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Abstract

Featherweight Generic Go (FGG) is a minimal core calculus modeling the essential features of the
programming language Go. It includes support for overloaded methods, interface types, structural
subtyping and generics. The most straightforward semantic description of the dynamic behavior of
FGG programs is to resolve method calls based on runtime type information of the receiver.

This article shows a different approach by defining a type-directed translation from FGG− to an
untyped lambda-calculus. FGG− includes all features of FGG but type assertions. The translation of
an FGG− program provides evidence for the availability of methods as additional dictionary parame-
ters, similar to the dictionary-passing approach known from Haskell type classes. Then, method calls
can be resolved by a simple lookup of the method definition in the dictionary.

Every program in the image of the translation has the same dynamic semantics as its source
FGG− program. The proof of this result is based on a syntactic, step-indexed logical relation. The
step-index ensures a well-founded definition of the relation in the presence of recursive interface
types and recursive methods. Although being non-deterministic, the translation is coherent.

1 Introduction

Go (2022) is a statically typed programming language introduced by Google in 2009. It
supports method overloading by allowing multiple declarations of the same method sig-
nature for different receivers. Receivers are structs, similar to structs in C. The language
also supports interfaces; as in many object-oriented languages, an interface consists of a
set of method signatures. But unlike in many object-oriented languages, subtyping in Go
is structural not nominal.

Earlier work by Griesemer et al. (2020) introduces Featherweight Go (FG), a minimal
core calculus that covers method overloading, structs, interfaces and structural subtyping.
Their work specifies static typing rules and a dynamic semantics for FG based on runtime
method lookup. However, the actual Go implementation appears to employ a different
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2

dynamic semantics. Quoting Griesemer and co-workers: “Go is designed to enable effi-
cient implementation. Structures are laid out in memory as a sequence of fields, while an
interface is a pair of a pointer to an underlying structure and a pointer to a dictionary of
methods.”

In our own prior work (Sulzmann and Wehr, 2021, 2022), we formalize a type-directed
dictionary-passing translation for FG and establish its semantic equivalence with FG’s
dynamic semantics. Griesemer and coworkers also introduce Featherweight Generic Go
(FGG), an extension of FG with generics. In this work, we show how our translation
approach can be extended to deal with generics. Our focus is on the integration of generics
with method overloading and structural subtyping. Hence, we consider FGG− , which is
equivalent to FGG but does not support type assertions. Our contributions are as follows:

• We specify the translation of source FGG− programs to an untyped 𝜆-calculus with
recursive let-bindings, constructors and pattern matching. We employ a dictionary-
passing translation scheme à la type classes (Hall et al., 1996) to statically resolve
overloaded method calls. The translation is guided by the typing of the FGG− pro-
gram. As the typing rules include a subsumption rule, the translation is inherently
non-deterministic.

• We establish the semantic correctness of the dictionary-passing translation. The
result relies on a syntactic, step-indexed logical relation to ensure well-foundedness
of definitions in the presence of recursive interface types and recursive methods.

• We show that values produced by different translations of the same program are
identical up to dictionaries embedded inside these values.

• We report on an implementation of the translation.

The upcoming Section 2 presents an overview of our translation by example. Section 3
gives a recap of the source language FGG− , whereas Section 4 defines the target language
and the translation itself. Next, Section 5 establishes the formal properties of the transla-
tion, rigorous proofs of our results can be found in the Appendix. Section 6 presents the
implementation, Section 7 covers related work. Finally, Section 8 summarizes this work
and points out directions for future work.

2 Overview

This section introduces Featherweight Generic Go (FGG Griesemer et al., 2020) and our
type-directed dictionary-passing translation through a series of examples. FGG is a tiny
model of Go that includes essential typing features such as method overloading, structs,
interfaces, structural subtyping, and the extension with generics. Its original formulation
also includes type assertions (dynamic type casts). As we omitted this feature from our
translation, we use the name FGG− to refer to the source language of our translation.
Except for the omission of type assertions, FGG− and FGG are equivalent.

An FGG− program consists of declarations for structs, interfaces, methods, and a main
function. Function and method bodies only contain a single return statement, all expression
are free from side effects. For the examples in this section, we extend FGG− with primitive
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1 type Num struct { val int }
2 type Format interface { format () string }
3 type Pretty interface { format () string; pretty () string }
4

5 func (this Num) format () string { return intToString(this.val) }
6 func (this Num) pretty () string { return this.format () }
7

8 func formatSome(x Format) string { return x.format () }
9

10 func main() {
11 var s1 string = formatSome(Num {1})
12 var pr Pretty = Num{2}
13 var s2 string = formatSome(pr)
14 }

15 -- Field access for struct Num
16 val x = x
17

18 -- Method calls on interfaces
19 formatFormat (x, f) = f x -- call format on receiver of type Format
20 formatPretty (x, (f,p)) = f x -- call format on receiver of type Pretty
21 prettyPretty (x, (f,p)) = p x -- call pretty on receiver of type Pretty
22

23 -- Method definitions (lines 5 and 6 in the FGG code)
24 formatNum this = intToString (val this)
25 prettyNum this = formatNum this
26

27 -- Coercions
28 toFormatNum x = (x,formatNum) -- Num <: Format
29 toPrettyNum x = (x,( formatNum,prettyNum)) -- Num <: Pretty
30 toFormatPretty (x,(f,p)) = (x,f) -- Pretty <: Format
31

32 -- Function definitions (lines 8 and 10 in the FGG code)
33 formatSome x = formatFormat x
34

35 main = let s1 = formatSome (toFormatNum 1)
36 pr = toPrettyNum 2
37 s2 = formatSome (toFormatPretty pr)

Fig. 1. String-formatting and its translation

types for integers and strings, with an operator + for string concatenation and a builtin
function intToString, with definitions of local variables, and with function definitions.

We will first consider FGG− without generics to highlight the idea behind our type-
directed dictionary-passing translation scheme. Then, we show how the translation scheme
can be adapted to deal with the addition of generics. All examples have been checked
against our implementation1 of the translation.

2.1 Starting Without Generics

The upper part of Figure 1 shows an (extended) FGG− program for formatting values as
strings. The code does not use generics yet.

Structs in Go are similar to structs in C, a syntactic difference is the Go convention that
field or variable names precede their types. Here, struct Num has a single field val of type
int, so it simply acts as a wrapper for integers.

Interfaces in Go declare sets of method signatures sharing the same receiver where
method names must be distinct and the receiver is left implicit. Interfaces are types and

1 https://github.com/skogsbaer/fgg-translate

https://github.com/skogsbaer/fgg-translate
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4

describe all receivers that implement the methods declared by the interface. In our exam-
ple, interface Format declares a method format for rendering its receiver as a string. The
second interface Pretty also declares format, but adds a second method pretty with the
intention to produce a visually more attractive output.

Methods and functions are introduced via the keyword func. A method can be distin-
guished from a function as the receiver argument in parenthesis precedes the method name.
Methods can be overloaded on the receiver type. In lines 5 and 6, we find methods format
and pretty, respectively, for receiver type Num. In the body of format, we assume a
builtin function intToString for converting integers to strings. Lines 8 and 10 define two
functions.

An interface only names a set of method signatures, its definition is not required for a
method to be valid. For example, the methods in lines 5 and 6 could be defined without the
interfaces in lines 2 and 3, or the methods could be placed before the interfaces.

However, interfaces and method definitions imply structural subtype relations. Interface
Format contains a subset of the methods declared by interface Pretty. Hence, Pretty
is a structural subtype of Format, written (1) Pretty <: Format. Line 5 defines method
format for receiver type Num, we say that Num implements method format. Hence, Num is
a structural subtype of Format, written (2) Num <: Format. Receiver Num also implements
the pretty method, see line 6. Hence, we also find that (3) Num <: Pretty. Structural
subtype relations play a crucial role when type checking programs.

For example, consider the function call formatSome(Num{1}) in line 11. Here, Num{1}
is a value of the Num struct with val set to 1. From above we find that (2) Num <: Format.
That is, Num implements the Format interface and therefore the function call type checks.
Consider the variable declaration and assignment in line 12. Value Num{2} is assigned to
a variable of interface type Pretty. Based on the subtype relation (3) Num <: Pretty the
assignment type checks. Consider the function call formatSome(pr) in line 13, where pr
has type Pretty. Based on the subtype relation (1) Pretty <: Format the function call
type checks.

In Griesemer et al. (2020), the dynamic behavior of programs is explained via runtime
lookup of methods, where based on the receiver’s runtime type the appropriate method
definition is selected. The Go (and FGG/FGG−) conditions demand that for each method
name and receiver type there can be at most one definition. This guarantees that method
calls can be resolved unambiguously.

2.2 Type-Directed Translation

We explain the meaning of extended FGG− programs by translation into an untyped
𝜆-calculus with recursive top-level definitions, let-bindings, pattern matching, integers,
strings, an operator ++ for string concatenation, and a builtin function intToString. We
will use a Haskell-style notation.

Method definitions belonging to an interface are grouped together in a dictionary of
methods. Thus, method calls can be turned into primitive function calls by simply looking
up the appropriate method in the dictionary. Structural subtype relations are turned into
coercion functions that transform, for example, a struct value into an interface value to
make sure that the appropriate dictionaries are available. Where to insert dictionaries and
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coercions in the program is guided by the type checking rules. Hence, the translation is
type-directed.

Our translation strategy can be summarized as follows:

Struct. An FGG− value at the type of a struct with 𝑛 fields is represented by an 𝑛-tuple
holding the values of the fields. We call such an 𝑛-tuple a struct value.

Interface. An FGG− value at the type of an interface is represented as a pair (𝑉,D),
where𝑉 is a struct value and D is a method dictionary. Such a method dictionary is a
tuple holding implementations of all interface methods for 𝑉 , in order of declaration
in the interface. We call the pair (𝑉,D) an interface value.

Coercion. A structural subtype relation 𝜏 <: 𝜎 implies a coercion function to transform
the target representation of an FGG− value at type 𝜏 into a representation at type 𝜎.

The lower part of Figure 1 gives the translation of our running example. In this overview
section, we identify a 1-tuple with the single value it holds.

For each field name, we assume a helper function to access the field component, see
line 16. Method calls on interface values lookup the respective method definition in the
dictionary and apply it to the struct value embedded inside the interface value. See lines 19-
21. Method definitions translate to plain functions, see lines 24-25. Recall that for each
method name and receiver type there can be at most one definition. Hence, the generated
function names are all distinct.

Structural subtype relations translate to coercions, see lines 28-30. For example, (2)
Num <: Format translates to the toFormatNum coercion. Input parameter x represents a tar-
get representation of a Num value. The output (x,formatNum) is an interface value holding
the receiver and the corresponding method definition. Coercion toPrettyNum corresponds
to (3) Num <: Pretty and coercion toFormatPretty to (1) Pretty <: Format.

The translation of the main function, starting at line 35, is guided by the type checking of
the source program. Each application of a structural subtype relation leads to the insertion
of the corresponding coercion function in the target program. For example, the function
call formatSome(Num{1}) translates to formatSome (toFormatNum 1) because typing
of the source requires (2) Num <: Format. The other coercions arise for similar reasons.

2.3 Adding Generics

We extend our running example by including pairs, see Figure 2. The struct type Pair[T

Any, U Any] is generic in the type of the pair components, T and U are type variables.
When introducing type variables we must also specify an upper type bound to constrain
the set of concrete types that will replace type variables. The bounded type parameter T

Any can therefore be interpreted as ∀T.T <: Any. Upper bounds are always interface types.
The upper bound Any is satisfied by any type because the set of methods that need to be
implemented is empty.

To format pairs, we need to format the left and right component that are of generic
types T and U. Hence, the method definition for format in line 4 states the type bound
Format for type variables T and U. In general, bounds of type parameters for the receiver
struct of a method declaration must be in a covariant subtype relation relative to the
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1 type Any interface {}
2 type Pair[T Any, U Any] struct { left T; right U }
3

4 func (this Pair[T Format, U Format]) format () string {
5 return "(" + this.left.format () + "," + this.right.format () + ")"
6 }
7

8 func main2() {
9 var p Pair[Num, Num] = Pair[Num, Num]{ Num{1}, Num{2} }

10 var s1 string = p.format ()
11 var s2 string = formatSome(p)
12 }

13 -- Field access for struct Pair
14 left (x, _) = x
15 right (_, x) = x
16

17 -- Method definition (line 4 in the FGG code)
18 formatPair (toFormatT, toFormatU) this =
19 "(" ++ formatFormat (toFormatT (left this)) ++
20 "," ++ formatFormat (toFormatU (right this)) ++ ")"
21

22 -- Coercion Pair[T, U] <: Format (given T <: Format and U <: Format)
23 toFormatPair (toFormatT,toFormatU) p = (p,formatPair (toFormatT,toFormatU))
24

25 -- Main function
26 main2 = let p = (1, 2)
27 s1 = formatPair (toFormatNum, toFormatNum) p
28 s2 = formatSome (toFormatPair (toFormatNum, toFormatNum) p)

Fig. 2. String-formatting with generics (extending code from Figure 1)

bounds in the struct declaration. This is guaranteed in our case as we find Format <: Any.
Importantly, the type bounds in line 4 imply the subtype relations (4) T <: Format and (5)
U <: Format. Thus, we can show that the method body type checks. For example, expres-
sion this.left is of type T. Based on (4), this expression is also of type Format and
therefore the method call in line 5 this.left.format() type checks.

We consider type checking the main function. Instances for generic type variables must
always be explicitly supplied. Hence, when constructing a pair that holds number values,
see line 9, we find Pair[Num, Num].

Consider the method call p.format() in line 10. The receiver struct
Pair[T Format, U Format] of the method definition in line 4 matches p’s type
Pair[Num, Num] by replacing T and U by Num. The type bounds in the receiver type are
satisfied as we know from above that (2) Num <: Format. Hence, the method call type
checks.

By generalizing the above argument we find that

(6) {T <: Format, U <: Format} ⊢ Pair[T, U] <: Format.

That is, under the assumptions T <: Format and U <: Format we can derive that
Pair[T, U] <: Format. In particular, we find that Pair[Num, Num] <: Format. Hence,
the function call formatSome(p) in line 11 type checks.

Extending our type-directed translation scheme to deal with generics turns out to be
fairly straightforward.
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Bounded type parameter. A bounded type parameter T Ifce where T is a type vari-
able and Ifce is an interface type becomes a coercion parameter toIfceT. At
instantiation sites, coercions need to be inserted.

The lower part of Figure 2 shows the translated program. Starting at line 18 we find
the translation of the definition of method format for pairs. Each bounded type parameter
T Format and U Format is turned into a coercion parameter toFormatT and toFormatU.
In the target, we use a curried function definition where coercion parameters are collected
in a tuple.

A method call of format needs to supply concrete instances for these coercion
parameters. See line 27 which is the translation of calling format on receiver type
Pair[Num,Num]. Hence, we must pass as the first argument the tuple of coercions
(toFormatNum, toFormatNum) to formatPair.

Subtype relation (6) implies the (parameterized) coercion toFormatPair in line 23.
Given coercions toFormatT and toFormatU we can transform a pair p into an interface
value for Format, where the method dictionary consists of the partially applied translated
method definition formatPair.

We make use of toFormatPair in the translation of the function call formatSome(p),
see line 28. Based on the specific coercion toFormatNum, the call toFormatPair transforms
the pair value p into the interface value (p, formatPair (toFormatNum,toFormatNum)).
Then, we call formatSome on this interface value.

2.4 Bounded type parameters of methods

There may be bounded type parameters local to methods. Consider Figure 3 where we
further extend our running example. Starting at line 1 we find a definition of method
formatSep for pairs. This method takes an argument s that acts as a separator when for-
matting pairs. Argument s is of the generic type S constrained by the type bound Format.
Type parameter S is local to the method and not connected to the receiver struct. Type
arguments for S must also be explicitly specified in the program text, see method calls in
lines 8 and 13.

In the translation, bounded type parameters of methods simply become additional coer-
cion parameters. Consider the translation of formatSep defined on pairs starting at line 21.
The translated method definition first expects the coercion parameters (toFormatT,

toFormatU) that result from the bounded type parameters T Format and U Format of
the receiver. Then, we find the receiver argument this followed by the coercion parameter
toFormatS resulting from S Format, and finally the method argument s. The translation
of the method body follows the scheme we have seen so far, see lines 22-24. When calling
method formatSep on a pair we need to provide the appropriate coercions, see line 37.

From the method definition of formatSep for pairs and from the definition of interface
FormatSep, we find that the following subtype relation holds:

(7) {T <: Format, U <: Format} ⊢ Pair[T, U] <: FormatSep.
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1 func (this Pair[T Format, U Format]) formatSep[S Format](s S) string {
2 return this.left.format () + s.format () + this.right.format ()
3 }
4

5 type FormatSep interface { formatSep[S Format](s S) string }
6

7 func formatSepSome(x FormatSep , s Format) string {
8 return x.formatSep[Format](s)
9 }

10

11 func main3 () {
12 var p Pair[Num, Num] = Pair[Num, Num]{ Num{1}, Num{2} }
13 var s1 string = p.formatSep[Num](Num {3}) // result: 132
14 var s2 string = formatSepSome(p,Num {4}) // result: 142
15 }

16 -- Method call on interface
17 -- call formatSep on receiver of type FormatSep
18 formatSepFormatSep (x, f) = f x
19

20 -- Method definition (line 1 in the FGG code)
21 formatSepPair (toFormatT, toFormatU) this toFormatS s =
22 formatFormat (toFormatT (left this)) ++
23 formatFormat (toFormatS s) ++
24 formatFormat (toFormatU (right this))
25

26 -- Coercions
27 toFormatFormat x = x -- Format <: Format
28 toFormatSepPair (toFormatT, toFormatU) p =
29 -- Pair[T, U] <: FormatSep (given T <: Format and U <: Format)
30 (p, formatSepPair (toFormatT, toFormatU))
31

32 -- Function definitions (lines 7 and 11 in the FGG code)
33 formatSepSome (x, s) = (formatSepFormatSep x) toFormatFormat s
34

35 main3 =
36 let p = (1,2)
37 s1 = formatSepPair (toFormatNum, toFormatNum) p toFormatNum 3
38 s2 = formatSepSome
39 (toFormatSepPair (toFormatNum, toFormatNum) p,
40 toFormatNum 4)

Fig. 3. Bounded type parameters of methods (extending code from Figure 2)

Subtype relation (7) implies the coercion toFormatSepPair in line 28. Thus, the function
call of formatSepSome from line 14 translates to the target code starting in line 38.

The point to note is that a coercion parameter corresponding to a bounded type parameter
of a method is not part of the dictionary; it is only supplied at the call site of the method.
Consider the call x.formatSep[Format](s) in line 8. In the translation (line 33), we
first partially apply the respective dictionary entry on the receiver. This is done via the
target expression (formatSepFormatSep x). Type Format is a valid instantiation for type
parameter S of formatSep because Format <: Format in FGG− . In the translation, this
corresponds to the (identity) coercion toFormatFormat. Hence, we supply the remaining
arguments toFormatFormat and s.

2.5 Bounded type parameters of structs and interfaces

Structs and interfaces may also carry bounded type parameters. In FGG− and FGG, these
type parameters do not have a meaning at runtime as their purpose is only to rule out more
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1 type FPair[T Format, U Format] struct { left T; right U }
2 type Factory[T Format] interface { create () FPair[T, T] }
3

4 type MyFactory struct {}
5 func (this MyFactory) create () FPair[Num, Num] {
6 return FPair[Num, Num]{Num{1}, Num {2}}
7 }
8

9 func doWork[T Format](factory Factory[T]) string {
10 var p FPair[T, T] = factory.create ()
11 var t T = p.left
12 return t.format ()
13 }
14

15 func main4() {
16 var s = doWork[Num]( MyFactory {})
17 }

16 -- Field access for struct FPair
17 leftFPair (x, _) = x
18 rightFPair (_, x) = x
19

20 -- Method call on interface
21 createFactory (x, f) = f x -- call create on receiver of type Factory
22

23 -- Method definition (line 5 in the source program)
24 createMyFactory this = (1, 2)
25

26 -- Coercion
27 toFactoryMyFactory x = (x, createMyFactory) -- MyFactory <: Factory[Num]
28

29 -- Function definition (line 9 in the source program)
30 doWork toFormatT factory =
31 let p = createFactory factory
32 t = leftFPair p
33 in formatFormat (toFormatT t)
34

35 main4 = doWork toFormatNum (toFactoryMyFactory ())

Fig. 4. Bounded type parameters of structs and interfaces (extending code from Figure 1)

programs statically. Hence, in our translation approach they do not translate into additional
dictionary parameters or coercions.

Let us explain with the example in Figure 4. Struct FPair (short for “formatted pairs”)
requires the type bound Format on its type parameters. The generic interface Factory

defines a factory method returning formatted pairs. It requires a type bound T Format

for the type FPair[T, T] in its method signature to be well-formed. The need for this
type bound arises because FGG’s type system does not allow to conclude from just an
occurrence of FPair[T, T] that T is already a subtype of Format.

Struct MyFactory defines a concrete factory implementation for FPair[Num, Num],
function doWork accepts a generic Factory[T] for arbitrary T. Again, doWork requires
a type bound T Format for type Factory[T] to be well-formed. The main function
may then call doWork with a MyFactory value because MyFactory is a subtype of
Factory[Num].

The translated code (lower part of Figure 4) demonstrates that bounded type parameters
of structs and interfaces have no representation at runtime, so the translation effectively
ignores them. A struct value is still just a tuple with the fields of the struct (lines 17,
18), and an interface value just combines a struct value with a method dictionary (e.g.
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line 27). Only bounded type parameters of receiver structs (Figure 2), methods (Figure 3)
and functions (Figure 4) lead to additional coercion parameters.

An important point to note is that there is a difference between generic interfaces and
interfaces with generic methods. Interface Factory[T] in Figure 4 is generic in T, a sub-
type of Factory[U]must provide an implementation of the createmethod for some fixed
type U. In contrast, interface FormatSep from Figure 3 is not generic but contains a method
formatSep that is generic in S. A subtype of FormatSep must provide an implementation
of formatSep that is also generic in S.

2.6 Outlook

Next, Section 3 formalizes FGG− following the description by Griesemer et al. (2020).
Then, we give the details of our type-directed translation scheme in Section 4 and establish
that the meaning of FGG− programs is preserved in Section 5.

3 Featherweight Generic Go−

Featherweight Go (FG, Griesemer et al., 2020) is a small subset of the full Go lan-
guage (2022) supporting only essential features such as structs, interfaces, method
overloading and structural subtyping. In the same article, the authors add generics to FG
with the goal to scale the design to full Go. The resulting calculus is called Featherweight
Generic Go (FGG). Since version 1.18, full Go includes generics as well, but with limited
expressivity compared to the FGG proposal (see Section 7.1). For the translation presented
in this article, we stick to the original FGG language with minor differences in presentation
but excluding dynamic type assertions. We refer to this language as FGG− .

The next two subsections introduce the syntax and the dynamic semantics of FGG− . We
defer the definition of its static semantics until Section 4.2, where we specify it as part of
the type-directed dictionary-passing translation.

3.1 Syntax

Figure 5 introduces the syntax of FGG− . We assume several countably infinite, pairwise
disjoint sets for names, ranged over by N with some subscript (upper part of the figure).
Meta variables 𝑡𝑆 and 𝑢𝑆 denote struct names, 𝑡𝐼 and 𝑢𝐼 interface names, 𝛼 and 𝛽 type vari-
ables, 𝑓 field names, 𝑚 method names, and 𝑥, 𝑦 denote names for variables in expressions.
Overbar notation 𝔰

𝑛 is a shorthand for the sequence 𝔰1 . . . 𝔰𝑛 where 𝔰 is some syntactic
construct. In some places, commas separate the sequence items. If irrelevant, we omit the
𝑛 and simply write 𝔰. Using the index variable 𝑖 under an overbar marks the parts that vary
from sequence item to sequence item; for example, 𝔰′ 𝔰𝑖

𝑛
abbreviates 𝔰′ 𝔰1 . . . 𝔰

′ 𝔰𝑛 and
𝔰 𝑗

𝑞 abbreviates 𝔰 𝑗1 . . . 𝔰 𝑗𝑞 .
The middle part of Figure 5 shows the syntax of types in FGG− . A type name 𝑡, 𝑢 is

either a struct or interface name. Types 𝜏, 𝜎 include types variables 𝛼 and instantiated
types 𝑡 [𝜏]. For non-generic structs or interfaces, we often write just 𝑡 instead of 𝑡 []. Struct
types 𝜏𝑆 , 𝜎𝑆 and interface types 𝜏𝐼 , 𝜎𝐼 denote syntactic subsets of the full type syntax.
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Struct name 𝑡𝑆 , 𝑢𝑆 ∈ Nstruct
Interface name 𝑡𝐼 , 𝑢𝐼 ∈ Niface
Type variable name 𝛼, 𝛽 ∈ Ntyvar

Type name 𝑡, 𝑢 ::= 𝑡𝑆 | 𝑡𝐼
Type 𝜏, 𝜎 ::= 𝛼 | 𝑡 [𝜏]

Field name 𝑓 ∈ Nfield
Method name 𝑚 ∈ Nmethod
Variable name 𝑥, 𝑦 ∈ Nvar

Struct type 𝜏𝑆 , 𝜎𝑆 ::= 𝑡𝑆 [𝜏]
Interface type 𝜏𝐼 , 𝜎𝐼 ::= 𝑡𝐼 [𝜏]

Expression 𝑒, 𝑔 ::= 𝑥 | 𝑒.𝑚 [𝜏] (𝑒) | 𝜏𝑆{𝑒} | 𝑒. 𝑓
Method signature 𝑅 ::= 𝑚 [𝛼 𝜏𝐼 ] (𝑥 𝜏) 𝜏
Declaration 𝐷 ::= type 𝑡𝑆 [𝛼 𝜏𝐼 ] struct { 𝑓 𝜏}

| type 𝑡𝐼 [𝛼 𝜏𝐼 ] interface {𝑅}
| func (𝑥 𝑡𝑆 [𝛼 𝜏𝐼 ]) 𝑅 {return 𝑒}

Program 𝑃 ::= 𝐷 func main(){ = 𝑒}

Fig. 5. Syntax of FGG−

The lower part of Figure 5 defines the syntax of FGG− expressions, declarations, and
programs. Expressions, ranged over by 𝑒 and 𝑔, include variables 𝑥, method calls, struct
literals, and field selections. A method call 𝑒.𝑚 [𝜏] (𝑒) invokes method 𝑚 on receiver 𝑒 with
type arguments 𝜏 and arguments 𝑒. If 𝑚 does not take type arguments, we often write just
𝑒.𝑚(𝑒). A struct literals 𝜏𝑆{𝑒𝑛} creates an instance of a struct with 𝑛 fields, the arguments
𝑒𝑛 become the values of the fields in order of appearance in the struct definition. A field
selection 𝑒. 𝑓 projects the value of some struct field 𝑓 from expression 𝑒.

A method signature 𝑅 ::=𝑚 [𝛼 𝜏𝐼 ] (𝑥 𝜏) 𝜏 consists of a name𝑚, bounded type parameters
𝛼𝑖 with interface type 𝜏𝐼𝑖 as upper bounds, parameters 𝑥𝑖 of type 𝜏𝑖 , and return type 𝜏. It
binds 𝛼 and 𝑥. The scope of a type variable 𝛼𝑖 is 𝜏, 𝜏, and all upper bounds 𝜏𝐼 , so FGG−

supports F-bounded quantification (Canning et al., 1989). For non-generic methods, we
often write just 𝑚(𝑥𝑖 𝜏𝑖) 𝜏.

A declaration 𝐷 comes in three forms: a struct type 𝑡𝑆 [𝛼 𝜏𝐼 ] struct { 𝑓 𝜏} with fields 𝑓𝑖
of type 𝜏𝑖; an interface type 𝑡𝐼 [𝛼 𝜏𝐼 ] interface {𝑅} with method signatures 𝑅; or a method
func (𝑥 𝑡𝑆 [𝛼 𝜏𝐼 ]) 𝑅 {return 𝑒} providing an implementation of method 𝑅 for struct 𝑡𝑆 .
All three forms bind the type variables 𝛼, a method implementation additionally binds the
receiver parameter 𝑥. The scope of a type variable 𝛼𝑖 includes all upper bounds 𝜏𝐼 , the body
of the declaration enclosed in {. . .}, and for method declarations also the signature 𝑅. We
omit the [𝛼 𝜏𝐼 ] part completely if 𝛼 𝜏𝐼 is empty. Finally, a program 𝑃 consists of a sequence
of declarations together with a main function. Method and function bodies only contain a
single expression. We follow the usual convention and identify syntactic constructs up to
renaming of bound variables or type variables.

The syntax of FGG− as presented here differs slightly from its original form (Griesemer
et al., 2020). The original article encloses type parameters in parenthesis, an additional
type keyword starts a list of type parameters. Here, we follow the syntax of full Go and
use square brackets without any keyword. Further, the original article prepends package
main to each program, something we omit for succinctness. Finally, we reduce the number
of syntactic meta-variables to improve readability.
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Value 𝑣, 𝑢, 𝑤 ::= 𝜏𝑆{𝑣}
Evaluation context E ::= □ | 𝜏𝑆{𝑣, E, 𝑒} | E . 𝑓 | E .𝑚 [𝜏] (𝑒) | 𝑣.𝑚 [𝜏] (𝑣, E, 𝑒)
Value substitution 𝜃 ::= ⟨𝑥 ↦→ 𝑣⟩
Type substitution 𝜂 ::= ⟨𝛼 ↦→ 𝜏⟩

𝑒 −→ 𝑒 Reductions

FG-CONTEXT

𝑒 −→ 𝑒′

E[𝑒] −→ E[𝑒′]

FG-FIELD

type 𝑡𝑆 [𝛼 𝜏𝐼 ] struct { 𝑓 𝜎𝑛} ∈ 𝐷
𝑡𝑆 [𝜏]{𝑣𝑛}. 𝑓𝑖 −→ 𝑣𝑖

FG-CALL

𝑣 = 𝑡𝑆 [𝜏]{𝑢} func (𝑥 𝑡𝑆 [𝛼 𝜏𝐼 ]) 𝑚 [𝛼′ 𝜏′
𝐼
] (𝑥 𝜎) 𝜎 {return 𝑒} ∈ 𝐷

𝑣.𝑚 [𝜏′] (𝑣) −→ ⟨𝑥 ↦→ 𝑣, 𝑥 ↦→ 𝑣⟩⟨𝛼 ↦→ 𝜏, 𝛼′ ↦→ 𝜏′⟩𝑒

Fig. 6. Dynamic semantics of FGG−

3.2 Dynamic Semantics

Figure 6 defines a call-by-value dynamic semantics for FGG− using a small-step reduction
semantics with evaluation contexts. The definition is largely taken from Griesemer et al.
(2020).

We use 𝑣, 𝑢, 𝑤 to denote values, where a value is a struct literal with all fields being
values. A call-by-value evaluation context E is an expression with a hole □ such that the
hole marks the point where the next evaluation step should happen. We write E[𝑒] to
denote the replacement of the hole in E with expression 𝑒. A value substitution 𝜃 is a finite
mapping ⟨𝑥 ↦→ 𝑣⟩ from variables to values, whereas a type substitution 𝜂 is a finite mapping
⟨𝛼 ↦→ 𝜏⟩ from type variables to types. The (type) variables in the domain of a substitution
must be distinct. Substitution application, written in prefix notation as 𝜃𝑒 or 𝜂𝑒 or 𝜂𝜏, is
defined in the usual, capture-avoiding way. When combining two sequences, we implicitly
assume that both sequences have the same length. For example, combining variables 𝑥 and
values 𝑣 to a substitution ⟨𝑥 ↦→ 𝑣⟩ implicitly assumes that there are as many variables as
values.

The reduction relation 𝑒 −→ 𝑒′ denotes that expression 𝑒 reduces to expression 𝑒′. To
avoid clutter, the sequence of declarations 𝐷 of the underlying program is implicitly avail-
able in the rules defining this reduction relation. Rule FG-CONTEXT applies a reduction step
inside an expression. Rule FG-FIELD reduces a field selection 𝑡𝑆 [𝜏]{𝑣}. 𝑓𝑖 by extracting
value 𝑣𝑖 corresponding to field 𝑓𝑖 from the struct literal. Rule FG-CALL reduces a method
call 𝑡𝑆 [𝜏]{𝑢}.𝑚 [𝜏′] (𝑣). It retrieves a method definition for 𝑚 and 𝑡𝑆 and substitutes type
arguments, receiver, and value arguments in the method body.

Reduction in FGG− is deterministic (see Lemma A.1.1 in Appendix A.1 for a formal
proof), assuming the following three restrictions:

FGG-UNIQUE-STRUCTS Each struct 𝑡𝑆 is defined at most once in the program.
FGG-DISTINCT-FIELDS Each struct definition type 𝑡𝑆 [𝛼 𝜏𝐼 ] struct { 𝑓 𝜏} has distinct field

names 𝑓 .
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FGG-UNIQUE-METHOD-DEFS Each method definition func (𝑥 𝑡𝑆 [𝛼 𝜏𝐼 ]) 𝑚 [𝛼′ 𝜏′
𝐼
] (𝑥 𝜎) 𝜎 {return 𝑒}

is uniquely identified by struct name 𝑡𝑆 and method name 𝑚.

The first two restrictions ensures that the value for a field in rule FG-FIELD is unambiguous.
The third restriction avoids multiple matching method definitions in rule FG-CALL.

4 Type-directed translation

This section defines a type-directed, dictionary-passing translation from FGG− to an
untyped 𝜆-calculus extended with recursive let-bindings, constructors and pattern match-
ing. We first introduce the target language, then specify the translation itself, and last
but not least give some examples. Formal properties of the translation are deferred
until Section 5.

Variable 𝑋, 𝑌 ∈VVar
Constructor 𝐾 ∈VCon
Expression 𝐸, 𝐺 ::= 𝑋 | 𝐾 | 𝐸 𝐸 | 𝜆𝑋.𝐸

| case 𝐸 of Cls

Pattern clause Cls ::= Pat → 𝐸

Pattern Pat ::= 𝐾 𝑋

Program Prog ::= let 𝑋 =𝑉 in 𝐸

Value 𝑉,𝑈,𝑊 ::= 𝐾 𝑉 | 𝜆𝑋.𝐸
Evaluation context R ::= □ | case R of Cls | R 𝐸 | 𝑉 R
Substitution 𝜌, 𝜇 ::= ⟨𝑋 ↦→𝑉⟩

𝐸 −→𝜇 𝐸
′ TL expression reductions

TL-CONTEXT

𝐸 −→𝜇 𝐸
′

R[𝐸] −→𝜇 R[𝐸 ′]

TL-LAMBDA

(𝜆𝑋.𝐸) 𝑉 −→𝜇 ⟨𝑋 ↦→𝑉⟩𝐸

TL-CASE

𝐾 𝑋
𝑛 → 𝐸 ∈ Cls

case 𝐾 𝑉
𝑛

of Cls −→𝜇 ⟨𝑋 ↦→𝑉
𝑛⟩𝐸

TL-METHOD

𝑋 −→𝜇 𝜇(𝑋)

Prog −→ Prog′ TL reductions

TL-PROG

𝜇 = ⟨𝑋 ↦→𝑉⟩ 𝐸 −→𝜇 𝐸
′

let 𝑋 =𝑉 in 𝐸 −→ let 𝑋 =𝑉 in 𝐸 ′

Fig. 7. Target language (TL)
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4.1 Target Language

Figure 7 defines the syntax and the call-by-value dynamic semantics of the target lan-
guage (TL). We use uppercase letters for constructs of the target language. Variables
𝑋, 𝑌 and constructors 𝐾 are drawn from countably infinite, pairwise disjoint sets VVar
and VCon, respectively. Expressions, ranged over by 𝐸 and 𝐺, include variables 𝑋 , con-
structors 𝐾 , function applications 𝐸 𝐸 ′, 𝜆-abstractions 𝜆𝑋.𝐸 , and pattern matching via
case-expressions case 𝐸 of Pat → 𝐸 . Patterns Pat have the form 𝐾 𝑋 , they do not nest. We
assume that all constructors in Pat are distinct. To avoid some parentheses, we use the con-
ventions that application binds to the left and that the body of a 𝜆 extends to the right as
far as possible.

A program let 𝑋 =𝑉 in 𝐸 consists of a sequence of (mutually recursive) definitions and
a (main) expression, where we assume that the variables 𝑋 are distinct. In the translation
from FGG− , the values 𝑉 are always functions resulting as translations of FGG− methods.
We identify expressions, pattern clauses and programs up to renaming of bound variables.
Variables are bound by 𝜆 expressions, patterns, and let-bindings of programs.

Some syntactic sugar simplifies the construction of patterns, expressions and programs.
(a) We use nested patterns to abbreviate nested case-expressions. (b) We assume data
constructors for tuples up to some fixed but arbitrary size. The syntax (𝐸

𝑛
) constructs

an 𝑛-tuple when used as an expression, and (Pat𝑛) deconstructs it when used in a pat-
tern context. (c) We use patterns in 𝜆-expressions; that is, the notation 𝜆Pat.𝐸 stands for
𝜆𝑋.case 𝑋 of Pat → 𝐸 where 𝑋 is fresh.

Target values 𝑉,𝑈,𝑊 are either 𝜆-expressions or constructors applied to values. A con-
structor value 𝐾 𝑉

𝑛
is short for (. . . (𝐾 𝑉1) . . .) 𝑉𝑛. A call-by-value evaluation context R

is an expression with a hole □ such that the hole marks the point where the next evalua-
tion step should happen. We write R[𝐸] to denote the replacement of the hole in R with
expression 𝐸 .

A substitution 𝜌, 𝜇 is a finite mapping ⟨𝑋 ↦→𝑉⟩ from variables to values. The variables
𝑋 in the domain must be distinct. Substitution application, written in prefix notation 𝜌𝐸 ,
is defined in the usual, capture-avoiding way. We use two different meta variables 𝜇 and 𝜌
for substitutions in the target language with the convention that the domain of 𝜇 contains
only top-level variables bound by let. As top-level variables result from translating FGG−

methods, we sometimes call 𝜇 a method substitution.
The reduction semantics for the target language is defined by two relations: 𝐸 −→𝜇 𝐸

′

reduces expression 𝐸 to 𝐸 ′ under method substitution 𝜇, and Prog −→ Prog′ reduces Prog
to Prog′. The definition of the latter simply forms a method substitution 𝜇 from the top-
level bindings of Prog and then reduces the main expression of Prog under 𝜇 (rule TL-PROG).
We defer the substitution of top-level–bound variables because they might be recursive.

The definition of the reduction relation for expressions extends over four rules. Rule
TL-CONTEXT uses evaluation context R to reduce inside an expression, rule TL-LAMBDA

reduces function application in the usual way. Pattern matching in rule TL-CASE assumes
that the scrutinee is a constructor value 𝐾 𝑉

𝑛
; the lookup of a pattern clause matching 𝐾

yields at most one result as we assume that clauses have distinct constructors. During a
sequence of reduction steps, a variable bound by let at the top-level might become a redex,
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as only 𝜆-bound variables are substituted right away. Thus, rule TL-METHOD finds the value
for the variable in the method substitution 𝜇.

4.2 Translation

Before we dive into the technical details, we summarize our translation strategy.

Struct. An FGG− value of some struct type is represented in the TL as a struct value; that
is, a tuple (𝑉

𝑛
) where 𝑛 is the number of fields and 𝑉𝑖 represents the 𝑖-th field of the

struct.
Interface. An FGG− value of some interface type is represented in the TL as an interface

value; that is a pair (𝑉,D), where 𝑉 is a struct value realizing the interface and D
is a dictionary.

Dictionary. A dictionary D for an interface with methods 𝑅
𝑛

is a tuple (𝑉
𝑛
) such that 𝑉𝑖

is a dictionary entry for method 𝑅𝑖 .
Dictionary entry. A dictionary entry for a method with signature 𝑅 =𝑚 [𝛼 𝜏𝐼 ] (𝑥 𝜎)𝜎 is

a function accepting a triple: (1) receiver, (2) tuple with coercions corresponding to
the bounded type parameters 𝛼 𝜏𝐼 of the method, (3) tuple for parameters 𝑥.

Coercion. A structural subtype relation 𝜏 <: 𝜎 implies a coercion function to transform
the target representation of an FGG− value at type 𝜏 into a representation at type 𝜎.

Bounded type parameter. A bounded type parameter 𝛼 𝜏𝐼 becomes a coercion parame-
ter 𝑋𝛼 transforming the type supplied for 𝛼 to its bound 𝜏𝐼 . At instantiation sites,
coercions need to be inserted.

Method declaration. A method declaration func (𝑥 𝑡𝑆 [𝛼 𝜏𝐼 ]) 𝑚 [𝛼′ 𝜏′
𝐼
] (𝑥 𝜎) 𝜎 {return 𝑒}

is represented as a top-level function 𝑋𝑚,𝑡𝑆 accepting a quadruple: (1) tuple with
coercions corresponding to the bounded type parameters 𝛼 𝜏𝐼 of the receiver, (2)
receiver 𝑥, (3) tuple with coercions corresponding to bounded type parameters 𝛼′ 𝜏′

𝐼

of the method, (4) tuple for parameters 𝑥.

In essence, the above is a more detailed description of the translation scheme motivated
in Section 2. The only difference is that dictionary entries and translations of methods are
now represented as uncurried functions. For example, instead of the curried representation
in Figure 3
formatSepPair (toFormatT, toFormatU) this toFormatS x = ...

toFormatSepPair (toFormatT, toFormatU) p =
(p, formatSepPair (toFormatT, toFormatU))

our actual translation scheme uses uncurried functions, as in the following code:
-- translation of method
formatSepPair (( toFormatT, toFormatU), this , toFormatS, x) = ...

toFormatSepPair (toFormatT, toFormatU) p =
(p, \(this ,locals ,arg) -> -- dictionary entry

formatSepPair (( toFormatT, toFormatU),locals ,arg))

Using an uncurried representation instead of a curried representation is just a mat-
ter taste. As we have carried out the semantic equivalence proof initially based on the
uncurried representation, we stick to it from now on.
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4.2.1 Conventions and Notations

The translation relies on three total, injective functions with pairwise disjoint ranges for
mapping FGG− names to TL variables. The first function Nvar →VVar translates a FGG−

variable 𝑥 to a TL variable 𝑋 . To avoid clutter, we do not spell out the translation function
explicitly but use the abbreviation that a lowercase 𝑥 always translates into its uppercase
counterpart 𝑋 . The second function Ntyvar →VVar translates an FGG− type variable 𝛼 into
a TL variable, abbreviated 𝑋𝛼. The third function Nmethod ×Nstruct →VVar gives us the TL
variable 𝑋𝑚,𝑡𝑆 representing the translation of a method 𝑚 for struct 𝑡𝑆 . Here is a summary
of the shorthand notations for name translation functions, where methodName(𝑅) denotes
the name part of method signature 𝑅.

𝑥{ 𝑋 𝛼{ 𝑋𝛼

𝑚 = methodName(𝑅)
func (𝑥 𝑡𝑆 [𝛼 𝜏𝐼 ]) 𝑅 {return 𝑒}{ 𝑋𝑚,𝑡𝑆

The notation for translating names slightly differs from the approach used in the exam-
ples of Section 2. For instance, the coercion toFormatT from Figure 3 is now named 𝑋T
and method formatSepPair becomes 𝑋formatSep,Pair. The notation of the formal translation
stresses that 𝑋T and 𝑋formatSep,Pair are variables of the target language.

An FGG− type environment Δ is a mapping {𝛼 : 𝜏𝐼 } from type variables 𝛼𝑖 to their upper
bounds 𝜏𝐼𝑖 . An FGG− value environment Γ is a mapping {𝑥 : 𝜏} from FGG− variables 𝑥𝑖
to their types 𝜏𝑖 . An environment may contain at most one binding for a type variable or
variable. We write ∅ for the empty environment, dom(·) for the domain of an environment,
and ∪ for the disjoint union of two environments. The notation distinct(𝔰) asserts that 𝔰 is
a sequence of disjoint items. We let [𝑛] denote the set {1, . . . , 𝑛}.

In the following, we assume that the declarations 𝐷 of the FGG− program being trans-
lated are implicitly available in all rules. This avoids the need for threading the declarations
through all translation rules.

4.2.2 Auxiliary Judgments

Figure 8 defines some auxiliary judgments. The judgment Δ ⊢subst 𝛼 𝜏𝐼 ↦→ 𝜎 : 𝜂{ 𝑉 , defined
by rule TYPE-INST-CHECKED, constructs a type substitution 𝜂 = ⟨𝛼 ↦→ 𝜎⟩ and checks that the
𝜎 conform to their upper bounds 𝜏𝐼 under type environment Δ. In the tuple (𝑉

𝑛
) of 𝜆-

abstractions each 𝑉𝑖 coerces the actual type argument to its upper bound. The relevant
premise for checking upper bounds is Δ ⊢coerce 𝜎𝑖 <: 𝜂𝜏𝐼𝑖 { 𝑉𝑖 , which asserts that 𝜎𝑖 is a
structural subtype of 𝜂𝜏𝐼𝑖 giving raise to a coercion function 𝑉𝑖 . The judgment will be
defined and explained in the next subsection.

The lower part of Figure 8 defines two judgments for looking up methods defined for a
struct or interface type. Judgment ⟨𝑅, 𝑉⟩ ∈ methods(Δ, 𝜏𝑆) states that method signature 𝑅 is
available for struct type 𝜏𝑆 under type environment Δ, see rule METHODS-STRUCT. The value
𝑉 is a tuple of coercion functions resulting from checking the bounds of the receiver’s type
parameters. Judgment methods(𝜏𝐼 ) = {𝑅} states that the set of method signatures available
for interface type 𝜏𝐼 is {𝑅}, see rule METHODS-IFACE. As stated before, this rule forms the
substitution ⟨𝛼 ↦→ 𝜎⟩ by implicitly assuming that 𝛼 and 𝜎 have the same length.
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Δ ⊢subst 𝛼 𝜏𝐼 ↦→ 𝜎 : 𝜂{ 𝑉 Instantiation of bounded type parameters

TYPE-INST-CHECKED

𝜂 = ⟨𝛼 ↦→ 𝜎
𝑛⟩ Δ ⊢coerce 𝜎𝑖 <: 𝜂𝜏𝐼𝑖 { 𝑉𝑖 (∀ 𝑖 ∈ [𝑛])
Δ ⊢subst 𝛼 𝜏𝐼

𝑛 ↦→ 𝜎𝑛 : 𝜂{ (𝑉
𝑛
)

⟨𝑅, 𝑉⟩ ∈ methods(Δ, 𝜏𝑆) methods(𝜏𝐼 ) = {𝑅} Method access

METHODS-STRUCT

func (𝑥 𝑡𝑆 [𝛼 𝜏𝐼 ]) 𝑅 {return 𝑒} ∈ 𝐷 Δ ⊢subst 𝛼 𝜏𝐼 ↦→ 𝜎 : 𝜂{ 𝑉

⟨𝜂𝑅, 𝑉⟩ ∈ methods(Δ, 𝑡𝑆 [𝜎])

METHODS-IFACE

type 𝑡𝐼 [𝛼 𝜏𝐼 ] interface {𝑅} ∈ 𝐷 𝜂 = ⟨𝛼 ↦→ 𝜎⟩
methods(𝑡𝐼 [𝜎]) = {𝜂𝑅}

Fig. 8. Auxiliary judgments for the translation

Δ ⊢coerce 𝜏 <: 𝜎{ 𝑉 Translation of structural subtyping

COERCE-TYVAR

𝑌 fresh (𝛼 : 𝜎𝐼 ) ∈ Δ Δ ⊢coerce 𝜎𝐼 <: 𝜏{ 𝑉

Δ ⊢coerce 𝛼 <: 𝜏{ 𝜆𝑌.𝑉 (𝑋𝛼 𝑌 )

COERCE-STRUCT-IFACE

𝑋, 𝑌
3 fresh

type 𝑡𝐼 [𝛼 𝜏𝐼 ] interface {𝑅𝑛} ∈ 𝐷 𝜂 = ⟨𝛼 ↦→ 𝜏⟩ ⟨𝜂𝑅𝑖 , 𝑉𝑖⟩ ∈ methods(Δ, 𝜏𝑆)
𝑚𝑖 = methodName(𝑅𝑖) 𝑈𝑖 = 𝜆(𝑌

3
).𝑋𝑚𝑖 ,𝑡𝑆 (𝑉𝑖,𝑌

3
) (∀ 𝑖 ∈ [𝑛])

Δ ⊢coerce 𝜏𝑆 <: 𝑡𝐼 [𝜏]{ 𝜆𝑋.(𝑋,(𝑈
𝑛
))

COERCE-IFACE-IFACE

𝑌, 𝑋
𝑛

fresh 𝜋 : [𝑞] → [𝑛] total type 𝑡𝐼 [𝛼 𝜏𝐼 ] interface {𝑅𝑛} ∈ 𝐷
type 𝑢𝐼 [𝛽 𝜎𝐼 ] interface {𝑅′𝑞} ∈ 𝐷 ⟨𝛽 ↦→ 𝜎⟩𝑅′

𝑖 = ⟨𝛼 ↦→ 𝜏⟩𝑅𝜋 (𝑖) (∀ 𝑖 ∈ [𝑞])
Δ ⊢coerce 𝑡𝐼 [𝜏] <: 𝑢𝐼 [𝜎]{ 𝜆(𝑌,(𝑋

𝑛
)).(𝑌,(𝑋𝜋 (1), . . .,𝑋𝜋 (𝑞)))

Fig. 9. Translation of structural subtyping

4.2.3 Translation of Structural Subtyping

Figure 9 defines the relation Δ ⊢coerce 𝜏 <: 𝜎{ 𝑉 for asserting that 𝜏 is a structural subtype
of 𝜎, yielding a coercion function 𝑉 to convert the target representations of 𝜏 to 𝜎.

Rule COERCE-TYVAR covers the case of a type variable 𝛼. The premise states that type
bound (𝛼 : 𝜎𝐼 ) exists in the environment. By convention, 𝑋𝛼 is the name of the corre-
sponding coercion function. We further find that Δ ⊢coerce 𝜎𝐼 <: 𝜎{ 𝑉 . Hence, we obtain
the coercion function for 𝛼 <: 𝜎 by composition of coercion functions 𝑉 and 𝑋𝛼.

Rule COERCE-STRUCT-IFACE covers structs. The premise ⟨𝜂𝑅𝑖 , 𝑉𝑖⟩ ∈ methods(Δ, 𝜏𝑆) asserts
that each method with name methodName(𝑅𝑖) of interface 𝑡𝐼 is defined for 𝜏𝑆 . Value 𝑉𝑖
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⟨Δ, Γ⟩ ⊢exp 𝑒 : 𝜏{ 𝐸 Translating expressions

VAR

(𝑥 : 𝜏) ∈ Γ

⟨Δ, Γ⟩ ⊢exp 𝑥 : 𝜏{ 𝑋

STRUCT

Δ ⊢ok 𝑡𝑆 [𝜏] type 𝑡𝑆 [𝛼 𝜏𝐼 ] struct { 𝑓 𝜎𝑛} ∈ 𝐷
⟨Δ, Γ⟩ ⊢exp 𝑒𝑖 : ⟨𝛼 ↦→ 𝜏⟩𝜎𝑖 { 𝐸𝑖 (∀ 𝑖 ∈ [𝑛])

⟨Δ, Γ⟩ ⊢exp 𝑡𝑆 [𝜏]{𝑒𝑛} : 𝑡𝑆 [𝜏]{ (𝐸
𝑛
)

ACCESS

⟨Δ, Γ⟩ ⊢exp 𝑒 : 𝑡𝑆 [𝜏]{ 𝐸 type 𝑡𝑆 [𝛼 𝜏𝐼 ] struct { 𝑓 𝜎𝑛} ∈ 𝐷
⟨Δ, Γ⟩ ⊢exp 𝑒. 𝑓𝑖 : ⟨𝛼 ↦→ 𝜏⟩𝜎𝑖 { case 𝐸 of (𝑋

𝑛
)→ 𝑋𝑖

CALL-STRUCT

⟨Δ, Γ⟩ ⊢exp 𝑒 : 𝑡𝑆 [𝜏]{ 𝐸 ⟨𝑚 [𝛼′ 𝜏′
𝐼
] (𝑥 𝜎𝑛)𝜎, 𝑉⟩ ∈ methods(Δ, 𝑡𝑆 [𝜏])

Δ ⊢subst 𝛼
′ 𝜏′

𝐼
↦→ 𝜏′ : 𝜂{ 𝑉 ′ ⟨Δ, Γ⟩ ⊢exp 𝑒𝑖 : 𝜂𝜎𝑖 { 𝐸𝑖 (∀ 𝑖 ∈ [𝑛])

⟨Δ, Γ⟩ ⊢exp 𝑒.𝑚 [𝜏′] (𝑒𝑛) : 𝜂𝜎{ 𝑋𝑚,𝑡𝑆 (𝑉,𝐸,𝑉 ′,(𝐸
𝑛
))

CALL-IFACE

⟨Δ, Γ⟩ ⊢exp 𝑒 : 𝜏𝐼 { 𝐸

methods(𝜏𝐼 ) = 𝑅
𝑞

𝑅 𝑗 =𝑚 [𝛼′ 𝜏′
𝐼
] (𝑥 𝜎𝑛)𝜎 (for some 𝑗 ∈ [𝑞])

Δ ⊢subst 𝛼
′ 𝜏′

𝐼
↦→ 𝜏′ : 𝜂{ 𝑉 ′ ⟨Δ, Γ⟩ ⊢exp 𝑒𝑖 : 𝜂𝜎𝑖 { 𝐸𝑖 (∀ 𝑖 ∈ [𝑛]) 𝑌, 𝑋

𝑞
fresh

⟨Δ, Γ⟩ ⊢exp 𝑒.𝑚 [𝜏′] (𝑒𝑛) : 𝜂𝜎{ case 𝐸 of (𝑌,(𝑋
𝑞
))→ 𝑋 𝑗(𝑌,𝑉

′,(𝐸
𝑛
))

SUB

⟨Δ, Γ⟩ ⊢exp 𝑒 : 𝜏{ 𝐸 Δ ⊢coerce 𝜏 <: 𝜎{ 𝑉

⟨Δ, Γ⟩ ⊢exp 𝑒 : 𝜎{ 𝑉 𝐸

Fig. 10. Translation of expressions

is a tuple with coercion parameters corresponding to the bounds of the receiver’s type
parameters. Thus, 𝑈𝑖 = 𝜆(𝑌

3
).𝑋𝑚𝑖 ,𝑡𝑆 (𝑉𝑖,𝑌

3
) is the dictionary entry for the 𝑖-th method:

a function accepting receiver 𝑌1, coercion parameters 𝑌2 corresponding to bounded type
parameters of the method, and the argument tuple 𝑌3. As written earlier, dictionary entries
and top-level functions 𝑋𝑚𝑖 ,𝑡𝑆 are uncurried. Thus, we need to deconstruct the argument
triple (𝑌 3

) and construct a new quadruple (𝑉,𝑌 3
) for calling 𝑋𝑚𝑖 ,𝑡𝑆 .

Rule COERCE-IFACE-IFACE covers structural subtyping between interface types 𝑡𝐼 [𝜏] and
𝑢𝐼 [𝜎]. In this case, 𝑡𝐼 must declare all methods of 𝑢𝐼 , so we can build a dictionary for 𝑢𝐼
from the methods in the dictionary for 𝑡𝐼 . Thus, the premise of the rule requires the total
function 𝜋 to be chosen in such a way that the 𝑖-th method of 𝑢𝐼 has the same signature as
the 𝜋(𝑖)-th method of 𝑡𝐼 . The translation uses pattern matching to deconstruct the dictionary
of 𝑡𝐼 as (𝑋

𝑛
). Then the 𝑖-th method in the dictionary of 𝑢𝐼 is 𝑋𝜋 (𝑖) , so we construct the

wanted dictionary as (𝑋𝜋 (1), . . .,𝑋𝜋 (𝑞)).

4.2.4 Translation of Expressions

Figure 10 defines the typing and translation relation for expressions. The judgment
⟨Δ, Γ⟩ ⊢exp 𝑒 : 𝜏{ 𝐸 states that under type environment Δ and value environment Γ the
FGG− expression 𝑒 has type 𝜏 and translates to TL expression 𝐸 .
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Rule VAR retrieves the type of FGG− variable 𝑥 from the environment and translates 𝑥 to
its TL counterpart 𝑋 . The context makes variable 𝑋 available, see the translation of method
definitions in Section 4.2.6. Rule STRUCT type checks and translates a struct literal 𝑡𝑆 [𝜏] (𝑒).
Premise Δ ⊢ok 𝑡𝑆 [𝜏] checks that type 𝑡𝑆 [𝜏] is well-formed; the definition of the judgment
Δ ⊢ok 𝜏 is given in Figure 11 and will be explained in the next subsection. Each argument
𝑒𝑖 translates to 𝐸𝑖 , so the result is (𝐸

𝑛
). Rule ACCESS deals with field access 𝑒. 𝑓𝑖 , where

expression 𝑒 must have struct type 𝑡𝑆 [𝜏] such that 𝑡𝑆 defines field 𝑓𝑖 . Thus, 𝑒 translates to
a tuple 𝐸 , from which we extract the 𝑖-th component via pattern matching.

Rule CALL-STRUCT handles a method call 𝑒.𝑚 [𝜏′] (𝑒), where receiver 𝑒 has struct type
𝑡𝑆 [𝜏] and translates to 𝐸 . The𝑉 in the premise corresponds to a tuple of coercion functions
that result from checking the bounds of the receiver’s type parameters, whereas𝑉 ′ is a tuple
of coercion functions for the bounds of the type parameters of the method. Argument 𝑒𝑖
translates to 𝐸𝑖 . According to our translation strategy, a method declaration for 𝑚 and 𝑡𝑆 is
represented as a top-level function 𝑋𝑚,𝑡𝑆 accepting a quadruple: coercions for the receiver’s
type parameters, receiver, coercions for the bounded type parameters local to the method,
and method arguments. Thus, the result of the translation is 𝑋𝑚,𝑡𝑆 (𝑉,𝐸,𝑉 ′,(𝐸)).

Rule CALL-IFACE handles a method call 𝑒.𝑚 [𝜏′] (𝑒), where receiver 𝑒 has interface type
𝜏𝐼 and translates to 𝐸 . Similar to CALL-STRUCT, 𝑉 ′ is a tuple of coercion functions that result
from checking the bounds of the type parameters local to the method. Expressions 𝐸𝑖 are
the translation of the arguments 𝑒𝑖 . Following our translation strategy, receiver 𝐸 is a pair
where the first component is a struct value and the second component is a dictionary for the
interface. Thus, we use pattern matching to extract the struct as𝑌 and the wanted method as
𝑋 𝑗 . This 𝑋 𝑗 is a function accepting a triple: receiver, coercions for bounded type parameters
of the method, and method arguments. Hence, the translation result is 𝑋 𝑗 (𝑌,𝑉

′,(𝐸)). The
difference to rule CALL-STRUCT is that there is no need to supply coercions for the bounded
type parameters of the receiver. These coercions have already been supplied when building
the dictionary, see rule COERCE-STRUCT-IFACE of Figure 9.

The last rule SUB is a subtyping rule allowing an expression 𝑒 with translation 𝐸 at type
𝜏 to be assigned some (structural) supertype 𝜎. Premise Δ ⊢coerce 𝜏 <: 𝜎{ 𝑉 serves two
purposes: it ensures that 𝜎 is a supertype of 𝜏 and it yields a coercion function 𝑉 from 𝜏 to
𝜎. The translation of 𝑒 at type 𝜎 is then 𝑉 𝐸 . In Griesemer et al. (2020), the subtype check
is included for each form of expression. For clarity, we choose to have a separate subtyping
rule as in our translation scheme each subtyping relation implies a coercion function.

4.2.5 Well-formedness

Figure 11 defines several well-formedness judgments. The judgments Δ ⊢ok 𝜏 and Δ ⊢ok 𝜏

assert that a single type and multiple types, respectively, are well-formed under type envi-
ronment Δ. A type variable is well-formed if it is contained in Δ (rule OK-TYVAR). A
named type 𝑡 [𝜏] is well-formed if its type arguments 𝜏 are well-formed and if they are
subtypes of the upper bounds in the definition of 𝑡. The latter is checked by the premise
Δ ⊢subst 𝛼 𝜏𝐼 ↦→ 𝜏 : 𝜂{ 𝑉 of rule OK-TYNAMED, thereby ignoring the type substitution 𝜂 and
the coercion functions 𝑉 . We have already seen in Section 2.5 that these coercions 𝑉 are
not represented in the translated program because type bounds of structs and interfaces
have no operational meaning.
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Δ ⊢ok 𝜏 Δ ⊢ok 𝜏 Well-formedness of types

OK-TYVAR

(𝛼 : 𝜏𝐼 ) ∈ Δ

Δ ⊢ok 𝛼

OK-TYNAMED

Δ ⊢ok 𝜏 type 𝑡 [𝛼 𝜏𝐼 ] . . . ∈ 𝐷
Δ ⊢subst 𝛼 𝜏𝐼 ↦→ 𝜏 : 𝜂{ 𝑉

Δ ⊢ok 𝑡 [𝜏]

OK-MANY-TY

Δ ⊢ok 𝜏𝑖 (∀𝑖 ∈ [𝑛])
Δ ⊢ok 𝜏

𝑛

Δ ⊢ok 𝛼 𝜏𝐼 Δ ⊢ok 𝑅 Well-formedness of type parameters and method signatures

OK-BOUNDED-TYPARAMS

dom(Δ) ∩ {𝛼} = ∅ distinct(𝛼)
Δ∪ {𝛼 : 𝜏𝐼 } ⊢ok 𝜏𝐼

Δ ⊢ok 𝛼 𝜏𝐼

OK-MSIG

Δ ⊢ok 𝛼 𝜏𝐼 distinct(𝑥)
Δ∪ {𝛼 : 𝜏𝐼 } ⊢ok 𝜎𝜎

Δ ⊢ok 𝑚 [𝛼 𝜏𝐼 ] (𝑥 𝜎)𝜎

⊢ok 𝐷 Well-formedness of declarations

OK-STRUCT

𝑡𝑆 defined once in 𝐷 ∅ ⊢ok 𝛼 𝜏𝐼 {𝛼 : 𝜏𝐼 } ⊢ok 𝜎 distinct( 𝑓 )
⊢ok type 𝑡𝑆 [𝛼 𝜏𝐼 ] struct { 𝑓 𝜎}

OK-IFACE

𝑡𝐼 defined once in 𝐷 ∅ ⊢ok 𝛼 𝜏𝐼 (∀𝑖 ∈ [𝑛]) {𝛼 : 𝜏𝐼 } ⊢ok 𝑅𝑖

distinct(methodName(𝑅𝑖))
⊢ok type 𝑡𝐼 [𝛼 𝜏𝐼 ] interface {𝑅𝑛}

OK-METHOD

𝐷 contains one func-declaration for 𝑡𝑆 and methodName(𝑅)
∅ ⊢ok 𝛼 𝜏𝐼 {𝛼 : 𝜏𝐼 } ⊢ok 𝑅

(type 𝑡𝑆 [𝛼 𝜏′𝐼
𝑛] struct . . .) ∈ 𝐷 methods(𝜏′𝐼 𝑖) ⊆ methods(𝜏𝐼 𝑖) (∀𝑖 ∈ [𝑛])

⊢ok func (𝑥 𝑡𝑆 [𝛼 𝜏𝐼 𝑛])𝑅 {return 𝑒}

Fig. 11. Well-formedness

Judgment Δ ⊢ok 𝛼 𝜏𝐼 asserts that bounded type parameters 𝛼 𝜏𝐼 are well-formed under
type environment Δ (rule OK-BOUNDED-TYPARAMS). Judgment Δ ⊢ok 𝑅 ensures that a method
signature is well-formed (rule OK-MSIG). To form the combined environment Δ∪ {𝛼 : 𝜏𝐼 } in
the premise requires disjointness of the type variables in dom(Δ) and 𝛼. This can always
be achieved by 𝛼-renaming the type variables bound by 𝑅.

Judgment ⊢ok 𝐷 validates declaration 𝐷. A struct declaration is well-formed if it is
defined only once (restriction FGG-UNIQUE-STRUCTS in Section 3.2), if all field names are
distinct (restriction FGG-DISTINCT-FIELDS), and if the field types are well-formed. An inter-
face declaration is well-formed if it is defined only once, if all its method signatures are
well-formed, and if all methods have distinct names.

A method declaration for 𝑡𝑆 and 𝑚 is well-formed if there is no other declaration for 𝑡𝑆
and 𝑚 (restriction FGG-UNIQUE-METHOD-DEFS), if the method signature is well-formed, and if
each bound 𝜏𝐼𝑖 of the method declaration is a structural subtype of the corresponding bound
𝜏′
𝐼𝑖

in the declaration of 𝑡𝑆 . In FGG− , this boils down to checking that the methods of 𝜏′
𝐼𝑖

are a subset of the methods of 𝜏𝐼𝑖 . The well-formedness conditions for method declarations
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⊢meth func (𝑥 𝑡𝑆 [𝛼 𝜏𝐼 ]) 𝑅 {return 𝑒}{ 𝑋 =𝑉 Translating method declarations

METHOD

Δ = {𝛼 𝜏𝐼 , 𝛽 𝜎𝐼 } Γ = {𝑥 : 𝑡𝑆 [𝛼], 𝑥 : 𝜎}
𝑥 ∉ {𝑥} ⟨Δ, Γ⟩ ⊢exp 𝑒 : 𝜎{ 𝐸 𝑉 = 𝜆((𝑋𝛼𝑖

),𝑋,(𝑋𝛽𝑖),(𝑋)).𝐸

⊢meth func (𝑥 𝑡𝑆 [𝛼 𝜏𝐼 ]) 𝑚 [𝛽 𝜎𝐼 ] (𝑥 𝜎) 𝜎 {return 𝑒}{ 𝑋𝑚,𝑡𝑆 =𝑉

⊢prog 𝑃{ Prog Translating programs

PROG

𝐷 implicitly available in all subderivations ⟨∅, ∅⟩ ⊢exp 𝑒 : 𝜏{ 𝐸

⊢ok 𝐷𝑖 (for all 𝐷𝑖 ∈ 𝐷)
⊢meth 𝐷𝑖 { 𝑋𝑖 =𝑉𝑖 (for all 𝐷𝑖 = func . . . ∈ 𝐷)

⊢prog 𝐷 func main(){ = 𝑒}{ let 𝑋𝑖 =𝑉𝑖 in 𝐸

Fig. 12. Translation of methods and programs

do not type check the method body. We will deal with this in the upcoming translation rule
for methods.

4.2.6 Translation of Methods and Programs

Figure 12 defines the translation for method declarations and programs. Rule METHOD deals
with method declarations func (𝑥 𝑡𝑆 [𝛼 𝜏𝐼 ]) 𝑚 [𝛽 𝜎𝐼 ] (𝑥 𝜎) 𝜎 {return 𝑒}. The translation of
such a declaration is the binding 𝑋𝑚,𝑡𝑆 =𝑉 . According to our translation strategy,𝑉 must be
a function accepting a quadruple: coercions (𝑋𝛼𝑖

) for the bounded type parameters of the
receiver, receiver 𝑋 corresponding to 𝑥, coercions (𝑋𝛽𝑖) for the bounded type parameters
local to the method, and finally method arguments 𝑋 corresponding to 𝑥. Binding all these
variables with a 𝜆 makes them available in the translated body 𝐸 .

Judgment ⊢prog 𝑃{ Prog denotes the translation of an FGG− program 𝑃 to a TL program
Prog. Rule PROG type checks the main expression 𝑒 under empty environments against some
type 𝜏 to get its translation 𝐸 . Next, the rule requires all struct or interface declarations to
be well-formed. Finally, it translates each method declaration to a binding 𝑋𝑖 =𝑉𝑖 . The
resulting TL program is then let 𝑋𝑖 =𝑉𝑖 in 𝐸 .

4.3 Example

We now give an example of the translation. The FGG− code in the top part of Figure 13
defines equality for numbers Num and for generic boxes Box[𝛼 Any]. Interface Any defines
no methods, it serves as an upper bound for otherwise unrestricted type variables. We take
the liberty to assume a basic type int and an operator == for equality. Interface Eq[𝛼]
requires a method eq for comparing the receiver with a value of type 𝛼. We provide
implementations of eq for Num and Box[𝛼]. Comparing the content of a box requires the
F-bound Eq[𝛼] (Canning et al., 1989). The main function compares two boxes for equality.

The middle part of the figure shows the translation of the FGG− code, using abbrevi-
ations in the bottom part. Variable 𝑋eq,Num holds the translation of the declaration of eq
for Num; it simply compares 𝐸2 (translation of this.val) with 𝐸3 (translation of that.val).
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type Any interface {}
type Num struct { val int }
type Box[𝛼 Any] struct { content 𝛼 }
type Eq[𝛼 Any] interface { eq(that 𝛼) bool }
func (this Num) eq(that Num) bool { return this.val == that.val }
func (this Box[𝛼 Eq[𝛼]]) eq(that Box[𝛼]) bool { return this.content.eq(that.content) }
func main(){ = Box[𝑁𝑢𝑚]{Num{1}}.eq(Box[𝑁𝑢𝑚]{Num{2}}) }

let 𝑋eq,Num = 𝜆((),This,(),(That)).𝐸2 == 𝐸3
𝑋eq,Box = 𝜆((𝑋𝛼),This,(),(That)).𝐸1

in 𝑋eq,Box ((𝑉3),((1)),(),((2)))

-- translated body of eq for Box
𝐸1 = case𝑉1 𝐸2 of (𝑌,(𝑋1))→

𝑋1 (𝑌,(),(𝐸3))

-- selectors for field content of Box
𝐸2 = case This of (𝑋1)→ 𝑋1
𝐸3 = case That of (𝑋1)→ 𝑋1

-- coercion 𝛼 <: Eq[𝛼]
𝑉1 = 𝜆𝑌.𝑉2 (𝑋𝛼 𝑌 )
-- identity coercion Eq[𝛼] <: Eq[𝛼]
𝑉2 = 𝜆(𝑌,(𝑋)).(𝑌,(𝑋))

-- coercion Num <: Eq[Num]
𝑉3 = 𝜆𝑋.(𝑋,(𝜆(𝑌

3
).𝑋eq,Num ((),𝑌

3
)))

Fig. 13. Example: FGG− code (top) and its translation (middle) with abbreviations (bottom)

Remember that the translation of a method declaration takes a quadruple with coercions for
the bounded type parameters of the receiver, the receiver itself, coercions for the bounded
type parameters of the method, and the method arguments. Here, () is a tuple of size zero,
corresponding to the non-existing type parameters, (That) denotes a tuple of size one,
corresponding to the single argument that.

The translation of eq for Box is more involved. Figure 14 shows its derivation. We
omit “obvious” premises and some trivial details from the derivation trees. Rule CALL-IFACE

translates the body of the method. It coerces the receiver to the interface type Eq[𝛼] and
then extracts the method to be called via pattern matching, see 𝐸1. The construction of the
coercion is done via Δ ⊢coerce 𝛼 <: Eq[𝛼]{ 𝑉1, see subderivation 1 . Coercion 𝑉1 is slightly
more complicated then necessary because the translation does not optimize the identity
coercion 𝑉2. Inside of 𝑉1, we use 𝑋𝛼. This variables denotes a coercion from 𝛼 to the
representation of Eq[𝛼]; it is bound by the 𝜆-expression in the definition of 𝑋eq,Box.

The translation of the main expression calls 𝑋eq,Box with appropriate arguments, see
Figure 15 for the derivation. The values ((1)) and ((2)) are nested tuples of size one,
representing numbers wrapped in Num and Box structs. The method call of eq is translated
by rule CALL-STRUCT, relying on rule METHODS-STRUCT to instantiate the type variable 𝛼 to
Num, as witnessed by the coercion 𝑉3.
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SUB

1

. . .

⟨Δ, Γ⟩ ⊢exp this.content : 𝛼{ 𝐸2
ACCESS

⟨Δ, Γ⟩ ⊢exp this.content : Eq[𝛼]{ 𝑉1 𝐸2

. . .

⟨Δ, Γ⟩ ⊢exp that.content : 𝛼{ 𝐸3
ACCESS

methods(Eq[𝛼]) = eq(that 𝛼)bool

⟨Δ, Γ⟩ ⊢exp this.content.eq(that.content) : bool{ 𝐸1
CALL-IFACE

Δ = {𝛼 : Eq[𝛼]} Γ = {this : Box[𝛼], that : Box[𝛼]}
⊢meth func (this Box[𝛼 Eq[𝛼]]) eq(that Box[𝛼]) bool {

return this.content.eq(that.content)
}{ 𝑋eq,Box = 𝜆((𝑋𝛼),This,(),(That)).𝐸1

METHOD

Subderivation 1

Δ ⊢coerce Eq[𝛼] <: Eq[𝛼]{ 𝑉2
COERCE-IFACE-IFACE

(𝛼 : Eq[𝛼]) ∈ Δ

Δ ⊢coerce 𝛼 <: Eq[𝛼]{ 𝑉1
COERCE-TYVAR

Fig. 14. Example: translation of the method declaration for Box and eq

. . .

⟨eq(That Num) bool, ()⟩ ∈ methods(∅, Num)
METHODS-STRUCT

∅ ⊢coerce Num <: Eq[Num]{ 𝑉3
COERCE-STRUCT-IFACE

∅ ⊢subst 𝛼 Eq[𝛼] ↦→ Num : ⟨𝛼 ↦→ Num⟩{ (𝑉3)
TYPE-INST-CHECKED

func (this Box[𝛼 Eq[𝛼]]) eq(that Box[𝛼]) bool . . . ∈ 𝐷
⟨eq(That Box[Num]) bool, (𝑉3)⟩ ∈ methods(∅, Box[Num])

METHODS-STRUCT

⟨∅, ∅⟩ ⊢exp Box[Num]{Num{1}} : Box[Num]{ ((1))
⟨∅, ∅⟩ ⊢exp Box[Num]{Num{2}} : Box[Num]{ ((2))

⟨∅, ∅⟩ ⊢exp Box[Num]{Num{1}}.eq(Box[Num]{Num{2}}) : bool
{ 𝑋eq,Box ((𝑉3),((1)),(),((2)))

CALL-STRUCT

Fig. 15. Example: translation of the main function

5 Formal Properties

In this section, we establish that the type-directed translation from Section 4.2 preserves
the static and dynamic semantics of FGG− programs. The translation as formalized is non-
deterministic: for the same source program we may derive syntactically different target
programs. Thus, we further show that all target programs resulting from the same source
program behave equivalently. Detailed proofs for all lemmas and theorems are given in the
appendix.
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5.1 Preservation of Static Semantics

It is straightforward to verify that the type system originally defined for FGG is equiva-
lent to the type system induced by the type-directed translation presented in Section 4.2,
provided the FGG program does not contain type assertions. In the following, we write
Δ ⊢G 𝜏 <: 𝜎 for FGG’s subtyping relation, Δ; Γ ⊢G 𝑒 : 𝜏 for its typing relation on expres-
sions, and ⊢G 𝑃 ok for the FGG typing relation on programs. These three relations were
specified by Griesemer et al. (2020). The original article on FGG also includes support
for dynamic type assertions, something we do not consider for our translation. Hence, we
assume that FGG expressions do not contain type assertions.

Lemma 5.1.1 (FGG typing equivalence). Typing in FGG is equivalent to the type system
induced by the translation, provided there are no type assertions.

(a) If Δ ⊢G 𝜏 <: 𝜎 then either Δ ⊢coerce 𝜏 <: 𝜎{ 𝑉 for some 𝑉 or 𝜎 = 𝜏 and 𝜏 is not an
interface type.

(b) If Δ ⊢coerce 𝜏 <: 𝜎{ 𝑉 then Δ ⊢G 𝜏 <: 𝜎.
(c) If Δ; Γ ⊢G 𝑒 : 𝜏 then ⟨Δ, Γ⟩ ⊢exp 𝑒 : 𝜏{ 𝐸 for some 𝐸 .
(d) If ⟨Δ, Γ⟩ ⊢exp 𝑒 : 𝜏{ 𝐸 then Δ; Γ ⊢G 𝑒 : 𝜏′ for some 𝜏′ and Δ ⊢G 𝜏′ <: 𝜏.
(e) ⊢G 𝑃 ok iff ⊢prog 𝑃{ Prog.

Claims (a) and (b) state that structural subtyping in FGG is equivalent to the relation
from Figure 9, except that the latter is not reflexive for type variables and struct types.
Claims (c) and (d) establish that expression typing in FGG and our expression typing from
Figure 10 are equivalent modulo subtyping. The exposition in Griesemer et al. (2020)
includes a subtyping check for each form of expression whereas we choose to have a
separate subtyping rule. Hence, the type computed by the original rules for FGG might be
a subtype of the type deduced by our system.

FGG enjoys type soundness (see Theorem 4.3 and 4.4 of Griesemer et al. 2020). The
reduction rules for FGG and FGG− are obviously equivalent. Thus, Lemma 5.1.1 gives the
following type soundness result for our type system:

Corollary 5.1.2. Assume ⟨∅, ∅⟩ ⊢exp 𝑒 : 𝜏{ 𝐸 for some 𝑒, 𝜏, and 𝐸 . Then either 𝑒 reduces
to some value of type 𝜏 or 𝑒 diverges.

5.2 Preservation of Dynamic Semantics

This section proves that evaluating a well-typed FGG− program yields the same behavior
as evaluating one of its translations. Thereby, we consider all possible outcomes of evalua-
tion: reduction to a value or divergence. Further, we show that different translations of the
same program have equivalent behavior.

The proof of semantic equivalence is enabled by a syntactic, step-indexed logical rela-
tion that relates an FGG− expression and a TL expression at some FGG− type. We write
𝑒 −→𝑘 𝑒′ if 𝑒 reduces to 𝑒′ in exactly 𝑘 ∈N steps, where N denotes the natural numbers
including zero. By convention, we write 𝑒 −→0 𝑒′ to denote 𝑒 = 𝑒′. The notation 𝑒 −→∗ 𝑒′
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𝑒 ≈ 𝐸 ∈ ⟦𝜏⟧𝑘 Expressions

EQUIV-EXP

(∀𝑘 ′ < 𝑘, 𝑣 . 𝑒 −→𝑘′ 𝑣 =⇒ ∃𝑉.𝐸 −→∗
𝜇 𝑉 ∧ 𝑣 ≡𝑉 ∈ ⟦𝜏⟧𝑘−𝑘′ )

(∀𝑘 ′ < 𝑘, 𝑒′ . 𝑒 −→𝑘′ 𝑒′ ∧ diverge(𝑒′) =⇒ diverge(𝐸))
𝑒 ≈ 𝐸 ∈ ⟦𝜏⟧𝑘

𝑣 ≡𝑉 ∈ ⟦𝜏⟧𝑘 Values

EQUIV-STRUCT

type 𝑡𝑆 [𝛼 𝜏𝐼 ] struct { 𝑓 𝜎𝑛} ∈ 𝐷 ∀𝑖 ∈ [𝑛] .𝑣𝑖 ≡𝑉𝑖 ∈ ⟦⟨𝛼 ↦→ 𝜏⟩𝜎𝑖⟧𝑘
𝑡𝑆 [𝜏]{𝑣𝑛} ≡ (𝑉

𝑛
) ∈ ⟦𝑡𝑆 [𝜏]⟧𝑘

EQUIV-IFACE

∃𝜎𝑆 .∀𝑘1 < 𝑘.𝑣 ≡𝑈 ∈ ⟦𝜎𝑆⟧𝑘1 methods(𝜏𝐼 ) = {𝑅𝑛}
∀𝑖 ∈ [𝑛], 𝑘2 < 𝑘 .methodLookup(methodName(𝑅𝑖), 𝜎𝑆) ≈𝑉𝑖 ∈ ⟦𝑅𝑖⟧𝑘2

𝑣 ≡ (𝑈,(𝑉
𝑛
)) ∈ ⟦𝜏𝐼⟧𝑘

methodLookup(𝑚, 𝜏𝑆) = ⟨𝑥, 𝜏𝑆 , 𝑅, 𝑒⟩ Method lookup

METHOD-LOOKUP

func (𝑥 𝑡𝑆 [𝛼 𝜏𝐼 ]) 𝑅 {return 𝑒} ∈ 𝐷 𝑚 = methodName(𝑅) 𝜂 = ⟨𝛼 ↦→ 𝜏⟩
methodLookup(𝑚, 𝑡𝑆 [𝜏]) = ⟨𝑥, 𝑡𝑆 [𝜏], 𝜂𝑅, 𝜂𝑒⟩

⟨𝑥, 𝜏𝑆 , 𝑅, 𝑒⟩ ≈ (𝜆𝑋.𝐸) ∈ ⟦𝑅⟧𝑘 Method dictionary entries

EQUIV-METHOD-DICT-ENTRY

∀𝑘 ′ ≤ 𝑘, 𝜏𝑝 , 𝑊, 𝑣, 𝑉, 𝑣𝑛, 𝑉𝑛
.

(𝜂 = ⟨𝛼 ↦→ 𝜏
𝑝⟩ ∧ 𝜏𝑝 ≈𝑊 ∈ ⟦𝛼 𝜏𝐼 𝑝⟧𝑘′ ∧ 𝑣 ≈𝑉 ∈ ⟦𝜏𝑆⟧𝑘′ ∧ (∀𝑖 ∈ [𝑛] .𝑣𝑖 ≈𝑉𝑖 ∈ ⟦𝜂𝜎𝑖⟧𝑘′ ))
=⇒ ⟨𝑥 ↦→ 𝑣, 𝑥 ↦→ 𝑣

𝑛⟩𝜂𝑒 ≈ (𝜆𝑋.𝐸) (𝑉,𝑊,(𝑉𝑛
)) ∈ ⟦𝜂𝜎⟧𝑘′

⟨𝑥, 𝜏𝑆 , 𝑚 [𝛼 𝜏𝐼 𝑝] (𝑥 𝜎𝑛) 𝜎, 𝑒⟩ ≈ (𝜆𝑋.𝐸) ∈ ⟦𝑚 [𝛼 𝜏𝐼 𝑝] (𝑥 𝜎𝑛) 𝜎⟧𝑘

𝜎 ≈𝑉 ∈ ⟦𝛼 𝜏𝐼⟧𝑘 Bounded type parameters

EQUIV-BOUNDED-TYPARAMS

𝜂 = ⟨𝛼 ↦→ 𝜎
𝑛⟩ ∀𝑘 ′ ≤ 𝑘, 𝑖 ∈ [𝑛], 𝑢𝑖 , 𝑈𝑖 . 𝑢𝑖 ≈𝑈𝑖 ∈ ⟦𝜎𝑖⟧𝑘′ =⇒ 𝑢𝑖 ≈𝑉𝑖 𝑈𝑖 ∈ ⟦𝜂𝜏𝐼𝑖⟧𝑘′

𝜎𝑛 ≈ (𝑉
𝑛
) ∈ ⟦𝛼 𝜏𝐼 𝑛⟧𝑘

Fig. 16. Relating FGG− to TL expressions

states that 𝑒 −→𝑘 𝑒′ for some 𝑘 ∈N. We write diverge(𝑒) to denote that 𝑒 does not termi-
nate; that is, for all 𝑘 ∈N there exists some 𝑒′ with 𝑒 −→𝑘 𝑒′. The same definitions apply
analogously to reductions in the target language.

5.2.1 The Logical Relation

The definition of the logical relation spreads over two figures 16 and 17. In these figures,
we assume that the declarations 𝐷 of the FGG− program being translated are implicitly
available in all rules. Also, we assume that an arbitrary but fixed method substitution 𝜇
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is implicitly available to all rules. This 𝜇 is used in the reduction rules of the target lan-
guage to resolve let-bound variables (i.e. translations of methods). In our main theorem
(Theorem 5.2.6), we will then require that 𝜇 results from translating the methods in 𝐷.

We now explain the logical relation on expressions, see Figure 16. The relation 𝑒 ≈ 𝐸 ∈
⟦𝜏⟧𝑘 denotes that FGG− expression 𝑒 and TL expression 𝐸 are equivalent at type 𝜏 for at
most 𝑘 reduction steps. We call 𝑘 the step index. Rule EQUIV-EXP has two implications as
its premises. The first states that if 𝑒 reduces to a value 𝑣 in 𝑘 ′ < 𝑘 steps, then 𝐸 reduces
to some value 𝑉 in an arbitrary number of steps and 𝑣 is equivalent to 𝑉 at type 𝜏 for the
remaining 𝑘 − 𝑘 ′ steps. The second premise is for diverging expressions: if 𝑒 reduces in
less than 𝑘 steps to some expression 𝑒′ and 𝑒′ diverges, then 𝐸 diverges as well.

The relation 𝑣 ≡𝑉 ∈ ⟦𝜏⟧𝑘 defines equivalence of FGG− value 𝑣 and TL value𝑉 at type 𝜏
with step index 𝑘 . Rule EQUIV-STRUCT handles the case where 𝜏 is a struct type. Then 𝑣 must
be a value of this struct type and 𝑉 must be a struct value such that all field values of 𝑣 and
𝑉 are equivalent. Rule EQUIV-IFACE deals with the case that 𝜏 is an interface type. Hence, 𝑉
must be an interface value (𝑈,(𝑉)) with two requirements. First, 𝑣 and 𝑈 are equivalent
for all step indices 𝑘1 < 𝑘 at some struct type 𝜎𝑆 . Second, (𝑉) must be an appropriate dic-
tionary for the methods of the interface with receiver type 𝜎𝑆 . To check this requirement,
rule METHOD-LOOKUP defines the auxiliary methodLookup(𝑚𝑖 , 𝜎𝑆) to retrieve a quadruple
⟨𝑥, 𝜎𝑆 , 𝑅, 𝑒⟩ from the declaration of 𝑚𝑖 for 𝜎𝑆 . This quadruple has to be equivalent to
dictionary entry 𝑉𝑖 for all step indices 𝑘2 < 𝑘 at the signature of the method.

A dictionary entry is always a function value. We write ⟨𝑥, 𝜏𝑆 , 𝑅, 𝑒⟩ ≈ (𝜆𝑋.𝐸) ∈ ⟦𝑅⟧𝑘
to denote equivalence between a quadruple for a method declaration and some dictio-
nary entry 𝜆𝑋.𝐸 . Rule EQUIV-METHOD-DICT-ENTRY defines this equivalence such that method
body 𝑒 and 𝜆𝑋.𝐸 take related arguments to related outputs. Thus, the premise of the rule
requires for all step indices 𝑘 ′ ≤ 𝑘 , all related type parameters 𝜏 and𝑊 , all related receiver
values 𝑣 and 𝑉 , and all related arguments 𝑣 and 𝑉 that 𝑒 and 𝜆𝑋.𝐸 yield related results
when applied to the respective arguments.

The judgment 𝜎 ≈𝑉 ∈ ⟦𝛼 𝜏𝐼⟧𝑘 denotes equivalence between concrete type arguments
𝜎 and their TL realization 𝑉 when checking the bounds of type parameters 𝛼 𝜏𝐼 . The
definition in rule EQUIV-BOUNDED-TYPARAMS relies on our translation strategy that bounded
type parameters are represented by coercions.

Having explained all judgments from Figure 16, we verify that the recursive definitions
of 𝑒 ≈ 𝐸 ∈ ⟦𝜏⟧𝑘 and 𝑣 ≡𝑉 ∈ ⟦𝜏⟧𝑘 are well-founded. Often, logical relations are defined
by induction on the structure of types. In our case, this approach does not work because
interface types in FGG− might be recursive, see our previous work (Sulzmann and Wehr,
2022) for an example. Thus, we use the step index as part of a decreasing measure M.
Writing |𝑉 | for the size of some target value 𝑉 , we define M(𝑒 ≈ 𝐸 ∈ ⟦𝜏⟧𝑘) = (𝑘, 1, 0)
and M(𝑣 ≡𝑉 ∈ ⟦𝜏⟧𝑘) = (𝑘, 0, |𝑉 |). In EQUIV-EXP, either 𝑘 decreases or stays constant but
the second component of M decreases. In EQUIV-STRUCT, 𝑘 and the second component stay
constant but |𝑉 | decreases, and in EQUIV-IFACE together with EQUIV-METHOD-DICT-ENTRY and
EQUIV-BOUNDED-TYPARAMS step index 𝑘 decreases. Note that EQUIV-METHOD-DICT-ENTRY and
EQUIV-BOUNDED-TYPARAMS only require 𝑘 ′ ≤ 𝑘 . This is ok because we already have 𝑘2 < 𝑘 in
EQUIV-IFACE.

Figure 17 extends the logical relation to whole programs. Judgment 𝜂 ≈ 𝜌 ∈ ⟦Δ⟧𝑘
denotes how a FGG− type substitution 𝜂 intended to substitute the type variables from Δ is



1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

27

𝜂 ≈ 𝜌 ∈ ⟦Δ⟧𝑘 𝜃 ≈ 𝜌 ∈ ⟦Γ⟧𝑘 Substitutions

EQUIV-TY-SUBST

𝜂𝛼𝑖 ≈ (𝜌𝑋𝛼𝑖
) ∈ ⟦𝛼 𝜏⟧𝑘

𝜂 ≈ 𝜌 ∈ ⟦{𝛼 : 𝜏}⟧𝑘

EQUIV-VAL-SUBST

∀(𝑥 : 𝜏) ∈ Γ. 𝜃 (𝑥) ≈ 𝜌(𝑋) ∈ ⟦𝜏⟧𝑘
𝜃 ≈ 𝜌 ∈ ⟦Γ⟧𝑘

func (𝑥 𝑡𝑆 [𝛼 𝜏𝐼 ]) 𝑅 {return 𝑒} ≈𝑘 𝑋 Method declarations

EQUIV-METHOD-DECL

∀𝑘 ′ < 𝑘, 𝜏𝑝 , 𝜏′𝑞 , 𝑊 𝑝
, 𝑊 ′𝑞 , 𝑣, 𝑉, 𝑣𝑛, 𝑉

𝑛
.

𝜂 = ⟨𝛼 ↦→ 𝜏
𝑝
, 𝛼′ ↦→ 𝜏′

𝑞⟩ ∧ 𝜏𝑝𝜏′𝑞 ≈ (𝑊
𝑝
, 𝑊 ′𝑞) ∈ ⟦𝛼 𝜏𝐼 𝑝 , 𝛼′ 𝜏′𝐼

𝑞⟧𝑘′∧
𝑣 ≈𝑉 ∈ ⟦𝑡𝑆 [𝜂𝛼𝑝]⟧𝑘′ ∧ (∀𝑖 ∈ [𝑛] .𝑣𝑖 ≈𝑉𝑖 ∈ ⟦𝜂𝜎𝑖⟧𝑘′ ) =⇒

⟨𝑥 ↦→ 𝑣, 𝑥 ↦→ 𝑣
𝑛⟩𝜂𝑒 ≈ 𝑋 ((𝑊

𝑝
),𝑉,(𝑊 ′𝑞),(𝑉

𝑛
)) ∈ ⟦𝜂𝜎⟧𝑘′

func (𝑥 𝑡𝑆 [𝛼 𝜏𝐼 𝑝]) 𝑚 [𝛼′ 𝜏′
𝐼

𝑞] (𝑥 𝜎𝑛) 𝜎 {return 𝑒} ≈𝑘 𝑋

𝐷 ≈𝑘 𝜇 Programs

EQUIV-DECLS

𝐷, 𝜇 are implicitly available in all subderivations
∀𝐷𝑖 ∈ 𝐷.𝐷𝑖 = func (𝑥 𝑡𝑆 [𝛼 𝜏]) 𝑚𝑀 {return 𝑒} =⇒ 𝐷𝑖 ≈𝑘 𝑋𝑚,𝑡𝑆

𝐷 ≈𝑘 𝜇

Fig. 17. Relating FGG− to TL substitutions and declarations

related to a TL substitution 𝜌. The definition in rule EQUIV-TY-SUBST falls back to equivalence
of type parameters. Judgment 𝜃 ≈ 𝜌 ∈ ⟦Γ⟧𝑘 similarly relates a FGG− value substitution 𝜃
intended for value environment Γ with a TL substitution 𝜌. See rule EQUIV-VAL-SUBST.

Judgment func (𝑥 𝑡𝑆 [𝛼 𝜏𝐼 ]) 𝑅 {return 𝑒} ≈𝑘 𝑋 states equivalence of a function decla-
ration with a TL variable 𝑋 . Rule EQUIV-METHOD-DECL takes an approach similar as in rule
EQUIV-METHOD-DICT-ENTRY: method body 𝑒 and variable 𝑋 must yield related outputs when
applied to related arguments. Thus, for all related type arguments 𝜏, 𝜏′ and (𝑊,𝑊 ′), all
related receiver values 𝑣 and 𝑉 , and all related arguments 𝑣 and 𝑉 , the expression 𝑒 and
variable 𝑋 must be related when applied to the appropriate arguments. However, different
than in EQUIV-METHOD-DICT-ENTRY, we only requires this to hold for all 𝑘 ′ < 𝑘 .

Judgment 𝐷 ≈𝑘 𝜇 defines equivalence between FGG− declarations 𝐷 and TL method
substitution 𝜇. The definition in rule EQUIV-DECLS is straightforward: each method declara-
tion for some method 𝑚 and struct 𝑡𝑆 must be equivalent to variable 𝑋𝑚,𝑡𝑆 .

5.2.2 Equivalence Between Source and Translation

To establish the desired result of semantic equivalence between a source program and
one of its translations, we implicitly make the following assumptions about the globally
available declarations 𝐷 and method substitution 𝜇.

Assumption 5.2.1. We assume that the globally available declarations 𝐷 are well-formed;
that is, ⊢ok 𝐷𝑖 for all 𝐷𝑖 ∈ 𝐷 and ⊢meth 𝐷

′
𝑖
{ 𝑋𝑖 =𝑉𝑖 for some 𝑋𝑖 and 𝑉𝑖 and all 𝐷′

𝑖
=
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func . . . ∈ 𝐷. Further, we assume that the globally available method substitution 𝜇 has
only variables of the form 𝑋𝑚,𝑡𝑆 in its domain.

Several basic properties hold for our logical relation. For example, monotonicity gives
us that with 𝑒 ≈ 𝐸 ∈ ⟦𝜏⟧𝑘 and 𝑘 ′ ≤ 𝑘 we also have 𝑒 ≈ 𝐸 ∈ ⟦𝜏⟧𝑘′ . Another property is how
target and source reductions preserve equivalence:

Lemma 5.2.2 (Target reductions preserve equivalence). If 𝑒 ≈ 𝐸 ∈ ⟦𝜏⟧𝑘 and 𝐸2 −→∗ 𝐸

then 𝑒 ≈ 𝐸2 ∈ ⟦𝜏⟧𝑘 .

Lemma 5.2.3 (Source reductions preserve equivalence). If 𝑒 ≈ 𝐸 ∈ ⟦𝜏⟧𝑘 and 𝑒2 −→ 𝑒 then
𝑒2 ≈ 𝐸 ∈ ⟦𝜏⟧𝑘+1.

The lemmas for monotonicity and several other properties are stated in Appendix A.3,
together with all proofs. We can then establish that an FGG− expression 𝑒 is semantically
equivalent to its translation 𝐸 .

Lemma 5.2.4 (Expression equivalence). Assume 𝐷 ≈𝑘 𝜇 and 𝜂 ≈ 𝜌 ∈ ⟦Δ⟧𝑘 and 𝜃 ≈ 𝜌 ∈
⟦𝜂Γ⟧𝑘 . If ⟨Δ, Γ⟩ ⊢exp 𝑒 : 𝜏{ 𝐸 then 𝜃𝜂𝑒 ≈ 𝜌𝐸 ∈ ⟦𝜂𝜏⟧𝑘 .

The proof is by induction on the derivation of ⟨Δ, Γ⟩ ⊢exp 𝑒 : 𝜏{ 𝐸 , see Appendix A.3.2.1
(page 49) for the full proof. We next establish semantic equivalence for method declara-
tions.

Lemma 5.2.5 (Method equivalence). Let 𝐷 and 𝜇 such that for each 𝐷 =

func (𝑥 𝑡𝑆 [𝛼 𝜏𝐼 ]) 𝑅 {return 𝑒} ∈ 𝐷 with 𝑚 = methodName(𝑅) we have ⊢meth 𝐷{ 𝑋𝑚,𝑡𝑆 =𝑉

and 𝜇(𝑋𝑚,𝑡𝑆 ) =𝑉 for some 𝑉 . Then 𝐷 ≈𝑘 𝜇 for any 𝑘 .

The proof of this lemma is by induction on 𝑘 , see Appendix A.3.2.2 (page 59) for the
full proof. Finally, the following theorem states our desired result: semantic equivalence
between an FGG− program and its translation.

Theorem 5.2.6 (Program equivalence). Let ⊢prog 𝐷 func main(){ = 𝑒}{ let 𝑋𝑖 =𝑉𝑖 in 𝐸
with 𝑒 having type 𝜏. Let 𝜇 = ⟨𝑋𝑖 ↦→𝑉𝑖⟩. Then both of the following holds:

1. If 𝑒 −→∗ 𝑣 for some value 𝑣 then there exists a target language value 𝑉 such that
𝐸 −→∗

𝜇 𝑉 and 𝑣 ≡𝑉 ∈ ⟦𝜏⟧𝑘 for any 𝑘 .
2. If 𝑒 diverges then so does 𝐸 .

The “with 𝑒 having type 𝜏” part means that the last rule in the derivation of the program
translation has ⟨∅, ∅⟩ ⊢exp 𝑒 : 𝜏{ 𝐸 as a premise. Obviously, 𝐷 and 𝜇meet the requirements
of Assumption 5.2.1. The theorem then follows from Lemma 5.2.4 and Lemma 5.2.5. See
Appendix A.3.2.3 (page 61) for the full proof.
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erase(𝜏, 𝑉) =𝑉 erase(𝑉) =𝑉 Erasure of dictionaries

erase(𝜏𝑆 , 𝑉) = erase(𝑉)
erase(𝜏𝐼 , (𝑉,𝑈)) = erase(𝑉)

erase(𝐾 𝑉) = 𝐾 erase(𝑉𝑖)
erase(𝜆𝑋.𝐸) =K𝜆

Fig. 18. Erasure of dictionaries

5.2.3 Equivalence Between Different Translations

Our translation is non-deterministic because different translations of the same expression
may contain distinct sequences of applications of the subsumption rule SUB. Recall the
example from Figure 1. There are (at least) two different ways to translate expression
Num{1} at type Format.

1. Use rules COERCE-STRUCT-IFACE and SUB to go directly from Num to supertype Format.
The translation is then toFormatNum 1.

2. First use COERCE-STRUCT-IFACE and SUB to go from Num to Pretty, then use
COERCE-IFACE-IFACE and SUB to go from Pretty to Format. The translation is then
toFormatPretty (toPrettyNum1).

Each choice leads to a syntactically distinct target expression. In general, evaluating the
target expressions might lead to syntactically different target values because target values
might contain dictionaries (i.e. tuple of 𝜆-expressions), and different translations might
produce syntactically different dictionaries.

Another source of non-determinism is that rule PROG for typing programs is allowed to
choose the type 𝜏 of the main expression. For example, instead of typing Num{1} at type
Format, another translation might pick type Pretty or Num for the main expression. The
choice for the type of the main expression might also lead to syntactically different target
expressions.

To summarize, different translations of the same source program might lead to syntac-
tically different target language programs, and the syntactic differences might persist in
the final values after evaluation. But a slightly weaker property holds: if we remove all
dictionaries in the final values, then the results are syntactically equal.

Figure 18 defines a function erase that removes all dictionaries from a target-language
value. The function comes in two variations:

• erase(𝜏, 𝑉) removes all dictionaries from value 𝑉 when viewed at type 𝜏. Its duty is
the remove the topmost dictionary if 𝜏 is an interface type. In this case, the function
is partial but this is not an issue: a value viewed at an interface type is always a pair
of values.

• erase(𝑉) removes all dictionaries from𝑉 by replacing the 𝜆-expressions with a fixed,
otherwise unused, nullary constructor K𝜆. This definition relies on then fact that
the translation only produces 𝜆-expressions for dictionary entries. We replace 𝜆-
expressions with a dedicated constructor K𝜆 instead of the nullary tuple () so as to
avoid confusion between an erased 𝜆 and a struct value without fields.
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The following theorem states that evaluating the outcomes of two translations of the
same source program yields values that are identical up to removal of dictionaries (or
both diverge). This holds even if the two translations assign different types to the main
expression of the source program. That is, there are no semantic ambiguities and we can
establish that our translation is coherent (Reynolds, 1991).

Theorem 5.2.7 (Coherence). Let 𝑃 = 𝐷 func main(){ = 𝑒}. Assume ⊢prog 𝑃{

let 𝑋𝑖 =𝑉𝑖 in 𝐸 with 𝑒 having type 𝜏 and ⊢prog 𝑃{ let 𝑋 ′
𝑖
=𝑉 ′

𝑖
in 𝐸 ′ with 𝑒 having type

𝜏′. Define 𝜇 = ⟨𝑋𝑖 ↦→𝑉𝑖⟩ and 𝜇′ = ⟨𝑋 ′
𝑖
↦→𝑉 ′

𝑖
⟩. Then both of the following holds:

1. If 𝐸 −→∗
𝜇 𝑉 for some 𝑉 , then 𝐸 ′ −→∗

𝜇′ 𝑉
′ for some 𝑉 ′ with erase(𝜏, 𝑉) =

erase(𝜏′, 𝑉 ′).
2. If 𝐸 diverges then so does 𝐸 ′.

See Appendix A.3.3.1 (page 63) for the proof.

5.3 Getting the step index right

The logical relation in Figures 16 and 17 requires at some places the step index in the
premise to be strictly smaller than in the conclusion (<), other places require only less-
than-or-equal (≤). In EQUIV-EXP, we have < to keep the definition of the LR well-founded.
The < in rule EQUIV-METHOD-DECL is required for the inductive argument in the proof of
Lemma 5.2.5. Rule EQUIV-IFACE also has <, but rule EQUIV-METHOD-DICT-ENTRY only requires
≤. For well-foundedness, it is crucial that one of these two rules decreases the step index.
However, equally important is that the step index is not forced to decrease more than
once, so we need < in one rule and ≤ in the other. If both rules had <, then the proof
of Lemma 5.2.4 would not go through for case CALL-IFACE.

Consider the following example in the context of Figure 13:

𝑤1 = Num{1} at type Eq[Num] { 𝑊1 = ((1),(𝑈))
where𝑈 = 𝜆(𝑌

3
).𝑋eq,Num ((),𝑌

3
)

𝑤2 = Num{2} at type Num { 𝑊2 = ((2))
𝑤1.eq(𝑤2) { 𝐸 = case𝑊1 of (𝑌,(𝑋1))→ 𝑋1 (𝑌,(),(𝑊2))

For values 𝑤1 and 𝑤2, we may assume (1) 𝑤1 ≡𝑊1 ∈ ⟦Eq[Num]⟧𝑘 and 𝑤2 ≈𝑊2 ∈ ⟦Num⟧𝑘
for some 𝑘 . To verify that the translation yields related expressions, we must show

𝑤1.eq(𝑤2) ≈ 𝐸 ∈ ⟦bool⟧𝑘 (2)

From (1), via inversion of rule EQUIV-IFACE, we can derive

methodLookup(eq, Num) ≈𝑈 ∈ ⟦eq(that Num) bool⟧𝑘−1 (3)

because the premise of the rule requires this to hold for all 𝑘2 < 𝑘 . Let 𝑒 be the body of the
method declaration of eq for Num. Inverting rule EQUIV-METHOD-DICT-ENTRY for (3) yields

⟨this ↦→ 𝑤1, that ↦→ 𝑤2⟩𝑒 ≈𝑈 ((1),(),((2))) ∈ ⟦bool⟧𝑘′ (4)
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for 𝑘 ′ = 𝑘 − 1 because rule EQUIV-METHOD-DICT-ENTRY has ≤ in its premise. Also, we have
𝑤1.eq(𝑤2) −→1 ⟨this ↦→ 𝑤1, that ↦→ 𝑤2⟩𝑒 and 𝐸 −→∗𝑈 ((1),(),((2))). Thus, with (4),
Lemma 5.2.2, and Lemma 5.2.3 we get 𝑤1.eq(𝑤2) ≈ 𝐸 ∈ ⟦bool⟧𝑘′+1. For 𝑘 ′ = 𝑘 − 1, this
is exactly (2), as required. But if rule EQUIV-METHOD-DICT-ENTRY required < in its premise,
then (4) would only hold for 𝑘 ′ = 𝑘 − 2 and we could not derive (2).

Whether we have < in EQUIV-IFACE and ≤ in EQUIV-METHOD-DICT-ENTRY or vice versa is a
matter of taste. In our previous work at MPC (Sulzmann and Wehr, 2022), we established
a dictionary-passing translation for Featherweight Go without generics. The situation
is slightly different there. With generics, we need two rules with respect to methods:
EQUIV-METHOD-DECL for method declarations and EQUIV-METHOD-DICT-ENTRY for dictionary
entries where the coercions for the bounds of the receiver’s type parameters have already
been supplied. Without generics, there are no type parameters, so a single rule suffices (rule
RED-REL-METHOD in MPC). So in the article at MPC, we use < for rule RED-REL-METHOD and
≤ for rule RED-REL-IFACE, the pendant to rule EQUIV-IFACE of the current article.

6 Implementation

We provide an implementation of the translation2 written in Haskell (2022). All examples
in this article were checked against the implementation. Competitive runtime performance
of the translated code was not our goal. Hence, we took a convenient route and used
Racket (2022) as the target language. The implementation features all language con-
cepts from Section 3, as well as type assertions, generic functions, and several base types
(integers, characters, strings, and booleans).

Generic functions and base types are straightforward to support. Implementing the typ-
ing and translation rules from Figure 10 requires some care because the presence of
subsumption rule SUB renders the translation non-deterministic (see Section 5.2.3). We
solved this problem by “inlining” the subsumption step when checking the arguments of
a method call against the parameter types (rules CALL-STRUCT and CALL-IFACE) and when
checking the field values of a struct against the declared field types (rule STRUCT). On for-
mal grounds, this is justified as Featherweight Go (2020) inlines the subsumption step
in similar ways and typing in FGG− is equivalent the type system induced by our trans-
lation rules (Lemma 5.1.1). The realization of type assertions (dynamic type casts) uses
type tags (Ohori and Ueno, 2021). At runtime, a type assertion 𝑒.(𝜏) checks compatibility
between 𝑒’s type tag and the type tag corresponding to 𝜏.

Our implementation comes with a large test suite and contains in total 181 tests, covering
all main features of the source language. See Figure 19 for a summary. We wrote 25 new
tests and included all 148 tests and examples from the OOPSLA 2020 implementation3.
Moreover, we also included 8 examples from the OOPSLA 2022 implementation4. (The
implementation for OOPSLA 2022 builds on the one for OOPSLA 2020, adding 12 new
test cases. We ignored 4 test cases because they use concurrency features not supported by

2 https://github.com/skogsbaer/fgg-translate
3 Griesemer et al. (2020), https://github.com/rhu1/fgg
4 Ellis et al. (2022), https://github.com/sfzhu93/fgg2go

https://github.com/skogsbaer/fgg-translate
https://github.com/rhu1/fgg
https://github.com/sfzhu93/fgg2go
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181 tests

148 from 
OOPSLA 2020

8 from 

OOPSLA 2022

25 new

73 eval 
good

15 eval 

bad

60 type 
good

33 type 
bad

Fig. 19. Summary of the test suite for the implementation

our implementation.) Most tests from OOPSLA 2020/2022 could be integrated in our test
suite without changes, for some we had to perform minor syntactic adjustments.

Each test is a source file in one of the following categories:

1. eval good, 73 tests: The test type checks and evaluates successfully. For the test to
succeed, the result of evaluation must match the expected result. We arrived at the
expected result by inspecting the program and (if applicable) comparing it against
the run of the OOPSLA 2020/2022 implementation.

2. eval bad, 15 tests: The test type checks successfully but fails at runtime. For the test
to succeed, the error message must match an expected string. We determined the
expected string in similar way as for the eval good category.

3. type good, 60 tests: The test type checks successfully but is not executed because it
has no interesting operational behavior.

4. type bad, 33 tests: The test fails to type check. For the test to succeed, the error
message must match an expected string.

Some of the tests behave differently under our implementation when compared with the
original implementations for OOPSLA 2020/2022:

• The OOPSLA 2020 implementation compiles generics by monomorphization; that
is, generic code is specialized for all type arguments appearing in the program. But
monomorphization cannot deal with all programs, so their type checker rejects sev-
eral programs based on some syntactic condition (see Section 7.1 for details). Our
implementation type checks these programs successfully.

• The OOPSLA 2020 implementation statically rejects type assertions 𝑒.(𝜏) where
the type of 𝑒 is a struct type, even though evaluation might succeed at runtime. Our
implementation is more liberal and only rejects type assertions statically that are
guaranteed to fail at runtime.

• The OOPSLA 2020 implementation rejects recursive definitions of structs. For
simplicity, we omitted this check from our implementation.
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• The OOPSLA 2020 implementation runs several tests only for a fixed number of
reduction steps because these tests would diverge otherwise. Our implementation
only type checks such tests.

7 Related Work

The related work section covers generics in Go, type classes in Haskell, logical relations,
and a summary of our own prior work.5 At the end, we give an overview of the existing
translations with source language Featherweight Generic Go.

7.1 Generics in Go

The results of this work rest on the definition of Featherweight Generic Go (FGG) pro-
vided by Griesemer and colleagues (2020). FGG is a minimal core calculus modeling the
essential features of the programming language Go (2022). It includes support for over-
loaded methods, interface types, structural subtyping, generics, and type assertions. Our
formalization of FGG ignores dynamic type assertions but otherwise sticks to the original
definition of FGG, apart from some minor cosmetic changes in presentation. We prove
that the type system implied by our translation is equivalent to the original type system
of FGG, and that translated programs behave the same way as under the original dynamic
semantics.

The original dynamic semantics of FGG uses runtime method lookup, in the same way
as we did in Section 3. The authors define an alternative semantics via monomorphisa-
tion; that is, they specialize generic code for all type arguments appearing in the program.
This alternative semantics is equivalent to the one based on runtime method lookup,
but there exist type-correct FGG programs that cannot be monomorphized. For instance,
polymorphic recursion leads to infinitely many type instantiations, so programs with a
polymorphic-recursive method cannot be monomorphized.6 Further, monomorphization
often leads to a blowup in code size. In contrast, our translation handles all type-correct
FGG programs, and instantiations of generic code with different type arguments do not
increase the code size. However, we expect that monomorphized code will offer better
performance than code generated by our dictionary-passing translation, because method
dictionaries imply several indirections not present in monomorphized programs.

The current implementation of generics (Taylor and Griesemer, 2021) in Go versions
1.18, 1.19, and 1.20 (2022) differs significantly from the formalization in FGG. For exam-
ple, full Go requires a method declaration for a generic struct to have exactly the same type
bounds as the struct. In FGG, bounds of the receiver struct in a method declaration might
be stricter than the bounds in the corresponding struct declaration. In Figure 2, we used
this feature to implement formatting for the fully generic Pair type, provided the type
parameters can be formatted as well. Go cannot express this scenario without falling back
to dynamic type assertions.

5 Several points in Sections 7.1, 7.2, and 7.3 were already included in own prior work (Sulzmann and Wehr,
2021, 2022).

6 See Griesemer et al. (2020), Figure 10 for an example.
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Ellis et al. (2022) formalize a dictionary-passing translation from a restricted subset of
FGG to FG. The restriction for FGG is the same as previously explained for full Go: a
method declaration must have the same type bounds as its receiver struct. The transla-
tion utilizes this restriction to translate an FGG struct together with all its methods into
a single FG struct (dictionary). This approach would scale to full Go even with separate
compilation because a struct and all its methods must be part of the same package. Further,
the translation of Ellis and coworkers replaces all types in method signatures with the
top-type Any, relying on dynamic type assertions to enable type checking of the result-
ing FG program. The authors provide a working implementation and a benchmark suite
to compare their translation against several other approaches, including the current imple-
mentation of generics in full Go. Our translation targets an extended 𝜆-calculus and does
not restrict the type bounds of the receiver struct in a method declaration. We also provide
an implementation but no evaluation of its performance.

Method dictionaries bear some resemblance to virtual method tables (vtables) used
to implement virtual method dispatch in object-oriented languages (Driesen and Hölzle,
1996). The main difference between vtables and dictionaries is that there is a fixed connec-
tion between an object and its vtable (via the class of the object), whereas the connection
between a value and a dictionary may change at runtime, depending on the type the value
is used at. Dictionaries allow access to a method at a fixed offset, whereas vtables in the
presence of multiple inheritance require a more sophisticated lookup algorithm (Alpern
et al., 2001).

Generics in class-based languages such as Java (Bracha et al., 1998; Igarashi et al.,
2001), and C♯ (Kennedy and Syme, 2001; Emir et al., 2006) do not require a dictionary-
passing translation because all methods are part of the virtual method table of an object.
In Go, however, methods are not necessarily attached to the receiver struct, so additional
evidence in form of dictionaries must be passed for such methods. Further, subtyping in
Java and C♯ is nominal, whereas Go has structural subtyping.

A possible optimization to the dictionary-passing translation is selective code specializa-
tion (Dean et al., 1995). With this approach, the dictionary-passing translation generates
code that runs for all type arguments. In addition, specialized code is generated for fre-
quently used combinations of type arguments. This approach allows to trade code size
against runtime performance. The GHC compiler for Haskell supports a SPECIALIZE

pragma (GHC User’s Guide, 2022, § 6.20.11.) that allows developers to specialize a
polymorphic function to a particular type. The specialization also supports type-class
dictionaries.

7.2 Type Classes in Haskell

The dictionary-passing translation is well-studied in the context of Haskell type classes
(Wadler and Blott, 1989; Hall et al., 1996). A type-class constraint translates to an extra
function parameter, constraint resolution provides a dictionary with the methods of the
type class for this parameter. In FGG, structural subtyping relations imply coercions and
bounded type parameters translate to coercion parameters. An interface value pairs a struct
value with a dictionary for the methods of the interface. Thus, interface values can be
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viewed as representations of existential types (Mitchell and Plotkin, 1988; Läufer, 1996;
Thiemann and Wehr, 2008).

Another important property in the type class context is coherence. Bottu and cowork-
ers (2019) make use of logical relations to state equivalence among distinct target terms
resulting from the same source type class program. In the setting of FGG-, we first estab-
lish semantic equivalence among source and target programs, see Theorem 5.2.6. From
this property, we can derive the coherence property (Theorem 5.2.7) almost for free. We
believe it is worthwhile to establish a property similar to this theorem for type classes. We
could employ a simple denotational semantics for source type class programs similar as
Thatte (1994) or Morris (2014), which would then be related to target programs obtained
via the dictionary-passing translation.

Section 2.5 demonstrated that type bounds on generic structs and interfaces have no
operational meaning. This situation is similar to contexts of data type definitions in
Haskell 2010 (Marlow, 2010). A data type such as

data Eq a => Set a = NilSet | ConsSet a (Set a)

may require the context Eq a. However, an occurrence of type Set a does not imply that
Eq a holds but always requires the constraint to be justified elsewhere. The GHC manual
states that “this is widely considered a misfeature” (GHC Team, 2021, Section 6.4.2).

7.3 Logical Relations

Logical relations have a long tradition of proving properties of typed program-
ming languages. Such properties include termination (Tait, 1967; Statman, 1985), type
safety (Skorstengaard, 2019), and program equivalence (Pierce, 2004, Chapters 6, 7). A
logical relation (LR) is often defined inductively, indexed by type. If its definition is based
on an operational semantics, the LR is called syntactic (Pitts, 1998; Crary and Harper,
2007). With recursive types, a step-index (Appel and McAllester, 2001; Ahmed, 2006)
provides a decreasing measure to keep the definition well-founded. See Mitchell (1996,
Chapter 8) and Skorstengaard (2019) for introductions to the topic.

LRs are often used to relate two terms of the same language. For our translation, the
two terms are from different languages, related at a type from the source language. Benton
and Hur (2009) prove correctness of compiler transformations. They use a step-indexed
LR to relate a denotational semantics of the 𝜆-calculus with recursion to configurations of
a SECD-machine. Hur and Dreyer (2011) build on this idea to show equivalence between
an expressive source language (polymorphic 𝜆-calculus with references, existentials, and
recursive types) and assembly language. Their biorthogonal, step-indexed Kripke LR does
not directly relate the two languages but relies on abstract language specifications.

Our setting is different in that we consider a source language with support for overload-
ing. Besides structured data and functions, we need to cover recursive interface values.
This leads to some challenges to get the step index right (Sulzmann and Wehr, 2022).

Simulation or bisimulation (see e.g. Sumii and Pierce 2007) is another common tech-
nique for showing program equivalences. In our setting, using this technique amounts to
proving that reduction and translation commutes: if source term 𝑒 reduces to 𝑒′ and trans-
lates to target term 𝐸 , then 𝑒′ translates to 𝐸 ′ such that 𝐸 reduces to 𝐸 ′′ (potentially in
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several steps) with 𝐸 ′ = 𝐸 ′′. One challenge is that the two target terms 𝐸 ′ and 𝐸 ′′ are not
necessarily syntactically equal but only semantically. In our setting, this might be the case
if 𝐸 ′ and 𝐸 ′′ contain coercions for structural subtyping. Even if such coercions behave the
same, their syntax might be different. With LR, we abstract away certain details of single
step reductions, as we only compare values, not intermediate results. A downside of the
LR is that getting the step index right is sometimes not trivial.

Paraskevopoulou and Grover (2021) combine simulation and an untyped, step-indexed
LR (Acar et al., 2008) to relate the translation of a reduced expression (the 𝐸 ′ from the
preceding paragraph) with the reduction result of the translated expression (the 𝐸 ′′). They
use this technique to prove correctness of CPS transformations using small-step and big-
step operational semantics. Resource invariants connect the number of steps a term and its
translation might take, allowing them to prove that divergence and asymptotic runtime is
preserved by the transformation. Our LR does not support resource invariants but includes
a case for divergence directly.

7.4 Prior Work

Our own work published at APLAS (Sulzmann and Wehr, 2021) and MPC (Sulzmann and
Wehr, 2022) laid the foundations for the dictionary-passing translation and its correctness
proof of the present article. For the APLAS paper, we defined a dictionary-passing trans-
lation for Featherweight Go (FG, Griesemer et al., 2020), the non-generic variant of FGG.
That translation is similar in spirit to the translation presented here, it supports type asser-
tions but not generics. The APLAS paper includes a proof for the semantic equivalence
between the source FG program and its translation. The result is, however, somewhat lim-
ited as semantic equivalence only holds for terminating programs whose translation is also
known to terminate.

In the MPC paper, we addressed the aforementioned limitation by extending the proof
of semantic equivalence to all possible outcomes of an FG program: termination, panic
(failure of a dynamic type assertion), and divergence. The proof uses a logical relation
similar to the one used here, but without support for generics. We have already shown
more differences in Section 5.3.

7.5 Summary of Translations

The diagram in Figure 20 summarizes the existing translations by Griesemer et al.
(OOPSLA 2020), by Ellis et al. (OOPSLA 2022), from our MPC 2022 paper (Sulzmann
and Wehr, 2022), and from the article at hand. The three resulting target language pro-
grams 𝑃TL, 𝑃′

TL, and 𝑃′′
TL are semantically equivalent because all translations preserve the

dynamic semantics. Each translation with 𝑃FGG★ as its source has different restrictions.
OOPSLA 2022 requires the receiver struct of some method declaration to have exactly
the same type bounds as the struct declaration itself. OOPSLA 2020 requires 𝑃FGG to be
monomorphizable, checked by a simple syntactic condition. The translation of this article
does not support type assertions.
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𝑃′
FG 𝑃′

TL

𝑃FGG★ 𝑃FG 𝑃TL

𝑃′′
TL

MPC 2022

OOPSLA 2020 MPC 2022

this article

OOPSLA 2022

Fig. 20. Summary of translations. Arrows represent translations, 𝑃ℓ is a program in language ℓ.
Program 𝑃FGG★ is subject to certain restrictions, depending on the translation being performed.

8 Conclusion and Future Work

This article defined a type-directed dictionary-passing translation from Featherweight
Generic Go (FGG) without type assertions to an extension of the untyped 𝜆-calculus. The
translation represents a value at the type of an interface as a combination of a concrete
struct value with a dictionary for all methods of the interface. Bounded type parameters
become extra function arguments in the target. These extra arguments are coercions from
the instantiation of a type variable to its upper bound.

Every program in the image of the translation has the same dynamic semantics as its
source program. Different translations of the same source program may result in syntacti-
cally different but equivalent target programs. The proof of semantic equivalence is based
on a syntactic, step-indexed logical relation. The step-index ensures a well-founded defini-
tion of the relation in the presence of recursive interface types and recursive methods. We
also reported on an implementation of the translation.

In this article, we relied on FGG as defined by Griesemer and coworkers (2020), without
reconsidering design decisions. But our translation raises several questions with respect to
the design of generics in FGG and more generally also in Go. For example, the transla-
tion clearly shows that type bounds in structs and interfaces have no operational meaning.
Should we eliminate these type bounds? Or should we give them a meaning inspired by
Haskell’s type class mechanism? Further, a method declaration in full Go must reuse the
type bounds of its struct and must be defined in the same package as the struct. Clearly,
this limits extensibility and flexibility. Can we provide a more flexible design to solve the
expression problem (Wadler, 1998) in Go, without resorting to unsafe type assertions?
We would like to use the insights gained through this article to answer these and similar
questions in future work.

A somewhat related point is performance. As explained earlier, generics in Go are com-
piled by monomorphization. This gives the best possible performance because the resulting
code is specialized for each type argument. However, not all programs can be monomor-
phized and the increase in code size is often considered problematic. This raises another
interesting question for future work. Could selective monomorphization or specialization
offer a viable trade-off between performance, code size, and the ability to compile Go
programs which are not monomorphizable?
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A statically-typed target language typically offers more room for compiler optimiza-
tion (Harper and Morrisett, 1995). Thus, another interesting direction for future work is a
translation to a typed backend, for example System F (Girard, 1972; Reynolds, 1974).

The work presented here does not include type assertions (dynamic type casts), although
FGG supports them. We omitted type assertions from our theory for two reasons: Firstly,
type assertions are largely orthogonal to the dictionary-passing translation, so their inclu-
sion would obscure the working of the translation. Secondly, type assertions would require
some extra design choices to consider. In our implementation we construct the check for
a type assertion at the same place as in the source program, relying on dynamic type-tag–
passing for gathering all information necessary. But other approaches are possible. For
example, one could construct downcast coercions at call-sites and pass these coercions
around. The second option could make the treatment of type assertions more lightweight,
but would require significant research in this direction.
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A Proofs

A.1 Deterministic Evaluation in FGG− and TL

Lemma A.1.1 (Deterministic evaluation in FGG−). If 𝑒 −→ 𝑒′ and 𝑒 −→ 𝑒′′ then 𝑒′ = 𝑒′′.
If 𝐸 −→ 𝐸 ′ and 𝐸 −→ 𝐸 ′′ then 𝐸 ′ = 𝐸 ′′.

Proof. We first state and prove three sublemmas:
(a) If 𝑒 = E1 [E2 [𝑒′]] then there exists E3 with 𝑒 = E3 [𝑒′]. The proof is by induction on

E1.
(b) If 𝑒 −→ 𝑒′ then there exists a derivation of 𝑒 −→ 𝑒′ that ends with at most one con-

secutive application of rule FG-CONTEXT. The proof is by induction on the derivation
of 𝑒 −→ 𝑒′. From the IH, we know that this derivation ends with at most two consec-
utive applications of rule FG-CONTEXT. If there are two such consecutive applications,
(a) allow us to merge the two evaluation contexts involved, so that we need only one
consecutive application of FG-CONTEXT.

(c) We call an FGG− expression directly reducible if it reduces but not by rule
FG-CONTEXT. If 𝑒1 and 𝑒2 are now directly reducible and E1 [𝑒1] = E2 [𝑒2] then
E1 = E2 and 𝑒1 = 𝑒2. For the proof, we first note that E1 = □ iff E2 = □. This holds
because directly reducible expressions have no inner redexes. The rest of the proof
is then a straightforward induction on E1.

Now assume 𝑒 −→ 𝑒′ and 𝑒 −→ 𝑒′′. By (b) we may assume that both derivations ends with
at most one consecutive application of rule FG-CONTEXT. It is easy to see (as values do not
reduce) that both derivations must end with the same rule. If this rule is FG-FIELD, then
𝑒′ = 𝑒′′ by restrictions FGG-UNIQUE-STRUCTS and FGG-DISTINCT-FIELDS. If this rule is FG-CALL,
then 𝑒′ = 𝑒′′ by FGG-UNIQUE-METHOD-DEFS. If the rule is FG-CONTEXT, we have the following
situation with 𝑅1 ≠ FG-CONTEXT and 𝑅2 ≠ FG-CONTEXT:

FG-CONTEXT

𝑅1
𝑔1 −→ 𝑔′1

E1 [𝑔1]︸         ︷︷         ︸
=𝑒

−→E1 [𝑔′1]︸         ︷︷         ︸
=𝑒′

𝑔2 −→ 𝑔′2
𝑅2

E2 [𝑔2]︸         ︷︷         ︸
=𝑒

−→E2 [𝑔′2]︸         ︷︷         ︸
=𝑒′′

FG-CONTEXT

As neither 𝑅1 nor 𝑅2 are FG-CONTEXT, we know that 𝑔1 and 𝑔2 are directly reducible.
Thus, with E1 [𝑔1] = E2 [𝑔2] and (c) we get E1 = E2 and 𝑔1 = 𝑔2. With 𝑅1 and 𝑅2 not being
FG-CONTEXT, we have 𝑔′1 = 𝑔

′
2, so 𝑒′ = 𝑒′′ as required. ■

Lemma A.1.2 (Deterministic evaluation in TL). If 𝐸 −→𝜇 𝐸
′ and 𝐸 −→𝜇 𝐸

′′ then 𝐸 ′ =

𝐸 ′′. Further, if 𝐸 −→ 𝐸 ′ and 𝐸 −→ 𝐸 ′′ then 𝐸 ′ = 𝐸 ′′.

Proof. We first prove the first implication of the lemma

∀𝐸, 𝐸 ′, 𝐸 ′′, 𝜇 . 𝐸 −→𝜇 𝐸
′ ∧ 𝐸 −→𝜇 𝐸

′′ =⇒ 𝐸 ′ = 𝐸 ′′ (1)
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There are three sublemmas, analogously to the proof of Lemma A.1.1.
(a) If 𝐸 = R1 [R2 [𝐸 ′]] then there exists R3 with 𝐸 = R3 [𝐸 ′].
(b) If 𝐸 −→𝜇 𝐸

′ then there exists a derivation of 𝐸 −→𝜇 𝐸
′ that ends with at most one

consecutive application of rule TL-CONTEXT.
(c) We call a target-language expression directly reducible if it reduces but not by rule

TL-CONTEXT. If 𝐸1 and 𝐸2 are now directly reducible and R1 [𝐸1] = R2 [𝐸2] then R1 =

R2 and 𝐸1 = 𝐸2.
The proofs of these lemmas are similar to the proofs of the sublemmas in Lemma A.1.1.
Then (1) follows with reasoning similar to the proof of Lemma A.1.1. If the derivations
of 𝐸 −→𝜇 𝐸

′ and 𝐸 −→𝜇 𝐸
′′ both end with rule TL-CASE, then our assumption that the

constructors of a case-expression are distinct ensures determinacy.
The second claim of the lemma (𝐸 −→ 𝐸 ′ and 𝐸 −→ 𝐸 ′′ imply 𝐸 ′ = 𝐸 ′′) then follows

directly from (1). Our assumption that the variables of a top-level let-binding are distinct
ensures that the substitution 𝜇 built from the top-level let-bindings is well-defined. ■

A.2 Preservation of Static Semantics

Proof of Lemma 5.1.1. We prove (a) and (b) by case distinctions on the last rule of the
given derivations; (c) and (d) follow by induction on the derivations, using (a) and (b).
Claim (e) then follows by examining the typing rules, using (c) and (d). ■

A.3 Preservation of Dynamic Semantics

Convention A.3.1. We omit 𝜇 from reductions in the target language, writing 𝐸 −→ 𝐸 ′

instead of 𝐸 −→𝜇 𝐸
′.

Definition A.3.2. We make use of some extra metavariables and notations.
• Φ,Ψ denote formal type parameters 𝛼 𝜏𝐼 .
• Φ̂ denotes the type variables of Φ; that is, if Φ= 𝛼 𝜏𝐼 then Φ̂ = 𝛼.
• 𝜙, 𝜓 denote actual type arguments 𝜏.
• 𝑀 ::= [Φ] (𝑥 𝜏) 𝜏 denotes the type-part of a method signature 𝑅.
• 𝐿 denotes a type literal struct { 𝑓 𝜏} or interface {𝑅}.
• Φ ↦→ 𝜙 : 𝜂 create a type substitution 𝜂 form type parameters Φ and arguments 𝜙. It is

defined like this: 𝛼 𝜏𝑛 ↦→ 𝜎𝑛 : ⟨𝛼𝑖 ↦→ 𝜎𝑖
𝑛⟩

A.3.1 The Logical Relation

Lemma A.3.3 (Monotonicity for expressions). Assume 𝑘 ′ ≤ 𝑘 . If 𝑒 ≈ 𝐸 ∈ ⟦𝜏⟧𝑘 then 𝑒 ≈
𝐸 ∈ ⟦𝜏⟧𝑘′ . If 𝑣 ≡𝑉 ∈ ⟦𝜏⟧𝑘 then 𝑣 ≡𝑉 ∈ ⟦𝜏⟧𝑘′ .

Proof. We proceed by induction on (𝑘, 𝑠) where 𝑠 is the combined size of 𝑣, 𝑉 .
Case distinction on the last rule used in the two derivations.

• Case rule EQUIV-EXP: We label the two implications in the premise of the rule as (a)
and (b).
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(a) Assume 𝑘 ′′ < 𝑘 ′ and 𝑒 −→𝑘′′ 𝑢 for some value 𝑢. From 𝑒 ≈ 𝐸 ∈ ⟦𝜏⟧𝑘
∃𝑈 . 𝐸 −→∗𝑈

𝑢 ≡𝑈 ∈ ⟦𝜏⟧𝑘−𝑘′′ (1)

If 𝑘 = 𝑘 ′ then 𝑢 ≡𝑈 ∈ ⟦𝜏⟧𝑘′−𝑘′′ . Otherwise, 𝑘 ′ − 𝑘 ′′ < 𝑘 − 𝑘 ′′, so the IH (induc-
tion hypothesis) applied to (1) also yields 𝑢 ≡𝑈 ∈ ⟦𝜏⟧𝑘′−𝑘′′ . This proves
implication (a).

(b) Assume 𝑘 ′′ < 𝑘 ′ and 𝑒 −→𝑘′′ 𝑒′ and diverge(𝑒′). Then we get with 𝑒 ≈ 𝐸 ∈
⟦𝜏⟧𝑘 and 𝑘 ′ ≤ 𝑘 that diverge(𝐸).

• Case rule EQUIV-STRUCT: Follows from IH.
• Case rule EQUIV-IFACE: Obvious.

End case distinction. ■

Lemma A.3.4 (Monotonicity for method dictionaries). If ⟨𝑥, 𝜏𝑆 , 𝑅, 𝑒⟩ ≈𝑉 ∈ ⟦𝑅′⟧𝑘 and
𝑘 ′ ≤ 𝑘 then ⟨𝑥, 𝜏𝑆 , 𝑅, 𝑒⟩ ≈𝑉 ∈ ⟦𝑅′⟧𝑘′ .

Proof. Obvious. ■

Lemma A.3.5 (Monotonicity for type parameters). If 𝜙 ≈𝑉 ∈ ⟦Φ⟧𝑘 and 𝑘 ′ ≤ 𝑘 then 𝜙 ≈
𝑉 ∈ ⟦Φ⟧𝑘′ .

Proof. Obvious. ■

Lemma A.3.6 (Monotonicity for method declarations). Assume declaration 𝐷 =

func (𝑥 𝑡𝑆 [Φ]) 𝑅 {return 𝑒} and 𝑘 ′ ≤ 𝑘 . If 𝐷 ≈𝑘 𝑋 then 𝐷 ≈𝑘′ 𝑋 .

Proof. Obvious. ■

Lemma A.3.7 (Monotonicity for programs). If 𝐷 ≈𝑘 𝜇 and 𝑘 ′ ≤ 𝑘 then 𝐷 ≈𝑘′ 𝜇.

Proof. Follows from Lemma A.3.6. ■

A.3.2 Equivalence Between Source and Translation

Proof of Lemma 5.2.2. Straightforward.

Proof of Lemma 5.2.3. We label the two implications in the premise of rule EQUIV-EXP

with (a) and (b).
(a) Assume 𝑘 ′ < 𝑘 + 1 and 𝑒2 −→𝑘′ 𝑣. Then by Lemma A.1.1 𝑒2 −→ 𝑒 −→𝑘′−1 𝑣. Noting

that 𝑘 ′ − 1 < 𝑘 we get with the assumption 𝑒 ≈ 𝐸 ∈ ⟦𝜏⟧𝑘
∃𝑉 . 𝐸 −→∗ 𝑉 ∧ 𝑣 ≡𝑉 ∈ ⟦𝜏⟧𝑘+1−𝑘′

But this is exactly what is needed to prove implication (a) for 𝑒2 ≈ 𝐸 ∈ ⟦𝜏⟧𝑘+1.
(b) Assume 𝑘 ′ < 𝑘 + 1 and 𝑒2 −→𝑘′ 𝑒′ and diverge(𝑒′). Then by Lemma A.1.1 𝑒2 −→

𝑒 −→𝑘′−1 𝑒′. Noting that 𝑘 ′ − 1 < 𝑘 we get with the assumption 𝑒 ≈ 𝐸 ∈ ⟦𝜏⟧𝑘 that
diverge(𝐸). This proves implication (b). ■
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Lemma A.3.8 (Expression equivalence implies value equivalence). If 𝑘 ≥ 1 and 𝑣 ≈𝑉 ∈
⟦𝜏⟧𝑘 then 𝑣 ≡𝑉 ∈ ⟦𝜏⟧𝑘 .

Proof. From the first implication of rule EQUIV-EXP we get for 𝑘 ′ = 0 < 𝑘 and with 𝑣 −→0 𝑣

that ∃𝑉 ′ . 𝑉 −→∗ 𝑉 ′ ∧ 𝑣 ≡𝑉 ′ ∈ ⟦𝜏⟧𝑘 . But V is already a value, so 𝑉 ′ =𝑉 . ■

Lemma A.3.9 (Value equivalence implies expression equivalence). If 𝑣 ≡𝑉 ∈ ⟦𝜏⟧𝑘 then
𝑣 ≈𝑉 ∈ ⟦𝜏⟧𝑘 for any 𝑘 .

Proof. We have 𝑣 −→0 𝑣, so we get the first implication of rule EQUIV-EXP by setting 𝐸 =𝑉

and by assumption 𝑣 ≡𝑉 ∈ ⟦𝜏⟧𝑘 . The second implication holds vacuously because values
do not diverge. ■

Lemma A.3.10. Assume func (𝑥 𝑡𝑆 [Φ]) 𝑚𝑀 {return 𝑒} ≈𝑘 𝑋 . Then the following holds:

∀𝑘 ′ < 𝑘, 𝜙,𝑊 . 𝜙 ≈𝑊 ∈ ⟦Φ⟧𝑘′ =⇒ Φ ↦→ 𝜙 : 𝜂 ∧
⟨𝑥, 𝑡𝑆 [𝜙], 𝜂𝑚𝑀, 𝜂𝑒⟩ ≈ 𝜆(𝑌1,𝑌2,𝑌3).𝑋 (𝑊,𝑌1,𝑌2,𝑌3) ∈ ⟦𝜂𝑚𝑀⟧𝑘′

Proof. Let 𝑀 = [Φ′] (𝑥𝑖 𝜏𝑖𝑛) 𝜏 and assume for any 𝑘 ′, 𝜙, 𝑊

𝑘 ′ < 𝑘 (1)

𝜙 ≈𝑊 ∈ ⟦Φ⟧𝑘′ (2)

Obviously

Φ ↦→ 𝜙 : 𝜂 (3)

To show that

⟨𝑥, 𝑡𝑆 [𝜙], 𝜂𝑚 [Φ′] (𝑥𝑖 𝜏𝑖𝑛) 𝜏, 𝜂𝑒⟩ ≈ 𝜆(𝑌1,𝑌2,𝑌3).𝑋 (𝑊,𝑌1,𝑌2,𝑌3) ∈ ⟦𝜂𝑚𝑀⟧𝑘′

holds, we assume the left-hand side of the implication in the premise of rule
EQUIV-METHOD-DICT-ENTRY for some 𝑘 ′′, 𝜙′, 𝑊 ′, 𝑢, 𝑈, 𝑣𝑛, 𝑉

𝑛
:

𝑘 ′′ ≤ 𝑘 ′ (4)

𝜂Φ′ ↦→ 𝜙′ : 𝜂′ (5)

𝜙′ ≈𝑊 ′ ∈ ⟦𝜂Φ′⟧𝑘′′ (6)

𝑢 ≈𝑈 ∈ ⟦𝑡𝑆 [𝜙]⟧𝑘′′ (7)

(∀𝑖 ∈ [𝑛]) . 𝑣𝑖 ≈𝑉𝑖 ∈ ⟦𝜂′𝜂𝜏𝑖⟧𝑘′′ (8)

We then need to prove (9) to show the overall goal.

𝜃𝜂′𝜂𝑒 ≈𝑉 (𝑈,𝑊 ′,(𝑉
𝑛
)) ∈ ⟦𝜂′𝜂𝜏⟧𝑘′′ (9)

𝜃 = ⟨𝑥 ↦→ 𝑢, 𝑥𝑖 ↦→ 𝑣𝑖
𝑛⟩

𝑉 = 𝜆(𝑌
3
).𝑋 (𝑊,𝑌1,𝑌2,𝑌3) (10)
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Let Φ= 𝛼 𝜎𝑝 , Φ′ = 𝛽 𝜎′𝑞 , 𝜙 = 𝜎′′ 𝑝 , 𝜙′ = 𝜎′′′𝑞 . Then by (3) and (5)

𝜂 = ⟨𝛼𝑖 ↦→ 𝜎′′
𝑖

𝑝⟩ (11)

𝜂′ = ⟨𝛽𝑖 ↦→ 𝜎′′′
𝑖

𝑞⟩ (12)

Define

Ψ := 𝛼𝑖 𝜎𝑖 𝑝𝛽𝑖 𝜎′
𝑖

𝑞

𝜙′′ := 𝜎′′ 𝑝𝜎′′′𝑞

𝜂′′ := ⟨𝛼𝑖 ↦→ 𝜎′′
𝑖

𝑝
𝛽𝑖 ↦→ 𝜎′′′

𝑖

𝑞⟩ (13)

Then

Ψ ↦→ 𝜙′′ : 𝜂′′ (14)

The 𝛽
𝑞

are sufficiently fresh, so ftv(𝜎′′ 𝑝) ∩ 𝛽𝑞 = ∅. Hence by (11), (12), (13)

𝜂′𝜂𝜎′
𝑖

𝑞
= 𝜂′′𝜎′

𝑖

𝑞
𝜂′𝜂𝜏𝑖

𝑛 = 𝜂′′𝜏𝑖
𝑛 𝜂′𝜂𝜏 = 𝜂′′𝜏 𝜂′𝜂𝑒 = 𝜂′′𝑒 (15)

We have from (2) and (6)

𝑊 = (𝑊
𝑝
) (16)

𝑊 ′ = (𝑊 ′𝑞) (17)

We now prove

𝜙′′ ≈ (𝑊
𝑝
,𝑊 ′𝑞) ∈ ⟦Ψ⟧𝑘′′ (18)

by verifying the implication in the premise of rule EQUIV-BOUNDED-TYPARAMS. We consider
two cases for every ℓ ≤ 𝑘 ′′.
Case distinction whether 𝑖 in [𝑝] or in [𝑞].

• Case 𝑖 ∈ [𝑝]: We need to prove ∀𝑢, 𝑈 . 𝑢 ≈𝑈 ∈ ⟦𝜎′′
𝑖
⟧ℓ =⇒ 𝑢 ≈𝑊𝑖 𝑈 ∈ ⟦𝜂′′𝜎𝑖⟧ℓ .

From (2) we get with 𝑢 ≈𝑈 ∈ ⟦𝜎′′
𝑖
⟧ℓ and ℓ ≤ 𝑘 ′′

(4)
≤ 𝑘 ′ that 𝑢 ≈𝑊𝑖 𝑈 ∈ ⟦𝜂𝜎𝑖⟧ℓ . By

assumption 5.2.1 ftv(𝜎𝑖) ⊆ 𝛼𝑝 , so 𝜂′′𝜎𝑖 = 𝜂𝜎𝑖 by (11) and (13).
• Case 𝑖 ∈ [𝑞]: We need to prove ∀𝑢, 𝑈 . 𝑢 ≈𝑈 ∈ ⟦𝜎′′′

𝑖
⟧ℓ =⇒ 𝑢 ≈𝑊 ′

𝑖
𝑈 ∈ ⟦𝜂′′𝜎′

𝑖
⟧ℓ .

From (6) we get with 𝑢 ≈𝑈 ∈ ⟦𝜎′′′
𝑖
⟧ℓ that 𝑢 ≈𝑊 ′

𝑖
𝑈 ∈ ⟦𝜂′𝜂𝜎′

𝑖
⟧ℓ . Also, 𝜂′𝜂𝜎′

𝑖
=

𝜂′′𝜎′
𝑖

by (15).
End case distinction. This finishes the proof of (18).

From (7) and (13) we have

𝑢 ≈𝑈 ∈ ⟦𝜂′′𝑡𝑆 [𝛼𝑝]⟧𝑘′′ (19)

From (8) and (15)

𝑣𝑖 ≈𝑉𝑖 ∈ ⟦𝜂′′𝜏𝑖⟧𝑘′′ (20)

From the assumption func (𝑥 𝑡𝑆 [Φ]) 𝑚𝑀 {return 𝑒} ≈𝑘 𝑋 , we can invert rule

EQUIV-METHOD-DECL. Noting that 𝑘 ′′
(4)
≤ 𝑘 ′

(1)
< 𝑘 and that (14), (18), (19), (20) give us the

left-hand side of the implication in the premise of the rule, we get by the right-hand side
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of the implication

𝜃𝜂′′𝑒 ≈ 𝑋 ((𝑊
𝑝
),𝑈,(𝑊 ′𝑞),(𝑉

𝑛
)) ∈ ⟦𝜂′′𝜏⟧𝑘′′

With (15), (16), (17)

𝜃𝜂′𝜂𝑒 ≈ 𝑋 (𝑊,𝑈,𝑊 ′,(𝑉
𝑛
)) ∈ ⟦𝜂′𝜂𝜏⟧𝑘′′ (21)

We have by (10)

𝑉 (𝑈,𝑊 ′,(𝑉
𝑛
)) = (𝜆(𝑌 3

).𝑋 (𝑊,𝑌1,𝑌2,𝑌3)) (𝑈,𝑊 ′,(𝑉
𝑛
))

so

𝑉 (𝑈,𝑊 ′,(𝑉
𝑛
)) −→∗ 𝑋 (𝑊,𝑈,𝑊 ′,(𝑉

𝑛
))

Thus, with (21) and Lemma 5.2.2

𝜃𝜂′𝜂𝑒 ≈𝑉 (𝑈,𝑊 ′,(𝑉
𝑛
)) ∈ ⟦𝜂′𝜂𝜏⟧𝑘′′

as required to prove (9). ■

Definition A.3.11 (Domain). We write dom(·) for the domain of a substitution 𝜂, 𝜃, 𝜌 or
𝜇, of a type environment Δ, of a value environment Γ, or some type parameters Φ.

Definition A.3.12 (Free variables). We write fv(·) for the set of free term variables, and
ftv(·) for the set of free type variables.

Lemma A.3.13 (Subtyping preserves equivalence). Let 𝐷 ≈𝑘 𝜇. Assume Δ ⊢coerce 𝜏 <: 𝜎{
𝑉 and 𝜂 ≈ 𝜌 ∈ ⟦Δ⟧𝑘 and 𝑒 ≈ 𝐸 ∈ ⟦𝜂𝜏⟧𝑘 . Then 𝑒 ≈ (𝜌𝑉) 𝐸 ∈ ⟦𝜂𝜎⟧𝑘 .

We prove Lemma A.3.13 together with the following two lemmas.

Lemma A.3.14. Assume 𝐷 ≈𝑘 𝜇 and 𝜂 ≈ 𝜌 ∈ ⟦Δ⟧𝑘 . Let ⟨𝑅, 𝑉⟩ ∈ methods(Δ, 𝑡𝑆 [𝜙])
and define 𝑈 = 𝜆(𝑌

3
).𝑋𝑚,𝑡𝑆 (𝜌𝑉,𝑌1,𝑌2,𝑌3). Then we have for all 𝑘 ′ < 𝑘 that

methodLookup(𝑚, 𝜂𝑡𝑆 [𝜙]) ≈𝑈 ∈ ⟦𝜂𝑅⟧𝑘′ .

Lemma A.3.15 (Substitution preserves equivalence). Assume 𝐷 ≈𝑘 𝜇 and 𝜂 ≈ 𝜌 ∈ ⟦Δ⟧𝑘 .
If Δ ⊢subst Φ ↦→ 𝜙 : 𝜂′{ 𝑉 then 𝜂𝜙 ≈ 𝜌𝑉 ∈ ⟦𝜂Φ⟧𝑘 .

Proof of Lemmas A.3.13, A.3.14, and A.3.15. We show the three lemmas by induc-
tion on the combined height of the derivations for Δ ⊢coerce 𝜏 <: 𝜎{ 𝑉 and ⟨𝑅, 𝑉⟩ ∈
methods(Δ, 𝑡𝑆 [𝜙]) and Δ ⊢subst Φ ↦→ 𝜙 : 𝜂′{ 𝑉 .

We start with the proof for Lemma A.3.13. We have from the assumptions

𝑒 ≈ 𝐸 ∈ ⟦𝜂𝜏⟧𝑘 (1)

Assume 𝑘 ′ < 𝑘 and 𝑒 −→𝑘′ 𝑒′. The second implication in the premise of rule EQUIV-EXP

holds obviously, because with diverge(𝑒′) we get from (1) diverge(𝐸), so also
diverge((𝜌𝑉) 𝐸).
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Thus, we only need to prove the first implication. Assume that 𝑒′ = 𝑣 for some value 𝑣.
Then via (1) for some𝑈

𝐸 −→∗𝑈 (2)

𝑣 ≡𝑈 ∈ ⟦𝜂𝜏⟧𝑘−𝑘′ (3)

We then need to verify that (𝜌𝑉) 𝑈 −→∗𝑈′ for some 𝑈′ with 𝑣 ≡𝑈′ ∈ ⟦𝜂𝜎⟧𝑘−𝑘′ . In fact,
𝑘 ′ < 𝑘 , so with Lemma A.3.8 it suffices to show that 𝑣 ≈𝑈′ ∈ ⟦𝜂𝜎⟧𝑘−𝑘′ .
Case distinction on the last rule in the derivation of Δ ⊢coerce 𝜏 <: 𝜎{ 𝑉 .

• Case COERCE-TYVAR:

𝑋 fresh (𝑎 : 𝜏𝐼 ) ∈ Δ Δ ⊢coerce 𝜏𝐼 <: 𝜎{𝑊

Δ ⊢coerce 𝛼

=

𝜏

<: 𝜎{ 𝜆𝑋.𝑊 (𝑋𝛼 𝑋)︸                              ︷︷                              ︸
=𝑉

Our goal to show is

𝑒 ≈ (𝜌𝑋𝛼) 𝑈 ∈ ⟦𝜂𝜏𝐼⟧𝑘 (4)

With (4) and the IH for Lemma A.3.13 we then get

𝑒 ≈ (𝜌𝑊) ((𝜌𝑋𝛼) 𝑈) ∈ ⟦𝜂𝜎⟧𝑘
Then, with 𝑒 −→𝑘′ 𝑣, we get (𝜌𝑉)𝑈 −→ (𝜌𝑊) ((𝜌𝑋𝛼)𝑈) −→∗𝑈′ for some𝑈′ with
𝑣 ≡𝑈′ ∈ ⟦𝜂𝜎⟧𝑘−𝑘′ .
We now prove (4). From the assumption 𝜂 ≈ 𝜌 ∈ ⟦Δ⟧𝑘 we have

Δ = 𝛼𝑖 : 𝜏𝑖𝑛

𝜂 = ⟨𝛼𝑖 ↦→ 𝜎𝑖
𝑛⟩

𝜌 = ⟨𝑋𝛼𝑖
↦→𝑉𝑖

𝑛⟩
𝜎𝑛 ≈𝑉𝑛 ∈ ⟦𝛼𝑖 𝜏𝑖𝑛⟧𝑘 (5)

such that 𝛼 = 𝛼 𝑗 and 𝜏𝐼 = 𝜏𝑗 for some 𝑗 ∈ [𝑛]. Inverting rule EQUIV-BOUNDED-TYPARAMS

on (5) yields

∀𝑘 ′′ ≤ 𝑘, 𝑤,𝑊 ′ . 𝑤 ≈𝑊 ′ ∈ ⟦𝜎𝑗⟧𝑘′′ =⇒ 𝑤 ≈𝑉 𝑗 𝑊
′ ∈ ⟦𝜂𝜏𝑗⟧𝑘′′ (6)

From (3) by 𝜂𝜏 = 𝜎𝑗 then 𝑣 ≡𝑈 ∈ ⟦𝜎𝑗⟧𝑘−𝑘′ . Thus with (6) and Lemma A.3.9

𝑣 ≈𝑉 𝑗 𝑈 ∈ ⟦𝜂𝜏𝑗⟧𝑘−𝑘′

With Lemma 5.2.3 and 𝑒 −→𝑘′ 𝑣 then

𝑒 ≈𝑉 𝑗 𝑈 ∈ ⟦𝜂𝜏𝑗⟧𝑘
But 𝜏𝑗 = 𝜏𝐼 and 𝑉 𝑗 = 𝜌𝑋𝛼, so this proves (4).
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• Case COERCE-STRUCT-IFACE:

𝑋, 𝑌1, 𝑌2, 𝑌3 fresh
type 𝑡𝐼 [Φ] interface {𝑚𝑀𝑛} ∈ 𝐷 (7)

Φ ↦→ 𝜙 : 𝜂′ (8)
⟨𝜂′ (𝑚𝑖𝑀𝑖), 𝑉𝑖⟩ ∈ methods(Δ, 𝑡𝑆 [𝜓]) (9)

𝑉 ′
𝑖 = 𝜆(𝑌1,𝑌2,𝑌3).𝑋𝑚𝑖 ,𝑡𝑆 (𝑉𝑖,𝑌1,𝑌2,𝑌3) (∀ 𝑖 ∈ [𝑛]) (10)

Δ ⊢coerce 𝑡𝑆 [𝜓]

=

𝜏

<: 𝑡𝐼 [𝜙]

=

𝜎

{ 𝜆𝑋.(𝑋,(𝑉 ′
𝑖

𝑛
))︸                                 ︷︷                                 ︸

=𝑉

Hence (𝜌𝑉) 𝑈 −→ (𝑈,𝜌(𝑉 ′𝑛)) and 𝑈′ := (𝑈,𝜌(𝑉 ′𝑛)) is a value. We now want
to show 𝑣 ≈𝑈′ ∈ ⟦𝜂𝜎⟧𝑘−𝑘′ via rule EQUIV-IFACE. Define the 𝜎𝑆 in the premise of
EQUIV-IFACE as 𝜂𝜏 = 𝑡𝑆 [𝜂𝜓].
The first premise of EQUIV-IFACE

∀𝑘1 < 𝑘 − 𝑘 ′ . 𝑣 ≡𝑈 ∈ ⟦𝜂𝜏⟧𝑘1 (11)

follows from (3) and Lemma A.3.3. From (7) and (8) we get with 𝜎 = 𝑡𝐼 [𝜙] the
second premise as

methods(𝜂𝜎) = 𝜂𝜂′𝑚𝑀𝑛
(12)

We next prove the third premise of EQUIV-IFACE. Pick some 𝑗 ∈ [𝑛] and 𝑘2 < 𝑘 − 𝑘 ′.
With the assumptions 𝐷 ≈𝑘 𝜇 and 𝜂 ≈ 𝜌 ∈ ⟦Δ⟧𝑘 and with (9), (10), and the IH for
Lemma A.3.14 we get

methodLookup(𝑚 𝑗 , 𝜂𝑡𝑆 [𝜓]) ≈ 𝜌𝑉 ′
𝑗 ∈ ⟦𝜂𝜂′𝑚 𝑗𝑀 𝑗⟧𝑘2 (13)

(11), (12), (13), and the definition of 𝑈′ are the pieces required to derive 𝑣 ≈𝑈′ ∈
⟦𝜂𝜎⟧𝑘−𝑘′ via rule EQUIV-IFACE.

• Case COERCE-IFACE-IFACE:

𝑌, 𝑋
𝑛

fresh 𝜋 : [𝑞] → [𝑛] total
type 𝑡𝐼 [Φ1] interface {𝑅𝑛} ∈ 𝐷 (14)

type 𝑢𝐼 [Φ2] interface {𝑅′𝑞} ∈ 𝐷 (15)
Φ1 ↦→ 𝜙1 : 𝜂1 Φ2 ↦→ 𝜙2 : 𝜂2
𝜂2𝑅

′
𝑖 = 𝜂1𝑅𝜋 (𝑖) (∀ 𝑖 ∈ [𝑞]) (16)

Δ ⊢coerce 𝑡𝐼 [𝜙1]

=

𝜏

<: 𝑢𝐼 [𝜙2]

=

𝜎

{ 𝜆(𝑌,(𝑋
𝑛
)).(𝑌,(𝑋𝜋 (1), . . .,𝑋𝜋 (𝑞)))︸                                                                                           ︷︷                                                                                           ︸

=𝑉 (17)

As 𝜂𝜏 = 𝜂𝑡𝐼 [𝜙1] is an interface type, we get from (3) by inverting rule EQUIV-IFACE

for some𝑊, 𝜎𝑆 , 𝑊
𝑛

that

∀𝑘1 < 𝑘 − 𝑘 ′ . 𝑣 ≈𝑊 ∈ ⟦𝜎𝑆⟧𝑘1 (18)

methods(𝜂𝜏) = 𝜂𝜂1𝑅
𝑛
=𝑚𝑀

𝑛
(19)

∀𝑖 ∈ [𝑛], 𝑘2 < 𝑘 − 𝑘 ′ .methodLookup(𝑚𝑖 , 𝜎𝑠) ≈𝑊𝑖 ∈ ⟦𝑚𝑖𝑀𝑖⟧𝑘2 (20)

𝑈 = (𝑊,(𝑊
𝑛
)) (21)
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Our goal is to show (𝜌𝑉) 𝑈 −→∗𝑈′ for some 𝑈′ with 𝑣 ≈𝑈′ ∈ ⟦𝜂𝜎⟧𝑘−𝑘′ . Via (17)
and (21)

(𝜌𝑉) 𝑈 =𝑉 𝑈 −→∗ (𝑊,(𝑊𝜋 (1), . . .,𝑊𝜋 (𝑞))) =:𝑈′ (22)

From (14), (15), (16), and (19) we have

𝑚′𝑀 ′𝑞 = 𝜂𝜂2𝑅′𝑞 = 𝜂𝜂1𝑅𝜋 (1) , . . . , 𝜂𝜂1𝑅𝜋 (𝑞)
=𝑚𝜋 (1)𝑀𝜋 (1) , . . . , 𝑚𝜋 (𝑞)𝑀𝜋 (𝑞)

(23)

methods(𝜂𝜎) = {𝑚′𝑀 ′𝑞} (24)

Pick 𝑗 ∈ [𝑞]. Then via (23)

methodLookup(𝑚′
𝑗 , 𝜎𝑆) = methodLookup(𝑚𝜋 ( 𝑗 ) , 𝜎𝑠)

Hence with (20) and (23)

∀ 𝑗 ∈ [𝑞], 𝑘2 < 𝑘 − 𝑘 ′ .methodLookup(𝑚′
𝑗 , 𝜎𝑆) ≈𝑊𝜋 ( 𝑗 ) ∈ ⟦𝑚′

𝑗𝑀
′
𝑗⟧𝑘2 (25)

With (18), (25), (24) and the definition of 𝑈′ in (22) we then get by applying rule
EQUIV-IFACE 𝑣 ≈𝑈′ ∈ ⟦𝜂𝜎⟧𝑘−𝑘′ and with (22) also (𝜌𝑉) 𝑈 −→∗𝑈′.

End case distinction on the last rule in the derivation of Δ ⊢coerce 𝜏 <: 𝜎{ 𝑉 .
This finishes the proof of Lemma A.3.13.

We next prove Lemma A.3.14. By inverting rule METHODS-STRUCT for the assumption
⟨𝑅, 𝑉⟩ ∈ methods(Δ, 𝑡𝑆 [𝜙]) we get

func (𝑥 𝑡𝑆 [Φ]) 𝑚𝑀 {return 𝑒} ∈ 𝐷 (26)

Δ ⊢subst Φ ↦→ 𝜙 : 𝜂′{ 𝑉 (27)

𝑅 = 𝜂′𝑚𝑀 (28)

Inverting (27) yields

Φ= 𝛼 𝜏𝑛

𝜂′ = ⟨𝛼𝑖 ↦→ 𝜎𝑖
𝑛⟩

𝜙 = 𝜎𝑛

Δ ⊢coerce 𝜎𝑖 <: 𝜂′𝜏𝑖 { 𝑉𝑖 (∀𝑖 ∈ [𝑛])
𝑉 = (𝑉

𝑛
)

Define 𝜂′′ = ⟨𝛼𝑖 ↦→ 𝜂𝜎𝑖
𝑛⟩. Then by rule METHOD-LOOKUP and (26)

methodLookup(𝑚, 𝜂𝑡𝑆 [𝜙]) = ⟨𝑥, 𝜂𝑡𝑆 [𝜙], 𝜂′′𝑚𝑀, 𝜂′′𝑒⟩ (29)

By assumption 5.2.1, the 𝛼𝑛 can be assumed to be fresh, ftv(Φ) ⊆ 𝛼𝑛, and 𝜂Φ=Φ.
Applying the IH for Lemma A.3.15 on (27) yields 𝜂𝜙 ≈ 𝜌𝑉 ∈ ⟦𝜂Φ⟧𝑘 .

𝜂𝜙 ≈ 𝜌𝑉 ∈ ⟦Φ⟧𝑘 (30)

From the assumption 𝐷 ≈𝑘 𝜇 we get with (26)

func (𝑥 𝑡𝑆 [Φ]) 𝑚𝑀 {return 𝑒} ≈𝑘 𝑋𝑚,𝑡𝑆
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Then for any 𝑘 ′ < 𝑘 by Lemma A.3.10, where (30) and Lemma A.3.5 give the left-hand
side of the implication

Φ ↦→ 𝜂𝜙 : 𝜂′′

⟨𝑥, 𝜂𝑡𝑆 [𝜙], 𝜂′′𝑚𝑀, 𝜂′′𝑒⟩ ≈
𝜆(𝑌

3
).𝑋𝑚,𝑡𝑆 (𝜌𝑉,𝑌1,𝑌2,𝑌3)︸                                                                   ︷︷                                                                   ︸

=𝑈

∈ ⟦𝜂′′𝑚𝑀⟧𝑘′ (31)

We have 𝜂𝑅
(28)
= 𝜂𝜂′𝑚𝑀 = 𝜂′′𝑚𝑀 , where the last equality holds because ftv(𝑚𝑀) ⊆ 𝛼𝑛 and

𝛼𝑛 fresh by assumption 5.2.1. Hence (29) and (31) give the desired claim.
Finally, we prove Lemma A.3.15. By inverting rule TYPE-INST-CHECKED for the assumption

Δ ⊢subst Φ ↦→ 𝜙 : 𝜂′{ 𝑉 we get

Φ= 𝛼 𝜏𝑛

𝜙 = 𝜎𝑛

𝜂′ = ⟨𝛼𝑖 ↦→ 𝜎𝑖
𝑛⟩

Δ ⊢coerce 𝜎𝑖 <: 𝜂′𝜏𝑖 { 𝑉𝑖 (∀𝑖 ∈ [𝑛]) (32)

𝑉 = (𝑉
𝑛
)

Define 𝜂′′ = ⟨𝛼𝑖 ↦→ 𝜂𝜎𝑖
𝑛⟩. To prove 𝜂𝜙 ≈ 𝜌𝑉 ∈ ⟦𝜂Φ⟧𝑘 we need to show the implication

∀ 𝑗 ∈ [𝑛], 𝑘 ′ ≤ 𝑘 . 𝑢 ≈𝑈 ∈ ⟦𝜂𝜎𝑗⟧𝑘′ =⇒ 𝑢 ≈ (𝜌𝑉) 𝑈 ∈ ⟦𝜂′′𝜂𝜏𝑗⟧𝑘′ from the premise of rule
EQUIV-BOUNDED-TYPARAMS. Assume 𝑗 ∈ [𝑛], 𝑘 ′ ≤ 𝑘 , and 𝑢 ≈𝑈 ∈ ⟦𝜂𝜎𝑗⟧𝑘′ . Applying the IH
for Lemma A.3.13 on (32) yields together with Lemma A.3.5 and Lemma A.3.7 that

𝑢 ≈ (𝜌𝑉 𝑗 ) 𝑈 ∈ ⟦𝜂𝜂′𝜏𝑗⟧𝑘′ (33)

As the 𝛼 are bound in Φ, we may assume that dom(𝜂) ∩ 𝛼 = ∅ = ftv(𝜂) ∩ 𝛼. We now argue
that

𝜂𝜂′𝜏𝑗 = 𝜂
′′𝜂𝜏𝑗 (34)

by induction on the structure of 𝜏𝑗 . The interesting case is were 𝜏𝑗 is a type variable
(otherwise the claim follows by the IH). If 𝜏𝑗 ∈ 𝛼 then

𝜂𝜂′𝜏𝑗
def. of 𝜂′′

= 𝜂′′𝜏𝑗
dom(𝜂)∩𝛼=∅

= 𝜂′′𝜂𝜏𝑗

If 𝜏𝑗 ∈ dom(𝜂) then

𝜂𝜂′𝜏𝑗
dom(𝜂)∩𝛼=∅

= 𝜂𝜏𝑗
ftv(𝜂)∩𝛼=∅

= 𝜂′′𝜂𝜏𝑗

If 𝜏𝑗 is some other type variable, (34) holds obviously. With (33) and (34) we get 𝑢 ≈
(𝜌𝑉 𝑗 ) 𝑈 ∈ ⟦𝜂′′𝜂𝜏𝑗⟧𝑘′ as required. ■

Lemma A.3.16 (Free variables of coercion values). If Δ ⊢coerce 𝜏 <: 𝜎{ 𝑉 then fv(𝑉) ⊆
{𝑋𝛼 | 𝛼 ∈ dom(Δ)} ∪ X where X = {𝑋𝑚,𝑡𝑆 | 𝑚 method name, 𝑡𝑆 struct name}.

Proof. By straightforward induction on the derivation of Δ ⊢coerce 𝜏 <: 𝜎{ 𝑉 . ■

A.3.2.1 Proof of Lemma 5.2.4. By induction on the derivation of ⟨Δ, Γ⟩ ⊢exp 𝑒 : 𝜏{ 𝐸 .
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Case distinction on the last rule in the derivation.
• Case VAR:

(𝑥 : 𝜏) ∈ Γ

⟨Δ, Γ⟩ ⊢exp 𝑥 : 𝜏{ 𝑋

with 𝜃𝜂𝑒 = 𝜃𝑥 and 𝜌𝐸 = 𝜌𝑋 . From the assumption 𝜃 ≈ 𝜌 ∈ ⟦𝜂Γ⟧𝑘 we get 𝜃𝑥 ≈ 𝜌𝑋 ∈
⟦𝜂𝜏⟧𝑘 as required.

• Case STRUCT:

Δ ⊢ok 𝑡𝑆 [𝜙]
type 𝑡𝑆 [Φ] struct { 𝑓 𝜏𝑛} ∈ 𝐷 (1)

Φ ↦→ 𝜙 : 𝜂′ (2)
⟨Δ, Γ⟩ ⊢exp 𝑒𝑖 : 𝜂′𝜏𝑖 { 𝐸𝑖 (∀ 𝑖 ∈ [𝑛]) (3)

⟨Δ, Γ⟩ ⊢exp 𝑡𝑆 [𝜙]{𝑒𝑛}︸                  ︷︷                  ︸
=𝑒

: 𝑡𝑆 [𝜙]︸      ︷︷      ︸
=𝜏

{ (𝐸
𝑛
)︸      ︷︷      ︸

=𝐸

(4)

Applying the IH to (3) yields

𝜃𝜂𝑒𝑖 ≈ 𝜌𝐸𝑖 ∈ ⟦𝜂𝜂′𝜏𝑖⟧𝑘 (∀𝑖 ∈ [𝑛]) (5)

We now consider the two implications in the premise of rule EQUIV-EXP

(a) Assume 𝑘 ′ < 𝑘 and 𝜃𝜂𝑒 −→𝑘′ 𝑣 for some value 𝑣. The goal is to show that there
exists some value 𝑉 with 𝜌𝐸 −→∗ 𝑉 and 𝑣 ≡𝑉 ∈ ⟦𝜂𝜏⟧𝑘−𝑘′ .
With 𝜃𝜂𝑒 −→𝑘′ 𝑣 there must exist values 𝑣𝑛 such that

𝜃𝜂𝑒𝑖 −→𝑘𝑖 𝑣𝑖 (∀𝑖 ∈ [𝑛])
𝑘𝑖 ≤ 𝑘 ′ (∀𝑖 ∈ [𝑛]) (6)

𝑣 = 𝑡𝑆 [𝜂𝜙]{𝑣𝑛} (7)

Via (5) and 𝑘𝑖 ≤ 𝑘 ′ < 𝑘 then for all 𝑖 ∈ [𝑛]

𝜌𝐸𝑖 −→∗ 𝑉𝑖 for some 𝑉𝑖 (∀𝑖 ∈ [𝑛]) (8)

𝑣𝑖 ≡𝑉𝑖 ∈ ⟦𝜂𝜂′𝜏𝑖⟧𝑘−𝑘𝑖 (∀𝑖 ∈ [𝑛]) (9)

We have 𝑘 − 𝑘 ′ ≤ 𝑘 − 𝑘𝑖 for all 𝑖 ∈ [𝑛] by (6). Thus with (9) and Lemma A.3.3

𝑣𝑖 ≡𝑉𝑖 ∈ ⟦𝜂𝜂′𝜏𝑖⟧𝑘−𝑘′ (∀𝑖 ∈ [𝑛]) (10)

We also have with (8) and the definition of 𝐸 in (4)

𝜌𝐸 −→∗ (𝑉
𝑛
) (11)

Assume Φ̂ = 𝛼𝑝 and 𝜙 = 𝜎𝑝 . Then by (2) 𝜂′ = ⟨𝛼𝑖 ↦→ 𝜎𝑖
𝑝⟩ and for 𝜂′′ =

⟨𝛼𝑖 ↦→ 𝜂𝜎𝑖
𝑝⟩ we have

Φ ↦→ 𝜂𝜙 : 𝜂′′ (12)

By assumption 5.2.1 we have ftv(𝜏𝑛) ⊆ {𝛼}, so

𝜂𝜂′𝜏𝑖 = 𝜂
′′𝜏𝑖 (∀𝑖 ∈ [𝑛]) (13)
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With (1), (10), (7), (12), (13), and rule EQUIV-STRUCT then

𝑣 ≡ (𝑉
𝑛
) ∈ ⟦𝑡𝑆 [𝜂𝜙]⟧𝑘−𝑘′

Together with (11), this finishes subcase (a) for 𝑉 = (𝑉
𝑛
).

(b) Assume 𝑘 ′ < 𝑘 and 𝜃𝜂𝑒 −→𝑘′ 𝑒′ and diverge(𝑒′). Then diverge(𝑒 𝑗 ) for some
𝑗 ∈ [𝑛], so with (5) and (6) also diverge(𝜌𝐸 𝑗 ). Thus, by definition of 𝐸 in (4),
diverge(𝜌𝐸) as required.

• Case ACCESS:

⟨Δ, Γ⟩ ⊢exp 𝑒
′ : 𝑡𝑆 [𝜙]{ 𝐸 ′ (14)

type 𝑡𝑆 [Φ] struct { 𝑓 𝜏𝑛} ∈ 𝐷
Φ ↦→ 𝜙 : 𝜂′

⟨Δ, Γ⟩ ⊢exp 𝑒
′. 𝑓 𝑗︸    ︷︷    ︸
=𝑒

: 𝜂′𝜏𝑗︸  ︷︷  ︸
=𝜏

{ case 𝐸 ′ of (𝑋
𝑛
)→ 𝑋𝑖︸                                                  ︷︷                                                  ︸

=𝐸

(15)

Applying the IH to (14) yields

𝜃𝜂𝑒′ ≈ 𝜌𝐸 ′ ∈ ⟦𝑡𝑆 [𝜂𝜙]⟧𝑘 (16)

We now consider the two implications in the premise of rule EQUIV-EXP

(a) Assume 𝑘 ′ < 𝑘 and 𝜃𝜂𝑒 −→𝑘′ 𝑣 for some value 𝑣. The goal is to show that there
exists some value 𝑉 with 𝜌𝐸 −→∗ 𝑉 and 𝑣 ≡𝑉 ∈ ⟦𝜂𝜏⟧𝑘−𝑘′ .
With 𝜃𝜂𝑒 −→𝑘′ 𝑣 then 𝜃𝜂𝑒′ −→𝑘′′ 𝑣′ for some 𝑣′ and 𝑘 ′′ < 𝑘 ′. With (16) then
for some 𝑉 ′

𝜌𝐸 ′ −→∗ 𝑉 ′ (17)

𝑣′ ≡𝑉 ′ ∈ ⟦𝑡𝑆 [𝜂𝜙]⟧𝑘−𝑘′′ (18)

Inverting rule EQUIV-STRUCT on (18) yields

𝑣′ = 𝑡𝑆 [𝜂𝜙]{𝑣𝑛} (19)

𝑉 ′ = (𝑉
𝑛
) for some 𝑉

𝑛

𝑣𝑖 ≡𝑉𝑖 ∈ ⟦𝜂′′𝜏𝑖⟧𝑘−𝑘′′ (∀𝑖 ∈ [𝑛]) (20)

where 𝜂′′ = ⟨𝛼𝑖 ↦→ 𝜂𝜎𝑖
𝑝⟩, assuming Φ̂ = 𝛼𝑝 and 𝜙 = 𝜎𝑝 . By assumption 5.2.1

we have ftv(𝜏𝑗 ) ⊆ {𝛼}. Thus, 𝜂′′𝜏𝑗 = 𝜂𝜂′𝜏𝑗
(15)
= 𝜂𝜏. Also, 𝑘 ′′ ≤ 𝑘 ′, so 𝑘 − 𝑘 ′ ≤

𝑘 − 𝑘 ′′. Hence with (20) and Lemma A.3.3

𝑣 𝑗 ≡𝑉 𝑗 ∈ ⟦𝜂𝜏⟧𝑘−𝑘′ (21)

With (17) and the definition of 𝐸 in (15) we get

𝜌𝐸 −→∗ 𝑉 𝑗 (22)

With 𝜃𝜂𝑒 −→𝑘′ 𝑣 and 𝜃𝜂𝑒′ −→𝑘′′ 𝑣′ and the form of 𝑣′ in (19), we get
𝜃𝜂𝑒 −→𝑘′ 𝑣 𝑗 and 𝑣 = 𝑣 𝑗 by rule FG-FIELD. Define 𝑉 =𝑉 𝑗 and we are done with
subcase (a) by (21) and (22).

(b) Assume 𝑘 ′ < 𝑘 and 𝜃𝜂𝑒 −→𝑘′ 𝑒′′ and diverge(𝑒′′). Then we must have that
𝜃𝜂𝑒′ −→𝑘′′ 𝑒′′′ for some 𝑘 ′′ < 𝑘 ′ and some 𝑒′′′. Thus, diverge(𝑒′′′) by the
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definition of 𝑒 in (15) and the evaluation rules for FGG− . With (16) then
diverge(𝜌𝐸 ′). By definition of 𝐸 in (15) then diverge(𝜌𝐸) as required.

• Case CALL-STRUCT:

⟨Δ, Γ⟩ ⊢exp 𝑔 : 𝑡𝑆 [𝜙]{ 𝐺 (23)
⟨𝑚 [Ψ] (𝑥 𝜎𝑛)𝜎,𝑊⟩ ∈ methods(Δ, 𝑡𝑆 [𝜙]) (24)

Δ ⊢subst Ψ ↦→ 𝜓 : 𝜂1{𝑊 ′ (25)
⟨Δ, Γ⟩ ⊢exp 𝑒𝑖 : 𝜂1𝜎𝑖 { 𝐸𝑖 (∀𝑖 ∈ [𝑛]) (26)

⟨Δ, Γ⟩ ⊢exp 𝑔.𝑚 [𝜓] (𝑒𝑛)︸                      ︷︷                      ︸
=𝑒

: 𝜂1𝜎︸  ︷︷  ︸
=𝜏

{ 𝑋𝑚,𝑡𝑆 (𝑊,𝐺,𝑊 ′,(𝐸
𝑛
))︸                                                      ︷︷                                                      ︸

=𝐸

(27)

From the IH applied to (23) and (26)

𝜃𝜂𝑔 ≈ 𝜌𝐺 ∈ ⟦𝜂𝑡𝑆 [𝜙]⟧𝑘 (28)

𝜃𝜂𝑒𝑖 ≈ 𝜌𝐸𝑖 ∈ ⟦𝜂𝜂1𝜎𝑖⟧𝑘 (∀𝑖 ∈ [𝑛]) (29)

Assume 𝜃𝜂𝑒 −→𝑘′ 𝑒′ for some 𝑘 ′ < 𝑘 . We first consider the following situation for
some values 𝑢, 𝑣𝑛:

𝜃𝜂𝑔 −→𝑘′′ 𝑢 (30)

𝜃𝜂𝑒𝑖 −→𝑘𝑖 𝑣𝑖 (31)

𝜃𝜂𝑒 −→𝑘′′+Σ𝑘𝑖 𝑢.𝑚 [𝜂𝜓] (𝑣𝑛) −→𝑘′−𝑘′′−Σ𝑘𝑖 𝑒′ (32)

with 𝑘 ′′ + Σ𝑘𝑖 ≤ 𝑘 ′. (30), (31), and (32) are intermediate assumptions, which become
true when we later prove the two implications of rule EQUIV-EXP.
We have from (28), (30), (29), and (31)

𝜌𝐺 −→∗𝑈 for some𝑈 with 𝑢 ≡𝑈 ∈ ⟦𝜂𝑡𝑆 [𝜙]⟧𝑘−𝑘′′ (33)

(∀𝑖 ∈ [𝑛]) 𝜌𝐸𝑖 −→∗ 𝑉𝑖 for some 𝑉𝑖 with 𝑣𝑖 ≡𝑉𝑖 ∈ ⟦𝜂𝜂1𝜎𝑖⟧𝑘−𝑘𝑖 (34)

From (24) we get by inverting rule METHODS-STRUCT:

func (𝑥 𝑡𝑆 [Φ]) 𝑚 [Ψ′] (𝑥 𝜎′𝑛) 𝜎′ {return 𝑔′} ∈ 𝐷 (35)

Δ ⊢subst Φ ↦→ 𝜙 : 𝜂2{𝑊 (36)

𝑚 [Ψ] (𝑥 𝜎𝑛) 𝜎 = 𝜂2 (𝑚 [Ψ′] (𝑥 𝜎′𝑛) 𝜎′) (37)

From the assumption 𝐷 ≈𝑘 𝜇 and (35)

func (𝑥 𝑡𝑆 [Φ]) 𝑚 [Ψ′] (𝑥 𝜎′𝑛) 𝜎′ {return 𝑔′} ≈𝑘 𝑋𝑚,𝑡𝑆 (38)

Define

𝑘 ′′′ :=𝑚𝑖𝑛(𝑘 − 𝑘 ′′, 𝑘 − Σ𝑘𝑖) − 1 (39)

We have 𝑘 ′ − 𝑘 ′′ − Σ𝑘𝑖 < 𝑘
′′′ + 1 by the following reasoning:

𝑘 ′′′ + 1 (39)
= 𝑚𝑖𝑛(𝑘 − 𝑘 ′′, 𝑘 − Σ𝑘𝑖)
= 𝑘 −𝑚𝑎𝑥(𝑘 ′′, Σ𝑘𝑖)
≥ 𝑘 − 𝑘 ′′ − Σ𝑘𝑖

𝑘′<𝑘
> 𝑘 ′ − 𝑘 ′′ − Σ𝑘𝑖

(40)
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With (38) and 𝑘 ′′′ < 𝑘 , we now want to use the implication from the premise
of rule EQUIV-METHOD-DECL. We instantiate the universally quantified variables of
the implication as follows: 𝑘 ′ = 𝑘 ′′′, 𝜙 = 𝜂(𝜙, 𝜓), 𝑊 𝑝

= 𝜌𝑊,𝑊 ′𝑞 = 𝜌𝑊 ′, 𝑣 = 𝑢, 𝑉 =

𝑈, 𝑣𝑛 = 𝑣𝑛, 𝑉
𝑛
=𝑉

𝑛
. Next, we prove the left-hand side of the implication. But first

assume (see (36), (25), (37))

Φ= 𝛼 𝜏𝑝 𝜙 = 𝜏′
𝑝

𝑊 =𝑊
𝑝

(41)

Ψ′ = 𝛽 𝜏′′
𝑞

𝜓 = 𝜏′′′
𝑞

𝑊 ′ =𝑊 ′𝑞 (42)

and define

𝜂3 = ⟨𝛼𝑖 ↦→ 𝜂𝜏′
𝑖

𝑝
, 𝛽𝑖 ↦→ 𝜂𝜏′′′

𝑖

𝑞⟩ (43)

– We start by showing the first two conjuncts of the implication’s left-hand side.

Φ,Ψ′ ↦→ 𝜂(𝜙, 𝜓) : 𝜂3 ∧ 𝜂(𝜙, 𝜓) ≈ 𝜌(𝑊,𝑊 ′) ∈ ⟦Φ,Ψ′⟧𝑘′′′ (44)

The left part of the conjunction follows from (43). We then show 𝜂(𝜙, 𝜓) ≈
𝜌(𝑊,𝑊 ′) ∈ ⟦Φ,Ψ′⟧𝑘 by proving the two implications required to fulfill the
premise of rule EQUIV-BOUNDED-TYPARAMS. The right part of the conjunction in
(44) then follows via Lemma A.3.5.

* First implication: 𝑢 𝑗 ≈𝑈 𝑗 ∈ ⟦𝜂𝜏′
𝑗
⟧𝑘 =⇒ 𝑢 𝑗 ≈ (𝜌𝑊 𝑗 )𝑈 𝑗 ∈ ⟦𝜂3𝜏𝑗⟧𝑘 for all

𝑗 ∈ [𝑝] and all 𝑢 𝑗 , 𝑈 𝑗 .
From (36) and Lemma A.3.15 we have 𝜂𝜙 ≈ 𝜌𝑊 ∈ ⟦𝜂Φ⟧𝑘 Hence,
with 𝑢 𝑗 ≈𝑈 𝑗 ∈ ⟦𝜂𝜏′

𝑗
⟧𝑘 and the implication in the premise of rule

EQUIV-BOUNDED-TYPARAMS, we have 𝑢 𝑗 ≈ (𝜌𝑊 𝑗 )𝑈 𝑗 ∈ ⟦⟨𝛼𝑖 ↦→ 𝜂𝜏′
𝑖
⟩𝜂𝜏𝑗⟧𝑘 .

From assumption 5.2.1, (35), and (41), we know that ftv(𝜏𝑗 ) ⊆ {𝛼}
and 𝛼 fresh, so ⟨𝛼𝑖 ↦→ 𝜂𝜏′

𝑖
⟩𝜂𝜏𝑗 = 𝜂3𝜏𝑗 . Thus 𝑢 𝑗 ≈ (𝜌𝑊 𝑗 )𝑈 𝑗 ∈ ⟦𝜂3𝜏𝑗⟧𝑘 as

required.

* Second implication: 𝑢 𝑗 ≈𝑈 𝑗 ∈ ⟦𝜂𝜏′′′𝑗 ⟧𝑘 =⇒ 𝑢 𝑗 ≈ (𝜌𝑊 ′
𝑗
)𝑈 𝑗 ∈ ⟦𝜂3𝜏

′′
𝑗
⟧𝑘

for all 𝑖 ∈ [𝑞] and all 𝑢 𝑗 , 𝑈 𝑗 .
From (25) and Lemma A.3.15 we have 𝜂𝜓 ≈ 𝜌𝑊 ′ ∈ ⟦𝜂Ψ⟧𝑘 .
Hence, with 𝑢 𝑗 ≈𝑈 𝑗 ∈ ⟦𝜂𝜏′′′

𝑗
⟧𝑘 , the implication in the premise

of rule EQUIV-BOUNDED-TYPARAMS, and (37) then 𝑢 𝑗 ≈ (𝜌𝑊 ′
𝑗
)𝑈 𝑗 ∈

⟦⟨𝛽𝑖 ↦→ 𝜂𝜏′′′
𝑖
⟩𝜂𝜂2𝜏

′′
𝑗
⟧𝑘 . We have with (36) and (41) that 𝜂2 = ⟨𝛼𝑖 ↦→ 𝜏′

𝑖
⟩.

Because of assumption 5.2.1, (35), and (42), we know that
ftv(𝜏′′

𝑗
) ⊆ {𝛼, 𝛽} and 𝛼, 𝛽 fresh. Hence, ⟨𝛽𝑖 ↦→ 𝜂𝜏′′′

𝑖
⟩𝜂𝜂2𝜏

′′
𝑗
=

⟨𝛽𝑖 ↦→ 𝜂𝜏′′′
𝑖
⟩⟨𝛼𝑖 ↦→ 𝜂𝜏′

𝑖
⟩𝜏′′

𝑗

(43)
= 𝜂3𝜏

′′
𝑗

. Thus 𝑢 𝑗 ≈ (𝜌𝑊 ′
𝑗
)𝑈 𝑗 ∈ ⟦𝜂3𝜏

′′
𝑗
⟧𝑘

as required.
This finishes the proof of (44).

– We next show the third conjunct of the implication’s left-hand side.

𝑢 ≈𝑈 ∈ ⟦𝑡𝑆 [𝜂3𝛼]⟧𝑘′′′ (45)
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We have 𝑡𝑆 [𝜂3𝛼] = 𝑡𝑆 [𝜂𝜙] by (43) and (41). Hence, with (33), Lemma A.3.9,
and Lemma A.3.3, it suffices to show that 𝑘 ′′′ ≤ 𝑘 − 𝑘 ′′. But this follows from
construction of 𝑘 ′′′ in (39).

– Finally, we show the fourth conjunct:

𝑣𝑖 ≈𝑉𝑖 ∈ ⟦𝜂3𝜎
′
𝑖 ⟧𝑘′′′ (∀𝑖 ∈ [𝑛]) (46)

By (25), (37), (42) we have 𝜂1 = ⟨𝛽𝑖 ↦→ 𝜏′′′
𝑖

𝑞⟩. By (36) and (41) we have 𝜂2 =

⟨𝛼𝑖 ↦→ 𝜏′
𝑖

𝑝⟩. Thus,

𝜂𝜂1𝜎𝑖
(37)
= 𝜂𝜂1𝜂2𝜎

′
𝑖

(43)
= 𝜂3𝜎

′
𝑖

For the last equation, note that ftv(𝜎′
𝑖
) ⊆ {𝛼, 𝛽} by assumption 5.2.1 and (35),

(41), (42). Hence, with (34), Lemma A.3.9, and Lemma A.3.3, it suffices to
show that 𝑘 ′′′ ≤ 𝑘 − 𝑘𝑖 . But this follows from construction of 𝑘 ′′′ in (39).

Now (44), (45), and (46) are the left-hand side of the implication of rule
EQUIV-METHOD-DECL, which we get from (38). The right-hand side of the implication
then yields

⟨𝑥 ↦→ 𝑢, 𝑥𝑖 ↦→ 𝑣𝑖
𝑛⟩︸                                     ︷︷                                     ︸

=:𝜃 ′

𝜂3𝑔
′ ≈ 𝑋𝑚,𝑡𝑆 (𝜌𝑊,𝑈,𝜌𝑊

′,(𝑉)) ∈ ⟦𝜂3𝜎
′⟧𝑘′′′ (47)

From (33) we have 𝑢 = 𝑡𝑆 [𝜂𝜙] by inverting rule EQUIV-STRUCT. Hence by (35), (43),
and rule FG-CALL

𝑢.𝑚 [𝜂𝜓] (𝑣) −→ 𝜃′𝜂3𝑔
′ (48)

Also we have

𝜂𝜏
(27)
= 𝜂𝜂1𝜎

(37)
= 𝜂𝜂1𝜂2𝜎

′ = 𝜂3𝜎
′

where the last equation follows from (25), (37), (42), (36), (41) and ftv(𝜎′) ⊆ {𝛼, 𝛽}
with assumption 5.2.1. Thus, with (47), (48), and Lemma 5.2.3

𝑢.𝑚 [𝜂𝜓] (𝑣) ≈ 𝑋𝑚,𝑡𝑆 (𝜌𝑊,𝑈,𝜌𝑊
′,(𝑉)) ∈ ⟦𝜂𝜏⟧𝑘′′′+1 (49)

By definition of 𝐸 in (27) and with (33) and (34) we have

𝜌𝐸 −→∗ 𝜇(𝑋𝑚,𝑡𝑆 ) (𝜌𝑊,𝑈,𝜌𝑊 ′,(𝑉)) (50)

Also, we have by rules TL-CONTEXT and TL-METHOD

𝑋𝑚,𝑡𝑆 (𝜌𝑊,𝑈,𝜌𝑊
′,(𝑉)) −→ 𝜇(𝑋𝑚,𝑡𝑆 ) (𝜌𝑊,𝑈,𝜌𝑊 ′,(𝑉)) (51)

So far, we proved everything under the assumptions (30), (31), (32). We next
consider the two implications of rule EQUIV-EXP.

(a) Assume 𝑒′ = 𝑣 for some value 𝑣. Our goal is to prove that there exists some
value𝑉 such that 𝜌𝐸 −→∗ 𝑉 and 𝑣 ≡𝑉 ∈ ⟦𝜂𝜏⟧𝑘−𝑘′ . Noting that (30), (31), (32)
hold, we have together with (48)

𝜃𝜂𝑒 −→𝑘′′+Σ𝑘𝑖 𝑢.𝑚 [𝜂𝜓] (𝑣) −→𝑘′−𝑘′′−Σ𝑘𝑖 𝑣 (52)
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with 𝑘 ′′ + Σ𝑘𝑖 < 𝑘
′. We have 𝑘 ′ − 𝑘 ′′ − Σ𝑘𝑖 < 𝑘

′′′ + 1 by (40). Hence with (49)
and (52) we know that there exists some value 𝑉 with

𝑋𝑚,𝑡𝑆 (𝜌𝑊,𝑈,𝜌𝑊
′,(𝑉)) −→∗ 𝑉 (53)

𝑣 ≡𝑉 ∈ ⟦𝜂𝜏⟧𝑘′′′+1−𝑘′+𝑘′′+Σ𝑘𝑖 (54)

We have 𝑘 − 𝑘 ′ ≤ 𝑘 ′′′ + 1 − 𝑘 ′ + 𝑘 ′′ + Σ𝑘𝑖 by the following reasoning:

𝑘 ′′′ + 1 − 𝑘 ′ + 𝑘 ′′ + Σ𝑘𝑖
(39)
= 𝑚𝑖𝑛(𝑘 − 𝑘 ′′, 𝑘 − Σ𝑘𝑖) − 𝑘 ′ + 𝑘 ′′ + Σ𝑘𝑖

= 𝑘 −𝑚𝑎𝑥(𝑘 ′′, Σ𝑘𝑖) − 𝑘 ′ + 𝑘 ′′ + Σ𝑘𝑖

≥ 𝑘 − 𝑘 ′′ − Σ𝑘𝑖 − 𝑘 ′ + 𝑘 ′′ + Σ𝑘𝑖

= 𝑘 − 𝑘 ′

With (54) and Lemma A.3.3 then 𝑣 ≡𝑉 ∈ ⟦𝜂𝜏⟧𝑘−𝑘′ . And from (50), (51), (53),
and Lemma A.1.2 we have that 𝜌𝐸 −→∗ 𝑉 .

(b) Assume diverge(𝑒′). We then have to show diverge(𝜌𝐸).
Case distinction whether receiver, argument or method call diverges.

– Case receiver diverges: Then 𝜃𝜂𝑔 −→𝑘′ 𝑔′′ and diverge(𝑔′′). With (28)
and 𝑘 ′ < 𝑘 then diverge(𝜌𝐺), so by the definition of 𝐸 in (27) we get
diverge(𝜌𝐸).

– Case 𝑗-th argument diverges: Then 𝜃𝜂𝑔 −→𝑘′′ 𝑢 and 𝜃𝜂𝑒𝑖 −→𝑘𝑖 𝑣𝑖 for all
𝑖 < 𝑗 and 𝜃𝜂𝑒 𝑗 −→𝑘 𝑗 𝑒′′ and diverge(𝑒′′). With (29) and 𝑘 𝑗 ≤ 𝑘 ′ < 𝑘 we
get diverge(𝜌𝐸 𝑗 ). By definition of 𝐸 in (27) then diverge(𝜌𝐸).

– Case method call diverges: Then we are in the situation that (30), (31),
and (32) hold. We then have

𝑢.𝑚 [𝜂𝜓] (𝑣𝑛) −→𝑘′−𝑘′′−Σ𝑘𝑖 𝑒′

Hence, with (40), (49), and the second implication in the premise of rule
EQUIV-EXP, we have that diverge(𝑋𝑚,𝑡𝑆 (𝜌𝑊,𝑈,𝜌𝑊

′,(𝑉))). With (50) and
(51) and Lemma A.1.2 then also diverge(𝜌𝐸) as required.

End case distinction.
This finishes the proof for rule CALL-STRUCT.

• Case CALL-IFACE:

⟨Δ, Γ⟩ ⊢exp 𝑔 : 𝜏𝐼 { 𝐺 (55)
methods(𝜏𝐼 ) = 𝑅

𝑞
(56)

𝑅 𝑗 =𝑚 [Ψ] (𝑥 𝜎𝑛)𝜎 (for some 𝑗 ∈ [𝑞]) (57)
Δ ⊢subst Ψ ↦→ 𝜓 : 𝜂1{ 𝑉 (58)

⟨Δ, Γ⟩ ⊢exp 𝑒𝑖 : 𝜂1𝜎𝑖 { 𝐸𝑖 (∀ 𝑖 ∈ [𝑛]) (59)
𝑌, 𝑋

𝑞
fresh

⟨Δ, Γ⟩ ⊢exp 𝑔.𝑚 [𝜓] (𝑒𝑛)︸                      ︷︷                      ︸
=𝑒

: 𝜂1𝜎︸  ︷︷  ︸
=𝜏

{ 𝐸 (60)

with

𝐸 = case 𝐺 of (𝑌,(𝑋
𝑞
))→ 𝑋 𝑗 (𝑌,𝑉,(𝐸

𝑛
)) (61)
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From the IH applied to (55), (59)

𝜃𝜂𝑔 ≈ 𝜌𝐺 ∈ ⟦𝜂𝜏𝐼⟧𝑘 (62)

𝜃𝜂𝑒𝑖 ≈ 𝜌𝐸𝑖 ∈ ⟦𝜂𝜂1𝜎𝑖⟧𝑘 (∀𝑖 ∈ [𝑛]) (63)

Assume 𝜃𝜂𝑒 −→𝑘′ 𝑒′ for some 𝑘 ′ < 𝑘 . We first consider the following situation for
some values 𝑢, 𝑣𝑛:

𝜃𝜂𝑔 −→𝑘′′ 𝑢 (64)

𝜃𝜂𝑒𝑖 −→𝑘𝑖 𝑣𝑖 (65)

𝜃𝜂𝑒 −→𝑘′′+Σ𝑘𝑖 𝑢.𝑚 [𝜂𝜓] (𝑣𝑛) −→𝑘′−𝑘′′−Σ𝑘𝑖 𝑒′ (66)

with 𝑘 ′′ + Σ𝑘𝑖 ≤ 𝑘 ′. (64), (65), and (66) are intermediate assumptions, which become
true when we later prove the two implications of rule EQUIV-EXP.
We have from (62), (63), (64), and (65)

𝜌𝐺 −→∗𝑈 for some𝑈 with 𝑢 ≡𝑈 ∈ ⟦𝜂𝜏𝐼⟧𝑘−𝑘′′ (67)

(∀𝑖 ∈ [𝑛]) 𝜌𝐸𝑖 −→∗ 𝑉𝑖 for some 𝑉𝑖 with 𝑣𝑖 ≡𝑉𝑖 ∈ ⟦𝜂𝜂1𝜎𝑖⟧𝑘−𝑘𝑖 (68)

From (67) and (56) we get by inverting rule EQUIV-IFACE

∃𝜎𝑆 = 𝑡𝑆 [𝜙] (69)

𝑈 = (𝑈′,(𝑈
𝑞
)) (70)

∀ℓ1 < 𝑘 − 𝑘 ′′ . 𝑢 ≡𝑈′ ∈ ⟦𝜎𝑆⟧ℓ1 (71)

∀ℓ2 < 𝑘 − 𝑘 ′′ .methodLookup(𝑚 𝑗 , 𝜎𝑆) ≈𝑈 𝑗 ∈ ⟦𝜂𝑅 𝑗⟧ℓ2 (72)

Hence we have by (69), (72), (57), and rule METHOD-LOOKUP

func (𝑥 𝑡𝑆 [Φ]) 𝑚 [Ψ′] (𝑥 𝜎′𝑛) 𝜎′︸                                    ︷︷                                    ︸
=:𝑅′

{return 𝑒′′} ∈ 𝐷 (73)

Φ ↦→ 𝜙 : 𝜂2 (74)

methodLookup(𝑚 𝑗 , 𝜎𝑆) = ⟨𝑥, 𝑡𝑆 [𝜙], 𝜂2𝑅
′, 𝜂2𝑒

′′⟩ (75)

𝜂2𝑅
′ = 𝜂𝑅 𝑗 = 𝜂(𝑚 [Ψ] (𝑥𝑖 𝜎𝑖𝑛) 𝜎) (76)

Then by (72) and (75)

⟨𝑥, 𝑡𝑆 [𝜙], 𝜂2𝑅
′, 𝜂2𝑒

′′⟩ ≈𝑈 𝑗 ∈ ⟦𝜂𝑅 𝑗⟧𝑘−𝑘′′−1 (77)

Define 𝑘 ′′′ :=min(𝑘 − 𝑘 ′′ − 1, 𝑘 − Σ𝑘𝑖 − 1). Then

𝑘 ′′′ ≤ 𝑘 − 𝑘 ′′ − 1 (78)

𝑘 ′′′ < 𝑘 (79)

𝑘 ′′′ < 𝑘 − 𝑘 ′′ (80)

𝑘 ′′′ < 𝑘 − 𝑘𝑖 (∀𝑖 ∈ [𝑛]) (81)

𝑘 ′ − 𝑘 ′′ − Σ𝑘𝑖 < 𝑘
′′′ + 1 (82)
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The first four of these claims are straightforward to verify. The last can be shown
with the following reasoning:

𝑘 ′′′ + 1 = 𝑘 −max(𝑘 ′′ + 1, Σ𝑘𝑖 + 1) + 1
> 𝑘 − (𝑘 ′′ + 1 + Σ𝑘𝑖 + 1) + 1
= 𝑘 − 1 − 𝑘 ′′ − Σ𝑘𝑖

𝑘′<𝑘
≥ 𝑘 ′ − 𝑘 ′′ − Σ𝑘𝑖

From (77) we get the implication in the premise of rule EQUIV-METHOD-DICT-ENTRY. We
now show that the left-hand side of the implication holds. The universally quanti-
fied variables of the rule’s premise are instantiated as follows: 𝑘 ′ = 𝑘 ′′′, 𝜙 = 𝜂𝜓,𝑊 =

𝜌𝑉, 𝑣 = 𝑢, 𝑉 =𝑈′, 𝑣𝑛 = 𝑣𝑛, 𝑉
𝑛
=𝑉

𝑛
. The variables in the conclusion are instanti-

ated as follows: 𝑥 = 𝑥, 𝜏𝑆 = 𝑡𝑆 [𝜙], 𝑚 [Φ] (𝑥𝑖 𝜏𝑖𝑛) 𝜏 = 𝜂2𝑅
′, 𝑒 = 𝜂2𝑒

′′. The requirement
𝑘 ′′′ ≤ 𝑘 − 𝑘 ′′ − 1 follows from (78).
We have from (58) and (76) the first conjunct:

𝜂Ψ ↦→ 𝜂𝜓 : ⟨𝛼 ↦→ 𝜂𝜏⟩︸                ︷︷                ︸
=𝜂4

(assuming 𝜂1 = ⟨𝛼 ↦→ 𝜏⟩, Ψ̂ = 𝛼, 𝜓 = 𝜏) (83)

From (58) we get the second conjunct by Lemma A.3.15, (79), by the assumptions
𝐷 ≈𝑘 𝜇 and 𝜂 ≈ 𝜌 ∈ ⟦Δ⟧𝑘 , and by Lemma A.3.5:

𝜂𝜓 ≈ 𝜌𝑉 ∈ ⟦𝜂Ψ⟧𝑘′′′

With (80), (71), (69), and Lemma A.3.9 we get the third conjunct:

𝑢 ≈𝑈′ ∈ ⟦𝑡𝑆 [𝜙]⟧𝑘′′′

With (81), (68), Lemma A.3.9, and Lemma A.3.3 we have

𝑣𝑖 ≈𝑉𝑖 ∈ ⟦𝜂𝜂1𝜎𝑖⟧𝑘′′′ (∀𝑖 ∈ [𝑛]) (84)

We next prove

𝜂𝜂1𝜎𝑖 = 𝜂4𝜂𝜎𝑖 (∀𝑖 ∈ [𝑛]) (85)

𝜂𝜂1𝜎 = 𝜂4𝜂𝜎 (86)

by induction on 𝜎𝑖 or 𝜎. The interesting case is where 𝜎𝑖 or 𝜎 is a type variable
𝛼 ∈ dom(𝜂1) ∪ dom(𝜂). As the 𝛼 = dom(𝜂1) = dom(𝜂4) are bound in Ψ (see (83)),
we may assume that 𝛼 ∩ dom(𝜂) = ∅ = 𝛼 ∩ ftv(𝜂). If 𝛼 ∈ dom(𝜂1) then

𝜂𝜂1𝛼
(83)
= 𝜂4𝛼

dom(𝜂1 )∩dom(𝜂)=∅
= 𝜂4𝜂𝛼

If 𝛼 ∈ dom(𝜂) then

𝜂𝜂1𝛼
dom(𝜂)∩dom(𝜂1 )=∅

= 𝜂𝛼
dom(𝜂1 )∩ftv(𝜂)=∅

= 𝜂4𝜂𝛼

We now get with (76) and (85) that 𝜂𝜂1𝜎𝑖 = 𝜂4𝜂2𝜎
′
𝑖
. Hence with (84) the fourth

conjunct:

(∀𝑖 ∈ [𝑛]) 𝑣𝑖 ≈𝑉𝑖 ∈ ⟦𝜂4𝜂2𝜎
′
𝑖 ⟧𝑘′′′
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Now the right-hand side of the implication of rule EQUIV-METHOD-DICT-ENTRY yields
with (77)

⟨𝑥 ↦→ 𝑢, 𝑥𝑖 ↦→ 𝑣𝑖
𝑛⟩𝜂4𝜂2𝑒

′′ ≈𝑈 𝑗 (𝑈
′,𝜌𝑉,(𝑉

𝑛
)) ∈ ⟦𝜂4𝜂2𝜎

′⟧𝑘′′′ (87)

Define 𝜂3 such that

Φ,Ψ′ ↦→ 𝜙, 𝜂𝜓 : 𝜂3 (88)

Then with (74) and (83)

𝜂4𝜂2𝑒
′′ = 𝜂3𝑒

′′ (89)

by induction on 𝑒′′. The interesting case is the one for a type variable 𝛼. By assump-
tion 5.2.1 and (73), we know that 𝛼 ∈ Φ̂∪ Ψ̂′. Further we may assume that the type
variables Ψ̂′ are fresh, and we have dom(𝜂2) = Φ̂ by (74) and dom(𝜂4) = Ψ̂′ by (83).
Thus, if 𝛼 ∈ Φ̂ then 𝜂4𝜂2𝛼 = 𝜂2𝛼 because Ψ̂′ fresh, and 𝜂3𝛼 = 𝜂2𝛼 by (74) and (88).
If 𝛼 ∈ Ψ̂′ then 𝜂4𝜂2𝛼 = 𝜂4𝛼 because Ψ̂′ fresh, and 𝜂3𝛼 = 𝜂4𝛼 by (88) and (83).
With (86) and (76) 𝜂4𝜂2𝜎

′ = 𝜂𝜂1𝜎. Hence we have with (89), (87)

⟨𝑥 ↦→ 𝑢, 𝑥𝑖 ↦→ 𝑣𝑖
𝑛⟩𝜂3𝑒

′′ ≈𝑈 𝑗 (𝑈
′,𝜌𝑉,(𝑉

𝑛
)) ∈ ⟦𝜂𝜂1𝜎⟧𝑘′′′ (90)

From (69) and (71) we get by inverting rule EQUIV-STRUCT that 𝑢 = 𝑡𝑆 [𝜙]{. . .}. Hence
by rule FG-CALL with (73) and (88)

𝑢.𝑚 [𝜂𝜓] (𝑣𝑛) −→ ⟨𝑥 ↦→ 𝑢, 𝑥𝑖 ↦→ 𝑣𝑖
𝑛⟩𝜂3𝑒

′′

Then with (90) and Lemma 5.2.3

𝑢.𝑚 [𝜂𝜓] (𝑣𝑛) ≈𝑈 𝑗 (𝑈
′,𝜌𝑉,(𝑉

𝑛
)) ∈ ⟦𝜂𝜂1𝜎⟧𝑘′′′+1 (91)

We also have

𝜌𝐸
(67),(61)
−→∗ case𝑈 of (𝑌,(𝑋

𝑞
))→ 𝑋 𝑗 (𝑌,𝑉,(𝐸

𝑛
))

(70)−→𝑈 𝑗 (𝑈
′,𝜌𝑉,𝜌(𝐸

𝑛
))

(68)
−→∗𝑈 𝑗 (𝑈

′,𝜌𝑉,(𝑉
𝑛
)) (92)

So far, we proved everything under the assumptions (64), (65), (66). We next
consider the two implications of rule EQUIV-EXP.

(a) Assume 𝑒′ = 𝑣 for some value 𝑣. Then (64), (65), and (66) hold. We now need
to show that there exists some 𝑊 with 𝜌𝐸 −→∗𝑊 and 𝑣 ≡𝑊 ∈ ⟦𝜂𝜏⟧𝑘−𝑘′ . We
have 𝑘 ′ − 𝑘 ′′ − Σ𝑘𝑖 < 𝑘

′′′ + 1 by (82) Also, we have with (66) that

𝑢.𝑚 [𝜂𝜓] (𝑣𝑛) −→𝑘′−𝑘′′−Σ𝑘𝑖 𝑣

Hence, (91) gives us the existence of some𝑊 such that

𝑈 𝑗 (𝑈
′,𝜌𝑉,(𝑉

𝑛
)) −→∗𝑊 (93)

𝑣 ≈𝑊 ∈ ⟦𝜂𝜂1𝜎⟧𝑘′′′+1−(𝑘′−𝑘′′−Σ𝑘𝑖 )
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We get 𝑘 − 𝑘 ′ ≤ 𝑘 ′′′ + 1 − (𝑘 ′ − 𝑘 ′′ − Σ𝑘𝑖) by

𝑘 ′′′ + 1 − (𝑘 ′ − 𝑘 ′′ − Σ𝑘𝑖)
= 𝑘 −𝑚𝑎𝑥(𝑘 ′′ + 1, Σ𝑘𝑖 + 1) + 1 − 𝑘 ′ + 𝑘 ′′ + Σ𝑘𝑖

= 𝑘 −𝑚𝑎𝑥(𝑘 ′′, Σ𝑘𝑖) − 𝑘 ′ + 𝑘 ′′ + Σ𝑘𝑖

≥ 𝑘 − (𝑘 ′′ + Σ𝑘𝑖) − 𝑘 ′ + (𝑘 ′′ + Σ𝑘𝑖)
= 𝑘 − 𝑘 ′

Hence by Lemma A.3.3

𝑣 ≈𝑊 ∈ ⟦𝜂𝜂1𝜎⟧𝑘−𝑘′

By (60) 𝜂1𝜎 = 𝜏 so 𝑣 ≈𝑊 ∈ ⟦𝜂𝜏⟧𝑘−𝑘′ and with (92) and (93) 𝜌𝐸 −→∗𝑊 .
(b) Assume diverge(𝑒′). We then have to show diverge(𝜌𝐸).

Case distinction whether receiver, argument or method call diverges.
– Case receiver diverges: Then 𝜃𝜂𝑔 −→𝑘′ 𝑔′ and diverge(𝑔′). With (62)

and 𝑘 ′ < 𝑘 then diverge(𝜌𝐺), so by the definition of 𝐸 in (61) we get
diverge(𝜌𝐸).

– Case 𝑗-th argument diverges: Then 𝜃𝜂𝑔 −→𝑘′′ 𝑢. By (62) and rule
EQUIV-IFACE we know that𝑈 = (𝑈′,𝑈

𝑞
) for some𝑈′, 𝑈

𝑞
. Hence

𝜌𝐸 −→∗𝑈 𝑗 (𝑈
′,𝜌𝑉,𝜌(𝐸

𝑛
)) (94)

Because the 𝑗-th argument diverges, we also have 𝜃𝜂𝑒𝑖 −→𝑘𝑖 𝑣𝑖 for all
𝑖 < 𝑗 and 𝜃𝜂𝑒 𝑗 −→𝑘 𝑗 𝑒′′ and diverge(𝑒′′). With (63) we get diverge(𝜌𝐸 𝑗 ),
so with (94) also diverge(𝜌𝐸).

– Case method call diverges: Then we are in the situation that (64), (65),
and (66) hold. Thus, we get with (66), (91), (82)

𝑢.𝑚 [𝜂𝜓] (𝑣𝑛) −→𝑘′−𝑘′′−Σ𝑘𝑖 𝑒′

𝑢.𝑚 [𝜂𝜓] (𝑣𝑛) ≈𝑈 𝑗 (𝑈
′,𝜌𝑉,(𝑉

𝑛
)) ∈ ⟦𝜂𝜂1𝜎⟧𝑘′′′+1

𝑘 ′ − 𝑘 ′′ − Σ𝑘𝑖 < 𝑘
′′′ + 1

Hence diverge(𝑈 𝑗 (𝑈
′,𝜌𝑉,(𝑉

𝑛
))) by the implication in the premise of

rule EQUIV-EXP. So by (92) also diverge(𝜌𝐸) as required.
End case distinction.

• Case SUB:
SUB

⟨Δ, Γ⟩ ⊢exp 𝑒 : 𝜎{ 𝐸 ′ Δ ⊢coerce 𝜎 <: 𝜏{ 𝑉

⟨Δ, Γ⟩ ⊢exp 𝑒 : 𝜏{ 𝑉 𝐸 ′︸    ︷︷    ︸
=𝐸

From the IH then 𝜃𝜂𝑒 ≈ 𝜌𝐸 ′ ∈ ⟦𝜂𝜎⟧𝑘 . From Lemma A.3.13 we get 𝜃𝜂𝑒 ≈
(𝜌𝑉) 𝜌𝐸 ′ ∈ ⟦𝜂𝜏⟧𝑘 with 𝜌𝐸 = (𝜌𝑉) (𝜌𝐸 ′) as required.

End case distinction on the last rule in the derivation of ⟨Δ, Γ⟩ ⊢exp 𝑒 : 𝜏{ 𝐸 . ■

A.3.2.2 Proof of Lemma 5.2.5. We proceed by induction on 𝑘 . For 𝑘 = 0, we
first note that 𝑒 ≈ 𝐸 ∈ ⟦𝜏⟧0 holds for any 𝑒, 𝐸, 𝜏 because the two implications in
the premise of rule EQUIV-EXP hold trivially. Thus, we get 𝐷 ≈0 𝑋𝑚,𝑡𝑆 for all 𝐷 =
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func (𝑥 𝑡𝑆 [Φ]) 𝑚𝑀 {return 𝑒} ∈ 𝐷 by rule EQUIV-METHOD-DECL. Hence 𝐷 ≈0 𝜇 by rule
EQUIV-DECLS.

Now assume 𝐷 ≈𝑘 𝜇 (IH) for some 𝑘 and prove 𝐷 ≈𝑘+1 𝜇. By rule EQUIV-DECLS, we need
to show 𝐷 ≈𝑘+1 𝑋𝑚,𝑡𝑆 for all

𝐷 = func (𝑥 𝑡𝑆 [Φ]) 𝑚 [Φ′] (𝑥 𝜏𝑛) 𝜏 {return 𝑒} ∈ 𝐷 (95)

Thus, we assume the left-hand side of the implication in the premise of rule
EQUIV-METHOD-DECL and then show the right-hand side of the implication. More specifically,
let

Φ= 𝛼𝑖 𝜎𝑖
𝑝 Φ′ = 𝛽𝑖 𝜎′

𝑖

𝑞
Ψ =Φ,Φ′ = 𝛼𝑖 𝜎𝑖

𝑝 𝛽𝑖 𝜎
′
𝑖

𝑞

and assume for arbitrary 𝑘 ′ < 𝑘 + 1, 𝜙 = 𝜎′′ 𝑝 , 𝜙′ = 𝜎′′′𝑞 , 𝑊
𝑝
, 𝑊 ′𝑞 , 𝑢, 𝑈, 𝑣𝑛, 𝑉

𝑛
the left-

hand side of the implication:

Ψ ↦→ 𝜙, 𝜙′ : 𝜂 with 𝜂 = ⟨𝛼𝑖 ↦→ 𝜎′′
𝑖

𝑝
𝛽𝑖 ↦→ 𝜎′′′

𝑖

𝑞⟩ (96)

𝜙, 𝜙′ ≈ (𝑊
𝑝
,𝑊 ′𝑞) ∈ ⟦Ψ⟧𝑘′ (97)

𝑢 ≈𝑈 ∈ ⟦𝑡𝑆 [𝜂𝛼𝑝]⟧𝑘′ (98)

𝑣𝑖 ≈𝑉𝑖 ∈ ⟦𝜂𝜏𝑖⟧𝑘′ (∀𝑖 ∈ [𝑛]) (99)

From this we need to prove the following goal:

⟨𝑥 ↦→ 𝑢, 𝑥𝑖 ↦→ 𝑣𝑖
𝑛⟩︸                                     ︷︷                                     ︸

=:𝜃

𝜂𝑒 ≈ 𝑋𝑚,𝑡𝑆 ((𝑊
𝑝
),𝑈,(𝑊 ′𝑞),(𝑉

𝑛
)) ∈ ⟦𝜂𝜏⟧𝑘′ (100)

Define

𝜌 = ⟨𝑋𝛼𝑖
↦→𝑊𝑖

𝑝
, 𝑋𝛽𝑖 ↦→𝑊 ′

𝑖

𝑞
, 𝑋 ↦→𝑈, 𝑋𝑖 ↦→𝑉𝑖

𝑛⟩ (101)

Δ = {𝛼𝑖 : 𝜎𝑖 𝑝 , 𝛽𝑖 : 𝜎′
𝑖

𝑞}
Γ = {𝑥 : 𝑡𝑆 [𝛼𝑝], 𝑥𝑖 : 𝜏𝑖𝑛}

Then with (96), (97), and rule EQUIV-TY-SUBST

𝜂 ≈ 𝜌 ∈ ⟦Δ⟧𝑘′ (102)

And with (98), (99), the definition of 𝜃 in (100), and rule EQUIV-VAL-SUBST

𝜃 ≈ 𝜌 ∈ ⟦𝜂Γ⟧𝑘′ (103)

From the assumption ⊢meth 𝐷{ 𝑋𝑚,𝑡𝑆 =𝑉 we get by inverting rule METHOD

⟨Δ, Γ⟩ ⊢exp 𝑒 : 𝜏{ 𝐸 (104)

𝑉 = 𝜆((𝑋𝛼𝑖

𝑝
),𝑋,(𝑋𝛽𝑖

𝑞
),(𝑋

𝑛
)).𝐸 (105)

With 𝑘 ′ < 𝑘 + 1 we have 𝑘 ′ ≤ 𝑘 . With the IH and Lemma A.3.7 then

𝐷 ≈𝑘′ 𝜇 (106)

(106), (102), (103) and (104) are the requirements of Lemma 5.2.4. The lemma then yields

𝜃𝜂𝑒 ≈ 𝜌𝐸 ∈ ⟦𝜂𝜏⟧𝑘′ (107)
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We also have

𝑋𝑚,𝑡𝑆 ((𝑊
𝑝
),𝑈,(𝑊 ′𝑞),(𝑉

𝑛
)) −→𝑉 ((𝑊

𝑝
),𝑈,(𝑊 ′𝑞),(𝑉

𝑛
)) −→∗ 𝜌𝐸

where the first reduction follows from assumption 𝜇(𝑋𝑚,𝑡𝑆 ) =𝑉 and rule TL-METHOD, the
remaining steps by (105) and (101). With (107) and Lemma 5.2.2 we then get (100) as
required. ■

A.3.2.3 Proof of Theorem 5.2.6. We first prove that the assumptions of the theorem imply
𝑒 ≈ 𝐸 ∈ ⟦𝜏⟧𝑘 for any 𝑘 . 𝐷 and 𝜇 are the declarations and the substitution whose existence
we assumed globally. Obviously, they meet the requirements of Assumption 5.2.1.

Assume 𝑘 ∈N. From Lemma 5.2.5 we get 𝐷 ≈𝑘 𝜇. By the assumption ⊢prog

𝐷 func main(){ = 𝑒}{ let 𝑋𝑖 =𝑉𝑖 in 𝐸 , by inverting rule PROG, and by the assumption
that 𝑒 has type 𝜏, we find ⟨∅, ∅⟩ ⊢exp 𝑒 : 𝜏{ 𝐸 . Lemma 5.2.4 then yields 𝑒 ≈ 𝐸 ∈ ⟦𝜏⟧𝑘 as
required.

From 𝑒 ≈ 𝐸 ∈ ⟦𝜏⟧𝑘 for any 𝑘 and the two implications in the premise of rule EQUIV-EXP,
we then get the two claims needed to show. ■

A.3.3 Equivalence Between Different Translations

Lemma A.3.17. If 𝑣 ≡ (𝑉) ∈ ⟦𝜏⟧𝑘 then none of the 𝑉𝑖 is a lambda.

Proof.
Case distinction on the last rule in the derivation of 𝑣 ≡ (𝑉) ∈ ⟦𝜏⟧𝑘 .

• Case rule EQUIV-STRUCT: Then we know that 𝑣 = 𝜏𝑆{𝑣} and 𝜏 = 𝜏𝑆 and for all 𝑖 exists
some 𝜎𝑖 with 𝑣𝑖 ≡𝑉𝑖 ∈ ⟦𝜎𝑖⟧𝑘 . But then obviously 𝑉𝑖 cannot be a lambda.

• Case rule EQUIV-IFACE: Obvious.
End case distinction. ■

Lemma A.3.18. If 𝑣 ≡ (𝑈,(𝑊)) ∈ ⟦𝜏𝐼⟧𝑘 with 𝑘 > 0, then all𝑊𝑖 are lambdas.

Proof. The derivation of 𝑣 ≡ (𝑈,(𝑊)) ∈ ⟦𝜏𝐼⟧𝑘 ends with rule EQUIV-IFACE. The premise
of the rule gives us for each𝑊𝑖

methodLookup(methodName(𝑅𝑖), 𝜎𝑆) ≈𝑊𝑖 ∈ ⟦𝑅𝑖⟧𝑘2 (1)

for some method signature 𝑅𝑖 , struct type 𝜎𝑆 and all 𝑘2 < 𝑘 . As 𝑘 > 0 we know
that (1) holds for at least one 𝑘2. Further, the derivation of (1) ends with rule
EQUIV-METHOD-DICT-ENTRY and this rule requires that𝑊𝑖 is a lambda. ■

Lemma A.3.19. If 𝑣 ≡𝑉 ∈ ⟦𝑡𝐼 [𝜏]⟧𝑘 for all 𝑘 ∈N, then 𝑉 = (𝑈,(𝑊
𝑛
)) where 𝑛 is the

number of methods defined by 𝑡𝐼 , 𝑣 = 𝜏𝑆{𝑣}, and 𝑣 ≡𝑈 ∈ ⟦𝜏𝑆⟧𝑘 for all 𝑘 ∈N.

Proof. The derivation of 𝑣 ≡𝑉 ∈ ⟦𝑡𝐼 [𝜏]⟧𝑘 ends with rule EQUIV-IFACE for any 𝑘 ∈N. Also
for all 𝑘 ∈N, the conclusion of this rule requires 𝑉 = (𝑈,(𝑊

𝑛
)), the premise of this rule

states that interface 𝑡𝐼 has 𝑛 methods and further gives us

∃𝜎𝑠 .∀𝑘1 < 𝑘.𝑣 ≡𝑈 ∈ ⟦𝜎𝑆⟧𝑘1 (1)
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Obviously, 𝑣 ≡𝑈 ∈ ⟦𝜎𝑆⟧𝑘1 ends with rule EQUIV-STRUCT. Because value 𝑣 must have the
form 𝑣 = 𝜏𝑆{𝑣}, we then know that the existentially quantified 𝜎𝑆 is the same as 𝜏𝑆 .
Because (1) holds for any 𝑘 ∈N, we then get 𝑣 ≡𝑈 ∈ ⟦𝜏𝑆⟧𝑘 for all 𝑘 ∈N as required. ■

Lemma A.3.20. If 𝑣 ≡𝑉 ∈ ⟦𝜏⟧𝑘 and 𝑣 ≡𝑉 ′ ∈ ⟦𝜏⟧𝑘 for any 𝑘 ∈N, then erase(𝑉) =
erase(𝑉 ′).

Proof. Define a measure function

M(𝑣, 𝜏) =


( |𝑣 |, 0) if 𝜏 is a struct type

( |𝑣 |, 1) if 𝜏 is an interface type

( |𝑣 |, 2) if 𝜏 is a type variable

and proceed by induction on M(𝑣, 𝜏). We first note that the derivations of 𝑣 ≡𝑉 ∈ ⟦𝜏⟧𝑘 all
end with the same rule, independent from 𝑘 ∈N.
Case distinction on the last rule in the derivations of 𝑣 ≡𝑉 ∈ ⟦𝜏⟧𝑘 .

• Case rule EQUIV-STRUCT: Then 𝜏 is a struct type, so the derivations of 𝑣 ≡𝑉 ′ ∈ ⟦𝜏⟧𝑘
also all end with EQUIV-STRUCT. Thus we have

𝑣 = 𝑡𝑆 [𝜏]{𝑣𝑛}
𝑉 = (𝑉

𝑛
)

𝑉 ′ = (𝑉 ′𝑛)

type 𝑡𝑆 [𝛼 𝜏𝐼 ] struct { 𝑓 𝜎𝑛} ∈ 𝐷
𝜂 = ⟨𝛼 ↦→ 𝜏⟩

(∀𝑖 ∈ [𝑛]) 𝑣𝑖 ≡𝑉𝑖 ∈ ⟦𝜂𝜎𝑖⟧𝑘 (1)

(∀𝑖 ∈ [𝑛]) 𝑣𝑖 ≡𝑉 ′
𝑖 ∈ ⟦𝜂𝜎𝑖⟧𝑘 (2)

As this holds for any 𝑘 ∈N and we have M(𝑣𝑖 , 𝜂𝜎𝑖) <M(𝑣, 𝜏), we may apply
the IH to (1) and (2) and get erase(𝑉𝑖) = erase(𝑉 ′

𝑖
) for all 𝑖 ∈ [𝑛]. Then erase(𝑉) =

erase(𝑉 ′) follows by definition of erase.
• Case rule EQUIV-IFACE: Then 𝜏 is interface type. With Lemma A.3.19 then for some
𝜎𝑆 and 𝑛

𝑉 = (𝑈,(𝑊
𝑛
))

𝑉 ′ = (𝑈′,(𝑊 ′𝑛))

(∀𝑘 ∈N).𝑣 ≡𝑈 ∈ ⟦𝜎𝑆⟧𝑘 (3)

(∀𝑘 ∈N).𝑣 ≡𝑈′ ∈ ⟦𝜎𝑆⟧𝑘 (4)

Noting that M(𝑣, 𝜎𝑆) <M(𝑣, 𝜏), we apply the IH to (3) and (4) and get erase(𝑈) =
erase(𝑈′). With Lemma A.3.18 applied to assumptions (∀𝑘 ∈N).𝑣 ≡𝑉 ∈ ⟦𝜏⟧𝑘 and
(∀𝑘 ∈N).𝑣 ≡𝑉 ′ ∈ ⟦𝜏⟧𝑘 , we know that all𝑊𝑖 , 𝑊

′
𝑖

are lambdas. Thus by definition of
erase

erase(𝑉) = (erase(𝑈),(K𝜆

𝑛
)) = erase(𝑉 ′)

End case distinction. ■
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Lemma A.3.21. If 𝑣 ≡𝑉 ∈ ⟦𝜏⟧𝑘 and 𝑣 ≡𝑉 ′ ∈ ⟦𝜏′⟧𝑘 for any 𝑘 ∈N, then erase(𝜏, 𝑉) =
erase(𝜏′, 𝑉 ′).

Proof. We label the assumptions:

(∀𝑘 ∈N).𝑣 ≡𝑉 ∈ ⟦𝜏⟧𝑘 (1)

(∀𝑘 ∈N).𝑣 ≡𝑉 ′ ∈ ⟦𝜏′⟧𝑘 (2)

We then perform a case distinction on the form of 𝜏 and 𝜏′. Note that neither of them can
be a type variable, otherwise (1) and (2) would not be derivable.
Case distinction on the forms of 𝜏 and 𝜏′.

• Case 𝜏 and 𝜏′ are both struct types: Then all derivations of (1) and (2) end with
rule EQUIV-STRUCT. Hence 𝜏 = 𝜏′. Thus erase(𝑉) = erase(𝑉 ′) by Lemma A.3.20. But
by definition of erase, we also have erase(𝜏, 𝑉) = erase(𝑉) and erase(𝜏′, 𝑉 ′) =
erase(𝑉).

• Case 𝜏 is a struct type and 𝜏′ is an interface type: Then all derivations of (1) end
with rule EQUIV-STRUCT, so we know that 𝑣 = 𝜏{𝑣}. Then we get with Lemma A.3.19
and (2)

𝑉 ′ = (𝑈,𝑊)

(∀𝑘 ∈N).𝑣 ≡𝑈 ∈ ⟦𝜏⟧𝑘
With (1) and Lemma A.3.20 and the definition of erase then

erase(𝜏, erase(𝑉)) = erase(𝑉) = erase(𝑈) = erase(𝜏′, 𝑉 ′)

• Case 𝜏 is an interface type and 𝜏′ is a struct type: Analogously to the preceding case.
• Case 𝜏 and 𝜏′ are both interface types: Then with Lemma A.3.19 and (1) and (2)

𝑣 = 𝜎𝑆{𝑣}
𝑉 = (𝑈,𝑊)

𝑉 ′ = (𝑈′,𝑊 ′)

(∀𝑘 ∈N).𝑣 ≡𝑈 ∈ ⟦𝜎𝑆⟧𝑘
(∀𝑘 ∈N).𝑣 ≡𝑈′ ∈ ⟦𝜎𝑆⟧𝑘

Now Lemma A.3.20 and the definition of erase

erase(𝜏, 𝑉) = erase(𝑈) = erase(𝑈′) = erase(𝜏′, 𝑉 ′)

as required.
End case distinction. ■

A.3.3.1 Proof of Theorem 5.2.7. From ⊢prog 𝑃{ let 𝑋𝑖 =𝑉𝑖 in 𝐸 and ⊢prog 𝑃{

let 𝑋 ′
𝑖
=𝑉 ′

𝑖
in 𝐸 ′ and 𝑒 having type 𝜏 and 𝜏′, respectively, we get

⟨∅, ∅⟩ ⊢exp 𝑒 : 𝜏{ 𝐸

⟨∅, ∅⟩ ⊢exp 𝑒 : 𝜏′{ 𝐸 ′

With Corollary 5.1.2, we get that either 𝑒 reduces to some value 𝑣 or diverges.
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We now start with the first claim. Assume 𝐸 −→∗
𝜇 𝑉 for some 𝑉 . Then 𝑒 must reduce to

some value 𝑣 because of Theorem 5.2.6. Again with Theorem 5.2.6 and with Lemma A.1.2:

𝑣 ≡𝑉 ∈ ⟦𝜏⟧𝑘 (∀𝑘 ∈N) (3)

𝐸 −→∗
𝜇′ 𝑉

′ for some 𝑉 ′

𝑣 ≡𝑉 ′ ∈ ⟦𝜏′⟧𝑘 (∀𝑘 ∈N) (4)

Applying Lemma A.3.21 yields erase(𝜏, 𝑉) = erase(𝜏′, 𝑉 ′) as required.
For the second claim, we assume that 𝐸 diverges. With Theorem 5.2.6, we know that 𝑒

must diverge as well. Again with Theorem 5.2.6 we get that 𝐸 ′ also diverges. ■
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