Evaluation context E is op-transparent, written op 6∈ E, if
and only if, there exist no E1, E2, and H such that E = E1[handle E2 with H] and H has an operation clause for
op.

2

Reduction rules M1 M2

c v ζ(c, v) (R Const)
(λx.M) v M [v/x] (R Beta)

handle v with H M [v/x] (R Return)
(where H return = returnx→ M)

handle E [#op(v)] with H M [v/x][λy.handle E [y] with H /k] (R Handle)
(where op 6∈ E and H (op) = op(x, k)→ M)

π1(v1, v2) v1 (R Proj1)
π2(v1, v2) v2 (R Proj2)

case inl v of inlx→ M1; inr y → M2 M1[v/x] (R CaseL)
case inr v of inlx→ M1; inr y → M2 M2[v/y] (R CaseR)

case nil of nil → M1; consx→ M2 M1 (R Nil)
case cons v of nil → M1; consx→ M2 M2[v/x] (R Cons)

fix f.λx.M (λx.M)[fix f.λx.M /f] (R Fix)

Evaluation rules M1 −→ M2

M1 M2

E [M1] −→ E [M2]
E Eval

Figure 1: Semantics.

Definition 7. Relations −→ and are the smallest relations satisfying the rules in Figure 1.

Definition 8 (Multi-step evaluation). Binary relation −→∗ over terms is the reflexive and transitive closure of
−→.

Definition 9 (Nonreducible terms). We write M 6−→ if there exists no term M ′ such that M −→ M ′.

1.3 Typing

Definition 10. Well-formedness judgment ` Γ is the smallest relations satisfying the rules in Figure 3. We write
Γ ` A if and only if ftv(A) ⊆ dom(Γ) and ` Γ is derived. Type containment judgment Γ ` A v B is the least
relation satisfying the rules in Figure 2. Typing judgments Γ ` M : A and Γ ` H : A⇒ B are the smallest relations
satisfying the rules in Figure 4.

3

Type containment Γ ` A v B

` Γ

Γ ` A v A
C Refl

Γ ` A v C Γ ` C v B
Γ ` A v B

C Trans
Γ ` B1 v A1 Γ ` A2 v B2

Γ ` A1 → A2 v B1 → B2
C Fun

Γ ` B
Γ ` ∀α.A v A[B/α]

C Inst
` Γ α 6∈ ftv(A)

Γ ` A v ∀α.A
C Gen

Γ, α ` A v B
Γ ` ∀α.A v ∀α.B

C Poly

Γ ` A1 v B1 Γ ` A2 v B2

Γ ` A1 ×A2 v B1 ×B2
C Prod

Γ ` A1 v B1 Γ ` A2 v B2

Γ ` A1 +A2 v B1 +B2
C Sum

Γ ` A v B
Γ ` A list v B list

C List

` Γ α 6∈ ftv(A)

Γ ` ∀α.A→ B v A→ ∀α.B
C DFun

` Γ

Γ ` ∀α.A×B v (∀α.A)× (∀α.B)
C DProd

` Γ

Γ ` ∀α.A+B v (∀α.A) + (∀α.B)
C DSum

` Γ

Γ ` ∀α.A list v (∀α.A) list
C DList

Figure 2: Type containment.

Well-formedness ` Γ

` ∅
WF Empty

x 6∈ dom(Γ) Γ ` A
` Γ, x :A

WF ExtVar
α 6∈ dom(Γ) ` Γ

` Γ, α
WF ExtTyVar

Figure 3: Well-formedness.

4

Term typing Γ ` M : A

` Γ x :A ∈ Γ

Γ ` x : A
T Var

` Γ

Γ ` c : ty(c)
T Const

Γ, x :A ` M : B

Γ ` λx.M : A→ B
T Abs

Γ ` M1 : A→ B Γ ` M2 : A

Γ ` M1 M2 : B
T App

Γ, α ` M : A

Γ ` M : ∀α.A
T Gen

Γ ` M : A Γ ` A v B Γ ` B
Γ ` M : B

T Inst

ty (op) = ∀α. A ↪→ B Γ ` M : A[C/α] Γ ` C
Γ ` #op(M) : B[C/α]

T Op
Γ ` M : A Γ ` H : A⇒ B

Γ ` handle M with H : B
T Handle

Γ ` M1 : A Γ ` M2 : B

Γ ` (M1,M2) : A×B
T Pair

Γ ` M : A×B
Γ ` π1M : A

T Proj1
Γ ` M : A×B
Γ ` π2M : B

T Proj2

Γ ` M : A Γ ` B
Γ ` inl M : A+B

T InL
Γ ` M : B Γ ` A
Γ ` inr M : A+B

T InR

Γ ` M : A+B Γ, x :A ` M1 : C Γ, y :B ` M2 : C

Γ ` case M of inlx→ M1; inr y → M2 : C
T Case

Γ ` A
Γ ` nil : A list

T Nil
Γ ` M : A×A list

Γ ` cons M : A list
T Cons

Γ ` M : A list Γ ` M1 : B Γ, x :A×A list ` M2 : B

Γ ` case M of nil → M1; consx→ M2 : B
T CaseList

Γ, f :A→ B, x :A ` M : B

Γ ` fix f.λx.M : A→ B
T Fix

Handler typing Γ ` H : A⇒ B

Γ, x :A ` M : B

Γ ` returnx→ M : A⇒ B
TH Return

Γ ` H : A⇒ B ty (op) = ∀α. C ↪→ D Γ,α, x :C, k :D → B ` M : B

Γ ` H ; op(x, k)→ M : A⇒ B
TH Op

Figure 4: Typing.

5

Effects ε ::= {op1, · · · , opn}
Types A,B,C,D ::= α | ι | A→ε B | ∀α.A | A×B | A+B | A list

Figure 5: Type language for the effect-and-type system.

Type containment Γ ` A v B

Γ ` B1 v A1 Γ ` A2 v B2

Γ ` A1 →ε A2 v B1 →ε B2
C FunEff

` Γ α 6∈ ftv(A) SR (ε)

Γ ` ∀α.A→ε B v A→ε ∀α.B
C DFunEff

Figure 6: Change from Figure 2 for type containment of the effect-and-type system. It gets rid of (C Fun) and
(C DFun) instead of adding (C FunEff) and (C DFunEff).

1.4 Type-and-effect system

The type language for the type-and-effect system is shown Figure 5. Figure 6 describes only the change of the type
containment rules from those of the polymorphic type system.

Definition 11 (Signature restriction on effects). The predicate SR (ε) holds if and only if, for any op ∈ ε such
that ty (op) = ∀α. A ↪→ B:

• {α} ∩ ftv(A)+ns = ∅;

• {α} ∩ ftv(B)− = ∅; and

• for any function type C →ε′ D occurring at a strictly positive position in the type A, if {α} ∩ ftv(D) 6= ∅,
then SR (ε′).

Definition 12. Typing judgments Γ ` M : A | ε and Γ ` H : A | ε ⇒ B | ε′ are the smallest relations satisfying the
rules in Figure 7.

6

Term typing Γ ` M : A | ε

` Γ x :A ∈ Γ

Γ ` x : A | ε
Te Var

` Γ

Γ ` c : ty(c) | ε
Te Const

Γ, x :A ` M : B | ε′

Γ ` λx.M : A→ε′ B | ε
Te Abs

Γ ` M1 : A→ε′ B | ε Γ ` M2 : A | ε ε′ ⊆ ε

Γ ` M1 M2 : B | ε
Te App

Γ, α ` M : A | ε SR (ε)

Γ ` M : ∀α.A | ε
Te Gen

Γ ` M : A | ε Γ ` A v B Γ ` B
Γ ` M : B | ε

Te Inst

ty (op) = ∀α. A ↪→ B op ∈ ε Γ ` M : A[C/α] | ε Γ ` C
Γ ` #op(M) : B[C/α] | ε

Te Op

Γ ` M : A | ε Γ ` H : A | ε⇒ B | ε′

Γ ` handle M with H : B | ε′
Te Handle

Γ ` M1 : A | ε Γ ` M2 : B | ε
Γ ` (M1,M2) : A×B | ε

Te Pair
Γ ` M : A×B | ε
Γ ` π1M : A | ε

Te Proj1
Γ ` M : A×B | ε
Γ ` π2M : B | ε

Te Proj2

Γ ` M : A | ε Γ ` B
Γ ` inl M : A+B | ε

Te InL
Γ ` M : B | ε Γ ` A
Γ ` inr M : A+B | ε

Te InR

Γ ` M : A+B | ε Γ, x :A ` M1 : C | ε Γ, y :B ` M2 : C | ε
Γ ` case M of inlx→ M1; inr y → M2 : C | ε

Te Case

Γ ` A
Γ ` nil : A list | ε

Te Nil
Γ ` M : A×A list | ε
Γ ` cons M : A list | ε

Te Cons

Γ ` M : A list | ε Γ ` M1 : B | ε Γ, x :A×A list ` M2 : B | ε
Γ ` case M of nil → M1; consx→ M2 : B | ε

Te CaseList

Γ, f :A→ε B, x :A ` M : B | ε
Γ ` fix f.λx.M : A→ε B | ε′

Te Fix
Γ ` M : A | ε′ ε′ ⊆ ε

Γ ` M : A | ε
Te Weak

Handler typing Γ ` H : A | ε⇒ B | ε′

Γ, x :A ` M : B | ε′ ε ⊆ ε′

Γ ` returnx→ M : A | ε⇒ B | ε′
THe Return

Γ ` H : A | ε⇒ B | ε′ ty (op) = ∀α. C ↪→ D

Γ,α, x :C, k :D →ε′ B ` M : B | ε′

Γ ` H ; op(x, k)→ M : A | ε] {op} ⇒ B | ε′
THe Op

Figure 7: Typing of the effect-and-type system.

7

2 Proofs

2.1 Soundness of the Type System

Lemma 1 (Weakening). Suppose that ` Γ1,Γ2. Let Γ3 be a typing context such that dom(Γ2) ∩ dom(Γ3) = ∅.

1. If ` Γ1,Γ3, then ` Γ1,Γ2,Γ3.

2. If Γ1,Γ3 ` A, then Γ1,Γ2,Γ3 ` A.

3. If Γ1,Γ3 ` A v B, then Γ1,Γ2,Γ3 ` A v B.

4. If Γ1,Γ3 ` M : A, then Γ1,Γ2,Γ3 ` M : A.

5. If Γ1,Γ3 ` H : A⇒ B, then Γ1,Γ2,Γ3 ` H : A⇒ B.

Proof. By mutual induction on the derivations of the judgments.

Lemma 2 (Type substitution). Suppose that Γ1 ` A.

1. If ` Γ1, α,Γ2, then ` Γ1,Γ2 [A/α].

2. If Γ1, α,Γ2 ` B, then Γ1,Γ2 [A/α] ` B[A/α].

3. If Γ1, α,Γ2 ` B v C, then Γ1,Γ2 [A/α] ` B[A/α] v C[A/α].

4. If Γ1, α,Γ2 ` M : B, then Γ1,Γ2 [A/α] ` M : B[A/α].

5. If Γ1, α,Γ2 ` H : B ⇒ C, then Γ1,Γ2 [A/α] ` H : B[A/α]⇒ C[A/α].

Proof. Straightforward by mutual induction on the derivations of the judgments. Note that the cases for (T Op)
and (TH Op) depend on Definition 4, which states that, for any op, if ty (op) = ∀β. C ↪→ D, ftv(C) ∪ ftv(D) ⊆
{β}.

Lemma 3.

1. If ` Γ1, x :A,Γ2, then ` Γ1,Γ2.

2. If Γ1, x :A,Γ2 ` B, then Γ1,Γ2 ` B.

3. If Γ1, x :A,Γ2 ` B v C, then Γ1,Γ2 ` B v C.

Proof. By induction on the derivations of the judgments.

Lemma 4 (Term substitution). Suppose that Γ1 ` M : A.

1. If Γ1, x :A,Γ2 ` M ′ : B, then Γ1,Γ2 ` M ′[M /x] : B.

2. If Γ1, x :A,Γ2 ` H : B ⇒ C, then Γ1,Γ2 ` H [M /x] : B ⇒ C.

Proof. By mutual induction on the typing derivations with Lemma 3. The case for (T Var) uses Lemma 1 (4).

Definition 13. The function unqualify returns the type obtained by removing all the ∀s at the top-level from a
given type, defined as follows.

unqualify(∀α.A)
def
= unqualify(A)

unqualify(A)
def
= A (if A 6= ∀α.B for any α and B)

Lemma 5. Suppose Γ ` A v B. If unqualify(A) is not a type variable, then unqualify(B) is not either.

Proof. By induction on the type containment derivation. The only interesting case is for (C Inst). In that case, we
are given Γ ` ∀α.C v C[D/α] (A = ∀α.C and B = C[D/α]) for some α, C, and D, and, by inversion, Γ ` D. It
is easy to see, if unqualify(∀β.C) = unqualify(C) is not a type variable, then unqualify(C[D/β]) is not either.

8

Lemma 6. Suppose that Γ ` A v B and unqualify(A) is not a type variable.

1. If unqualify(B) = ι, then unqualify(A) = ι.

2. If unqualify(B) = B1 → B2, then unqualify(A) = A1 → A2 for some A1 and A2.

3. If unqualify(B) = B1 ×B2, then unqualify(A) = A1 ×A2 for some A1 and A2.

4. If unqualify(B) = B1 +B2, then unqualify(A) = A1 +A2 for some A1 and A2.

5. If unqualify(B) = B′ list, then unqualify(A) = A′ list for some A′.

Proof. By induction on the type containment derivation. The case for (C Trans) is shown by the IHs and Lemma 5.
In the case for (C Inst), we are given Γ ` ∀α.C v C[D/α] for some α, C, and D (A = ∀α.C and B = C[D/α]).
Since unqualify(∀α.C) = unqualify(C) is not a type variable, it is easy to see that the top type constructor of
unqualify(C) is the same as that of unqualify(C[D/α]). Proving the other cases is straightforward.

Lemma 7. If Γ ` v : A, then unqualify(A) is not a type variable.

Proof. By induction on the typing derivation for v . We can show the case for (T Inst) by the IH and Lemma 5.

Lemma 8 (Canonical forms). Suppose that Γ ` v : A.

1. If unqualify(A) = ι, then v = c for some c.

2. If unqualify(A) = B → C, then v = c for some c, or v = λx.M for some x and M .

3. If unqualify(A) = B × C, then v = (v1, v2) for some v1 and v2.

4. If unqualify(A) = B + C, then v = inl v ′ or v = inr v ′ for some v ′.

5. If unqualify(A) = B list, then v = nil or v = cons v ′ for some v ′.

Proof. Straightforward by induction on the typing derivation for v . The only interesting case is for (T Inst). In
the case, we are given, by inversion, Γ ` v : B and Γ ` B v A and Γ ` A for some B. By Lemma 7, unqualify(B)
is not a type variable. Thus, by Lemma 6 and the IH, we finish.

Definition 14. We use metavariable ∆ for ranging over typing contexts that consist of only type variables. For-
mally, they are defined by the following syntax.

∆ ::= ∅ | ∆, α

Lemma 9 (Commutation of universal quantification in type containment). If ` Γ, then Γ ` ∀α.∀β.A v ∀β.∀α.A.

Proof. Let α′ and β′ be fresh, distinct type variables. Because ∀β.∀α.A is alpha-equivalent to ∀β′.∀α′. A[α′/α][β′/β],
it suffices to show that

Γ ` ∀α.∀β.A v ∀β′.∀α′. A[α′/α][β′/β] ,

which is derived by (C Trans) with the following type containment derivations:

` Γ α′ 6∈ ftv(∀α.∀β.A)

Γ ` ∀α.∀β.A v ∀α′.∀α.∀β.A
(C Gen)

` Γ β′ 6∈ ftv(∀α′.∀α.∀β.A)

Γ ` ∀α′.∀α.∀β.A v ∀β′.∀α′.∀α.∀β.A
(C Gen)

Γ, β′, α′ ` α′

Γ, β′, α′ ` ∀α.∀β.A v ∀β.A[α′/α]
(C Inst)

Γ ` ∀β′.∀α′.∀α.∀β.A v ∀β′.∀α′.∀β.A[α′/α]
(C Poly)

Γ, β′, α′ ` β′

Γ, β′, α′ ` ∀β.A[α′/α] v A[α′/α][β′/β]
(C Inst)

Γ ` ∀β′.∀α′.∀β.A[α′/α] v ∀β′.∀α′. A[α′/α][β′/β]
(C Poly)

9

Lemma 10 (Type containment inversion: polymorphic function types). If Γ ` ∀αI1
1 . A1 → A2 v ∀αI2

2 . B1 → B2,
then there exist αI11

11 , αI12
12 , βJ , and CI11 such that

• {αI1
1 } = {αI11

11 }] {α
I12
12 },

• Γ,αI2
2 ,β

J ` CI11 ,

• Γ,αI2
2 ` B1 v ∀βJ . A1[CI11/αI11

11],

• Γ,αI2
2 ` ∀α

I12
12 .∀βJ . A2[CI11/αI11

11] v B2, and

• type variables in {βJ} do not appear free in A1 and A2.

Proof. By induction on the type containment derivation. Throughout the proof, we use the fact of ` Γ for applying
(C Refl); it is shown easily by induction on the type containment derivation.

Case (C Refl): We have αI1
1 = αI2

2 and A1 = B1 and A2 = B2. Let αI12
12 and βJ be the empty sequence,

αI11
11 = αI1

1 , and CI11 = αI1
1 . We have to show that

• Γ,αI2
2 ` B1 v A1 and

• Γ,αI2
2 ` A2 v B2.

They are derived by (C Refl).

Case (C Trans): By inversion, we have Γ ` ∀αI1
1 . A1 → A2 v D and Γ ` D v ∀αI2

2 . B1 → B2 for some D. By
Lemma 6, D = ∀αI3

3 . D1 → D2 for some αI3
3 , D1, and D2. By the IH on Γ ` ∀αI1

1 . A1 → A2 v ∀αI3
3 . D1 → D2,

there exist αI11
11 , αI12

12 , CI11
1 , and βJ1

1 such that

• {αI1
1 } = {αI11

11 }] {α
I12
12 },

• Γ,αI3
3 ,β

J1
1 ` C

I11
1 ,

• Γ,αI3
3 ` D1 v ∀βJ1

1 . A1[CI11
1 /αI11

11],

• Γ,αI3
3 ` ∀α

I12
12 .∀β

J1
1 . A2[CI11

1 /αI11
11] v D2, and

• type variables in βJ1
1 do not appear free in A1 and A2.

By the IH on Γ ` ∀αI3
3 . D1 → D2 v ∀αI2

2 . B1 → B2, there exist αI31
31 , αI32

32 , CI31
3 , and βJ3

3 such that

• {αI3
3 } = {αI31

31 }] {α
I32
32 },

• Γ,αI2
2 ,β

J3
3 ` C

I31
3 ,

• Γ,αI2
2 ` B1 v ∀βJ3

3 . D1[CI31
3 /αI31

31],

• Γ,αI2
2 ` ∀α

I32
32 .∀β

J3
3 . D2[CI31

3 /αI31
31] v B2, and

• type variables in βJ3
3 do not appear free in D1 and D2.

We show the conclusion by letting CI11 = C1[CI31
3 /αI31

31]I11 and βJ = αI32
32 ,β

J3
3 ,βJ1

1 . We have to show that

• Γ,αI2
2 ,α

I32
32 ,β

J3
3 ,βJ1

1 ` C1[CI31
3 /αI31

31]I11 ,

• Γ,αI2
2 ` B1 v ∀αI32

32 .∀β
J3
3 .∀βJ1

1 . A1[CI11/αI11
11], and

• Γ,αI2
2 ` ∀α

I12
12 .∀α

I32
32 .∀β

J3
3 .∀βJ1

1 . A2[CI11/αI11
11] v B2.

The first requirement is shown by Γ,αI3
3 ,β

J1
1 ` C

I11
1 and Γ,αI2

2 ,β
J3
3 ` C

I31
3 and Lemma 1 (2) and Lemma 2 (2).

Next, we show the second requirement. Since Γ,αI3
3 ` D1 v ∀βJ1

1 . A1[CI11
1 /αI11

11] and Γ,αI2
2 ,β

J3
3 ` C

I31
3 , we have

Γ,αI2
2 ,α

I3
3 ,β

J3
3 ` D1 v ∀βJ1

1 . A1[CI11
1 /αI11

11] and Γ,αI2
2 ,α

I32
32 ,β

J3
3 ` C

I31
3 by Lemma 1 (3) and (2), respectively.

Thus, by Lemma 2 (3),
Γ,αI2

2 ,α
I32
32 ,β

J3
3 ` D1[CI31

3 /αI31
31] v ∀βJ1

1 . A1[CI11/αI11
11]

(note that we can suppose that αI31
31 do not appear free in A1). By (C Poly),

Γ,αI2
2 ,α

I32
32 ` ∀β

J3
3 . D1[CI31

3 /αI31
31] v ∀βJ3

3 .∀βJ1
1 . A1[CI11/αI11

11].

10

Since Γ,αI2
2 ` B1 v ∀βJ3

3 . D1[CI31
3 /αI31

31], we have

Γ,αI2
2 ,α

I32
32 ` B1 v ∀βJ3

3 .∀βJ1
1 . A1[CI11

01 /α
I11
11]

by Lemma 1 (3) and (C Trans). Since we can suppose that αI32
32 do not appear free in B1, we have

Γ,αI2
2 ` B1 v ∀αI32

32 .∀β
J3
3 .∀βJ1

1 . A1[CI11/αI11
11]

by (C Gen), (C Poly), and (C Trans).

Finally, we show the third requirement. Since Γ,αI3
3 ` ∀α

I12
12 .∀β

J1
1 . A2[CI11

1 /αI11
11] v D2 and Γ,αI2

2 ,β
J3
3 ` C

I31
3 ,

we have Γ,αI2
2 ,α

I3
3 ,β

J3
3 ` ∀α

I12
12 .∀β

J1
1 . A2[CI11

1 /αI11
11] v D2 and Γ,αI2

2 ,α
I32
32 ,β

J3
3 ` C

I31
3 by Lemma 1 (3) and

(2), respectively. Thus, by Lemma 2 (3),

Γ,αI2
2 ,α

I32
32 ,β

J3
3 ` ∀α

I12
12 .∀β

J1
1 . A2[CI11/αI11

11] v D2[CI31
3 /αI31

31]

(note that we can suppose that αI31
31 do not appear free in A2). By (C Poly),

Γ,αI2
2 ` ∀α

I32
32 .∀β

J3
3 .∀αI12

12 .∀β
J1
1 . A2[CI11/αI11

11] v ∀αI32
32 .∀β

J3
3 . D2[CI31

3 /αI31
31] .

Since Γ,αI2
2 ` ∀α

I32
32 .∀β

J3
3 . D2[CI31

3 /αI31
31] v B2, we have

Γ,αI2
2 ` ∀α

I32
32 .∀β

J3
3 .∀αI12

12 .∀β
J1
1 . A2[CI11/αI11

11] v B2

by (C Trans). Because

Γ,αI2
2 ` ∀α

I12
12 .∀α

I32
32 .∀β

J3
3 .∀βJ1

1 . A2[CI11/αI11
11] v ∀αI32

32 .∀β
J3
3 .∀αI12

12 .∀β
J1
1 . A2[CI11/αI11

11]

by Lemma 9 (note that ` Γ,αI2
2 because we can assume that the type variables of αI2

2 do not occur in Γ without
loss of generality), we have

Γ,αI2
2 ` ∀α

I12
12 .∀α

I32
32 .∀β

J3
3 .∀βJ1

1 . A2[CI11/αI11
11] v B2

by (C Trans).

Case (C Fun): Obvious by inversion.

Case (C Inst): We have αI1
1 = α,αI2

2 and B1 = A1[C/α] and B2 = A2[C/α] for some C such that Γ ` C. We
show the conclusion by letting αI11

11 = α,αI2
2 , CI11 = C,αI2

2 , and αI12
12 and βJ be the empty sequence. We have

to show that

• Γ,αI2
2 ` C,

• Γ,αI2
2 ` A1[C/α] v A1[C/α], and

• Γ,αI2
2 ` A2[C/α] v A2[C/α].

The first is shown by Lemma 1 (1). The second is by (C Refl). The third is by (C Refl).

Case (C Gen): We have αI2
2 = α,αI1

1 and A1 = B1 and A2 = B2 and α 6∈ ftv(∀αI1
1 . A1 → A2). We show the

conclusion by letting αI11
11 = αI1

1 , CI11 = αI1
1 , and αI12

12 and βJ be the empty sequence. We have to show that

• Γ, α,αI1
1 ` A1 v A1 and

• Γ, α,αI1
1 ` A2 v A2.

They are derived by (C Refl).

Case (C Poly): We have αI1
1 = α,αI01

01 and αI2
2 = α,αI02

02 and, by inversion, Γ, α ` ∀αI01
01 . A1 → A2 v

∀αI02
02 . B1 → B2. By the IH, there exist some αI011

011, αI12
12 , βJ , and CI011

0 such that

• {αI01
01 } = {αI011

011}] {α
I12
12 },

• Γ, α,αI02
02 ,β

J ` CI011
0 ,

11

• Γ, α,αI02
02 ` B1 v ∀βJ . A1[CI011

0 /αI011
011],

• Γ, α,αI02
02 ` ∀α

I12
12 .∀βJ . A2[CI011

0 /αI011
011] v B2, and

• type variables in βJ do not appear free in A1 and B1.

We can prove the conclusion by letting αI11
11 = α,αI011

011 and CI11 = α,CI011
0 .

Case (C DFun): It is found that, for some α, αI1
1 = α and αI2

2 is the empty sequence and B1 = A1 and
B2 = ∀α.A2. We show the conclusion by letting αI12

12 = α and αI11
11 , CI11 , and βJ be the empty sequence. It

suffices to show that Γ ` A1 v A1 and Γ ` ∀α.A2 v ∀α.A2, which are derived by (C Refl).

Case (C Prod), (C Sum), (C List), (C DProd), (C DSum), and (C DList): Contradictory.

Lemma 11 (Type containment inversion: monomorphic function types). If Γ ` A1 → A2 v B1 → B2, then
Γ ` B1 v A1 and Γ ` A2 v B2.

Proof. By Lemma 10, Γ ` B1 v ∀α. A1 and Γ ` ∀α. A2 v B2 for some α such that type variables in α do not
appear free in A1 and A2. Since Γ ` ∀α. A1 v A1 by (C Inst) (we can substitute any type, e.g., ∀β. β, for α), we
have Γ ` B1 v A1 by (C Trans). Since Γ ` A2 v ∀α. A2 by (C Gen), we have Γ ` A2 v B2.

Lemma 12 (Value inversion: constants). If Γ ` c : A, then Γ ` ty(c) v A.

Proof. By induction on the typing derivation for c. There are only three typing rules that can be applied to c.

Case (T Const): By (C Refl).

Case (T Gen): We are given Γ ` c : ∀α.B for some α and B (i.e., A = ∀α.B), and, by inversion, Γ, α ` c : B.
By the IH, Γ, α ` ty(c) v B. By (C Poly), Γ ` ∀α. ty(c) v ∀α.B. Since ty(c) is closed, we have Γ ` ty(c) v
∀α. ty(c) by (C Gen). Thus, by (C Trans), we have the conclusion.

Case (T Inst): By the IH and (C Trans).

Lemma 13 (Progress). If ∆ ` M : A, then:

• M −→ M ′ for some M ′;

• M is a value; or

• M = E [#op(v)] for some E, op, and v such that op 6∈ E.

Proof. By induction on the typing derivation for M . We proceed by case analysis on the typing rule applied last
to derive ∆ ` M : A.

Case (T Var): Contradictory.

Case (T Const), (T Abs), and (T Nil): Obvious.

Case (T App): We are given

• M = M1 M2,

• ∆ ` M1 M2 : A,

• ∆ ` M1 : B → A, and

• ∆ ` M2 : B

for some M1, M2, and B. By case analysis on the behavior of M1. We have three cases to consider by the IH.

Case M1 −→ M ′
1 for some M ′

1: We have M −→ M ′
1 M2.

12

Case M1 = E1[#op(v)] for some E1, op, and v such that op 6∈ E1: We have the third case in the conclusion by
letting E = E1 M2.

Case M1 = v1 for some v1: By case analysis on the behavior of M2 with the IH.

Case M2 −→ M ′
2 for some M ′

2: We have M −→ v1 M ′
2.

Case M2 = E2[#op(v)] for some E2, op, and v such that op 6∈ E2: We have the third case in the conclusion
by letting E = v1 E2.

Case M2 = v2 for some v2: By Lemma 8 on v1, we have two cases to consider.

Case v1 = c1: Since ∆ ` c1 : B → A, we have ∆ ` ty(c1) v B → A by Lemma 12. By Lemma 6 (2), it
is found that ty(c1) = ι → C for some ι and C. Since ∆ ` ι → C v B → A, we have ∆ ` B v ι by
Lemma 11. Since ∆ ` v2 : B, unqualify(B) is not a type variable by Lemma 7. Thus, since ∆ ` B v ι, it
is found that unqualify(B) = ι by Lemma 6. Since ∆ ` v2 : B, we have v2 = c2 for some c2 by Lemma 8.
Since ∆ ` c2 : B, we have ∆ ` ty(c2) v B by Lemma 12. Since unqualify(B) = ι, we have ty(c2) = ι
by Lemma 6. Thus, ζ(c1, c2) is defined, and M = c1 c2 −→ ζ(c1, c2) by (R Const)/(E Eval).

Case v1 = λx.M ′: By (R Beta)/(E Eval), M = (λx.M ′) v2 −→ M ′[v2/x].

Case (T Gen): By the IH.

Case (T Inst): By the IH.

Case (T Op): We are given

• M = #op(M ′),

• ty (op) = ∀α. A′ ↪→ B′,

• ∆ ` #op(M ′) : B′[C/α], and

• ∆ ` M ′ : A′[C/α]

for some op, M ′, α, A′, B′, and C. By case analysis on the behavior of M ′ with the IH.

Case M ′ −→ M ′′ for some M ′′: We have M −→ #op(M ′′).

Case M ′ = E ′[#op′(v)] for some E ′, op′, and v such that op′ 6∈ E ′: We have the third case in the conclusion by
letting E = #op(E ′).

Case M ′ = v for some v : We have the third case in the conclusion by letting E = [].

Case (T Handle): We are given

• M = handle M ′ with H ,

• ∆ ` M ′ : B, and

• ∆ ` H : B ⇒ A

for some M ′, H , and B. By case analysis on the behavior of M ′ with the IH.

Case M ′ −→ M ′′ for some M ′′: We have M −→ handle M ′′ with H .

Case M ′ = E ′[#op(v)] for some E ′, op, and v such that op 6∈ E ′: If handler H contains an operation clause op(x, k)→
M ′′, then we have M −→ M ′′[v/x][λy.handle E ′[y] with H /k] by (R Handle)/(E Eval).

Otherwise, if H contains no operation clause for op, we have the third case in the conclusion by letting
E = handle E ′ with H .

Case M ′ = v for some v : By (R Return)/(E Eval).

Case (T Pair): We are given

• M = (M1,M2),

• ∆ ` M1 : B1, and

• ∆ ` M2 : B2

13

for some M1, M2, B1, and B2. By case analysis on the behavior of M1 with the IH.

Case M1 −→ M ′
1 for some M ′

1: We have M = (M ′
1,M2).

Case M1 = E1[#op(v)] for some E1, op, and v such that op 6∈ E1: We have the third case in the conclusion by
letting E = (E1,M2).

Case M1 = v1 for some v1: By case analysis on the behavior of M2 with the IH.

Case M2 −→ M ′
2: We have M2 −→ (v1,M

′
2).

Case M2 = E2[#op(v)] for some E2, op, and v such that op 6∈ E2: We have the third case in the conclusion
by letting E = (v1,E2).

Case M2 = v2: We have the second case in the conclusion since M = (v1, v2).

Case (T Proj1): We are given

• M = π1M ′ and

• ∆ ` M ′ : A×B

for some M ′ and B. By case analysis on the behavior of M ′ with the IH.

Case M ′ −→ M ′′ for some M ′′: We have M −→ π1M ′′.

Case M ′ = E ′[#op(v)] for some E ′, op, and v such that op 6∈ E ′: We have the third case in the conclusion by
letting E = π1E ′.

Case M ′ = v ′ for some v ′: Since ∆ ` M ′ : A× B (i.e., ∆ ` v ′ : A× B), we have v ′ = (v1, v2) for some v1 and
v2 by Lemma 8. By (R Proj1)/(E Eval), we finish.

Case (T Proj2): Similarly to the case for (T Proj1).

Case (T InL), (T InR), and (T Cons): Similarly to the case for (T Pair).

Case (T Case): We are given

• M = case M ′ of inlx→ M1; inr y → M2 and

• ∆ ` M ′ : B + C

for some M ′, M1, M2, x, y, B, and C. By case analysis on the behavior of M ′ wit the IH.

Case M ′ −→ M ′′ for some M ′′: We have M −→ case M ′′ of inlx→ M1; inr y → M2.

Case M ′ = E ′[#op(v)] for some E ′, op, and v such that op 6∈ E ′: We have the third case in the conclusion by
letting E = case E ′ of inlx→ M1; inr y → M2.

Case M ′ = v for some v : By Lemma 8, v = inl v ′ or v = inr v ′ for some v ′. We finish by (R CaseL)/(E Eval)
or (R CaseR)/(E Eval).

Case (T CaseList): Similar to the case for (T Case).

Case (T Fix): By (R Fix)/(E Eval).

Lemma 14.

1. If Γ ` M : A, then Γ ` A.

2. If Γ ` H : A⇒ B, then Γ ` B.

Proof. Straightforward by mutual induction on the typing derivations. The case for (T Op) depends on Lemma 2
and Definition 4, which states that, for op such that ty (op) = ∀α. A ↪→ B, ftv(B) ⊆ {α}.

Lemma 15 (Value inversion: lambda abstractions). If Γ ` λx.M : A, then Γ,α, x :B ` M : C and Γ ` ∀α. B →
C v A for some α, B, and C.

14

Proof. By induction on the typing derivation for λx.M . There are only three typing rules that can be applied to
λx.M .

Case (T Abs): We have A = B → C for some B and C. Let α be the empty sequence. We have the conclusion
by inversion and (C Refl).

Case (T Gen): We are given Γ ` λx.M : ∀β.D for some β and D (i.e., A = ∀β.D), and, by inversion, Γ, β `
λx.M : D. By the IH, Γ, β,γI , x :B ` M : C and Γ, β ` ∀γI . B → C v D for some γI , B, and C. We show the
conclusion by letting α = β,γI . It suffices to show that Γ ` ∀β.∀γI . B → C v ∀β.D, which is derived from
Γ, β ` ∀γI . B → C v D with (C Poly).

Case (T Inst): By the IH and (C Trans).

Lemma 16 (Value inversion: pairs). If Γ ` (M1,M2) : A, then Γ,α ` M1 : B1 and Γ,α ` M2 : B2 and
Γ ` ∀α. B1 ×B2 v A for some α, B1, and B2.

Proof. By induction on the typing derivation for (M1,M2). There are only three typing rules that can be applied
to (M1,M2).

Case (T Pair): Obvious by (C Refl).

Case (T Gen): We are given Γ ` (M1,M2) : ∀β.C (i.e., A = ∀β.C) and, by inversion, Γ, β ` (M1,M2) : C. By
the IH, Γ, β,γI ` M1 : B1 and Γ, β,γI ` M2 : B2 Γ, β ` ∀γI . B1 × B2 v C for some γI , B1, and B2. We show
the conclusion by letting α = β,γI . It suffices to show that Γ ` ∀β.∀γI . B1 × B2 v ∀β.C, which is derived
from Γ, β ` ∀γI . B1 ×B2 v C with (C Poly).

Case (T Inst): By the IH and (C Trans).

Lemma 17 (Value inversion: left injections). If Γ ` inl M : A, then Γ,α ` M : B and Γ ` ∀α. B + C v A for
some α, B, and C.

Proof. By induction on the typing derivation for inl M . There are only three typing rules that can be applied to
inl M .

Case (T InL): Obvious by (C Refl).

Case (T Gen): We are given Γ ` inl M : ∀β.D (i.e., A = ∀β.D) and, by inversion, Γ, β ` inl M : D. By the
IH, Γ, β,γI ` M : B and Γ, β ` ∀γI . B + C v D for some γI , B, and C. We show the conclusion by letting
α = β,γI . It suffices to show that Γ ` ∀β.∀γI . B + C v ∀β.D, which is derived from Γ, β ` ∀γI . B + C v D
with (C Poly).

Case (T Inst): By the IH and (C Trans).

Lemma 18 (Value inversion: right injections). If Γ ` inr M : A, then Γ,α ` M : C and Γ ` ∀α. B + C v A for
some α, B, and C.

Proof. Similarly to the proof of Lemma 17.

Lemma 19 (Value inversion: cons). If Γ ` cons M : A, then Γ,α ` M : B × B list and Γ ` ∀α. B list v A for
some α and B.

Proof. By induction on the typing derivations for cons M . There are only three typing rules that can be applied to
cons M .

Case (T Cons): Obvious by (C Refl).

15

Case (T Gen): We are given Γ ` cons M : ∀β.C (i.e., A = ∀β.C) and, by inversion, Γ, β ` cons M : C. By the
IH, Γ, β,γI ` M : B × B list and Γ, β ` ∀γI . B list v C for some γI and B. We show the conclusion by letting
α = β,γI . It suffices to show that Γ ` ∀β.∀γI . B list v ∀β.C, which is derived from Γ, β ` ∀γI . B list v C
with (C Poly).

Case (T Inst): By the IH and (C Trans).

Lemma 20. If ty (op) = ∀αI . A ↪→ B and Γ ` #op(v) : C, then

• Γ,βJ `DI ,

• Γ,βJ ` v : A[DI /αI], and

• Γ ` ∀βJ . B[DI /αI] v C

for some βJ and DI .

Proof. By induction on the typing derivation for #op(v). There are only three typing rules that can be applied to
#op(v).

Case (T Op): We have C = B[DI /αI] and Γ ` DI and Γ ` v : A[DI /αI] for some DI . We have the conclusion
by letting βJ be the empty sequence; note that Γ ` B[DI /αI] v B[DI /αI] by (C Refl).

Case (T Gen): We are given C = ∀β.C0 and, by inversion, Γ, β ` #op(v) : C0 for some β and C0. By the IH,
there exist some βJ0

0 and DI such that

• Γ, β,βJ0
0 `DI ,

• Γ, β,βJ0
0 ` v : A[DI /αI] and

• Γ, β ` ∀βJ0
0 . B[DI /αI] v C0.

We show the conclusion by letting βJ = β,βJ0
0 . It suffices to show Γ ` ∀β.∀βJ0

0 . B[DI /αI] v ∀β.C0, which is
proven from Γ, β ` ∀βJ0

0 . B[DI /αI] v C0 with (C Poly).

Case (T Inst): By the IH and (C Trans).

Lemma 21. If Γ,αI ` E [M] : A, then

• Γ,αI ,βJ ` M : B and

• Γ, y :∀αI .∀βJ . B,αI ` E [y] : A for any y 6∈ dom(Γ)

for some βJ and B.

Proof. By induction on the typing derivation of Γ,αI ` E [M] : A.
Suppose that E = []. Since Γ,αI ` E [M] : A, we have Γ,αI ` M : A. We let βJ be the empty sequence

and B = A. It is then trivial that Γ, y :∀αI . B,αI ` E [y] : A by (T Inst). Note that ` Γ and Γ ` ∀α. B by
Lemma 14.

In what follows, we suppose that E 6= []. We proceed by case analysis on the typing rule applied last to derive
Γ,αI ` E [M] : A.

Case (T Var), (T Const), (T Abs), (T Nil), and (T Fix): Contradictory with the assumption that E 6= [].

Case (T App): By case analysis on E .

Case E = E ′M2: By inversion of the typing derivation, we have Γ,αI ` E ′[M] : C → A and Γ,αI ` M2 :
C for some C. By the IH, (1) Γ,αI ,βJ ` M : B for some βJ and B and (2) for any y 6∈ dom(Γ),
Γ, y :∀αI .∀βJ . B,αI ` E ′[y] : C → A. By Lemma 1 (4) and (T App), Γ, y :∀αI .∀βJ . B,αI ` E ′[y] M2 : A,
i.e., Γ, y :∀αI .∀βJ . B,αI ` E [y] : A.

16

Case E = v1 E ′: Similarly to the above case.

Case (T Gen): We have Γ,αI ` E [M] : ∀ γ.A′ and, by inversion, Γ,αI , γ ` E [M] : A′ for some γ and A′

(note A = ∀ γ.A′). By the IH, (1) Γ,αI , γ,βJ ` M : B for some βJ and B and (2) for any y 6∈ dom(Γ),
Γ, y :∀αI .∀ γ.∀βJ . B,αI , γ ` E [y] : A′.

By (T Gen), Γ, y :∀αI .∀ γ.∀βJ . B,αI ` E [y] : ∀ γ.A′. Since A = ∀ γ.A′, we finish.

Otherwise: By the IH(s) and the corresponding typing rule, as the case for (T App).

Lemma 22. Suppose that Γ1 ` A v B and Γ1 ` A.

1. If Γ1, x :B,Γ2 ` M : C, then Γ1, x :A,Γ2 ` M : C.

2. If Γ1, x :B,Γ2 ` H : C ⇒ D, then Γ1, x :A,Γ2 ` H : C ⇒ D.

Proof. Straightforward by mutual induction on the typing derivations.

Lemma 23. If ty (op) = ∀αI . A ↪→ B and Γ ` E [#op(v)] : C, then

• Γ,βJ `DI ,

• Γ,βJ ` v : A[DI /αI], and

• for any y 6∈ dom(Γ), Γ, y :∀βJ . B [DI /αI] ` E [y] : C

for some βJ and DI .

Proof. By Lemma 21,

• Γ,βJ1
1 ` #op(v) : C ′ and

• Γ, y :∀βJ1
1 . C ′ ` E [y] : C for any y 6∈ dom(Γ)

for some βJ1
1 and C ′. By Lemma 20,

• Γ,βJ1
1 ,βJ2

2 `DI ,

• Γ,βJ1
1 ,βJ2

2 ` v : A[DI /αI], and

• Γ,βJ1
1 ` ∀β

J2
2 . B[DI /αI] v C ′

for some βJ2
2 and DI .

We show the conclusion by letting βJ = βJ1
1 ,βJ2

2 . It suffices to show that, for any y 6∈ dom(Γ),

Γ, y :∀βJ1
1 .∀βJ2

2 . B [DI /αI] ` E [y] : C.

Since Γ,βJ1
1 ` ∀β

J2
2 . B[DI /αI] v C ′, we have

Γ ` ∀βJ1
1 .∀βJ2

2 . B[DI /αI] v ∀βJ1
1 . C ′

by (C Poly). Since Γ, y :∀βJ1
1 . C ′ ` E [y] : C, we have

Γ, y :∀βJ1
1 .∀βJ2

2 . B [DI /αI] ` E [y] : C.

by Lemma 22.

Lemma 24 (Type containment inversion: product types). If Γ ` ∀αI1
1 . A1×A2 v ∀αI2

2 . B1×B2, then there exist
αI11

11 , αI12
12 , βJ , and CI11 such that

• {αI1
1 } = {αI11

11 }] {α
I12
12 },

• Γ,αI2
2 ,β

J ` CI11 ,

17

• Γ,αI2
2 ` ∀α

I12
12 .∀βJ . A1[CI11/αI11

11] v B1,

• Γ,αI2
2 ` ∀α

I12
12 .∀βJ . A2[CI11/αI11

11] v B2, and

• type variables in {βJ} do not appear free in A1 and A2.

Proof. By induction on the type containment derivation. The proof is similar to that of Lemma 10.

Lemma 25 (Type containment inversion: sum types). If Γ ` ∀αI1
1 . A1 + A2 v ∀αI2

2 . B1 + B2, then there exist
αI11

11 , αI12
12 , βJ , and CI11 such that

• {αI1
1 } = {αI11

11 }] {α
I12
12 },

• Γ,αI2
2 ,β

J ` CI11 ,

• Γ,αI2
2 ` ∀α

I12
12 .∀βJ . A1[CI11/αI11

11] v B1,

• Γ,αI2
2 ` ∀α

I12
12 .∀βJ . A2[CI11/αI11

11] v B2, and

• type variables in {βJ} do not appear free in A1 and A2.

Proof. By induction on the type containment derivation. The proof is similar to that of Lemma 10.

Lemma 26 (Type containment inversion: list types). If Γ ` ∀αI1
1 . A list v ∀αI2

2 . B list, then there exist αI11
11 , αI12

12 ,
βJ , and CI11 such that

• {αI1
1 } = {αI11

11 }] {α
I12
12 },

• Γ,αI2
2 ,β

J ` CI11 ,

• Γ,αI2
2 ` ∀α

I12
12 .∀βJ . A[CI11/αI11

11] v B, and

• type variables in {βJ} do not appear free in A.

Proof. By induction on the type containment derivation. The proof is similar to that of Lemma 10.

Lemma 27. Assume that Γ ` B v C.

1. If α 6∈ ftv(A)+, then Γ ` A[C/α] v A[B/α].

2. If α 6∈ ftv(A)−, then Γ ` A[B/α] v A[C/α].

Proof. By structural induction on A. In what follows, we assume ` Γ because it can be shown easily by induction
on the derivation of Γ ` B v C.

Case A = β: If β = α, then we have to show that Γ ` B v C, which is assumed. Note that we do not need to
consider the first, negative case, i.e., to show Γ ` C v B, because no occurrence of type variable α in type α is
negative.

Otherwise, if β 6= α, then it suffices to show that Γ ` β v β, which is derived by (C Refl).

Case A = ι: By (C Refl).

Case A = ∀β.A′: By Lemma 1 (3), the IH, and (C Poly) for each case.

Case A = A1 → A2: By the IHs and (C Fun) for each case.

Case A = A1 ×A2: By the IH and (C Prod) for each case.

Case A = A1 +A2: By the IH and (C Sum) for each case.

Case A = A′ list: By the IH and (C List) for each case.

18

Lemma 28. Assume that ` Γ and α 6∈ ftv(A).

1. If β 6∈ ftv(A)+ns, then Γ ` ∀α.A[B/β] v A[∀α.B/β].

2. If β 6∈ ftv(A)−, then Γ ` A[∀α.B/β] v ∀α.A[B/β].

Proof. We first show case (2). By (C Trans), it suffices to show that Γ ` A[∀α.B/β] v ∀α.A[∀α.B/β] and
Γ ` ∀α.A[∀α.B/β] v ∀α.A[B/β]. The former is derived by (C Gen). The latter is derived as follows, where we
have ` Γ, α because we can assume that α 6∈ dom(Γ) without loss of generality:

` Γ, α

Γ, α ` ∀α.B v B
(C Inst)

Γ, α ` A[∀α.B/β] v A[B/β]
by Lemma 27

Γ ` ∀α.A[∀α.B/β] v ∀α.A[B/β]
(C Poly)

Next, we show case (1) by induction on A.

Case A = γ: If γ = β, then we have to show that Γ ` ∀α.B v ∀α.B, which is shown by (C Refl). Otherwise, if
γ 6= β, then we have to show that Γ ` ∀α. γ v γ, which is derived by (C Inst) (the type used for instantiation
can be arbitrary, e.g., ∀α. α).

Case A = ι: By (C Inst).

Case A = C → D: The occurrences of β in C → D are only negative or strictly positive. By definition, the
occurrences of β in C are only positive. Thus, by case (2), Γ ` C[∀α.B/β] v ∀α.C[B/β]. By definition, the
occurrences of β in D are only negative or strictly positive. Thus, by the IH, Γ ` ∀α.D[B/β] v D[∀α.B/β].
By (C Fun),

Γ ` (∀α.C[B/β])→ ∀α.D[B/β] v C[∀α.B/β]→ D[∀α.B/β].

By (C DFun) and (C Trans),

Γ ` ∀α. (∀α.C[B/β])→ D[B/β] v C[∀α.B/β]→ D[∀α.B/β]. (1)

By (C Inst),
Γ, α ` ∀α.C[B/β] v C[B/β]. (2)

By (C Fun) and (C Poly) with (2),

Γ ` ∀α.C[B/β]→ D[B/β] v ∀α. (∀α.C[B/β])→ D[B/β].

Thus, by (C Trans) with (1),

Γ ` ∀α.C[B/β]→ D[B/β] v C[∀α.B/β]→ D[∀α.B/β].

Case A = ∀ γ.C: By the IH, (C Poly), Lemma 9, and (C Trans).

Case A = C ×D: The occurrences of β in C×D are only negative or strictly positive. By definition, the occurrences
of β in C are only negative or strictly positive. Thus, by the IH, Γ ` ∀α.C[B/β] v C[∀α.B/β]. Similarly, we
also have Γ ` ∀α.D[B/β] v D[∀α.B/β]. By (C Prod),

Γ ` (∀α.C[B/β])× ∀α.D[B/β] v C[∀α.B/β]×D[∀α.B/β].

By (C DProd) and (C Trans),

Γ ` ∀α. (C[B/β]×D[B/β]) v C[∀α.B/β]×D[∀α.B/β].

Case A = C +D: Similarly to the case that A is a product type; this case uses (C Sum) and (C DSum) instead
of (C Prod) and (C DProd).

19

Case A = C list: Similarly to the case that A is a product type; this case uses (C List) and (C DList) instead of
(C Prod) and (C DProd).

Lemma 29 (Subject reduction). Assume that all operations satisfy the signature restriction.

1. If ∆ ` M1 : A and M1 M2, then ∆ ` M2 : A.

2. If ∆ ` M1 : A and M1 −→ M2, then ∆ ` M2 : A.

Proof. 1. Suppose that ∆ ` M1 : A and M1 M2. By induction on the typing derivation for M1.

Case (T Var), (T Op), (T Pair), (T InL), (T InR), and (T Cons): Contradictory because there are no
reduction rules that can be applied to M1.

Case (T Const), (T Abs), and (T Nil): Contradictory since M1 is a value and no reduction rules can be
applied to values.

Case (T App): We have two reduction rules which can be applied to function applications.

Case (R Const): We are given

• M1 = c1 c2,

• M2 = ζ(c1, c2),

• ∆ ` c1 c2 : A,

• ∆ ` c1 : B → A, and

• ∆ ` c2 : B

for some c1, c2, and B. By Lemma 12, ∆ ` ty(c1) v B → A. By Lemma 6 and Assumption 1, ty(c1) =
ι → C for some ι and C. Since ζ(c1, c2) is defined, it is found that ty(c2) = ι and ty(ζ(c1, c2)) = C.
Since ` ∆ by Lemma 14, we have ∆ ` ζ(c1, c2) : ty(ζ(c1, c2)). Since ∆ ` ι → ty(ζ(c1, c2)) v B → A
(recall that C = ty(ζ(c1, c2))), we have ∆ ` ty(ζ(c1, c2)) v A by Lemma 11. By (T Inst), we have
∆ ` ζ(c1, c2) : A.

Case (R Beta): We are given

• M1 = (λx.M) v ,

• M2 = M [v/x],

• ∆ ` (λx.M) v : A,

• ∆ ` λx.M : B → A, and

• ∆ ` v : B

for some x, M , v , and B. By Lemma 15 ∆,αI , x :B′ ` M : A′ and ∆ ` ∀αI . B′ → A′ v B → A for
some αI , A′, and B′. By Lemma 10, there exist αI1

1 , αI2
2 , βJ , and CI1 such that

• {αI } = {αI1
1 }] {α

I2
2 },

• ∆,βJ ` CI1 ,

• ∆ ` B v ∀βJ . B′[CI1/αI1
1],

• ∆ ` ∀αI2
2 .∀βJ . A′[CI1/αI1

1] v A, and

• type variables in βJ do not appear free in A′ and B′.

By Lemma 1, ∆,βJ ,αI , x :B′ ` M : A′ and ∆,βJ ,αI2
2 ` CI1 . Thus, by Lemma 2 (4),

∆,βJ ,αI2
2 , x :B′ [CI1/αI1] ` M : A′[CI1/αI1

1] . (3)

Because ∆ ` v : B and ∆ ` B v ∀βJ . B′[CI1/αI1
1] and ∆,αI2

2 ` ∀βJ . B′[CI1/αI1
1] (which can be easily

shown with Lemma 14), we have

∆,αI2
2 ` v : ∀βJ . B′[CI1/αI1

1]

by Lemma 1 and (T Inst). Then, by Lemma 1 (4), (C Inst), and (T Inst), we have

∆,βJ ,αI2
2 ` v : B′[CI1/αI1] .

20

By Lemma 4 (1) with (3),
∆,βJ ,αI2

2 ` M [v/x] : A′[CI1/αI1
1] .

By (T Gen) (with the permutation of the bindings in the typing context),

∆ ` M [v/x] : ∀αI2
2 .∀βJ . A′[CI1/αI1

1] .

Since ∆ ` ∀αI2
2 .∀βJ . A′[CI1/αI1

1] v A, we have ∆ ` M [v/x] : A by (T Inst).

Case (T Gen): By the IH and (T Gen).

Case (T Inst): By the IH and (T Inst).

Case (T Handle): We have two reduction rules which can be applied to handle–with expressions.

Case (R Return): We are given

• M1 = handle v with H ,

• H return = returnx→ M ,

• M2 = M [v/x],

• ∆ ` handle v with H : A,

• ∆ ` v : B,

• ∆ ` H : B ⇒ A

for some v , H , x, M , and B. By inversion of the derivation of ∆ ` H : B ⇒ A, we have ∆, x :B ` M : A.
By Lemma 4 (1), ∆ ` M [v/x] : A, which is the conclusion we have to show.

Case (R Handle): We are given

• M1 = handle E [#op(v)] with H ,

• op 6∈ E ,

• H (op) = op(x, k)→ M ,

• M2 = M [v/x][λy.handle E [y] with H /k],

• ∆ ` handle E [#op(v)] with H : A,

• ∆ ` E [#op(v)] : B,

• ∆ ` H : B ⇒ A

for some E , op, v , H , x, y, k, M , and B. Suppose that ty (op) = ∀α. C ↪→ D. By inversion of the
derivation of ∆ ` H : B ⇒ A, we have ∆,α, x :C, k :D → A ` M : A.
By Lemma 23, ∆,βJ ` C0 and ∆,βJ ` v : C[C0/α] for some βJ and C0. Since ∆ ` ∀βJ .C0,

∆, x :C [∀βJ .C0/α], k :D[∀βJ .C0/α]→ A ` M : A (4)

by Lemma 2 (4) (note that type variables in α do not appear free in A).
Since ∆,βJ ` v : C[C0/α], we have ∆ ` v : ∀βJ . C[C0/α] by (T Gen). By Definition 5, {α} ∩
ftv(C)+ns = ∅. Thus, we have ∆ ` v : C[∀βJ .C0/α] by Lemma 28 (1) and (T Inst) (note that ` ∆ by
Lemma 14 and we can suppose that βJ do not appear free in C). Thus, by applying Lemma 4 (1) to
(4), we have

∆, k :D[∀βJ .C0/α]→ A ` M [v/x] : A . (5)

We show that
∆ ` λy.handle E [y] with H : D[∀βJ .C0/α]→ A .

By Definition 5, {α} ∩ ftv(D)− = ∅. Thus, we have

∆ ` D[∀βJ .C0/α] v ∀βJ . D[C0/α]

by Lemma 28 (2) (note that ` ∆ by Lemma 14 and we can suppose that βJ do not appear free in D).
By Lemma 23,

∆, y :∀βJ . D [C0/α] ` E [y] : B .

By Lemma 22,
∆, y :D [∀βJ .C0/α] ` E [y] : B .

21

Thus, we have
∆, y :D [∀βJ .C0/α] ` handle E [y] with H : A

by Lemma 1 (5) and (T Handle). By (T Abs),

∆ ` λy.handle E [y] with H : D[∀βJ .C0/α]→ A .

By applying Lemma 4 (1) to (5), we have

∆ ` M [v/x][λy.handle E [y] with H /k] : A,

which is what we have to show.

Case (T Proj1): We have one reduction rule (R Proj1) which can be applied to projection π1. Thus, we
are given

• M1 = π1(v1, v2),

• M2 = v1,

• ∆ ` π1(v1, v2) : A,

• ∆ ` (v1, v2) : A×B
for some v1, v2, and B. By Lemma 16, ∆,αI ` v1 : C1 and ∆,αI ` v2 : C2 and ∆ ` ∀αI . C1×C2 v A×B
for some αI , C1, and C2. By Lemma 24, there exist αI1

1 , αI2
2 , βJ , and DI1 such that

• {αI } = {αI1
1 }] {α

I2
2 },

• ∆,βJ `DI1 ,

• ∆ ` ∀αI2
2 .∀βJ . C1[DI1/αI1

1] v A,

• ∆ ` ∀αI2
2 .∀βJ . C2[DI1/αI1

1] v B, and

• type variables in βJ do not appear in C1 and C2.

We have to show that
∆ ` v1 : A .

Since ∆ ` ∀αI2
2 .∀βJ . C1[DI1/αI1

1] v A, it suffices to show that

∆ ` v1 : ∀αI2
2 .∀βJ . C1[DI1/αI1

1]

by (T Inst). We have ∆,βJ ,αI ` v1 : C1 by Lemma 1 (4). By Lemma 2 (4), we have ∆,βJ ,αI2
2 ` v1 :

C1[DI1/αI1
1]. By (T Gen) (and swapping βJ and αI2

2 in the typing context ∆,βJ ,αI2
2), we have

∆ ` v1 : ∀αI2
2 .∀βJ . C1[DI1/αI1

1] .

Case (T Proj2): Similar to the case for (T Proj1).

Case (T Case): We have two reduction rules which can be applied to case expressions.

Case (R CaseL): We are given

• M1 = case (inl v) of inlx→ M ′
1; inr y → M ′

2,

• M2 = M ′
1[v/x],

• ∆ ` case (inl v) of inlx→ M ′
1; inr y → M ′

2 : A,

• ∆ ` inl v : B1 +B2,

• ∆, x :B1 ` M ′
1 : A, and

• ∆, x :B2 ` M ′
2 : A

for some v , x, y, M ′
1,, M ′

2, B1, and B2. By Lemma 17, ∆,αI ` v : C1 and ∆ ` ∀αI . C1 +C2 v B1 +B2

for some αI , C1, and C2. By Lemma 25, there exist αI1
1 , αI2

2 , βJ , and DI1 such that

• {αI } = {αI1
1 }] {α

I2
2 },

• ∆,βJ `DI1 ,

• ∆ ` ∀αI2
2 .∀βJ . C1[DI1/αI1

1] v B1,

• ∆ ` ∀αI2
2 .∀βJ . C2[DI1/αI1

1] v B2, and

22

• type variables in βJ do not appear in C1 and C2.

We first show that
∆ ` v : B1 .

Since ∆ ` ∀αI2
2 .∀βJ . C1[DI1/αI1

1] v B1, it suffices to show that

∆ ` v : ∀αI2
2 .∀βJ . C1[DI1/αI1

1]

by (T Inst). We have ∆,βJ ,αI ` v1 : C1 by Lemma 1 (4). By Lemma 2 (4), we have ∆,βJ ,αI2
2 ` v1 :

C1[DI1/αI1
1]. By (T Gen) (and swapping βJ and αI2

2 in the typing context ∆,βJ ,αI2
2), we have

∆ ` v1 : ∀αI2
2 .∀βJ . C1[DI1/αI1

1] .

Since ∆, x :B1 ` M ′
1 : A, we have

∆ ` M ′
1[v/x] : A

by Lemma 4 (1).

Case (R CaseR): Similar to the case for (R CaseR), using Lemma 18 instead of Lemma 17.

Case (T CaseList): We have two reduction rules which can be applied to case expressions for lists.

Case (R Nil): Obvious.

Case (R Cons): We are given

• M1 = case (cons v) of nil → M ′
1; consx→ M ′

2,

• M2 = M ′
2[v/x],

• ∆ ` case (cons v) of nil → M ′
1; cons y → M ′

2 : A,

• ∆ ` cons v : B list, and

• ∆, x :B ×B list ` M ′
2 : A

for some v , x, M ′
1,, M ′

2, and B. By Lemma 19, ∆,αI ` v : C × C list and ∆ ` ∀αI . C list v B list for
some αI and C. By Lemma 26, there exist αI1

1 , αI2
2 , βJ , and DI1 such that

• {αI } = {αI1
1 }] {α

I2
2 },

• ∆,βJ `DI1 ,

• ∆ ` ∀αI2
2 .∀βJ . C[DI1/αI1

1] v B, and

• type variables in βJ do not appear in C.

We first show that

∆ ` ∀αI2
2 .∀βJ . C[DI1/αI1

1]× C[DI1/αI1
1] list v B ×B list .

Since ∆ ` ∀αI2
2 .∀βJ . C[DI1/αI1

1] v B, we have

∆ ` (∀αI2
2 .∀βJ . C[DI1/αI1

1]) list v B list

by (C List). We also have

∆ ` ∀αI2
2 .∀βJ . C[DI1/αI1

1] list v (∀αI2
2 .∀βJ . C[DI1/αI1

1]) list

by (C DList). Thus, by (C Trans), we have

∆ ` ∀αI2
2 .∀βJ . C[DI1/αI1

1] list v B list .

By (C Prod),

∆ ` (∀αI2
2 .∀βJ . C[DI1/αI1

1])× (∀αI2
2 .∀βJ . C[DI1/αI1

1] list) v B ×B list .

By (C DProd) and (C Trans), we have

∆ ` ∀αI2
2 .∀βJ . C[DI1/αI1

1]× C[DI1/αI1
1] list v B ×B list (6)

23

Next, we show that
∆ ` v : B ×B list .

By (T Inst) with (6), it suffices to show that

∆ ` v : ∀αI2
2 .∀βJ . C[DI1/αI1

1]× C[DI1/αI1
1] list .

We have ∆,βJ ,αI ` v : C × C list by Lemma 1 (4). By Lemma 2 (4), we have ∆,βJ ,αI2
2 ` v :

C[DI1/αI1
1]×C[DI1/αI1

1] list. By (T Gen) (and swapping βJ and αI2
2 in the typing context ∆,βJ ,αI2

2),
we have

∆ ` v : ∀αI2
2 .∀βJ . C[DI1/αI1

1]× C[DI1/αI1
1] list .

Since ∆, x :B ×B list ` M ′
2 : A, we have

∆ ` M ′
2[v/x] : A

by Lemma 4 (1).

Case (T Fix): We have one reduction rule (R Fix) which can be applied to the fixed-point operator. The
proof is straightforward with Lemma 4 (1) and (T Abs).

2. Suppose that ∆ ` M1 : A and M1 −→ M2. By definition, there exist some E , M ′
1, and M ′

2 such that
M1 = E [M ′

1], M2 = E [M ′
2], and M ′

1 M ′
2. The proof proceeds by induction on the typing derivation of

for M1 = E [M ′
1]. If E = [], then we have the conclusion by the first case. In what follows, we suppose that

E 6= []. By case analysis on the typing rule applied last to derive ∆ ` E [M ′
1] : A.

Case (T Var), (T Const), (T Abs), (T Nil), and (T Fix): Contradictory because E has to be [].

Case (T App): By case analysis on E .

Case E = E ′M : We are given

• ∆ ` E ′[M ′
1] : B → A and

• ∆ ` M : B

for some B. By the IH, ∆ ` E ′[M ′
2] : B → A. Since M2 = E ′[M ′

2] M , we have the conclusion by
(T App).

Case E = v E ′: By the IH.

Case (T Gen): By the IH.

Case (T Inst): By the IH.

Case (T Op): By the IH.

Case (T Handle): By the IH.

Case (T Pair): By the IH.

Case (T Proj1): By the IH.

Case (T Proj2): By the IH.

Case (T InL): By the IH.

Case (T InR): By the IH.

Case (T Case): By the IH.

Case (T Cons): By the IH.

Case (T CaseList): By the IH.

Theorem 1 (Type Soundness). Assume that all operations satisfy the signature restriction. If ∆ ` M : A and
M −→∗ M ′ and M ′ 6−→, then:

• M ′ is a value; or

• M ′ = E [#op(v)] for some E, op, and v such that op 6∈ E.

Proof. By Lemmas 29 and 13.

24

2.2 Soundness of the Type-and-Effect System

This section show soundness of the type-and-effect system. We may reuse the lemmas proven in Section 2.1 if their
statements and proofs do not need change.

Lemma 30 (Weakening). Suppose that ` Γ1,Γ2. Let Γ3 be a typing context such that dom(Γ2) ∩ dom(Γ3) = ∅.

1. If ` Γ1,Γ3, then ` Γ1,Γ2,Γ3.

2. If Γ1,Γ3 ` A, then Γ1,Γ2,Γ3 ` A.

3. If Γ1,Γ3 ` A v B, then Γ1,Γ2,Γ3 ` A v B.

4. If Γ1,Γ3 ` M : A | ε, then Γ1,Γ2,Γ3 ` M : A | ε.

5. If Γ1,Γ3 ` H : A | ε⇒ B | ε′, then Γ1,Γ2,Γ3 ` H : A | ε⇒ B | ε′.

Proof. By mutual induction on the derivations of the judgments.

Lemma 31 (Type substitution). Suppose that Γ1 ` A.

1. If ` Γ1, α,Γ2, then ` Γ1,Γ2 [A/α].

2. If Γ1, α,Γ2 ` B, then Γ1,Γ2 [A/α] ` B[A/α].

3. If Γ1, α,Γ2 ` B v C, then Γ1,Γ2 [A/α] ` B[A/α] v C[A/α].

4. If Γ1, α,Γ2 ` M : B | ε, then Γ1,Γ2 [A/α] ` M : B[A/α] | ε.

5. If Γ1, α,Γ2 ` H : B | ε⇒ C | ε′, then Γ1,Γ2 [A/α] ` H : B[A/α] | ε⇒ C[A/α] | ε′.

Proof. Straightforward by mutual induction on the derivations of the judgments, as in Lemma 2.

Lemma 32 (Term substitution). Suppose that Γ1 ` M : A | ε for any ε.

1. If Γ1, x :A,Γ2 ` M ′ : B | ε, then Γ1,Γ2 ` M ′[M /x] : B | ε.

2. If Γ1, x :A,Γ2 ` H : B | ε⇒ C | ε′, then Γ1,Γ2 ` H [M /x] : B | ε⇒ C | ε′.

Proof. By mutual induction on the typing derivations as in Lemma 4.

Lemma 33 (Canonical forms). Suppose that Γ ` v : A | ε.

1. If unqualify(A) = ι, then v = c for some c.

2. If unqualify(A) = B →ε′ C, then v = c for some c, or v = λx.M for some x and M .

3. If unqualify(A) = B × C, then v = (v1, v2) for some v1 and v2.

4. If unqualify(A) = B + C, then v = inl v ′ or v = inr v ′ for some v ′.

5. If unqualify(A) = B list, then v = nil or v = cons v ′ for some v ′.

Proof. Similarly to Lemma 8.

Lemma 34 (Type containment inversion: polymorphic function types). If Γ ` ∀αI1
1 . A1 →ε1 A2 v ∀αI2

2 . B1 →ε2

B2, then ε1 = ε2 and there exist αI11
11 , αI12

12 , βJ , and CI11 such that

• {αI1
1 } = {αI11

11 }] {α
I12
12 },

• Γ,αI2
2 ,β

J ` CI11 ,

• Γ,αI2
2 ` B1 v ∀βJ . A1[CI11/αI11

11],

• Γ,αI2
2 ` ∀α

I12
12 .∀βJ . A2[CI11/αI11

11] v B2,

25

• type variables in {βJ} do not appear free in A1 and A2, and

• if αI12
12 or βJ is not the empty sequence, SR (ε1).

Proof. Similarly to Lemma 10.

Lemma 35. If Γ ` A1 →ε1 A2 v B1 →ε2 B2, then ε1 = ε2 and Γ ` B1 v A1 and Γ ` A2 v B2.

Proof. Similarly to Lemma 11 with Lemma 34.

Lemma 36 (Value inversion: constants). If Γ ` c : A | ε, then Γ ` ty(c) v A.

Proof. Similarly to Lemma 12.

Lemma 37 (Progress). If ∆ ` M : A | ε, then:

• M −→ M ′ for some M ′;

• M is a value; or

• M = E [#op(v)] for some E, op, and v such that op 6∈ E and op ∈ ε.

Proof. Similarly to Lemma 13 with the lemmas proven in this section. The case for (Te Weak) is also straight-
forward.

Lemma 38 (Value inversion: lambda abstractions). If Γ ` λx.M : A | ε, then Γ,α, x :B ` M : C | ε′ and
Γ ` ∀α. B →ε′ C v A for some α, B, C, and ε′.

Proof. Similarly to Lemma 15.

Lemma 39 (Value inversion: pairs). If Γ ` (M1,M2) : A | ε, then Γ,α ` M1 : B1 | ε and Γ,α ` M2 : B2 | ε and
Γ ` ∀α. B1 ×B2 v A for some α, B1, and B2.

Proof. Similarly to Lemma 16.

Lemma 40 (Value inversion: left injections). If Γ ` inl M : A | ε, then Γ,α ` M : B | ε and Γ ` ∀α. B + C v A
for some α, B, and C.

Proof. Similarly to Lemma 17.

Lemma 41 (Value inversion: right injections). If Γ ` inr M : A | ε, then Γ,α ` M : C | ε and Γ ` ∀α. B + C v A
for some α, B, and C.

Proof. Similarly to the proof of Lemma 18.

Lemma 42 (Value inversion: cons). If Γ ` cons M : A | ε, then Γ,α ` M : B ×B list | ε and Γ ` ∀α. B list v A for
some α and B.

Proof. Similarly to Lemma 19.

Lemma 43. If ty (op) = ∀αI . A ↪→ B and Γ ` #op(v) : C | ε, then

• Γ,βJ `DI ,

• Γ,βJ ` v : A[DI /αI] | ε′,

• ε′ ⊆ ε,

• op ∈ ε′, and

• Γ ` ∀βJ . B[DI /αI] v C; or

for some βJ , DI , and ε′. Furthermore, if βJ is not the empty sequence, SR (ε′) holds.

Proof. By induction on the typing derivation. There are only five typing rules that can be applied to #op(v).

26

Case (Te Gen): Straightforward by the IH. Note that SR (ε) by inversion.

Case (Te Inst): Straightforward by the IH and (C Trans).

Case (Te Op): Trivial.

Case (Te Weak): By the IH.

Lemma 44. If Γ,αI ` E [#op(v)] : A | ε and op 6∈ E, then

• Γ,αI ,βJ ` #op(v) : B | ε′ and

• Γ, y :∀αI .∀βJ . B,αI ` E [y] : A | ε for any y 6∈ dom(Γ), and

• op ∈ ε

for some βJ , B, and ε′. Furthermore, if βJ is not the empty sequence, then SR ({op}) holds.

Proof. By induction on the typing derivation.

Case (Te Var), (Te Const), (Te Abs), (Te Nil), and (Te Fix): Contradictory.

Case (Te App): By case analysis on E .

Case E = E ′M2: By inversion of the typing derivation, we have Γ,αI ` E ′[#op(v)] : C →ε′′ A | ε and Γ,αI `
M2 : C | ε and ε′′ ⊆ ε for some C and ε′′. By the IH,

• Γ,αI ,βJ ` #op(v) : B | ε′,
• Γ, y :∀αI .∀βJ . B,αI ` E ′[y] : C →ε′′ A | ε for any y 6∈ dom(Γ), and

• op ∈ ε,

• If βJ is not the empty sequence, then SR ({op}) holds.

for some βJ , B, and ε′. By Lemma 30 (4) and (Te App), Γ, y :∀αI .∀βJ . B,αI ` E ′[y] M2 : A | ε, i.e.,
Γ, y :∀αI .∀βJ . B,αI ` E [y] : A | ε.

Case E = v1 E ′: Similarly to the above case.

Case (Te Gen): By the IH. We find SR ({op}) by op ∈ ε and SR (ε).

Case (Te Inst): By the IH.

Case (Te Op): If E = [], the proof is straightforward by letting βJ be the empty sequence, B = A, and ε′ = ε;
op ∈ ε is found by Lemma 43.

Otherwise, the proof is similar to the case for (Te App).

Case (Te Handle): By the IH. We find op ∈ ε because the handler does not have an operation clause for op
(op 6∈ E).

Case (Te Weak): By the IH.

Otherwise: Similarly to the case for (Te App).

Lemma 45. Suppose that Γ1 ` A v B and Γ1 ` A.

1. If Γ1, x :B,Γ2 ` M : C | ε, then Γ1, x :A,Γ2 ` M : C | ε.

2. If Γ1, x :B,Γ2 ` H : C | ε⇒ D | ε′, then Γ1, x :A,Γ2 ` H : C | ε⇒ D | ε′.

Proof. By mutual induction on the typing derivations.

Lemma 46. If ty (op) = ∀αI . A ↪→ B and Γ ` E [#op(v)] : C | ε and op 6∈ E, then

27

• Γ,βJ `DI ,

• Γ,βJ ` v : A[DI /αI] | ε′, and

• for any y 6∈ dom(Γ), Γ, y :∀βJ . B [DI /αI] ` E [y] : C | ε

for some βJ , DI , and ε′. Furthermore, if βJ is not the empty sequence, SR ({op}) holds.

Proof. By Lemma 44,

• Γ,βJ1
1 ` #op(v) : C ′ | ε′′ and

• Γ, y :∀βJ1
1 . C ′ ` E [y] : C | ε for any y 6∈ dom(Γ), and

• if βJ1
1 is not the empty sequence, then SR ({op}) holds

for some βJ1
1 and C ′. By Lemma 43,

• Γ,βJ1
1 ,βJ2

2 `DI ,

• Γ,βJ1
1 ,βJ2

2 ` v : A[DI /αI] | ε′,

• Γ,βJ1
1 ` ∀β

J2
2 . B[DI /αI] v C ′, and

• if βJ2
2 is not the empty sequence, SR ({op}) holds

for some βJ2
2 , DI , and ε′.

We show the conclusion by letting βJ = βJ1
1 ,βJ2

2 . It suffices to show that, for any y 6∈ dom(Γ),

Γ, y :∀βJ1
1 .∀βJ2

2 . B [DI /αI] ` E [y] : C | ε.

Since Γ,βJ1
1 ` ∀β

J2
2 . B[DI /αI] v C ′, we have

Γ ` ∀βJ1
1 .∀βJ2

2 . B[DI /αI] v ∀βJ1
1 . C ′

by (C Poly). Since Γ, y :∀βJ1
1 . C ′ ` E [y] : C | ε, we have

Γ, y :∀βJ1
1 .∀βJ2

2 . B [DI /αI] ` E [y] : C | ε.

by Lemma 45.

Lemma 47. If Γ ` v : A | ε, then Γ ` v : A | ε′ for any ε′.

Proof. Straightforward by induction on the typing derivation.

Lemma 48. Assume that ` Γ and α 6∈ ftv(A).

1. Suppose that (1) β 6∈ ftv(A)+ns and (2) for any function type C →ε D occurring at a strictly positive position
of A, if β ∈ ftv(D), then SR (ε). Then Γ ` ∀α.A[B/β] v A[∀α.B/β].

2. If β 6∈ ftv(A)−, then Γ ` A[∀α.B/β] v ∀α.A[B/β].

Proof. Case (2) can be proven similarly to Lemma 28 (2).
We show case (1) by induction on A. We consider the case that A = C →ε D for some C, D, and ε; the other

cases are shown similarly to those in Lemma 28 (1). By case (2) with C, we have Γ ` C[∀α.B/β] v ∀α.C[B/β].
Now, we show that

Γ ` ∀α. (∀α.C[B/β])→ε D[B/β] v C[∀α.B/β]→ε D[∀α.B/β]. (7)

If β ∈ ftv(D), then SR (ε) by the assumption. By the IH on D, Γ ` ∀α.D[B/β] v D[∀α.B/β]. By (C FunEff),

Γ ` (∀α.C[B/β])→ε ∀α.D[B/β] v C[∀α.B/β]→ε D[∀α.B/β].

28

Since SR (ε), we have (7) by (C DFunEff) and (C Trans). Otherwise, if β 6∈ ftv(D), then Γ, α ` D[B/β] v
D[∀α.B/β] by (C Refl) because D[B/β] = D[∀α.B/β] = D. Thus,

Γ ` ∀α. (∀α.C[B/β])→ε D[B/β] v ∀α.C[∀α.B/β]→ε D[∀α.B/β]

by (C Poly) and Lemma 30 (3). Since α 6∈ ftv(A) and A = C →ε D, we can have (7) by eliminating the outermost
∀ on the RHS type with (C Inst).

By (C Inst),
Γ, α ` ∀α.C[B/β] v C[B/β]. (8)

By (C Refl), (C FunEff), and (C Poly) with (8),

Γ ` ∀α.C[B/β]→ε D[B/β] v ∀α. (∀α.C[B/β])→ε D[B/β].

Thus, by (C Trans) with (7),

Γ ` ∀α.C[B/β]→ε D[B/β] v C[∀α.B/β]→ε D[∀α.B/β].

Lemma 49 (Subject reduction).

1. If ∆ ` M1 : A | ε and M1 M2, then ∆ ` M2 : A | ε.

2. If ∆ ` M1 : A | ε and M1 −→ M2, then ∆ ` M2 : A | ε.

Proof. 1. By induction on the typing derivation. Most of the cases are similar to Lemma 29. We here focus on
the cases that need a treatment specific to the type-and-effect system.

Case (Te App)/(R Beta): We are given

• M1 = (λx.M) v ,

• M2 = M [v/x],

• ∆ ` (λx.M) v : A | ε,
• ∆ ` λx.M : B →ε0 A | ε,
• ∆ ` v : B | ε, and

• ε0 ⊆ ε

for some x, M , v , B, and ε0. By Lemma 38 ∆,αI , x :B′ ` M : A′ | ε′ and ∆ ` ∀αI . B′ →ε′ A′ v B →ε0 A
for some αI , A′, B′, and ε′. By Lemma 34, we find ε′ = ε0, and there exist αI1

1 , αI2
2 , βJ , and CI1 such

that

• {αI } = {αI1
1 }] {α

I2
2 },

• ∆,βJ ` CI1 ,

• ∆ ` B v ∀βJ . B′[CI1/αI1
1],

• ∆ ` ∀αI2
2 .∀βJ . A′[CI1/αI1

1] v A, and

• type variables in βJ do not appear free in A′ and B′, and

• If αI2
2 or βJ is not the empty sequence, SR (ε0).

By Lemma 30, ∆,βJ ,αI , x :B′ ` M : A′ | ε′ and ∆,βJ ,αI2
2 ` CI1 . Thus, by Lemma 31 (4),

∆,βJ ,αI2
2 , x :B′ [CI1/αI1] ` M : A′[CI1/αI1

1] | ε′ (9)

Since ∆ ` v : B | ε and ∆ ` B v ∀βJ . B′[CI1/αI1
1], we have

∆ ` v : ∀βJ . B′[CI1/αI1
1] | ε

by (Te Inst) (note that ∆ ` ∀βJ . B′[CI1/αI1
1] is shown easily with Lemma 14). By Lemma 30 (4),

(C Inst), and (Te Inst), we have

∆,βJ ,αI2
2 ` v : B′[CI1/αI1] | ε.

29

By Lemmas 47 and 32 (1) with (9),

∆,βJ ,αI2
2 ` M [v/x] : A′[CI1/αI1

1] | ε′.

By (Te Gen) (with the permutation of the bindings in the typing context),

∆ ` M [v/x] : ∀αI2
2 .∀βJ . A′[CI1/αI1

1] | ε′

(note that If αI2
2 or βJ is not the empty sequence, SR (ε′)). Since ∆ ` ∀αI2

2 .∀βJ . A′[CI1/αI1
1] v A, we

have ∆ ` M [v/x] : A | ε′ by (Te Inst). Since ε′ ⊆ ε, we have

∆ ` M [v/x] : A | ε

by (Te Weak).

Case (Te Gen): By the IH and (Te Gen).

Case (Te Handle)/(R Handle): We are given

• M1 = handle E [#op(v)] with H ,

• op 6∈ E ,

• H (op) = op(x, k)→ M ,

• M2 = M [v/x][λy.handle E [y] with H /k],

• ∆ ` handle E [#op(v)] with H : A | ε,
• ∆ ` E [#op(v)] : B | ε′,
• ∆ ` H : B | ε′ ⇒ A | ε

for some E , op, v , H , x, y, k, M , B, and ε′. Suppose that ty (op) = ∀α. C ↪→ D. By inversion of the
derivation of ∆ ` H : B | ε′ ⇒ A | ε, we have ∆,α, x :C, k :D →ε A ` M : A | ε.
By Lemma 46,

• ∆,βJ ` C0,

• ∆,βJ ` v : C[C0/α] | ε0,

• Γ, y :∀βJ . D [C0/α] ` E [y] : B | ε′, and

• if βJ is not the empty sequence, SR ({op})
for some βJ , C0, and ε0. Since ∆ ` ∀βJ .C0,

∆, x :C [∀βJ .C0/α], k :D[∀βJ .C0/α]→ε A ` M : A | ε (10)

by Lemma 31 (4) (note that type variables in α do not appear free in A). Since ∆,βJ ` v : C[C0/α] | ε0,
we have ∆ ` v : ∀βJ . C[C0/α] | ε0 by Lemma 47 and (Te Gen).

We show that ∆ ` v : C[∀βJ .C0/α] | ε0. If βJ is not empty, then SR ({op}). Thus, we have the derivation
by Lemma 48 (1) and (Te Inst) (note that ` ∆ by Lemma 14 and we can suppose that βJ do not appear
free in C). Otherwise, if βJ is empty, we also have it.

By applying Lemmas 47 and 32 (1) to (10), we have

∆, k :D[∀βJ .C0/α]→ε A ` M [v/x] : A | ε. (11)

We show that
∆ ` λy.handle E [y] with H : D[∀βJ .C0/α]→ε A | ε′′

for any ε′′.

For that, we first show that ∆ ` D[∀βJ .C0/α] v ∀βJ . D[C0/α]. If βJ is not empty, then SR ({op}).
Thus, we have the derivation by Lemma 48 (2) (note that ` ∆ by Lemma 14 and we can suppose that βJ

do not appear free in D). Otherwise, if βJ is empty, we also have it by (C Refl).

Thus, since Γ, y :∀βJ . D [C0/α] ` E [y] : B | ε′, we have

∆, y :D [∀βJ .C0/α] ` E [y] : B | ε′

30

by Lemma 45. Thus, we have

∆, y :D [∀βJ .C0/α] ` handle E [y] with H : A | ε

by Lemma 30 (5) and (Te Handle). By (Te Abs),

∆ ` λy.handle E [y] with H : D[∀βJ .C0/α]→ε A | ε′′

for any ε′′.

By applying Lemma 32 (1) to (11), we have

∆ ` M [v/x][λy.handle E [y] with H /k] : A | ε,

which is what we have to show.

Case (Te Fix)/(R Fix): By Lemma 32. Note that the fixed-point operator can be given any effect.

2. Straightforward by induction on the typing derivation.

Theorem 2 (Type Soundness). If ∆ ` M : A | ∅ and M −→∗ M ′ and M ′ 6−→, then M ′ is a value.

Proof. By Lemmas 49 and 37.

31

