
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

JFP Special Issue on Secure Compilation, 61 pages, 2021. © Cambridge University Press 2021 1
doi:10.1017/xxxxx

Verified Secure Compilation for Mixed-Sensitivity
Concurrent Programs

ROBERT SISON * †, TOBY MURRAY *

* School of Computing and Information Systems,
University of Melbourne, Australia

† CSIRO’s Data61 and UNSW Sydney, Australia
(e-mail: [firstname].[lastname]@unimelb.edu.au)

Abstract

Proving only over source code that programs do not leak sensitive data leaves a gap between reason-
ing and reality that can only be filled by accounting for the behaviour of the compiler. Furthermore,
software does not always have the luxury of limiting itself to single-threaded computation with
resources statically dedicated to each user to ensure the confidentiality of their data. This results in
mixed-sensitivity concurrent programs, which might reuse memory shared between their threads to
hold data of different sensitivity levels at different times; for such programs, a compiler must preserve
the value-dependent coordination of such mixed-sensitivity reuse despite the impact of concurrency.

Here we demonstrate, using Isabelle/HOL, that it is feasible to verify that a compiler preserves
noninterference, the strictest kind of confidentiality property, for mixed-sensitivity concurrent pro-
grams. First, we present notions of refinement that preserve a concurrent value-dependent notion
of noninterference that we have designed to support such programs. As proving noninterference-
preserving refinement can be considerably more complex than the standard refinements typically
used to verify semantics-preserving compilation, our notions include a decomposition principle that
separates the semantics-preservation from security-preservation concerns. Second, we demonstrate
that these refinement notions are applicable to verified secure compilation, by exercising them on a
single-pass compiler for mixed-sensitivity concurrent programs that synchronise using mutex locks,
from a generic imperative language to a generic RISC-style assembly language. Finally, we exe-
cute our compiler on a nontrivial mixed-sensitivity concurrent program modelling a real-world use
case, thus preserving its source-level noninterference properties down to an assembly-level model
automatically. All results are formalised and proved in the Isabelle/HOL interactive proof assistant.

Our work paves the way for more fully featured compilers to offer verified secure compilation
support to developers of multithreaded software that must handle data of multiple sensitivity levels.

1 Introduction

Here we show how to extend secure compilation support to programs that are designed
to address two fundamental problems of scale: (1) the need to divide work in computer
systems that handle information, and (2) the need to share scarce resources to be able to
service every customer for whom that work is done. There will always be a program for
which that sharing is not abstracted; that program’s responsibility is to implement that
sharing in such a way that it never allows the information of one customer to flow to



47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

2 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

another. In this paper, we prove formally that a compiler does not break that program’s
responsibility.

It is well known that program translations of the kind carried out by compilers can easily
break security properties like confidentiality (Kaufmann et al., 2016; Barthe et al., 2018).
This is especially the case for mixed-sensitivity concurrent programs, which feature both:

• Concurrency of access to memory locations shared between different threads of
execution. A compiler must preserve both (1) the synchronisation that coordinates
threads’ access to shared memory, and (2) the absence of any internal timing leaks,
to prevent them from manifesting as storage leaks (Volpano & Smith, 1998).

• Mixed-sensitivity reuse of shared memory to hold information of different sensitiv-
ity levels at different times. A compiler must preserve the program functionality
that coordinates this reuse; this implies support for value-dependent classification
policies, which allow the classification of a memory location to change dynamically
depending on values held in other memory locations (Murray, 2015). Furthermore, it
must do so accounting for the potential impact of concurrent access by other threads.

Although existing verified compilers for dialects of mainstream programming lan-
guages, like CompCert (Leroy, 2009) and CakeML (Kumar et al., 2014), have been proved
to preserve program functionality (semantics) and some timing-sensitive forms of nonin-
terference (Barthe et al., 2020), none are yet verified to preserve proofs of noninterference
for mixed-sensitivity concurrent programs. Ideally such a compiler, applied to the threads
of a proved-secure mixed-sensitivity concurrent program, would yield assembly code that,
run concurrently, also composes into a secure mixed-sensitivity concurrent program.

To this end, here we present notions of concurrent value-dependent noninterference-
preserving refinement, which are compositional across the threads of mixed-sensitivity
concurrent programs. In these notions, the usual square-shaped commuting diagram com-
monly used to depict (semantics-preserving) refinement (Figure 4a) has been replaced by a
cube (Figure 3). This reflects that it preserves a 2-safety hyperproperty (Terauchi & Aiken,
2005; Clarkson & Schneider, 2010), which compares two executions rather than examining
a single one. Our earlier work (Murray et al., 2016b) was the first to make this observation
and to propose a general cube-shaped refinement property; however other work on veri-
fied secure compilation targeted towards noninterference preservation (Barthe et al., 2018,
2020) since made the same observation. As these cube-shaped properties are significantly
more complicated to prove than standard notions of semantics-preserving refinement typ-
ical in verified compilation (Leroy, 2009; Kumar et al., 2014), we present a principle of
decomposing the cube (Figure 3) into three separate obligations (Figure 4): the first of
these is akin to semantics-preserving refinement, while the rest prevent the introduction of
any termination- and timing-leaks. A simple comparison of proof effort for a refinement
example (Figure 2) shows this approach can almost halve its complexity, and that it is
applicable to proofs of refinement for programs with secret-dependent control flow—the
example pads an if h then . . . else . . . fi conditional with skips, so as not to introduce a
timing leak of h.

We then go on to demonstrate that the decomposition principle we provide makes our
notion of refinement a tractable target for verified secure compilation. Our compiler is



93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

R. Sison and T. Murray 3

an executable function in Isabelle/HOL that translates mixed-sensitivity concurrent pro-
grams that synchronise using mutex locks, from a generic imperative While language to
a generic RISC-style assembly language. In particular, it supports the class of programs
that avoid all implicit flows, where a secret determines the choice between two control
flow paths with different observable effects, by disallowing any secret-dependent control
flow—for example, disallowing if h then . . . else . . . fi conditionals to prevent any tim-
ing leaks from h. This is a common approach against implicit flows, as it avoids any precise
source-level reasoning about time. To preserve confidentiality for programs that take that
approach, we instantiate the decomposition principle so that it enforces that our compiler
does not introduce any new secret-dependent control flow. Furthermore, as part of satisfy-
ing the demands of our refinement notion, our compiler demonstrates a way of formalising
and proving when it is safe for a compiler to perform optimisations in the presence of
concurrency. To ensure that the contents of shared memory locations are preserved under
compilation despite potential interference from other threads, our compiler tracks which
shared memory locations are free from data races. It then makes use of this tracking to
avoid redundant loads from “stable” (i.e. race-free) shared variables safely, that would
otherwise be considered unsafe to omit.

Finally, to show that the compiler preserves noninterference for actual mixed-
sensitivity concurrent programs, we execute it on a real-world use case: a model of the
software-componentised input-handling regime for the Cross Domain Desktop Compositor
(Beaumont et al., 2016), a device that enforces information-flow control over input clas-
sified dynamically by a trusted user. We leave treatment on the design and application
of per-thread proof techniques establishing CVDNI for the successive versions of this
model to other works (Murray et al., 2018; Sison, 2020), and here focus on its CVDNI-
preserving compilation—expanding on Sison & Murray (2019), the conference version
of this paper. This yields the first proofs of noninterference for an assembly-level model
of a nontrivial mixed-sensitivity concurrent program, demonstrating the power of verified
secure compilation to preserve security properties of compiled code.

The structure of our paper is as follows. First, we present language-independent notions
of noninterference and its refinement, designed for mixed-sensitivity concurrent programs
(Section 2). Our attention then turns to preliminaries for our compiler: the main properties
of interest of the source While language it compiles (Section 3), and of the target RISC
language it produces (Section 4). Then, after presenting the details of our compiler and its
verification (Section 5), and the case study to which we apply it (Section 6), we discuss the
most closely related work in the area (Section 7), before concluding (Section 8).

We expand on the conference version of this paper (Sison & Murray, 2019) as follows:

• Here we have adapted the noninterference properties to support assumptions on ini-
tial memory and extra security requirements; these will allow us to clarify exactly
what our compiler is verified to preserve, and for which kinds of programs.

• We also in Section 2 present further preliminaries that will allow us to explain in
greater detail the different ways to establish and use proofs about a verified compiler
to obtain whole-system noninterference at the target-language level. These include:

1. The side conditions and theorem of compositionality for the noninterfer-
ence properties. In Section 3, we then for the first time present the proof,



139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

4 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

whose details were elided from Sison & Murray (2019), for a noncompositional
“global” part of this side condition, which is necessary to obtain whole-system
noninterference from per-thread noninterference both at source and target level.

2. A whole-system refinement theorem, adapted to support assumptions on ini-
tial memory. This theorem was alluded to in Murray et al. (2016b) but, until
now, has never been formally presented outside of the Isabelle/HOL theories.
It gives us a means to prove preservation of whole-system noninterference by
the compiler, without having to re-prove the noncompositional side condition
at the target-language level.

• In Section 5, we then compare alternative methods of obtaining whole-system secu-
rity at RISC level, that a developer would choose depending on whether all, or only
some threads are compiled with our compiler. In contrast, Sison & Murray (2019)
stopped after presenting the application of refinement decomposition principle.

• In Section 6, the case study to which we apply the compiler is significantly expanded,
being a 3-component version of the CDDC input-handling program—closer to a
version presented in Murray et al. (2018)—as opposed to the 2-component version
of Sison & Murray (2019).

• Furthermore, we present substantially more details of our case study in Section 6,
which were mostly elided from Sison & Murray (2019). These include formal state-
ments of both the source-level properties preserved and the target-level properties
obtained, alongside explanations of all alternative methods for obtaining the latter
from the former.

• Finally, every lemma and theorem we prove is presented with a proof sketch or
explanation, which were largely absent from Sison & Murray (2019).

2 Noninterference and its refinement for mixed-sensitivity concurrent programs

To support mixed-sensitivity concurrent programs, we verify our compiler to preserve the
concurrent value-dependent noninterference (CVDNI) notions of Murray et al. (2016b).
In this section we present the definitions of CVDNI and its refinement, as we have adapted
them from that work’s Isabelle formalisation (Murray et al., 2016c,a). In particular, the ver-
sion of the theory we present here supports extra customisation of requirements beyond the
prior work; we will need this to parameterise the theory with initial conditions needed for
a compositionality property of our source language (Section 3), and our compiler’s preser-
vation of a ban on secret-dependent control flow (Section 5). Furthermore, it is simplified
to the case where the shared memory is the same for both the original abstract and the
refined concrete program—refinement adds no new shared variables. Later, we will instan-
tiate this CVDNI theory to have our compiler’s source and target languages (Sections 3, 4)
respectively play the roles of the abstract and concrete programs’ languages in the theory.

We begin by introducing with an illustrative example the challenges of verifying value-
dependent noninterference in the presence of shared-variable concurrency (Section 2.1).
Then we present the per-thread and whole-system noninterference properties themselves



185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

R. Sison and T. Murray 5

while TRUE do
lock(workspace lock);

while !suspended do
lock(source lock);

workspace := source;

/* . . . operations on workspace . . . */

if domain = LOW then
low sink := workspace

else
high sink := workspace;

workspace := 0

fi;

unlock(source lock)

od;

unlock(workspace lock);

while suspended do skip od
od

(a) Input processing worker thread program

(b) The phone providing the High personality:
domain ̸= LOW, and source is classified High
to reflect that the user might type in secrets.

(c) The phone displaying visual indicators that
it is providing the Low personality: domain =
LOW, and source is classified Low to reflect
that we trust the user not to type in secrets.

Fig. 1: Example: Touchscreen input processing for a dual-personality smartphone.
Reproduced from Sison & Murray (2019).

(Section 2.2), followed by the notion of per-thread refinement that preserves the per-
thread property between the two languages (Section 2.3). As the cube-shapedness of
noninterference-preserving refinement diagrams in general makes them difficult to apply
directly to compiler verification, we present a decomposition principle (Section 2.4) that
we will use to prove CVDNI-preserving refinement for our compiler. We then present
requirements and a theorem for whole-system refinement by which we have that CVDNI-
preserving refinement is compositional across the threads of the program being compiled,
such that it yields the whole-system property at the target language level (Section 2.5).

2.1 Illustrative example of a mixed-sensitivity concurrent program

Consider the task of verifying a multithreaded system that manages the user interface (UI)
for a dual-personality smartphone, a phone that provides clearly distinguished user con-
texts (personalities), typically for work versus leisure. Specifically, our task is to verify that
it does not leak sensitive information intended only for one of those personalities, which
we classify High (Figure 1b), to locations belonging to the other, which we classify Low

(Figure 1c).
Here and generally throughout this paper, our attacker model is an entity that can read

from the system’s untrusted sinks: some subset of permanently Low-classified locations
not subject to synchronisation. In our example, the untrusted sinks may include WLAN
device registers in a hostile environment.

The smartphone’s UI system consists of a number of threads running concurrently with
a shared address space; we aim to verify that, as a whole, this system of threads satisfies the
security requirement. However, to avoid a state space explosion that is exponential in the



231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

6 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

number of threads, we must do this compositionally: one thread at a time, then combining
the results of these analyses.

We focus on a particular worker thread (Figure 1a), the one responsible for sending
touchscreen input from the source variable to its intended destination.

The first challenge is that the destination depends on which personality the phone is
currently providing, which is indicated by the value of domain. This is reflected by the
classification of source being dependent on the value of domain: source is classified Low

exactly when domain = LOW (where LOW is a designated constant), and is classified High

otherwise. Due to this dependency, domain is known as a control variable of source.
The second challenge is the worker thread runs in a shared address space that might

be accessed or modified by other threads, for various purposes. One of these threads may
be responsible for maintaining that domain = LOW exactly when the phone indicates it
is providing the Low personality (Figure 1c), so the user knows not to type in anything
sensitive. Another thread may be responsible for assigning suspended := TRUE when the
user turns the phone’s screen off, to make the worker stop processing touchscreen input. We
may then wish for workspace to be usable by some other thread—for example, processing
input from a fingerprint scanner—in such a way that it can assume that workspace no
longer contains any sensitive values.

When we analyse one thread like this worker in terms of our compositional security
property (Section 2.2), all the other threads in the system are trusted to do two things:

1. They follow a synchronisation discipline; in particular for this example, this is a
mutual exclusion (mutex) locking discipline: If read- or write-access to a certain
variable is governed by a lock, each thread may only access the variable in that
manner if they hold that lock. Mutual exclusion then follows from the semantics of
the locking primitives ensuring only one thread may hold a given lock at a time.

2. They themselves do not leak values from High-classified locations (we refer to such
values themselves as High) to Low-classified locations that are read-accessible to
other threads. Note that, here, it is our objective to prove that the thread we are
analysing can be trusted in the same way.

Even under these assumptions, the concurrency gives rise to some tricky considerations.
First, it is important that no thread in the system (including the one under analysis) mod-

ifies any control variables carelessly. For example, writing domain := LOW immediately
after the worker reads a High value from source, will cause it to leak to low sink. To prevent
this, the worker uses source lock, granting it exclusive write-access to source and domain.

Furthermore, as noted above, we may want to ensure that a non-attacker-observable
location is nevertheless cleared of any sensitive values before being used by another thread.
In our example, we classify workspace Low for the analysis to enforce this when the worker
is suspended, but as the worker sometimes uses it to process High values, it is important
to know workspace is accessible only to the worker during that time. To ensure this, the
worker uses workspace lock, granting it exclusive read- and write-access to workspace. It
is then responsible for clearing it of any High values by the time it releases that access.



277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

R. Sison and T. Murray 7

2.2 Concurrent value-dependent notions of noninterference

Having illustrated the challenges with an example, we now present the definitions of per-
thread and whole-system noninterference, the theorem by which the former composes into
the latter, and the compositionality side conditions demanded by that theorem.

As proved for each thread, CVDNI is defined by Murray et al. (2016b) in terms of:

1. A binary strong low-bisimulation (modulo modes) relation B between program
configurations, which serves as witness to CVDNI. In the style of other low-
bisimulation–based noninterference definitions (Focardi et al., 1995; Sabelfeld &
Sands, 2000; Mantel et al., 2011) it requires the program configurations it relates
to agree on their “low”-observable portions, and demands that lock-step execution
preserves that correspondence. Furthermore, it is rely–guarantee-style concurrency
aware, following Mantel et al. (2011), but modified to allow value-dependent
classifications (Murray, 2015) for mixed-sensitivity reuse (see next point).

2. A classification function L that determines the “low”-observable portion of a
program configuration, thus affecting B’s requirements. The innovation of L , as
parameterised first by Murray (2015) and then by Murray et al. (2016b) as repro-
duced here, is that L can depend on values in the program configuration itself, thus
expressing dynamic and not just static classifications.

The theory is parameterised over the type of values Val, a finite set of shared vari-
ables Var, and a deterministic evaluation step semantics⇝ between local configurations
of a thread in a concurrent program. Each local configuration is a triple ⟨tps, mds, mem⟩:

• tps :: ThreadPrivate is the thread-private state, which the theory will consider to be
permanently inaccessible to the attacker and not shared with the other threads. Note
that, due to this inaccessibility, we allow the user of the theory to parameterise the
type ThreadPrivate, and we do not impose any particular structure on it.

• mds :: Mode ⇒ Var set is the (assume–guarantee) mode state, which is ghost state
associating each of Mode≜ {AsmNoW, AsmNoRW, GuarNoW, GuarNoRW}
with a set of shared variables. Intuitively, it identifies the set of variables for which
the thread currently Assumes it possesses (or Guarantees it respects) exclusive
permission to Write (or Read and Write), granted (or obligated) for those vari-
ables typically by some synchronisation scheme. This facilitates compositional,
rely–guarantee-style reasoning about such access (Jones, 1981; Mantel et al., 2011).
For example, when our worker thread (of Figure 1a) holds source lock, it
assumes that no other threads write to source or its control variable domain
(i.e. {source, domain} ⊆ mds AsmNoW), otherwise it guarantees it does not write
to them (GuarNoW). Similarly, when it holds workspace lock it assumes that no
other threads read or write to workspace (i.e. workspace ∈ mds AsmNoRW), and at
all other times it makes the corresponding guarantee (GuarNoRW).

• mem :: Mem is shared memory considered potentially accessible to the attacker and
other threads. To make what is accessible amenable to analysis, we impose the
structure Mem≜ Var ⇒ Val, a total map from shared variable names to values.



323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

8 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

The theory is then further parameterised by the value-dependent classification function
L :: Mem ⇒ Var ⇒{High, Low}, inducing a function C vars :: Var ⇒ Var set that returns
all the control variables of a given variable. In our worker thread example, L mem x gives:

• High when x is high sink, meaning high sink is classified High at all times.
• when x is source: Low if mem domain = LOW, and High otherwise.
• Low for all other variables x, meaning they are classified Low at all times.

The set C = {y | ∃x. y ∈C vars x} is then defined to contain all control variables in the
system. Thus in our worker thread example, C vars source = {domain} and C = {domain}.

With these parameters having been set, we can now define notions of observational
equivalence—underpinning noninterference properties—that are value dependent.

The notion of observational equivalence of memories, used by the whole-system non-
interference property to quantify over initial state pairs, is as follows: Variables that are
value-dependently classified Low according to both memories are required to have the
same value in both memories. Formally, as defined originally by Murray (2015):

Definition 2.1 (Low-equivalent memories).

mem1 =
Low mem2 ≜ ∀x. L mem1 x = Low −→ mem1 x = mem2 x

Note that the asymmetry of Definition 2.1 (also Definition 2.3 to follow) referring only to
mem1 is resolved by requiring the classification function L to classify all control variables
as Low statically—that is, Low always, regardless of the memory state (cf. our restriction
Proposition 3.4 on the classification of state used to implement locks, later in Section 3.2).

To support compositionality for concurrent programs, however, the equivalence notion
for the per-thread noninterference property is relaxed to be modulo modes in the style of
Mantel et al. (2011): Here, Low-classified non-control variables x /∈C are only required
to have the same value if they are assumed to be readable by other threads according to
the mode state. (Control variables x ∈C are excluded from that relaxation, and are always
required to be equal.) Defined more formally, again as originally by Murray (2015):1

Definition 2.2 (Readability of variable x, according to mode state mds).

readable mds x ≜ x /∈ mds AsmNoRW

Definition 2.3 (Low-equivalence of memories, modulo the mode state mds).

mem1 =
Low
mds mem2 ≜

∀x. x ∈C ∨ L mem1 x = Low ∧ readable mds x −→ mem1 x = mem2 x

Moreover, we will use notation lc1 =
Low
mds lc2 from Sison & Murray (2019) to lift

Definition 2.3 to local program configurations, asserting also that the local configurations
lc1 and lc2 have the same assume–guarantee mode state. Additionally, we will use notation
lc1 =mds lc2 to denote (only) that lc1 and lc2 have the same assume–guarantee mode state.

1 Logical operator precedence here is just as in Isabelle/HOL—from most tightly to least: ∧,∨,−→.



369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

R. Sison and T. Murray 9

Thus, intuitively, the user of the theory should model the permanent untrusted output
sinks, of their whole concurrent program, as variables for which L always returns Low,
ungoverned by any synchronisation scheme that the attacker cannot be trusted to follow.
In our worker example program (of Figure 1a), low sink is untrusted permanently in this
way, but workspace is untrusted only when unlocked.

We now have almost enough definitions to state the per-thread compositional secu-
rity property. This property will assert the existence of a witness bisimulation relation B

for every possible observationally equivalent pair of starting configurations. Specifically,
this witness relation must be a strong low-bisimulation (modulo modes) (denoted by
strong-low-bisim-mm B), meaning that it must satisfy the following three conditions:

1. It must maintain observational indistinguishability by requiring that all configura-
tion pairs it relates (i.e. (lc1, lc2)∈B) that have the same mode state (lc1 =mds lc2),
are low-equivalent modulo modes (lc1 =

Low
mds lc2).

2. Furthermore, it must be a bisimulation by being symmetric (denoted by symB) and
progressing to itself : Any step taken by one of the configurations (lc1⇝ lc′1) must
be matched by some step taken by the configuration related to it (lc2⇝ lc′2), so the
destinations remain related (i.e. (lc′1, lc′2)∈B) and modes-equal (lc′1 =mds lc′2).

3. Finally, it must be closed under globally consistent changes made to memory by
other threads (denoted by cg-consistent B)—that is, changes that preserve low-
equivalence and are permitted by the current mode state mds. Specifically, other
threads are permitted to change either of variable x’s value or its classification only
when x is considered writable by the current mode state (denoted by writable mds x,
Definition 2.5). This is the most crucial element of the per-thread CVDNI property
itself that ensures its compositionality for concurrent programs.

These requirements are formalised by Definition 2.4, using Definitions 2.5 and 2.6:

Definition 2.4 (Strong low bisimulation, modulo modes).

strong-low-bisim-mm B ≜ cg-consistent B ∧ sym B ∧
(∀lc1 lc2. (lc1, lc2)∈B ∧ lc1 =mds lc2 −→

lc1 =
Low
mds lc2 ∧

(∀lc′1. lc1⇝ lc′1 −→ (∃lc′2. lc2⇝ lc′2 ∧ lc′1 =mds lc′2 ∧ (lc′1, lc′2)∈B)))

Definition 2.5 (Writability of variable x, according to mode state mds).

writable mds x ≜ x /∈ mds AsmNoW ∧ x /∈ mds AsmNoRW

Definition 2.6 (Closedness under globally consistent changes).

cg-consistent B ≜ ∀tps1 mem1 tps2 mem2 mds.

(⟨tps1, mds, mem1⟩, ⟨tps2, mds, mem2⟩)∈B −→
(∀mem′

1 mem′
2. (∀x. (mem1 x ̸= mem′

1 x ∨ mem2 x ̸= mem′
2 x ∨

L mem1 x ̸=L mem′
1 x) −→ writable mds x) ∧ mem′

1 =
Low
mds mem′

2 −→
(⟨tps1, mds, mem′

1⟩, ⟨tps2, mds, mem′
2⟩)∈B)



415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

10 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

Note that, to prevent unnecessary proof effort, strong-low-bisim-mm assumes instead of
asserting the initial modes-equality (lc1 =mds lc2), as the security property that will use
strong-low-bisim-mm will take responsibility for asserting it (to follow, in Definition 2.7).

We now present definitions of the CVDNI security properties that differ from those
published in Murray et al. (2016b) and our conference paper Sison & Murray (2019), in
that they allow two additional forms of customisation as parameters to the theory, necessary
for a fuller written presentation of the formal verification of our compiler:

1. Initialisation requirements for the system, in the form of a predicate over shared
memory called INIT .
The per-thread and whole-system security properties are relaxed such that they only
quantify over initial shared memories that obey this predicate.

2. Extra requirements to be imposed on top of strong low-bisimulation modulo modes,
in the form of a predicate over bisimulation relations called EXTRA.
The per-thread security property is strengthened to impose these additional require-
ments on any candidate security witness.

When dropped from each of the names of the properties “com-secure” and “sys-secure”
soon to be introduced, INIT and EXTRA default to (λ . True); in that case, the definitions
of those properties will then simplify to their original versions as presented in Murray et al.
(2016b); Sison & Murray (2019).

The per-thread security property is then as follows:

Definition 2.7 (Per-thread compositional security, with INIT, EXTRA requirements).

com-secureEXTRA
INIT (tps, mds) ≜ ∀mem1 mem2.

mem1 =
Low
mds mem2 ∧ INIT mem1 ∧ INIT mem2 −→

(∃B. strong-low-bisim-mm B ∧ EXTRA B ∧
(⟨tps, mds, mem1⟩, ⟨tps, mds, mem2⟩)∈B)

We have proved in Isabelle/HOL that the compositionality theorem of Murray et al.
(2016b) holds regardless of the INIT, EXTRA chosen—in short, the INIT condition relaxes
the goal sufficiently to relax each of its assumptions the same way, and the EXTRA require-
ment only strengthens its assumptions. Subject to some “sound mode use” side conditions
(to be discussed soon), it gives us that the parallel composition cms :: (ThreadPrivate ×
(Mode ⇒ Var set)) list of com-secure program threads will itself be a concurrent program
that enforces “sys-secure”, a system-wide value-dependent noninterference property. Here,
the set operator returns the set of all the elements in a given list:

Theorem 2.8 (Compositionality of com-secureEXTRA
INIT ).

∀(tps, mds)∈ set cms. com-secureEXTRA
INIT (tps, mds)

∀mem. INIT mem −→ sound-mode-use (cms, mem)

sys-secureINIT cms



461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

R. Sison and T. Murray 11

We first introduce the elements of this whole-system property “sys-secure”, before
defining it formally (to follow, in Definition 2.9).

From all low-equivalent pairs of initial memories that both satisfy the INIT conditions,
this whole-system property “sys-secure” asserts a form of low-equality between all global
configuration pairs that are reachable via evaluation 99Ksched to the same fixed schedule
sched, for all such finite lists sched giving an order of steps of execution from each thread:

gc 99K[] gc′ ≜ (gc = gc′)

gc 99Kn.ns gc′ ≜ (∃gc′′. gc⇝n gc′′ ∧ gc′′ 99Kns gc′)

Here [] is an empty list, . is the cons operator, and⇝n means the nth thread in the global
configuration takes one step.

In always comparing pairs of runs executing against the same schedule, the property
models the class of schedulers whose decisions never depend on any secrets. Consequently,
this excludes schedulers that are specialised, in the manner of Barthe et al. (2007a), to
actively monitor the sensitivity level of each thread’s control flow, so as to intervene and
avoid interleaving it with others when it has become dependent on secrets. Instead, the
CVDNI theory puts the onus on the developer of the program to prove that any branching
on secret conditionals does not lead to timing-sensitive flows of the secret as discernible
via low-classified sinks accessible to other threads in the system. Note that, as CVDNI
prohibits mode state from ever becoming secret dependent, it will implicitly prohibit any
leaks into parts of memory with which the mode state is directly associated—in Section 3,
we will need to prohibit leaks into the memory we use to implement mutex locks, for this
reason.

The special form of low-equality applied by the whole-system property is one that is
modified from Definition 2.1, so that it only requires each Low-classified non-control vari-
able x /∈C to be of equal value in both global configurations if the mode states of all
threads consider x to be readable (Definition 2.2). Furthermore, the property ensures that
paired global configurations continue to agree on the number of threads in the system,
and on the mode states for all threads, written cms′1 =all-mds cms′2 ≜ (map mds cms′1 =
map mds cms′2), where the syntax “map mds cms” denotes the mapped projection that
extracts a list of mode states from a list cms of ThreadPrivate × (Mode ⇒ Var set) pairs.
Finally, we will use syntax cms[i] to denote the ith element in list cms.

This whole-system noninterference property, written formally, is then as follows:



507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

12 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

Definition 2.9 (Whole-system value-dependent security, with INIT requirements).

sys-secureINIT cms ≜ ∀mem1 mem2.

INIT mem1 ∧ INIT mem2 ∧ mem1 =
Low mem2 −→

(∀sched cms′1 mem′
1. (cms, mem1) 99Ksched (cms′1, mem′

1)−→
(∃cms′2 mem′

2. (cms, mem2) 99Ksched (cms′2, mem′
2)) ∧

(∀cms′2 mem′
2. (cms, mem2) 99Ksched (cms′2, mem′

2) −→
length cms′1 = length cms′2 ∧ cms′1 =all-mds cms′2 ∧
(∀x. x ∈C ∨ L mem′

1 x = Low ∧
(∀i < length cms′1. readable cms′1[i] x) −→ mem′

1 x = mem′
2 x)))

Finally, we must note that the use of assume–guarantee reasoning to obtain the com-
positionality of the per-thread property in the style of Mantel et al. (2011) gives rise to
requirements justifying the soundness of that reasoning; requirements that we will prove
our compiler to preserve. For CVDNI, these are summed up by the “sound-mode-use” side
condition of Theorem 2.8, which consists of a “local” and a “global” part:

Definition 2.10 (Sound mode use side-condition).

sound-mode-use (cms, mem)≜
(∀cm ∈ set cms. local-mode-compliance (cm, mem)) ∧
global-modes-compatibility (cms, mem)

First, all threads must each obey a local mode compliance requirement. This says that
for all reachable local configurations of the program, at no point will the thread violate
any of its own guarantees not to access a particular location in the shared state, which
implies also not accessing any of its control variables. We leave precise definitions for
“reachable-lcs” and “doesnt-read-(or-modify)” to this paper’s Isabelle/HOL supplement
material, but mention here that it is the doesnt-read-(or-modify) assertions that enforce
that any guarantees not to access some variable x will effectively apply also to all of x’s
control variables:

Definition 2.11 (Local mode compliance).

local-mode-compliance lc≜
∀c mds mem. ⟨c, mds, mem⟩ ∈ reachable-lcs lc −→ respects-own-guarantees (c, mds)

where

respects-own-guarantees (c, mds) ≜
(∀x. (x ∈ mds GuarNoRW −→ doesnt-read-or-modify c x) ∧

(x ∈ mds GuarNoW −→ doesnt-modify c x))

Then, all threads must together obey a global modes compatibility requirement. This
requirement says that the threads’ mode states in all reachable global configurations of the
concurrent program (the “reachable-mds-lists”) are compatible—that is, if any one thread



553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

R. Sison and T. Murray 13

assumes a particular location will not be accessed for writing or reading, then all other
threads must be guaranteeing not to access that location for the same purpose:

Definition 2.12 (Global modes compatibility).

global-modes-compatibility gc ≜ ∀mdss ∈ reachable-mds-lists gc. compatible-modes mdss

where

reachable-mds-lists gc ≜
{mdss | ∃cms′ mem′ sched. gc 99Ksched (cms′, mem′) ∧ map mds cms′ = mdss}

compatible-modes mdss ≜ ∀i x. i < length mdss −→
(x ∈ mdss[i] AsmNoRW −→

(∀ j < length mdss. j ̸= i −→ x ∈ mdss[ j] GuarNoRW)) ∧
(x ∈ mdss[i] AsmNoW −→

(∀ j < length mdss. j ̸= i −→ x ∈ mdss[ j] GuarNoW))

Note that this global modes compatibility requirement is not compositional; conse-
quently, instead of obliging the program developer to prove it for the source programs to be
fed to our compiler, we will prove it as an invariant maintained by the execution semantics
of our source language—particularly, by its synchronisation primitives (see Section 3).

For more details and precise presentations of all the definitions we have adapted from
Murray et al. (2016b,c) to enable the compiler verification work described in this paper,
please refer to the Isabelle/HOL formalisation in our supplement material.

2.3 Cube-shaped refinement for preserving noninterference

Proof of CVDNI-preserving refinement (also security-preserving or secure refinement), for
a single-threaded program that will be run as a thread of a concurrent program, requires
the user of the theory to nominate two binary relations (both illustrated by Figure 2):

1. A refinement relation R relating local configurations of the abstract program to
local configurations of the concrete program: Abstract must simulate concrete, in
a sense typical of much other work on program refinement, including compiler
verification.

2. A concrete coupling invariant I that allows us to use B and R to build a new
strong low-bisimulation (modulo modes) for the concrete program, by discarding
pairs of local configurations after the refinement that should not be reached in the
same number of evaluation steps. It thereby witnesses that any changes a refine-
ment (or compiler) might make to the execution time do not introduce any timing
channels.

The essence of the proof technique is to require that a number of conditions—analogous
to those for strong-low-bisim-mm (Definition 2.4)—be imposed on the nominated R and
I , in relation to a given witness relation B establishing com-secure (Definition 2.7) for
the abstract program. The definitions to follow are adapted from Murray et al. (2016b)
Section V, as we presented in Sison & Murray (2019)—for better readability, a simplified



599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

14 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

if h 6= 0 then
x := y

else
x := y+ z

fi

(a) Abstract if-conditional.
Relation R pairs configurations of
this program with configurations
of the program in Figure 2b that
are of the same-shaded region.

reg3 :=h;
if reg3 6= 0 then

skip;
skip;
reg0 := y;
x := reg0

. . .

. . .

else
reg1 := y;
reg2 := z;
reg0 := reg1 + reg2;
x := reg0

fi

(b) Concrete if-conditional. Relation I pairs configurations
of this program as shown by the dashed lines.

Fig. 2: Excerpts from a CVDNI-preserving refinement example with secret-dependent con-
trol flow: h contains a secret, y and z contain zero, and x is an untrusted sink. Reproduced
from Sison & Murray (2019)—the example is originally from Murray et al. (2016b).

version in which no new shared variables are added by the refinement. Consequently, we
use the notation =mem

mds to denote that two local configurations have equal mode state and
memory, regardless of whether relating configurations of the same or differing languages.

Regarding the maintenance of modes equivalence and observational equivalence across
the relation, the restrictions on refinement are tighter than those that were applied to
strong-low-bisim-mm, in that R is required to preserve the shared memory in its entirety:

Definition 2.13 (Preservation of modes and memory).

preserves-modes-mem R ≜ ∀lcA lcC. (lcA, lcC)∈R −→ lcA =mem
mds lcC

Regarding the closedness under changes by other threads that ensures compositionality
for concurrency, on I we again impose cg-consistent (Definition 2.6) from Section 2.2.
However, in the case of R, we instead impose “closed-others”, a simplification of
cg-consistent that considers only environmental actions that affect the memories on both
sides of the relation identically. Furthermore, closed-others ensures equality of all shared
variables, not just those judged observable. Defined formally:

Definition 2.14 (Closedness of refinements under changes by others).

closed-others R ≜ ∀tpsA tpsC mds mem mem′.

(⟨tpsA, mds, mem⟩A, ⟨tpsC, mds, mem⟩C)∈R) ∧
(∀x. (mem x ̸= mem′ x ∨ L mem x ̸=L mem′ x) −→ writable mds x) −→
(⟨tpsA, mds, mem′⟩A, ⟨tpsC, mds, mem′⟩C)∈R)

The final major—and hardest—requirement for confidentiality preservation is to prove
R and I closed simultaneously under the pairwise executions of the concrete and abstract
programs, using a cube-shaped “refinement and coupling invariant preservation” diagram
(coupling-inv-pres, depicted in Figure 3), whose edges are configuration pairs in B, R,
and I . (Reducing its difficulty is the focus of the decomposition principle in Section 2.4.)

All that then remains is for the nominated concrete coupling invariant I to be symmetric
(sym I ), and the predicate secure-refinement puts together all the requirements:



645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

R. Sison and T. Murray 15

coupling-inv-pres B R I ,
∀a1 c1. (a1,c1) ∈ R −→
(∀c′1. c1 C c′1 −→
(∃n a′1. a1 n

A a′1 ∧ (a′1,c
′
1) ∈ R ∧

(∀a2 c2 a′2. (a1,a2) ∈ B ∧ a1 =mds a2 ∧
(a2,c2) ∈ R ∧ (c1,c2) ∈ I ∧ c1 =mds c2 ∧
a2 n

A a′2 ∧ a′1 =mds a′2 −→
(∃c′2. c2 C c′2 ∧ c′1 =mds c′2 ∧

(a′2,c
′
2) ∈ R ∧ (c′1,c

′
2) ∈ I ))))

a1
n

a′1

a2
n

a′2
B B

I I

abstract
execution

concrete
execution

R

R

R

R

c1
1

c′1

c2
1

c′2

Fig. 3: Definition and graphical depiction of refinement preservation obligation for
secure-refinement (Definition 2.15). Reproduced from Sison & Murray (2019)—the
definition is a simplified restatement of its original formalisation in Murray et al. (2016b).

Definition 2.15 (Requirements for confidentiality-preserving secure refinement).

secure-refinement B R I ≜ preserves-modes-mem R ∧ closed-others R ∧
cg-consistent I ∧ sym I ∧ coupling-inv-pres B R I

The soundness theorem for confidentiality-preserving refinement by Murray et al.
(2016b) then gives us that, under these conditions, the concrete relation “BCof B R I ”,
derived from a witness strong-low-bisim-mm relation B, refinement relation R, and cou-
pling invariant I , is itself a witness strong-low-bisim-mm for the concrete program. For
readability, from here onwards we will use a1, c1, . . . instead of lc1A, lc1C, . . . for local
configuration variables when comparing abstract and concrete executions simultaneously:

Definition 2.16 (Concrete bisimulation relation derived from B,R and I ).

BCof B R I ≜ {(c1, c2) | ∃a1 a2. (a1, c1)∈R ∧ (a2, c2)∈R ∧
(a1, a2)∈B ∧ c1 =

Low
mds c2 ∧ (c1, c2)∈I }

Theorem 2.17 (Preservation of strong-low-bisim-mm by secure-refinement).

strong-low-bisim-mm B secure-refinement B R I

strong-low-bisim-mm (BCof B R I )

2.4 Decomposition principle and its impact on refinement proofs

We now present, as we first did in Sison & Murray (2019), an alternative way to prove
secure-refinement (Definition 2.15) that obviates the need to use the cube-shaped, two-
sided refinement obligation (depicted by Figure 3), by decomposing its concerns into:

1. Proving R closed using a square-shaped simulation diagram (depicted by
Figure 4a) akin to the backward simulations commonly used to prove semantics-
preserving refinement by compilers (e.g. for CompCert (Leroy, 2009)), and



691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

16 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

a
abs-steps a c

a′

R R

c
1

c′

(a) Refinement preservation
for relation R under program
execution paced by abs-steps.
(Part of Definition 2.18.)

a1 abs-steps a1 c1

=
a2 abs-steps a2 c2

B

I

R

R

c1 stops c1

=
c2 stops c2

(b) Consistency of pacing and
stopping behaviour, to prevent
timing and termination leaks.
(Part of Definition 2.19.)

a1

a2

B

I I

R

R

c1
1

c′1

c2
1

c′2

(c) Closedness of the coupling
invariant relation I under
lockstep program execution.
(Part of Definition 2.19.)

Fig. 4: Graphical depictions of decomposed refinement preservation obligations.
Reproduced from Sison & Murray (2019).

2. Security-focused proof obligations (depicted by Figures 4b, 4c), separable from the
square-shaped simulation, that prevent the introduction of timing leaks, termination
leaks, and secret-dependent differences in assume–guarantee mode state.

The decomposition requires the verifier to nominate a new parameter, called abs-steps or
the pacing function. Its role is to dictate the pace of the square-shaped simulation by spec-
ifying the number of abstract steps that ought to be taken for one concrete step, as depicted
by Figure 4a. Deferring the security-focused side conditions (“decomp-refinement-safe”)
to afterwards, the decomposition principle is then defined formally as follows:

Definition 2.18 (Decomposition principle for secure-refinement).

secure-refinement-decomp B R I abs-steps ≜
preserves-modes-mem R ∧ closed-others R ∧ cg-consistent I ∧ sym I ∧
decomp-refinement-safe B R I abs-steps ∧ (∀a c. (a, c)∈R −→

(∀c′. c⇝C c′ −→ (∃a′. a⇝(abs-steps a c)
A a′ ∧ (a′, c′)∈R)))

The aforementioned side conditions on all refinement parameters, depicted by Figures
4b, 4c, are then defined formally under the predicate decomp-refinement-safe as follows:

Definition 2.19 (Security-focused side conditions for decomposition principle).

decomp-refinement-safe B R I abs-steps ≜ ∀a1 a2 c1 c2. (a1, a2)∈B ∧
a1 =mds a2 ∧ (a1, c1)∈R ∧ (a2, c2)∈R ∧ (c1, c2)∈I ∧ c1 =mds c2

−→ stops c1 = stops c2 ∧ abs-steps a1 c1 = abs-steps a2 c2 ∧
(∀c′1 c′2. c1⇝C c′1 ∧ c2⇝C c′2 −→ (c′1, c′2)∈I ∧ c′1 =mds c′2)

The intuitive meanings of the side conditions in Definition 2.19 are:



737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

R. Sison and T. Murray 17

• stops c1 = stops c2 ensures that the refinement has not introduced any termination
leaks, by asserting consistent stopping behaviour for I -related concrete program
configurations, which we know to be observationally indistinguishable.

• abs-steps a1 c1 = abs-steps a2 c2 ensures that the refinement has not introduced
any timing leaks, by asserting consistency of the pace of the refinement for
R-related program configurations, which we again know to be observationally
indistinguishable.

• The final ∀-quantified clause asserts I ’s suitability as a coupling invariant, in that
it must remain closed under lockstep evaluation of the concrete program configura-
tions it relates. Furthermore it must maintain mode state equality with each lockstep
evaluation, which ensures that the refinement has not introduced any inconsisten-
cies in the memory access assumptions and guarantees needed for the concurrent
compositionality of the property.

Note that the B- and R-edges in Figure 4c may capture useful facts about a particular
program verification technique and compiler (respectively), so their availability as assump-
tions is intended to reduce greatly the effort needed to specify a coupling invariant I and
prove it satisfies the condition.

Assuming the fulfilment of all the decomposed requirements, we obtain that they are a
sound method for establishing secure refinement of the per-thread confidentiality property,
as desired:

Theorem 2.20 (Soundness of the decomposition principle).

secure-refinement-decomp B R I abs-steps =⇒ secure-refinement B R I

Proof The only obligation for secure-refinement (Definition 2.15) not obtained
immediately from secure-refinement-decomp (Definition 2.18) is the cube-shaped
coupling-inv-pres (Figure 3). We discharge this as follows:

The front face of the cube is just ordinary square-shaped refinement preservation
(depicted in Figure 4a), given to us by secure-refinement-decomp: that a single concrete
step from c1 is simulated by n abstract steps from a1, where n is given by abs-steps.

We are then obliged to prove a simulation in the other direction (the back face of the
cube), that n abstract steps from all configurations a2 related by B to a1 are simulated by
some concrete step from c2 related by R to a2 and by I to c1.

Here, we lean on the determinism of the abstract program’s evaluation semantics
(required by the theory) to flip the direction of simulation, knowing that n abstract steps
from a2, simulating a single concrete step from c2, could only be the very same n abstract
steps from a2 that we were required to consider. This allows us to obtain that simulation
by using, once again, the square-shaped refinement preservation (Figure 4a) given to us by
secure-refinement-decomp.

Consistency of refinement pacing and stopping behaviour (depicted in Figure 4b)
given by decomp-refinement-safe (Definition 2.19) then respectively ensure that n (via
abs-steps) is the correct number of abstract steps to consider, and that there will indeed be
a concrete step from c2 to drive the matching simulation step.



783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

18 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

Finally, the remainder of decomp-refinement-safe (depicted in Figure 4c) discharges
the requirement of closedness and modes-equality maintenance of I under lockstep
execution, demanded by the bottom face of the cube. ■

To demonstrate how the decomposition principle reduces proof complexity and effort,
we returned to the example program refinement discussed in Section V-E of Murray et al.
(2016b) and proved in its Isabelle formalisation (Murray et al., 2016a), an excerpt of
which is shown in Figure 2. The abstract program (9 imperative commands) branches on
a sensitive value, and executes a single atomic expression assignment in each branch. Its
refinement (to 16 commands) models expansion of the expressions into multiple steps,
resolving a timing disparity between the two branches by padding with skip.

We use proof size as a proxy for proof effort, since the former is known to be strongly
linearly correlated with the latter (Staples et al., 2014). Formalised in Isabelle/HOL as
EgHighBranchRevC.thy (Murray et al., 2016a), the proof line count for that theory
stood at about 4.6K lines of definitions and proof, of which approx. 3.6K line were proofs.
Adapting the proof instead to use the decomposition principle (secure-refinement-decomp,
Definition 2.18), the proof line count drops from 3.6K to approx. 2K, a 44% reduction.
Regarding definition changes, the new proof makes less than 10 lines of adaptations to a
coupling invariant and pacing function used by the old proof, and adds about 30 lines worth
of new helper definitions, for use with the decomposition principle. The rest of the theory
and its external dependencies remain in common between the two versions.

As would be expected, the bulk of the deletions are from the full cube-shaped refinement
diagram proof (Figure 3) of secure-refinement (Definition 2.15) for the refinement relation.
The surviving parts of that proof just become the square-shaped refinement diagram proof
(Figure 4a) of the decomposition principle (Definition 2.18), without much modification.
The deletions are replaced by newly added proofs of the decomposition principle’s more
security-focused side conditions (Definition 2.19, depicted by Figures 4b, 4c).

2.5 Compositional whole-system secure refinement

We now present the whole-system refinement theorem from Murray et al. (2016b,a), which
we adapt here to support the specification of INIT requirements (as in com-secureEXTRA

INIT ,
Definition 2.7), and simplify to the case of refinements that add no shared variables.

The main usefulness of this theorem is that, beyond demanding secure-refinement

(Definition 2.15), which dealt with the preservation of per-thread security as witnessed
by a strong-low-bisim-mm (Definition 2.4), it deals additionally with the preservation
of the sound-mode-use side conditions (Definition 2.10) that will be demanded by the
compositionality theorem for CVDNI (Theorem 2.8) at the target language level.

Notably, although it imposes the requirement for the refinement to preserve the
“local” part of sound-mode-use (Definition 2.11), it automatically preserves the non-
compositional “global” part of this side condition (Definition 2.12) as a consequence of the
requirements imposed by the per-thread secure refinements. Thus, our source-level proof
of the global condition (see Section 3) will be sufficient, and there will be no need for us to
prove anything extra about our compiler for it to preserve that to the target-language level.

We now present the requirements and theorem for whole-system refinement formally.



829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

R. Sison and T. Murray 19

First, in addition to the per-thread refinement notion secure-refinement (Definition 2.15)
that we addressed in Sections 2.3 and 2.4, our whole-system refinement theorem
will require that the refinement relation R established by the compiler additionally
preserves the compositional local mode compliance property for each thread. Here,
“respects-own-guarantees” is from Definition 2.11:

Definition 2.21 (Refinement R preserves local mode compliance).

preserves-local-compliance R ≜ ∀tpsA mdsA memA tpsC mdsC memC.

respects-own-guarantees (tpsA, mdsA) ∧
(⟨tpsA, mdsA, memA⟩A, ⟨tpsC, mdsC, memC⟩C)∈R −→

respects-own-guarantees (tpsC, mdsC))

We define a new “compositional refinement” predicate to capture all per-thread require-
ments that will be demanded by our compositional whole-system refinement theorem.
This bundles together preserves-local-compliance and secure-refinement so as to preserve
the strong-low-bisim-mm relations (Definition 2.4) that witness noninterference for each
thread of the abstract program. Alongside all these requirements just described, it also
requires the concrete coupling invariant I to cover all possible initial memory pairs that
are low-equal modulo modes (Definition 2.3) and satisfy the INITC conditions that will
parameterise the target language-level CVDNI property:

Definition 2.22 (Requirements for compositional whole-system refinement).

compositional-refinement B R I ≜
secure-refinement B R I ∧ strong-low-bisim-mm B ∧
preserves-local-compliance R ∧
(∀tpsC mds mem1 mem2. mem1 =

Low
mds mem2 ∧ INITC mem1 ∧ INITC mem2 −→

(⟨tpsC, mds, mem1⟩C, ⟨tpsC, mds, mem2⟩C)∈I )

With these requirements, we prove using Isabelle/HOL that a whole-system refinement
theorem, proved originally by Murray et al. (2016b,a), can be adapted to support the spec-
ification of INIT requirements on initial memory at both abstract- and concrete-level. (As
with Theorem 2.8, the relaxation of the goal by INITC is enough to permit the relaxations of
its assumptions by INITC, INITA.) First we will state the theorem, then we will explain it,
line-by-line. This theorem proves that abstract-level sound-mode-use (including its global
part) by a system of secure mixed-sensitivity concurrent program threads (i.e. list cmsA, as
witnessed by bisimulations Bs for each thread) is sufficient for a set of per-thread secure
refinements (in terms of the lists Bs,Rs,I s of bisimulation, refinement, and concrete
coupling invariant relations for each thread, respectively) to yield a concrete-level secure
concurrent program (i.e. list cmsC that satisfies sys-secure, Definition 2.9):



875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

20 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

Theorem 2.23 (Whole-system compositionality of per-thread secure refinement).

(∀mem. INITC mem −→ INITA mem) ∧
(∀mem. INITA mem −→ sound-mode-use (cmsA, mem)) ∧
length cmsA = length Bs = length Rs = length I s = length cmsC ∧
(∀i < length cmsC.

compositional-refinement Bs[i] Rs[i] I s[i] ∧
(∀mem. INITC mem −→ ((cmsA[i], mem), (cmsC[i], mem))∈Rs[i]) ∧
(∀mem1 mem2. INITA mem1 ∧ INITA mem2 ∧ mem1 =

Low
(snd cmsC [i])

mem2 −→
((cmsA[i], mem1), (cmsA[i], mem2))∈Bs[i]))

sys-secureINITC
cmsC

The premises of this theorem can be understood as follows:

• (∀mem. INITC mem −→ INITA mem):
The concrete-level “INITC” initial condition must be no weaker than the abstract-
level “INITA” one.

• (∀mem. INITA mem −→ sound-mode-use (cmsA, mem)):
For the abstract program, sound-mode-use (Definition 2.10) must hold for all
possible initial memories.

• The lists of initial thread-private and mode states at abstract and concrete level
(resp. cmsA, cmsC), and lists of bisimulation, refinement, and concrete coupling
invariant relations (resp. Bs,Rs,I s) must all be for the same number of threads.

• Then, for all threads i in the system:

– The relations B,R,I for thread i must meet the requirements for “composi-
tional whole-system refinement” (Definition 2.22).

– The refinement relation R for thread i must hold initially, i.e. cover its initial
thread-private and mode states at concrete and abstract level (resp. cmsC, cmsA),
for all initial memories that satisfy the concrete INITC requirement.

– The abstract bisimulation relation B for thread i must hold initially, i.e. must
relate its initial thread-private and mode state to itself, for all pairs of memories
that are low-equal modulo that mode state, and that both satisfy the abstract INITA

requirement.

Given all these assumptions, Theorem 2.23 yields a whole-system noninterference
property sys-secureINITC

for the resulting concurrent program (with the list of initial
thread-private and mode states cmsC) that assumes that the initial memory satisfies INITC.

3 Source language: While with mutex locks

In this section, we give a focused presentation of our compiler’s source language, centered
on its properties that enable the composition of per-thread proofs of CVDNI-preserving
refinement to the compiler’s target RISC language. Our Isabelle/HOL supplement provides



921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

R. Sison and T. Murray 21

full formalisations of its semantics, and of instances of all per-thread proof techniques for
proving CVDNI itself (developed for While by Sison (2020); Murray et al. (2016b,c)).
While with mutex locks (hereafter While) is a generic imperative language with support

for conditional looping, consisting of the commands cmd over arithmetic expressions exp:

exp ::= n | v | exp ⊕ exp
cmd ::= skip | cmd ; cmd | if exp then cmd else cmd fi |

while exp do cmd od | v := exp | stop |
lock(k) | unlock(k)

The language is parameterised over shared program-variable identifiers v :: Var, shared
lock-variable identifiers k :: Lock, constant values n :: Val, and binary arithmetic operators
⊕ :: Val ⇒ Val ⇒ Val that each have a big-step evaluation semantics; these induce a big-
step evaluation semantics for exp as a whole. The commands cmd then have a small-step
operational semantics, wherein skip and variable assignment v := exp execute in one step
to stop (which itself does not step to anything); conditional branch if steps to the appropri-
ate cmd depending on whether its expression evaluates to zero; and conditional loop while
steps to an if-conditional between either (1) the loop body sequenced with a repetition of
the while command, or (2) stop. Finally the sequential command c1 ; c2 executes to c2

when c1 executes to stop, and to c′1 ; c2 (c′1 being c1’s destination) otherwise. Of these
aforementioned commands, only variable assignments can modify the shared memory
(program-variables only), and none can directly modify the mode state or lock-variables.

We will give special focus to the addition to the While language of the mutex
synchronisation primitives lock(k) and unlock(k), which are the sole means of modi-
fying lock variables and mode state. These replace both the ad-hoc mode annotations
and the await(v) synchronisation primitive that were previously offered for While by
Murray et al. (2016b). After briefly noting here how While instantiates the underly-
ing theory from Section 2, we will present these new primitives’ operational semantics,
which depends on the program developer supplying details of the locking discipline as
a parameter (Section 3.1) subject to some restrictions (Section 3.2). We will then prove
that global-modes-compatibility (Definition 2.12) is invariant for systems of While pro-
grams running concurrently (Section 3.3), subject to some initial conditions (Section 3.4).
Discharging this once-off noncompositional proof obligation is crucial in enabling both
composition of per-thread noninterference properties (using Theorem 2.8), and composi-
tional whole-system secure refinement of noninterference down to RISC by our compiler
(using Theorem 2.23).
While instantiates the concurrent value-dependent noninterference theory described in

Section 2.2. This instantiation assumes that the underlying concurrent execution model
(e.g. operating system, scheduler) for the While language prevents threads from seeing
each others’ current program location. Thus the While program command c :: cmd being
executed (understood as the current program location) is modelled as the thread-private
state of the local configuration triple: ⟨c, mds, mem⟩w. (The subscript w distinguishes
While program triples from RISC ones, which are subscripted r.)

To ease formalisation of lock(k) and unlock(k), we instantiate the shared mem :: Mem
type as a total mapping from a sum type to values Val. This sum type, with constructors



967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

22 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

Lock,Var, distinguishes lock-variable identifiers k :: Lock (which can only be read or writ-
ten by the lock primitives) from program-variable identifiers v :: Var (which can be read or
written by the rest of the commands). In Isabelle/HOL’s datatype notation, this is:

Mem ≜ (Lock Lock | Var Var)⇒ Val

For readability, we will elide this distinction between Lock and Var—or applications of
their constructors Lock and Var—from the presentation whenever clear from the context.

3.1 Locking discipline and its semantics

The program developer provides the details of the program’s locking discipline in the form
of a lock interpretation parameter lock-interp :: Lock ⇒ (Var set × Var set), which gives
for each lock the two non-overlapping sets of program-variables over which acquiring
the lock grants exclusive permission to write, (resp.) read and write. For readability, this
presentation will elide lock-interp from the arguments of definitions, and use the notation
varsNoW, varsNoRW :: Lock ⇒ Var set to refer to its fst and snd projection.

Alongside encoding the mutex primitives’ usual effect on control flow—most crucially,
lock(k) should refuse to proceed meaningfully if the lock k is already held—we will now
specify for them an evaluation semantics that furthermore encodes the permissions implied
by the locking discipline, as assumptions and guarantees expressed in the mode state. This
semantics assumes that, initially, no locks are held, and all threads are making guarantees
not to access the variables they govern (conditions we will define formally in Section 3.4).

The following two helpers specify how acquiring (resp. releasing) a lock affects the
mode state under a given lock interpretation lock-interp. When a thread acquires a lock
it gains more assumptions, and makes fewer guarantees about the region of memory
concerned:

Definition 3.1 (Impact on mode state mds of acquiring lock k).

mds ⊕ k ≜ λ m. case m of GuarNoW ⇒ mds GuarNoW − varsNoW k

| AsmNoW ⇒ mds AsmNoW ∪ varsNoW k

| GuarNoRW ⇒ mds GuarNoRW − varsNoRW k

| AsmNoRW ⇒ mds AsmNoRW ∪ varsNoRW k

The converse occurs when releasing a lock: the thread drops the assumptions it was
making about that region of memory, and once again makes guarantees not to access it.

Definition 3.2 (Impact on mode state mds of releasing lock k).

mds ⊖ k ≜ λ m. case m of GuarNoW ⇒ mds GuarNoW ∪ varsNoW k

| AsmNoW ⇒ mds AsmNoW − varsNoW k

| GuarNoRW ⇒ mds GuarNoRW ∪ varsNoRW k

| AsmNoRW ⇒ mds AsmNoRW − varsNoRW k



1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

R. Sison and T. Murray 23

The operational semantics for lock(k) is then given by two rules: LOCKACQ when lock
k is available, and LOCKSPIN when it is already held. For these, we use predicate evLock ::
Val ⇒ bool with designated constants TrueLock, FalseLock :: Val to indicate that the lock is,
resp. is not held—i.e. evLock(TrueLock) =True, and evLock(FalseLock) = False.2

Apart from impacting the mode state as already specified (by Definition 3.1), attempting
to acquire an available lock will succeed in the usual manner, setting the lock-variable to
the designated constant (TrueLock) to prevent subsequent lock acquisition attempts:

¬evLock (mem (Lock k)) mem′ = mem[Lock k 7→TrueLock]

mds′ = mds ⊕ k

⟨lock(k), mds, mem⟩w⇝w ⟨stop, mds′, mem′⟩w
LOCKACQ

Attempting to acquire an already-held lock results in a stuttering evaluation step:

evLock (mem (Lock k))

⟨lock(k), mds, mem⟩w⇝w ⟨lock(k), mds, mem⟩w
LOCKSPIN

Then, the operational semantics for unlock(k) is given by two rules, of which only one,
LOCKREL, will ever be used by programs that follow locking discipline. This rule requires
that the mode state mds is consistent with the present thread having previously acquired the
lock k: In short, it should have all the assumptions, but none of the guarantees, associated
with the variables governed by the lock. To specify this, we define the following helper:

Definition 3.3 (Mode state is consistent with holding a lock k).

lock-held-mds-correct mds k ≜
∀x. (x ∈ varsNoW k −→ x /∈ mds GuarNoW ∧ x ∈ mds AsmNoW) ∧

(x ∈ varsNoRW k −→ x /∈ mds GuarNoRW ∧ x ∈ mds AsmNoRW)

With that condition satisfied, the LOCKREL rule specifies that an unlock(k) will proceed
successfully, to enact lock release on the memory and mode state as expected:

lock-held-mds-correct mds k mem′ = mem[Lock k 7→ FalseLock]

mds′ = mds ⊖ k

⟨unlock(k), mds, mem⟩w⇝w ⟨stop, mds′, mem′⟩w
LOCKREL

To ensure that the While evaluation semantics is defined for all possible configurations,
the LOCKINVALID rule defines a stuttering evaluation step for attempts to unlock(k) that
violate the locking discipline due to not having previously acquired the lock k:

¬ lock-held-mds-correct mds k

⟨unlock(k), mds, mem⟩w⇝w ⟨unlock(k), mds, mem⟩w
LOCKINVALID

As mode state is nominally a form of ghost state, having the operational seman-
tics appear to depend on it in this manner is rather unusual. To remove the semantics’
reliance on ghost state, the program developer must use a check for local-mode-compliance

(Definition 2.11) that only ever admits programs that satisfy the lock-held-mds-correct

2 All three of evLock,TrueLock, FalseLock are parameters that are set by the user of the theory, with the proviso
that their choice of parameters satisfy that evLock(TrueLock) and ¬evLock(FalseLock) hold as required.



1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

24 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

check whenever attempting to unlock(k). For such programs, the operational semantics
is equivalent to one that (1) omits the lock-held-mds-correct check from the LOCKREL

rule, and (2) omits the LOCKINVALID rule from the While-language semantics entirely.
An example of such a check is included in our Isabelle/HOL supplement.

3.2 Restrictions on locking disciplines

Here we lay out some cleanliness conditions on locking disciplines, giving particular focus
to those relevant to our locking semantics (Section 3.1), and to our verification efforts for
While’s global compositionality property (Section 3.3) and our compiler (Section 5).

Of these, only one is a hard consequence of the underlying CVDNI theory we presented
in Section 2: The per-thread CVDNI property com-secure (Definition 2.7) effectively com-
pels us to enforce that secrets are never allowed to leak into the locking state. Otherwise,
mode state would become tainted upon any attempt to acquire a lock whose status is secret,
which would violate com-secure’s requirement that modes-equality must be maintained at
all times (note the =mds enforced by strong-low-bisim-mm, Definition 2.4). To ensure
that com-secure will always treat the locking state as an untrusted sink, we impose the
following requirement on the L parameter supplied by the program developer:

Proposition 3.4 (L must permanently assign Low classification to all lock-variables k).

∀k mem. L mem (Lock k) = Low

The remaining restrictions are consequences of various simplifications of convenience.
First, note that the type signature of the lock-interp parameter (given in Section 3.1) only

allows locks to govern program variables, not other locks. We justify this simplification
with the fact that if some lock k governed lock k′, then k would already have to be held
whenever acquiring k′—otherwise, the change to k′ would violate a no-write assumption
implied by the locking discipline. This, however, would make k′ entirely redundant with k.

Second, the lock acquisition and release semantics we gave in Section 3.1 is rather sim-
plified, in that releasing a lock will drop the assumptions of all its variables from the mode
state, even if another lock for that variable is still held! Thus, we signal that it only works
for disciplines wherein no more than one lock governs each program variable, by asserting:

Proposition 3.5 (No variable can be managed by more than one lock).

∀v k. v ∈ varsNoW k ∪ varsNoRW k −→
(∀k′. v ∈ varsNoW k′ ∪ varsNoRW k′ −→ k′ = k)

We believe that it would be feasible to relax Proposition 3.5, by generalising While’s
locking semantics to allow disciplines wherein multiple locks must be held to access a
given variable. To satisfy CVDNI-preserving refinement (particularly Definition 2.13), a
compiler would need to preserve the lock memory operations that implement the more
sophisticated bookkeeping needed, as ours does for the current, much simpler locking
semantics.



1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

R. Sison and T. Murray 25

Next, we assume that the program developer has not specified any “vacuous” locks
(i.e. ones that govern no variables), and that all locks grant at most one of AsmNoW
or AsmNoRW (i.e. not both) on any given variable. These two assumptions allow us
to exclude various pathological cases from our reasoning in Section 3.3 and Section 5,
respectively:

Proposition 3.6 (Every lock governs access to some variable).

∀k. varsNoW k ∪ varsNoRW k ̸= /0

Proposition 3.7 (The lock interpretation sets for any given lock k do not overlap).

∀k. varsNoW k ∩ varsNoRW k = /0

The final two restrictions simplify the possible interactions between locks and control
variables: We disallow locks from being control variables, and require variables to be gov-
erned by the same lock as their control variables. In particular, they will help us establish
(in Section 5.4) that the compiler produces programs that satisfy local-mode-compliance.

First, recall we mentioned that, as part of local-mode-compliance (Definition 2.11), the
doesnt-read-(or-modify) assertions entail that any guarantees not to access some variable
v will effectively apply also to all of v’s control variables. Disallowing lock-variables from
being control variables thus ensures that lock(k) and unlock(k), because they only access
lock-variable k, cannot violate doesnt-read-(or-modify) for any program-variables:

Proposition 3.8 (Lock-variables k cannot be control variables).

∀k. (Lock k) /∈C

Finally, requiring variables to be governed by the same lock as their control variables
effectively ensures they are always locked simultaneously. Apart from making it easier for
programs to satisfy local-mode-compliance, this also naturally prevents leaks caused by
other threads changing a variable’s classification to Low when it still contains High data:

Proposition 3.9 (Variables are always governed by the same lock as their control
variables).

∀c v k. Var c ∈C vars (Var v)−→ (c ∈ varsNoW k = v ∈ varsNoW k) ∧
(c ∈ varsNoRW k = v ∈ varsNoRW k)

3.3 Proof of global modes compatibility as an invariant

This section will present proof that global-modes-compatibility (Definition 2.12) holds as
an invariant for concurrent While programs (Section 3.3) when initialised to have no locks
held (Section 3.4). Consequently, it is sufficient for a developer to use a local compliance
check (Sison, 2020) to obtain the sound-mode-use condition (Definition 2.10) needed for
per-thread security proofs to be compositional via Theorem 2.8.



1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

26 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

Recall from Section 2.2 that this compatibility requirement formalises that for all reach-
able global configurations of a concurrent program, any assumptions made by any of the
threads must be met by corresponding guarantees made by all of the other threads:

Definition 2.12 (Global modes compatibility).

global-modes-compatibility gc ≜ ∀mdss ∈ reachable-mds-lists gc. compatible-modes mdss

where

reachable-mds-lists gc ≜
{mdss | ∃cms′ mem′ sched. gc 99Ksched (cms′, mem′) ∧ map mds cms′ = mdss}

compatible-modes mdss ≜ ∀i x. i < length mdss −→
(x ∈ mdss[i] AsmNoRW −→

(∀ j < length mdss. j ̸= i −→ x ∈ mdss[ j] GuarNoRW)) ∧
(x ∈ mdss[i] AsmNoW −→

(∀ j < length mdss. j ̸= i −→ x ∈ mdss[ j] GuarNoW))

The approach to establish global-modes-compatibility here will be to define three mode
management requirements that taken together imply compatible-modes, and to prove them
invariant for concurrent While programs when initialised such that they hold to begin with.

The first of these pertains to variables whose access is governed by some lock, accord-
ing to the locking discipline. To define it, we need, alongside lock-held-mds-correct
(Definition 3.3) from Section 3.1, a predicate that specifies the correct mode state for not
holding a lock k: It should make all of the guarantees, and have none of the assumptions
associated with the variables governed by k.3 Stated formally:

Definition 3.10 (Mode state is consistent with not holding a lock k).

lock-not-held-mds-correct mds k ≜
∀x. (x ∈ varsNoW k −→ x ∈ mds GuarNoW ∧ x /∈ mds AsmNoW) ∧

(x ∈ varsNoRW k −→ x ∈ mds GuarNoRW ∧ x /∈ mds AsmNoRW)

Note that our simplifying exclusion of “vacuous” locks (Proposition 3.6) ensures
we never have to deal with a case where lock-held-mds-correct mds k and
lock-not-held-mds-correct mds k hold simultaneously.

The requirement on global configurations regarding these lock-managed variables is
then as follows: If and only if a given lock is held by anybody, then exactly one thread has
a mode state consistent with holding it; furthermore, all other threads will have a mode
state consistent with not holding it. Formally, with mdss gc ≜ map mds (cms gc):

3 Note that this not merely the negation of lock-held-mds-correct mds k (Definition 3.3)!



1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

R. Sison and T. Murray 27

Definition 3.11 (Lock-managed variable modes are compatible with memory).

lock-managed-modes-mem-compatible gc ≜
∀k. if (evLock ((mem gc) k)) then

∃!i. i < length (cms gc) ∧
lock-held-mds-correct (mdss gc)[i] k ∧
(∀ j < length (cms gc). i ̸= j −→

lock-not-held-mds-correct (mdss gc)[ j] k)

else ∀i < length (cms gc).

lock-not-held-mds-correct (mdss gc)[i] k

The second requirement pertains to variables whose access is entirely ungoverned by
any locks in the locking discipline. For these we specify a more direct check that if any
thread in the global configuration has an assumption about access to any of these variables,
then all other threads must be providing the corresponding guarantee to that assumption:

Definition 3.12 (Unmanaged variable modes are compatible).

unmanaged-var-modes-compatible gc ≜ ∀i x. i < length (mdss gc)−→
(x /∈

⋃
k::Lock

varsNoRW k −→

(x ∈ (mdss gc)[i] AsmNoRW −→
(∀ j < length (mdss gc). j ̸= i −→ x ∈ (mdss gc)[ j] GuarNoRW))) ∧

(x /∈
⋃

k::Lock

varsNoW k −→

(x ∈ (mdss gc)[i] AsmNoW −→
(∀ j < length (mdss gc). j ̸= i −→ x ∈ (mdss gc)[ j] GuarNoW)))

Also proved invariant is a third, minor property that enforces globally that no assump-
tions or guarantees are ever recorded regarding access to lock-variables:

Definition 3.13 (No assumptions and guarantees on lock variables).

no-lock-mds mds ≜ ∀l m. Lock l /∈ mds m

no-lock-mds-gc gc ≜ ∀mds ∈ set (mdss gc). no-lock-mds mds

This follows trivially from (1) our simplification (discussed in Section 3.2) only to allow
locks to protect access to program variables and not other locks, and (2) the resulting fact
that no While primitives ever touch any mode state pertaining to lock variables. Thus,
further details on this third management requirement will be elided.

We then have straightforwardly from their definitions that together, these three mode
management requirements imply compatible modes for a given global configuration:



1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

28 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

Lemma 3.14 (Management requirements ensure compatibility).

lock-managed-modes-mem-compatible gc unmanaged-var-modes-compatible gc
no-lock-mds-gc gc

compatible-modes (mdss gc)

Proofs of invariance then proceed by induction over the single-step evaluation semantics
of an arbitrary thread taking a step to progress the system to a new global configuration.

For the first management requirement (Definition 3.11):

Lemma 3.15 (Single-step preservation of lock-managed-modes-mem-compatible).

lock-managed-modes-mem-compatible (cms, mem)

⟨ci, mdsi, mem⟩w⇝w ⟨c′i, mds′i, mem′⟩w i < length cms
cms′ = cms[i := (c′i, mds′i)] cms[i] = (ci, mdsi)

lock-managed-modes-mem-compatible (cms′, mem′)

Proof By induction over the single-threaded evaluation semantics of the program at index
i that is taking a step.

lock(k) preserves the property because it only allows a thread to set lock k’s memory if
it is not already set – it would then become the single unique thread whose mode state is
consistent with holding k. Otherwise, the mode states and memory remain unchanged.

Similarly, unlock(k) preserves the property because its only possible change is to unset
lock k’s memory, and return the unique thread holding lock k to a mode state consistent
with not holding k.

The other While commands preserve the property because they do not touch the mode
state nor any lock-variables. ■

For the second management requirement (Definition 3.12):

Lemma 3.16 (Single-step preservation of unmanaged-var-modes-compatible).

unmanaged-var-modes-compatible (cms, mem)

⟨ci, mdsi, mem⟩w⇝w ⟨c′i, mds′i, mem′⟩w i < length cms
cms′ = cms[i := (c′i, mds′i)] cms[i] = (ci, mdsi)

unmanaged-var-modes-compatible (cms′, mem′)

Proof Again, by induction over the single-threaded evaluation semantics of the program
at index i that is taking a step.

We prove and use lemmas that lock(k) and unlock(k) do not touch any mode state
pertaining to variables that are unmanaged by any locks, and that the remaining While

commands do not touch the mode state at all. Therefore evaluation steps cannot possibly
have any effect on the compatibility of modes on these variables. ■

These single-step evaluation results lift easily to invariance results over the global multi-
step evaluation semantics quantified over arbitrary schedules. These invariance results,
with the fact that the management requirements ensure compatibility (Lemma 3.14), yield
in a straightforward manner the desired global compatibility invariance theorem:



1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

R. Sison and T. Murray 29

Theorem 3.17 (Mode management requirements ensure global compatibility).

lock-managed-modes-mem-compatible gc unmanaged-var-modes-compatible gc
no-lock-mds-gc gc

global-modes-compatibility gc

3.4 Initial conditions ensuring global modes compatibility

We now define conditions on memory and mode state consistent with no locks being held,
and show that initialising a system under these conditions is enough to satisfy the global
compatibility part (Definition 2.12) of the sound-mode-use side condition (Definition 2.10)
of the compositionality theorem for our security property (Theorem 2.8).

We define the following predicate for initial memory:

Definition 3.18 (A requirement for initial memory that no locks are held).

no-locks-held mem ≜ ∀k. ¬evLock (mem k)

We then define an initial mode state mds0 :: Mode ⇒ Var set that provides all guaran-
tees demanded by the lock interpretation parameters varsNoW, varsNoRW (described in
Section 3.1) for all lock variables in the system, and makes no assumptions:

Definition 3.19 (Initial mode state mds0).

mds0 ≜ λ m. case m of GuarNoW ⇒
⋃

k::Lock

varsNoW k

| GuarNoRW ⇒
⋃

k::Lock

varsNoRW k

| AsmNoW ⇒ /0

| AsmNoRW ⇒ /0

We are then able to show that these conditions are enough to satisfy the requirements
we just showed (in Section 3.3) ensure global modes compatibility for While:

Lemma 3.20 (Initialising with no-locks-held,mds0 ensures global modes compatibility).

no-locks-held mem ∀(c, mds)∈ set cms. mds =mds0

global-modes-compatibility (cms, mem)

Proof Theorem 3.17 obliges us to show that the mode management conditions
(Definitions 3.11, 3.12, and 3.13) hold. This follows straightforwardly from all the relevant
definitions. ■

4 Target language: RISC with mutex locks

Here we introduce RISC with mutex locks (hereafter RISC), the target of our compiler.
This is a generic RISC-style assembly language based on the RISC architecture targeted



1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

30 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

by the compilation scheme of Tedesco et al. (2016). A RISC program text is a list of RISC
instructions I, each optionally associated with a label:

I ::= [l :]B
B ::= Load r v | Store v r | Jmp l | Jz l r | Nop

MoveK r n | MoveR r r | Op ⊕ r r
LockAcq k | LockRel k

Here we fix the types of the constant values n :: Val, binary arithmetic operators ⊕ ::
Val ⇒ Val ⇒ Val, shared program variables v :: Var, and shared lock variables k :: Lock to
be the same as those for the source While language being compiled. Thus, the only new
types here compared to Section 3 are for the register identifiers r :: Reg, and labels l :: Lab.
RISC has a small-step operational semantics that is largely unchanged from Tedesco

et al. (2016), in that each step updates a distinguished program counter register, which
captures the current thread’s program location as an index into its RISC program text. The
instructions MoveK, MoveR, Load, and Store, for moving values to and between the
registers and shared memory, and the “no-op” instruction Nop, all increment the program
counter; the “jump if zero” instruction Jz l r updates it to the index of the instruction at l
if r contains zero (else increments it); the unconditional Jmp l does so unconditionally.

Modifying this instruction set from Tedesco et al. (2016), we then customise the Op
instruction, and add LockAcq k and LockRel k instructions, to have semantics mirroring
those of ⊕, lock(k), and unlock(k) from While respectively. Whereas the RISC equivalents
for the LOCKACQ and LOCKREL evaluation rules (described by Section 3.1 for the While
language) increment the program counter, those for LOCKSPIN and LOCKINVALID leave
it unchanged. There is no RISC evaluation rule that changes the program text.

Although it has only direct-addressing Load and Store instructions, our RISC target
language is adequate for implementing all features of While present in Section 3, with
the big-step semantics of exp replaced by small-step operations on registers. We relegate
RISC’s full formal semantics to this paper’s supplement Isabelle/HOL material.

Our defining LockAcq k and LockRel k to have the same operational semantics on
shared memory and mode state as While’s lock(k) and unlock(k) has two consequences:

• Our compiler will expect the program developer to supply the details of the locking
discipline for the While program being compiled, so as to be able to ensure that the
RISC program it produces follows the same discipline.

• We then have that global compatibility is invariant for RISC execution, by a near-
identical argument to the one we presented in Section 3.3, when initialised with
the conditions we presented in Section 3.4. This presents one option for obtaining
RISC-level composition of per-thread noninterference properties; however, invoking
it directly will not be necessary when using the compositional whole-system secure
refinement method of Section 2.5. (The alternative options and their application will
be demonstrated further, respectively in Section 5.4, Section 6.3.)

As for While in Section 3, we instantiate here for RISC the CVDNI theory of Murray
et al. (2016b) as recalled in Section 2.2, assuming that the underlying concurrency model
(e.g. OS, scheduler etc.) prevents one thread from reading the program text of another.



1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

R. Sison and T. Murray 31

For RISC, we furthermore assume that the context switching mechanism ensures effec-
tively that no thread can read or interfere with the contents of the registers (including the
program counter) when active for another thread. Based on these assumptions, we model
all three of the program counter register’s value pc :: nat, RISC program text P :: I list,
and register bank regs :: Reg ⇒ Val, as thread-private state in the local configuration triple:
⟨((pc, P), regs), mds, mem⟩r. (We use the subscript r to distinguish RISC triples.)

5 Verified secure compiler for mixed-sensitivity concurrent While programs

This section presents the COVERN wr-compiler: the first compiler proved to preserve
proofs of noninterference for mixed-sensitivity concurrent programs. By using assume–
guarantee modes (Mantel et al., 2011) and the decomposition principle of Section 2.4 to
prove it introduces (resp.) no race conditions or timing leaks, we demonstrate the applica-
bility to compiler verification of the CVDNI-preserving refinement notion of Section 2.3
originally posed by Murray et al. (2016b). Here the decomposition principle (Figure 4) is
crucial because, in separating the concern of preventing new timing leaks, it avoids directly
having to prove the cube-shaped refinement diagram (Figure 3) arising from its need to
preserve a 2-safety hyperproperty (Terauchi & Aiken, 2005; Clarkson & Schneider, 2010).

To preserve security for mixed-sensitivity concurrent programs, CVDNI-preserving
refinement demands small-step preservation of the contents of all shared memory loca-
tions including those that control value-dependent classifications and implement locks. As
it is unusual for verified compilers to make such promises, we show that a valid approach
is to take advantage of CVDNI’s assume–guarantee framework to:

1. test and preserve any absence of race conditions implied (via the framework) by
mutex lock-based synchronisation of access to such locations, and then

2. use this absence of race conditions to establish the small-step preservation of their
contents demanded for security-preserving refinement.

In doing so, we prove that some optimisations the wr-compiler performs with its knowl-
edge of the locking discipline—it avoids unnecessary Loads and recalculation of common
subexpressions over shared memory when locked—are safe to allow without violating
CVDNI.

In preserving CVDNI, the wr-compiler preserves security proofs that are produced by
the program verification techniques of Sison (2020) for While with mutex locks, which in
turn were adapted from Murray et al. (2016b,c). We will present such an application of our
compiler, to a case study program verified using these techniques, in Section 6.

Section 5.1 will focus on the wr-compiler’s particular adaptations to CVDNI (beyond
the fault-resilient noninterference targeted by the original compilation scheme of Tedesco
et al. (2016)), in the form of static checks and invariants that (resp.) test for and maintain
the absence of race conditions on lock-protected shared variables. Section 5.2 formalises
a ban, preserved by the wr-compiler, on secret-dependent control flow. Section 5.3 then
presents formal proof (structured by our decomposition principle of Section 2.4) that the
wr-compiler implements CVDNI-preserving refinement. Section 5.4 ultimately presents
proofs of overall security preservation results useful to users of the wr-compiler: Namely,



1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

32 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

it can be used either to preserve security down to RISC for an entire concurrent While-
language program, or to preserve the per-thread security for threads that will be run
alongside others written directly in the RISC-language.

5.1 Preserving race-free expression evaluation

Recall from Section 2.3 that CVDNI-preserving refinement (Murray et al., 2016b)
demands that all shared memory contents be preserved, between each target- and source-
language configuration that it relates. This is security critical for mixed-sensitivity
concurrent programs, as it ensures that any future influence of those contents on value-
dependent classifications (via control variables) or readability by other threads (in the case
of the While and RISC languages, via lock variables) is preserved.

The wr-compiler’s approach to preserving the contents of shared memory is to ensure:

1. That values calculated by expressions are preserved by compilation—that is,
they have the same value when written back to shared memory (or conditionally
branched on) by the RISC program, as they did in the original While program; and

2. That expression evaluation is race-free—that is, free of any race conditions with
other threads that would render the calculated expression inaccurate.
To this end, the wr-compiler requires of the original While program that when-
ever each thread attempts to evaluate an expression, it must hold locks ensuring the
stability of all variables referenced by the expression.

Thus, its knowledge and enforcement of the locking discipline is crucial, not only to show
that its optimisations preserve CVDNI, but that any meaningful operation over shared
memory preserves it. It therefore tests for and rejects programs that exhibit potential
race conditions due to their failure to follow locking discipline—these result in a failed
compilation.

The wr-compiler tracks two kinds of information to achieve these outcomes: the con-
tents of registers as expressions over shared variables, and assumptions on access to
variables by other threads. The structures the wr-compiler uses to do this are, respectively:

• A register record Φ :: RegRec≜ Reg ⇀ exp. This draws inspiration from that used
by the compilation scheme of Tedesco et al. (2016) (originally of type Reg ⇀ Var)
to avoid generating unnecessary Load instructions to registers that already con-
tain a variable; in addition, here we extend it to track entire expressions on shared
variables.

• An assumption record S :: AsmRec≜ (Var set × Var set) that tracks which variables
at a given point in the source While program are “stable” due to having, respectively,
an AsmNoW or AsmNoRW assumption.

The wr-compiler’s main function compile-cmd then outputs every register–assumption
record pair (or compilation record) C = (Φ,S ) :: CompRec≜ RegRec × AsmRec asso-
ciated with the program state before execution of each instruction in the output RISC
program.4 A typical invocation to compile some c :: cmd takes an initial compilation

4 For readability, we will use regrec, asmrec to denote a CompRec’s (resp.) fst, snd projections.



1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

R. Sison and T. Murray 33

record C, and returns the CompRec-annotated RISC program PCs :: (I × CompRec) list
(i.e. map fst PCs recovers an unannotated RISC text), and a final compilation record C′:

Example 5.1 (Example invocation of the COVERN wr-compiler).

(PCs, l′, nl′,C′, failed) = compile-cmd C l nl c

The remainder of this section will focus on formal properties of the compilation records
output alongside each RISC text: Section 5.1.1 will elaborate on checks enforced on input
programs with the help of AsmRecs, and Section 5.1.2 will present a resulting property that
RegRecs track stable expressions, needed to prove security preservation (in Section 5.3).

Remaining details (e.g. l, l′, nl, nl′ for label allocation) will be relegated to appendices
that we provide as supplement material. We note here only that (1) compile-cmd may
return True for failed to reject the input program, such as when it detects a race condition
(described further in Section 5.1.1), or if expression depth exceeds the limit assumed by
the register allocation scheme model (elided to Appendix B); also, (2) relative to the label
allocation scheme (elided to Appendix A) we proved that the control flow of each pro-
gram fragment compiled by the wr-compiler remains self-contained even when composed
sequentially with other such fragments.

5.1.1 Requirements on inputs to the wr-compiler

We define a shared variable v to be recorded as assumed stable if it and all its control
variables (i.e. C vars v) cannot presently be written to by another thread—that is, if they
are recorded as having either of AsmNoW or AsmNoRW active on them. Formally:

Definition 5.1 (Stability of variable v according to assumption record S ).

var-stable S v ≜ v ∈ (fst S ∪ snd S ) ∧ (∀v′ ∈C vars v. v′ ∈ (fst S ∪ snd S ))

For register record entries to be of any help in ensuring consistency of While and RISC

expression evaluation, we exclude expression evaluation on race-prone variables by lifting
the concept of stability to register records. The following predicate asserts internal consis-
tency of the compilation record C created by compile-cmd, in the sense that the register
record may only map to expressions that mention variables that are recorded as stable by
the assumption record accompanying it. (Here, ran denotes the range of a map.)

Definition 5.2 (Stability of the register record in compilation record C).

regrec-stable C ≜ ∀e ∈ ran (regrec C). (∀v ∈ exp-vars e. var-stable (asmrec C) v)

We then implement a collection of stability-checks :: cmd × CompRec ⇒ bool (called
no-unstable-exprs in Sison & Murray (2019)) as a recursive function on the structure of
While programs, that compile-cmd will use to ensure the following requirements of the
given cmd if started with a configuration consistent with the given CompRec:

• The first two requirements ensure that programs comply with the locking discipline:



1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

34 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

– The requirement regarding reading from shared variables establishes the main
outcome of freedom from race conditions we described at the beginning of
Section 5.1: The program must not refer to expressions on any unstable variables.
As a matter of convenience, instead of introducing a dedicated primitive to the
While language for reading atomically from a single (otherwise-unstable) device
memory location, in our case study model of Section 6 we model such interactions
using a simple assignment x := y protected by a “read-atomicity” lock on a shared
memory location y that models the hardware interface.5

– If the program assigns to an unstable shared variable, then it must not be a lock-
governed one according to the locking discipline. This prevents the violation of
any guarantees not to write to the variable (due to not holding its lock).

• The remaining two requirements follow some simplifying assertions, originally
made by the security type system of Murray et al. (2016b), that ensure mode state
remains consistent after conditional branching and looping:

– The two sides of any if-conditional branches in the program must both end with,
effectively, the same set of locks held—to be precise, judging by their effect on
the mode state, as captured by the assumption record.

– For similar reasons, we require any while-loops in the program to restore the
original set of locks held on loop entry (again, as captured by the assumption
record) on loop termination.

We believe these to be reasonable simplifications given that, in our setting, the set
of variables governed by each lock does not change at runtime in such a way that
would require access to them to be lock protected (or not) in a conditional manner.

Together, regrec-stable C and stability-checks c C make up the main two require-
ments of a predicate compile-cmd-input-reqs C l nl c imposed on the input arguments
to compile-cmd. (Its other two requirements reflect that the terminated While program
stop has no valid compilation, and that the initial label, if provided, must be valid—details
are relegated to supplementary Appendix A.) If any of these requirements are violated,
compile-cmd rejects the program with failed =True:

Definition 5.3 (Requirements on inputs to compile-cmd).

compile-cmd-input-reqs C l nl c ≜ stability-checks c C ∧ regrec-stable C ∧
c ̸= stop ∧ (∀x. l = Some x −→ x < nl)

5.1.2 Proof that all tracked register contents are stable

Imposing the predicate compile-cmd-input-reqs (Definition 5.3) gives us enough informa-
tion to prove a lemma that compile-cmd only ever outputs stable register records, that attest
to the fact that registers contain the results of evaluating expressions on stable variables.

5 When such atomic hardware primitives exist on a given architecture, we expect it would be straightforward
for source languages to expose them and oblige their architecture-specific compilers to compile them to that
single atomic instruction in the target language’s semantics, which would eliminate the need for such locks.



1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

R. Sison and T. Murray 35

Stated more precisely, every RISC program returned by a successful invocation of
compile-cmd is annotated by CompRecs all with stable register records, and furthermore
that the final CompRec’s register record is also stable:

Lemma 5.4 (Successful compilations output only stable register records).

(PCs, l′, nl′,C′, False) = compile-cmd C l nl c compile-cmd-input-reqs C l nl c

(∀pc < length PCs. regrec-stable (map snd PCs)[pc]) ∧ regrec-stable C′

Proof By induction on the structure of the While language program c, making reference
to the implementation of compile-cmd.

For cases that must compile expressions, we furthermore prove and make use of a lemma
by induction on the structure of expressions, making reference to the implementation of the
expression compiler function compile-expr called by compile-cmd. In essence, we prove
that (sub)expressions appearing in register records must be stable, for two reasons:

First, they are always only ever subexpressions over variables that must have been stable
in the input program when their contents were first loaded into registers.

Second, when compiling an unlock(k), the wr-compiler will always flush all register
records that make reference to any variables that the unlock(k) makes unstable. ■

5.2 Preserving a ban on secret-dependent control flow

The wr-compiler assumes that input While programs have no conditional branches on
High-sensitivity values (High-branching), and therefore no secret-dependent control flow.
This is a restriction commonly applied as a means to prevent all implicit flows, including
timing leaks. This restriction will then be preserved by the wr-compiler for its output
RISC programs, reflected primarily in the design of the concrete coupling invariant Iwr

(see Section 5.3.3).
Specifically, the wr-compiler assumes that the confidentiality of input While pro-

grams is witnessed by a strong low-bisimulation modulo modes with an extra requirement
(supplied as a parameter, as in Section 2.2) that effectively disallows any present or
past High-branching. Relying on the fact that a low-bisimulation already asserts Low-
equivalence of memories, the extra requirement asserts that it furthermore pairs only
configurations at the same program location, and that any if-conditional expressions must
evaluate to the same value in both configurations’ memories. Here, the helper function
leftmost-cmd gives the leftmost in a sequence of ;-separated While-language commands:

Definition 5.5 (An extra requirement for low-bisimulations B to ban High-branching).

no-high-branching B ≜
∀c c′ mds mem mem′. (⟨c, mds, mem⟩w, ⟨c′, mds, mem′⟩w)∈B −→ c = c′ ∧

(∀e c1 c2. leftmost-cmd c = if e then c1 else c2 fi −→ evexp mem e = evexp mem′ e)

Then, in Section 5.4, we will prove that the wr-compiler produces confidential RISC
programs with no secret-dependent control flow, as witnessed by a low-bisimulation that



1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

36 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

asserts a similar extra requirement for RISC programs. In effect, this is the pc-security
notion of Molnar et al. (2006), but also explicitly equating the program text:

Definition 5.6 (A pc-security–like requirement for RISC bisimulations B).

pc-security B ≜ ∀pc pc′ P P′ regs regs′ mds mem mem′.

(⟨((pc, P), regs), mds, mem⟩r, ⟨((pc′, P′), regs′), mds, mem′⟩r)∈B −→ pc = pc′ ∧ P = P′

5.3 Use of the decomposition principle

Having covered the most relevant aspects of the wr-compiler’s implementation, we now
present the refinement relation Rwr (in Section 5.3.1), pacing function abs-stepswr (in
Section 5.3.2), and concrete coupling invariant Iwr (in Section 5.3.3), parameters we use
to apply the decomposition principle we presented in Section 2.4 to prove (in Section 5.3.4)
that successful compilations are legitimised by secure-refinement (Definition 2.15)—the
desired confidentiality-preserving notion of refinement for mixed-sensitivity concurrent
programs.

The strategy laid out by the decomposition principle will be to prove that these
parameters satisfy decomp-refinement-safe (Definition 2.19) for a targeted class of input
While-language programs—ones with no secret-dependent control flow, as we specified in
Section 5.2—meaning (for such programs) we can use the parameters to enforce that wr-
compiler introduces no secret-dependent inconsistencies in termination, timing behaviour,
or assume–guarantee modes.

In doing so we avoid a direct proof of the cube-shaped refinement diagram (Figure 3) of
Murray et al. (2016b)—which would have involved reasoning about both Rwr and Iwr at
once—and instead prove (with the assistance of abs-stepswr) a square-shaped refinement
diagram for Rwr (Figure 4a) more typically found in compiler verification.

5.3.1 Refinement relation Rwr and its invariants

In this section we introduce the refinement relation Rwr that characterises compilation
of programs from While to RISC using the wr-compiler, and prove it satisfies the two
properties demanded of Rwr (alone) by formal secure-refinement (Definition 2.15):

1. Preservation of modes and all contents of shared memory (preserves-modes-mem,
Definition 2.13), and

2. Closedness under changes by other threads (closed-others, Definition 2.14).

An actual proof of refinement (using the square-shaped diagram of Figure 4a) for Rwr will
be deferred to Section 5.3.2, which introduces the abs-stepswr function pacing it.

Just like the earlier example of a secure refinement relation (in Figure 2), the refinement
relation Rwr pairs abstract (here, While-language) with concrete (here, RISC-language)
program configurations. For example, the if expr case of Rwr relates the expression-
evaluation part of the While command if e then c1 else c2 fi, with the corresponding part
of the RISC program obtained by running compile-cmd on it, including the conditional
jump Jz after expression evaluation. (This case is depicted in Figure C.1, and a relevant
excerpt of the compile-cmd implementation provided in Figure C.2 for comparison, both in



1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

R. Sison and T. Murray 37

supplementary Appendix C. An informal description of all the cases of Rwr, their purpose,
and the invariants they maintain, can also be found in Appendix C.)

We define almost all the cases of Rwr to assert at least one successful run of compile-cmd

(where failed = False). We then define a guard that we impose to restrict the scope of
Rwr only to consider local program configurations consistent with the relevant compilation
record produced by compile-cmd. In short, this ensures the actual values in the register
bank regs equal any expression the register record says they should have, as evaluated
under the current mem; and furthermore, that the assumption record is consistent with the
AsmNoW and AsmNoRW modes in the actual mds. Formally:

Definition 5.7 (Configuration consistency requirements for compiled commands).

compiled-cmd-config-consistent C regs mds mem ≜
regrec-mem-consistent (regrec C) regs mem ∧ asmrec-mds-consistent (asmrec C) mds

where

regrec-mem-consistent Φ regs mem ≜ ∀r e. Φ r = Some e −→ regs r = evexp mem e

(Consistency between register record, register bank, and shared memory)

asmrec-mds-consistent S mds ≜ S = (mds AsmNoW, mds AsmNoRW)

(Consistency between an assumption record and a mode state)

Apart from using compiled-cmd-config-consistent to restrict the scope of Rwr in this
manner, we will also impose it in Section 5.3.4 as initial configuration requirements for
compiled programs: Only configurations obeying them may be used to initialise a RISC

program compiled by the wr-compiler with initial CompRec C.
The cases of Rwr also tend to assert regrec-stable (Definition 5.2), which we already

proved holds for all compilation records produced by the wr-compiler (Lemma 5.4).
Finally, whenever a case of Rwr is inductive (e.g. the if expr case, for its nested calls

to compile-cmd for each of its “then” and “else” branches) it quantifies over all con-
figurations that obey compiled-cmd-config-consistent (Definition 5.7) and regrec-stable
(Definition 5.2) relative to the initial compilation record given to each nested call to
compile-cmd.

With Rwr thus specified, we can now prove the two requirements for secure-refinement

that pertain to Rwr alone: preserves-modes-mem (Definition 2.13), and closed-others
(Definition 2.14). In short, preserves-modes-mem is largely enforced by the definition of
Rwr, but closed-others relies in part on Rwr only ever talking about stable register records:

Lemma 5.8 (Rwr preserves modes and memory).

preserves-modes-mem Rwr

Proof By induction on the structure of Rwr.
For all cases of (lcw, lcr)∈Rwr, lcw =mem

mds lcr is either asserted directly by the guards or
obtainable from the inductive hypothesis. ■



1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

38 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

Lemma 5.9 (Rwr is closed under changes by others).

closed-others Rwr

Proof By induction on the structure of Rwr.
Changes by others (Definition 2.14) only modify writable variables the same way for

both configurations, so preservation of =mem
mds is immediate. Also, regrec-mem-consistent

is unaffected because by Lemma 5.4, compile-cmd only creates regrec-stable records—
i.e. referring to no writable variables. No other Rwr guards mention shared memory. ■

5.3.2 Refinement pacing function abs-stepswr

In this section we nominate a pacing function, abs-stepswr, specifying the number of eval-
uation steps with which a While program should simulate each step of the RISC program
to which the wr-compiler compiled it. Using the square-shaped “refinement preservation”
diagram of Figure 4a (part of Definition 2.18), we then prove that the Rwr relation we
introduced in Section 5.3.1 is a refinement when “paced” by abs-stepswr in this manner.

Here we define abs-stepswr to depend only on the current program location; conse-
quently, as long as the wr-compiler introduces no secret-dependent control flow, it will
also introduce no timing leaks—that is, no secret-dependent variations to the pacing of the
program, as disallowed by Figure 4b (part of Definition 2.19)—which we will be obliged
to prove in Section 5.3.4. To this end, abs-stepswr primarily looks at the form of the RISC
instruction (sometimes While command) about to be executed, dividing them into three
categories:

• Instructions output by compile-expr: Load, Op, and MoveK. For these, abs-stepswr
returns 1 if the leftmost-cmd (the leftmost in a sequence of ;-separated commands)
of the While program is “while e do c od”, to allow it to step to “if e then (c ;
while e do c od) else stop fi” concurrently with the first RISC step of the compiled
expression itself. Otherwise, abs-stepswr returns 0, to indicate the While program
standing still while the RISC program takes new steps to evaluate the expression.

• “Epilogue” steps: Jmp and Nop when used for control flow at the end of a smaller
compiled program in the context of a larger one. For these, abs-stepswr returns 0.

• All other RISC instructions are assumed to proceed at a lockstep pace with the While
command they were compiled from, and for these abs-stepswr returns 1.

Having nominated abs-stepswr and Rwr, we now have the parameters over which we are
obliged, by secure-refinement-decomp (Definition 2.18), to prove refinement preservation
(Figure 4a). To this end, we prove firstly that every step of execution of a RISC program,
produced by the wr-compiler from a While program, maintains the consistency demanded
by compiled-cmd-config-consistent between configurations and compilation records:



1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

R. Sison and T. Murray 39

Lemma 5.10 (Successfully compiled programs maintain config consistency requirements).

(PCs, l′, nl′,C′, failed) = compile-cmd C l nl c compile-cmd-input-reqs C l nl c

failed = False pc < length PCs P =map fst PCs Cs =map snd PCs

compiled-cmd-config-consistent Cs[pc] regs mds mem

⟨((pc, P), regs), mds, mem⟩r⇝r ⟨((pc′, P), regs′), mds′, mem′⟩r)

compiled-cmd-config-consistent (if pc′ < length P then Cs[pc′] else C′) regs′ mds′ mem′

Proof Unfolding Definition 5.7, we in fact prove it separately for regrec-mem-consistent
and asmrec-mds-consistent, both times by induction on the structure of While program c.

In each case, we use the simplifiers for the compile-cmd implementation to yield the
corresponding RISC program fragment in question, and then prove the lemma for each
of the possible locations of pc in the compiled program. For both proofs, there is some
trickiness in accounting for (and ruling out) which destination pc′ must be considered for
each of these cases of pc, particularly for those While programs that compile to RISC

programs that may have jumps in them.
Control flow trickiness aside, the intuition for regrec-mem-consistent is that it tests the

correctness of the compilation of expressions. For this we prove a sublemma for main-
tenance of compiled-cmd-config-consistent, by induction on the structure of expressions
e that are encountered in the While programs if e then c1 else c2 fi, while e do c′ od,
and v := e. Additionally, unlock(k) flushes register record entries mentioning variables
that are to become unstable, and while e do c′ od conservatively flushes entries to force
evaluation of the loop condition expression. This is safe trivially because flushing entries
can never make a consistent register record inconsistent. The rest of the cases for c are
straightforward because they do not touch the register record.

Then for asmrec-mds-consistent, the substantial part of the proof is as a test of the cor-
rectness of the compiler’s bookkeeping of assumptions being consistent with the semantics
of lock(k) and unlock(k). The other cases for c do not touch the mode state. ■

Also, we must prove a correctness lemma for the expression compiler:

Lemma 5.11 (Correctness of the expression compiler).

(PCs, r,C′, False) = compile-expr C A l e =⇒ (regrec C′) r = Some e

Proof By induction on the structure of expressions e, using the simplification rules for
the implementation of compile-expr, and also relying on assumptions of correctness of the
register allocation scheme supplied by the instantiator of the theory. ■

Armed with these facts, we can now prove the main refinement preservation result:

Lemma 5.12 (Rwr is a refinement paced by abs-stepswr).

∀lcw lcr. (lcw, lcr)∈Rwr −→ (∀lc′r. lcr⇝r lc′r −→
(∃lc′w. lcw⇝(abs-stepswr lcw lcr)

w lc′w ∧ (lc′w, lc′r)∈Rwr))



1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

40 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

Proof By induction on the structure of Rwr. (Refer to supplementary Appendix C for an
informal description of all cases of Rwr.)

The base case stop is immediate, as it pertains to a terminated While and RISC pro-
gram. The base cases that proceed in one step to a terminating program configuration
(skip nop, assign store, lock acq, lock rel) are fairly straightforward because after
dealing with the single step, the resulting obligation can then be handled by the stop case.
This leaves the last remaining base case assign expr, which proceeds in one step either to
itself, or to assign store. In all these cases, we use Lemma 5.10 to obtain the preserva-
tion of the guards demanded by the Rwr introduction rule for the destination configuration
of the step. Particularly, the assign store case must make use of regrec-mem-consistent
and the correctness of compile-expr (Lemma 5.11) to ensure that once the evaluated expres-
sion is written back to shared memory, lc′w =mem

mds lc′r holds as demanded by the stop

case.
The inductive cases that concern expression evaluation (if expr, while expr) are

much like assign expr in that they have the possibility of progressing in one step to
themselves. Unlike assign expr however, their other possibility is a conditional jump
based on the result of that expression. Again we use Lemma 5.11 to obtain that the result is
an accurate calculation of the expression, and this time we prove by the two different cases
whether if expr ends up in if c1 or if c2, or if while expr ends up in while inner

or at stop (having jumped to the exit label). In these cases, the guards over which the
inductive references to Rwr have been quantified are versatile enough to discharge them-
selves (when * expr steps to itself), or to discharge any reachable initial starting state for
the nested compiled RISC program, given that Lemma 5.10 ensures the invariance of these
guards.

This just leaves the inductive cases that pertain to configurations inside a nested com-
piled RISC program (if c1, if c2, while inner), or at the end of one (epilogue step,
while loop). In these cases, the inductive hypotheses obtained from the inductive refer-
ence to Rwr are always enough to satisfy the guards demanded by the possible destination
cases. Like in the proof of Lemma 5.10, the trickiness mostly comes from accounting for
all the possible cases of control flow (ruling out spurious destinations) that need to be
considered. ■

5.3.3 Concrete coupling invariant Iwr

The next element needed is the concrete coupling invariant Iwr. Recall from Section 5.2
that the no-high-branching requirement (Definition 5.5) ensures that input While programs
have no secret-dependent control flow; here we choose Iwr to ensure that the wr-compiler
has not introduced any new secret-dependent control flow in the output RISC program.

We define Iwr formally to assert that the witness strong low-bisimulation (modulo
modes) to be derived for the output program only pairs local configurations that are at
the same location pc = pc′ of the same RISC program P = P′:

Definition 5.13 (Concrete coupling invariant Iwr for compiled programs).

Iwr ≜ {(⟨((pc, P), regs), mds, mem⟩r, ⟨((pc′, P′), regs′), mds′, mem′⟩r) | (pc, P) = (pc′, P′)}



1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

R. Sison and T. Murray 41

From this definition, pc-security (Definition 5.6) is clearly immediate for any concrete
bisimulation BCof B R Iwr (Definition 2.16) derived using Iwr.

5.3.4 Proof of CVDNI-preserving refinement

With Rwr, abs-stepswr, and Iwr nominated, we are ready to prove confidentiality-
preserving refinement using the decomposition principle secure-refinement-decomp

(Definition 2.18).
To this end, we now prove the suitability of these three parameters, for While programs

that do not branch on High-sensitivity values (as we specified earlier, in Section 5.2):

Lemma 5.14 (Rwr, abs-stepswr,Iwr are safe for secure-refinement decomposition).

strong-low-bisim-mm B no-high-branching B

decomp-refinement-safe B Rwr Iwr abs-stepswr

Proof Unfolding Definition 2.19 gives us the following obligations. (See also Figure 4.)
For consistent stopping behaviour, we prove a lemma that RISC programs stop if and

only if their pc is outside the program text P, i.e. pc > length P. Because Iwr equates pc
and P for the two configurations, then clearly both have identical stopping behaviour.

For consistency of change in timing behaviour, abs-stepswr depends only on While and
RISC program locations, and no-high-branching and Iwr forces them (respectively) to be
equal for the local configurations under consideration.

For closedness of Iwr under lockstep execution, the only non-straightforward cases to
consider are conditional branching, and the locking primitives. For conditional branching,
we use no-high-branching for B with memory preservation via Rwr (Lemma 5.8) to ensure
that the conditional branching outcome is the same on both sides.

Finally, as the only operations that touch mode state, the locking primitives are the only
non-straightforward cases for modes-equality maintenance under lockstep execution. As
all lock memory is classified Low (Proposition 3.4), we use strong-low-bisim-mm for B

with memory preservation via Rwr to ensure the RISC configurations behave consistently.
■

Lemma 5.15 (Rwr, abs-stepswr,Iwr meet decomposed secure-refinement requirements).

strong-low-bisim-mm B no-high-branching B

secure-refinement-decomp B Rwr Iwr abs-stepswr

Proof Unfolding Definition 2.18, the obligations pertaining only to Rwr and abs-stepswr
are discharged by Lemma 5.12, Lemma 5.9, and Lemma 5.8. Pertaining to Iwr: Clearly
Iwr is symmetric, and furthermore it is cg-consistent (Definition 2.6) because the actions
over which Iwr must be closed modify only the shared memory, and Iwr places only
restrictions on the program text and current location. The final obligation (regarding
decomp-refinement-safe) is discharged by Lemma 5.14. ■



1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

42 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

From this it follows immediately via Theorem 2.20 that Rwr with the help of Iwr

describes a confidentiality-preserving refinement for non-High-branching While pro-
grams:

Corollary 5.16 (Rwr is a secure refinement for non-High-branching programs).

strong-low-bisim-mm B no-high-branching B

secure-refinement B Rwr Iwr

Finally we prove that successful compilation produces a RISC program related by
Rwr to its input While program, when started with corresponding (same mds, mem) and
reasonable (according to compiled-cmd-config-consistent) initial configurations:

Theorem 5.17 (Successful compilations are refinements in Rwr).

(PCs, l′, nl′,C′, failed) = compile-cmd C l nl c compile-cmd-input-reqs C l nl c

failed = False compiled-cmd-config-consistent C regs mds mem P =map fst PCs

(⟨c, mds, mem⟩w, ⟨((0, P), regs), mds, mem⟩r)∈Rwr

Proof By induction on the structure of the While-language.
The compiler input and initial configuration conditions we impose allow us to have each

of skip, cmd ; cmd, if exp then cmd else cmd fi, while exp do cmd od, v := exp, lock(k),
and unlock(k) and their compiled output meet the guards of the introduction rules for the
cases skip, seq, if expr, while expr, assign expr, lock acq, and lock rel of Rwr

(described further in supplementary Appendix C) that we designed for them, respectively.
■

5.4 Proof of compositional noninterference preservation

Going beyond the level of detail of our presentation in Sison & Murray (2019), we now
present the final few steps to obtain preservation of whole-system security for concurrent
compositions of RISC threads when all are obtained via compilation by the wr-compiler
(Section 5.4.1). In addition to this, we obtain preservation of per-thread compositional
security for each program thread compiled, and other properties that may be useful for their
composition with RISC threads proved secure directly at the RISC level (Section 5.4.2).

5.4.1 Whole-system security preservation

To use the whole-system refinement theorem (Theorem 2.23), we are obliged to show that,
in addition to establishing a secure-refinement (Definition 2.15, which we just showed
in Section 5.3), the wr-compiler also preserves local-mode-compliance as demanded by
compositional-refinement (Definition 2.22). Then, as we noted in Section 2.5, there is no
need for us to prove preservation of the non-compositional global-modes-compatibility

condition—the whole-system refinement theorem takes care of that.
The local compliance preservation result follows from a property of the refinement

relation, Rwr. Here, “respects-own-guarantees” is from Definition 2.11:



1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

R. Sison and T. Murray 43

Lemma 5.18 (Each step from a RISC configuration in Rwr respects its own guarantees).

(⟨c, mds, mem⟩w, ⟨((pc, P), regs), mds, mem⟩r)∈Rwr

respects-own-guarantees (((pc, P), regs), mds)

Proof By induction on the structure of Rwr.
Knowing that the While command does not access lock-governed variables

without holding the relevant lock (via the stability-checks asserted as part of
compile-cmd-input-reqs by every relevant case of Rwr), we are obliged to show that the
RISC instruction paired to it by Rwr similarly respects the guarantee modes implied by the
locking discipline (as specified in Section 3.1). We do so with a mixed Isar/“apply”-style
proof that exercises the relevant cases of the RISC semantics, using lemmas about con-
trol flow under sequential composition (mentioned in Section 5.1; see also supplementary
Appendix A). Propositions 3.8 and 3.9 also play a role in excluding certain cases from
consideration. ■

Lemma 5.19 (Refinements in Rwr ensure local mode compliance).

(⟨c, mds, mem⟩w, ⟨((pc, P), regs), mds, mem⟩r)∈Rwr

local-mode-compliance ⟨((pc, P), regs), mds, mem⟩r

Proof Unfolding Definition 2.11, we must show that what was proved by Lemma 5.18
holds for every RISC configuration reachable from ⟨((pc, P), regs), mds, mem⟩r.

First, we prove a lemma that establishes that every such reachable RISC configuration is
also paired by Rwr to some While configuration. Specifically, we prove that Rwr is closed
under a notion of “pairwise reachability under mode-permitted havoc”, wherein:

1. Every one step by the RISC program is matched by either zero or one step by the
While program, as specified by abs-stepswr (Section 5.3.2).

2. Between each evaluation step, arbitrary changes are allowed to occur to the memory
locations judged by the mode state to be writable (Definition 2.5).

Because all such RISC configurations reachable from the initial one are in Rwr, it then
follows from Lemma 5.18 that they respect their own guarantees, as required. ■

We then initialise the compiler with an empty C0 :: CompRec that knows nothing about
the register contents, and does not assume any variables to be stable:

Definition 5.20 (Empty compilation record C0).

C0 ≜ ((λ . None), ( /0, /0))

With these definitions we have the desired consistency result:

Lemma 5.21 (Initial C0,mds0 are consistent with no-locks-held).

no-locks-held mem =⇒ compiled-cmd-config-consistent C0 regs mds0 mem



1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

44 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

Proof This is straightforward by unfolding Definitions 5.7, 3.18, 3.19, and 5.20, also rely-
ing on the cleanliness conditions Proposition 3.5 and Proposition 3.7 on locking disciplines
specified in Section 3.2. ■

We now have enough information to derive a whole-system security result, for
concurrent RISC programs obtained by running the wr-compiler on any list “cs” of
secure While commands (one for each thread in the program). As we explained in
Section 5.2, the COVERN wr-compiler’s preservation of security is only for programs with
no-high-branching (Definition 5.5); furthermore, so that we can derive global compatibil-
ity for multiple of these programs run concurrently as threads (as per Section 3.4), we
will impose no-locks-held (Definition 3.18) as an initial condition. Therefore, the secu-
rity preservation theorem we choose to prove here demands that every thread of the input
While program be com-secureno-high-branching

no-locks-held (Definition 2.7, with additional requirements
as specified). It then promises that the output program is sys-secureno-locks-held:

Theorem 5.22 (Secure threads compiled by the wr-compiler form a secure system).

length cmsr = length cs ∧
∀i < length cmsr. ∃l nl PCs l′ nl′ C′ regs.

com-secureno-high-branching
no-locks-held (cs[i],mds0) ∧

(∀mem. no-locks-held mem −→ local-mode-compliance ⟨c,mds0, mem⟩w) ∧
(PCs, l′, nl′,C′, False) = compile-cmd C0 l nl cs[i] ∧ compile-cmd-input-reqs C0 l nl cs[i] ∧
cmsr[i] = (((0,map fst PCs), regs),mds0)

sys-secureno-locks-held cmsr

Proof We invoke Theorem 2.23, supplying:

• no-locks-held for the INIT parameter at both While and RISC level.
• Ball, Rwr, Iwr to be respectively the witness bisimulation, refinement relation, and

coupling invariant for all compiled threads, where we define Ball to be the arbitrary
union of all strong low-bisimulations modulo modes that disallow high-branching:

Ball ≜
⋃

{ B | strong-low-bisim-mm B ∧ no-high-branching B }
• mds0 to be the initial mode state for all While threads in cs.

The first thing we must prove is that the original program satisfies sound-mode-use
(Definition 2.10) when initialised with mds0 and no-locks-held; we have the local part from
this theorem’s local-mode-compliance assumption, and the global part from Lemma 3.20.

We then discharge the demands of compositional-refinement Ball Rwr Iwr

(Definition 2.22) using Corollary 5.16, Lemma 5.19, and by unfolding Definition 5.13.
It only remains for us to show that the initial RISC–While and While–While configura-

tion pairs of interest are captured respectively by Rwr and Ball. We obtain the former using
this theorem’s assumptions and Lemma 5.21 to discharge the guards of Theorem 5.17.
Finally, we use the assumption that the original program is com-secureno-high-branching

no-locks-held and
unfold Definition 2.7 to obtain that there exists some strong-low-bisim-mmB that enforces



2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

R. Sison and T. Murray 45

no-high-branching for every configuration pair with low-equal memories (modulo mds0)
and no-locks-held initially; therefore, these state pairs must all be captured by Ball. ■

5.4.2 Per-thread compositional security preservation

For system developers who may want to run programs compiled from While to RISC con-
currently with other programs written directly in RISC, per-thread security preservation
results may be useful. To compose the security proofs for those threads, direct RISC-
level lemmas for the “sound-mode-use” side conditions of the compositionality theorem
(Theorem 2.8) will also be needed. We therefore present these as an alternative method to
obtain compositional security results for RISC programs, applicable when only partially
produced by compilation from While by the wr-compiler.

Given the facts we established in Section 5.3, we have straightforwardly that such
programs’ executions are captured by the bisimulation derived from B,Rwr,Iwr, when
started with reasonable initial configurations corresponding to those paired by B:

Lemma 5.23 (Programs witnessed by B are captured by BCof B Rwr Iwr once
compiled).

strong-low-bisim-mm B (⟨c, mds, mem1⟩w, ⟨c, mds, mem2⟩w)∈B

(PCs, l′, nl′,C′, failed) = compile-cmd C l nl c compile-cmd-input-reqs C l nl c

failed = False compiled-cmd-config-consistent C regs mds mem1 P =map fst PCs

compiled-cmd-config-consistent C regs mds mem2

(⟨((0, P), regs), mds, mem1⟩r, ⟨((0, P), regs), mds, mem2⟩r)∈BCof B Rwr Iwr

Proof Straightforward from the definition of BCof (Definition 2.16), using Theorem 5.17
to show membership of Rwr, and the definition of strong-low-bisim-mm (Definition 2.4)
to show that the memories are low-equal modulo modes, as required by BCof. Finally,
membership of Iwr (Definition 5.13) follows from the fact that the paired configurations
are at the same location (program counter 0) of the same program P. ■

We are ready to state the per-thread security preservation result formally. Given an input
While command that satisfies com-secureno-high-branching

no-locks-held with mds0 initially, it promises
that the RISC program output by the wr-compiler is com-securepc-security

no-locks-held with mds0:

Theorem 5.24 (Preservation of per-thread confidentiality by the wr-compiler).

com-secureno-high-branching
no-locks-held (c,mds0)

(PCs, l′, nl′,C′, False) = compile-cmd C0 l nl c compile-cmd-input-reqs C0 l nl c

com-securepc-security
no-locks-held (((0,map fst PCs), regs),mds0)

Proof We are given by com-secureno-high-branching
no-locks-held (Definition 2.7) that for low-equal start-

ing configurations (modulo modes) of c with no locks held, there exists some witness B

satisfying both strong-low-bisim-mm and no-high-branching.



2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

46 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

From this and Lemma 5.23 we have that the output program’s corresponding execution
is captured by a RISC semantics-level relation BCof B Rwr Iwr derived from this B, with
Lemma 5.21 discharging the compiled-cmd-config-consistent requirements.

Corollary 5.16 then gives us that secure-refinement B Rwr Iwr holds,
and from this and strong-low-bisim-mm B using Theorem 2.17 we have
strong-low-bisim-mm (BCof B Rwr Iwr). This is enough to show com-securepc-security

no-locks-held
for the RISC program, by Definition 2.7; as Section 5.3.3 noted, pc-security (Definition 5.6)
is immediate from the definition of Iwr. ■

To prove a whole-system security result at the RISC level for the compiled program,
we must also prove sound-mode-use (Definition 2.10). To that end, we prove a local and
global result for RISC programs output by the wr-compiler when given a secure While

program. The former follows from the local compliance result in the preceding section:

Lemma 5.25 (Threads compiled by the wr-compiler obey local compliance).

(PCs, l′, nl′,C′, False) = compile-cmd C0 l nl c compile-cmd-input-reqs C0 l nl c

no-locks-held mem

local-mode-compliance ⟨((0,map fst PCs), regs),mds0, mem⟩r

Proof We use Theorem 5.17 and Lemma 5.21 to obtain membership in Rwr, which then
allows us to use Lemma 5.19. ■

Then we prove invariance of global modes compatibility (as in Section 3.3) for compiled
RISC programs, due to RISC’s identical semantics to While regarding locking and modes:

Lemma 5.26 (Initialising RISC with no-locks-held,mds0 ensures global compatibility).

no-locks-held mem ∀(((pc, P), regs), mds)∈ set cmsr. mds =mds0

global-modes-compatibility (cmsr, mem)

Proof We firstly prove versions of Lemma 3.15, Lemma 3.16, and Theorem 3.17 for RISC,
following exactly the same reasoning as we did in Section 3.3 for While. This is because
the RISC instructions LockAcq k and LockRel k are (like lock(k) and unlock(k) in While)
the only ones in their language that modify mode state, and their semantics regarding mode
state and lock memory are identical to those of the lock(k) and unlock(k) commands. The
present result then follows for the same reason that Lemma 3.20 did for While. ■

With this result, it is now possible to invoke Theorem 2.8 to compose RISC-level per-
thread security and mode compliance, whether they were obtained via the wr-compiler
(using Theorem 5.24 and Lemma 5.25, respectively), or proved directly at RISC level.

We remark that, for programs wholly compiled by the wr-compiler, Theorem 5.22
can be subsumed by a whole-system preservation result that no longer demands
local-mode-compliance for each thread, due to our ability to obtain it directly at RISC
level:



2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

R. Sison and T. Murray 47

Theorem 5.27 (Secure threads compiled by the wr-compiler form a secure system).

∀i < length cmsr. ∃c l nl PCs l′ nl′ C′ regs.

com-secureno-high-branching
no-locks-held (c,mds0) ∧

(PCs, l′, nl′,C′, False) = compile-cmd C0 l nl c ∧ compile-cmd-input-reqs C0 l nl c ∧
cmsr[i] = (((0,map fst PCs), regs),mds0)

sys-secureno-locks-held cmsr

Proof By Theorem 2.8 and unfolding Definition 2.10, we are required to prove security
and local mode compliance for every thread of the compiled RISC program, and global
modes compatibility between them all as a whole, assuming no-locks-held and using
mds0 initially. These requirements are immediate using Theorem 5.24, Lemma 5.25, and
Lemma 5.26. ■

6 Case study: Cross Domain Desktop Compositor input handler

This section presents—as the main case study for the COVERN wr-compiler—a mixed-
sensitivity concurrent program whose source-level noninterference properties are pre-
served by verified secure compilation down to an assembly-level model.

The Cross Domain Desktop Compositor (CDDC) of Beaumont et al. (2016) is a desktop
device that gives trusted users the option of replacing multiple monitors, keyboards, and
mice with a single multi-level secure user interface (via a single monitor, keyboard, and
mouse, as depicted in Figure 5a) when using several desktop computers simultaneously.

Here we present as case study a program (replacing customised hardware) that handles
the incoming mouse and keyboard inputs to the CDDC. This program has served as a par-
ticularly good case study, because it features both of the characteristics for which proving
information-flow security is this work’s main focus:

• Concurrency—here, between software components whose execution is interleaved
(by the seL4 operating-system microkernel (Klein et al., 2014)), and that interact
via shared memory.

• Mixed-sensitivity reuse—here, of system resources (notably the input devices) and
memory locations, for input whose sensitivity level can be different at different
times.

By exercising the COVERN wr-compiler on a While model of this case study, we show
this compiler verification-based approach to be feasible for obtaining the preservation of
noninterference properties proved at While level, straightforwardly and for little extra
effort, down to a RISC model of the program.

The section will proceed as follows. Following an overview in Section 6.1 of the main
characteristics of the case study, Section 6.2 presents the formal security properties proved
about its While model—as our focus is its compilation, further details on this model and
the proof techniques used to prove these properties at While level are left to Sison (2020).



2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

48 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

(a) CDDC hardware use-case setup.

The bar painted at the top of the screen indicates
the computer set to receive all keyboard events.
Mouse events are delivered to the owner of the
topmost window underneath the mouse cursor.

(b) CDDC hardware architecture.

The HID switch—implemented in software on
top of seL4—runs on an ARM Cortex A9 core,
and operates a compositor device implemented
(as in Beaumont et al. (2016)) using an FPGA.

Fig. 5: Functional schematics for Cross Domain Desktop Compositor hardware.
Reproduced from Murray et al. (2018).

Section 6.3 then presents the formal preservation of security properties down to a RISC

model, obtained from running the verified wr-compiler of Section 5 on the While model.

6.1 Overview of the case study

The case study is a software implementation of the human interface device (HID) switch in
the CDDC (see Figure 5b). In short, this part of the CDDC is responsible for determining
the destination of all HID input (keyboard and mouse device) events, and ensuring that the
user remains informed of that destination (by operating a video compositor device, which
renders display elements for that purpose on a shared monitor, as depicted in Figure 5a).

6.1.1 Information-flow security

The HID switch’s responsibilities are security critical, as the CDDC is intended to pro-
vide an interface to multiple desktop computers belonging to different security domains;
hence, the user of the CDDC is expected to choose the sensitivity of the data they input,
based on the computer to which they expect it to be delivered. Furthermore, part of the
CDDC’s functionality is to allow users to choose which computer they are interacting
with, by clicking on (accordingly responsive) display elements using the mouse. Thus, the
desired information-flow security property for the HID switch is that, in providing this
functionality, it never delivers inputs to a destination contrary to the user’s expectations.

We simplify analysis to the classic High ̸→ Low security policy over the basic two-point
{High, Low} security lattice, and model the HID switch to service only two potential desti-
nation computers.6 One computer is designated as belonging to the High security domain,

6 Aside from presenting a more minimal case study, any verification for an arbitrary security lattice can be
reduced to multiple applications of verification to the basic High ̸→ Low policy, with the locations reclassified
appropriately. Furthermore, the design of the CDDC’s HID switch program is symmetrical for each user.



2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

R. Sison and T. Murray 49

Fig. 6: Functional schematic of seL4 component architecture for CDDC HID switch.
Reproduced from Murray et al. (2018).

and is the only legitimate destination for High-sensitivity input events; the other is des-
ignated as belonging to the Low security domain. The hardware and connections that the
SWITCH component uses to forward events to these computers are modelled as shared vari-
ables classified statically: one High, the other Low (as depicted in Figure 7b). The attacker
is then considered to be an entity that can read at any time from the Low-classified one.

6.1.2 Shared-variable concurrency

l o ck ( hid_read_atomicity_lock ) ;
temp := hid_keyboard_available ;
unlock ( hid_read_atomicity_lock ) ;
i f ( temp != 0 ) then

lock ( input_event_lock ) ;
input_event_data := 0 ;
input_event_type := KEYBOARD ;
input_event_data := hid_keyboard_source ;
unlock ( input_event_lock )

e l s e
sk ip

f i

(a) Receipt from input device by INPUT driver.
The hid keyboard source variable is value-
dependently classified by the value of its sole
control variable, indicated domain (mod-
elling trusted user input to the keyboard).

i f ( current_event_type = KEYBOARD ) then
i f ( active_domain = DOM_LOW ) then

output_event_buffer0 := current_event_data

e l s e
output_event_buffer1 := current_event_data

f i
e l s e

sk ip
f i

(b) Delivery to output device by SWITCH.
The output-event buffers 0 and 1 are statically
classified Low and High respectively (modelling
an attacker-controlled computer that receives all
data written to buffer 0).

Fig. 7: Examples of external device interactions by the CDDC HID switch, as modelled in
While—here, for the keyboard events. The full model is in the Isabelle/HOL supplement.



2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

50 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

compositor_cursor_position :=
↪→ current_event_data ;

l o ck ( compositor_read_atomicity_lock ) ;
cursor_domain :=

↪→ compositor_domain_under_cursor ;
unlock ( compositor_read_atomicity_lock ) ;

i f ( cursor_domain = DOM_INVALID ) then
cursor_domain := active_domain

e l s e
sk ip

f i

(a) Querying the compositor to determine the
topmost domain under the mouse cursor.

i f ( switch_state_mouse_down = 0 &&
current_event_data = MOUSE_DOWN &&
active_domain != cursor_domain ) then

active_domain := cursor_domain ;
l o ck ( input_event_lock ) ;
input_event_data := 0 ;
input_event_type := NONE ;
hid_keyboard_source := 0 ;
indicated_domain := active_domain ;
unlock ( input_event_lock )

e l s e
sk ip

f i

(b) Instructing the compositor to indicate a
change to the active domain.

Fig. 8: Excerpts of the SWITCH component interfacing with the compositor device.

/ * Permanen t l y grab t h i s l o c k * /
l o ck ( switch_private_lock ) ;
current_event_data := 0 ;
current_event_type := NONE ;

l o ck ( input_event_lock ) ;
input_event_data := 0 ;
hid_keyboard_source := 0 ;
indicated_domain := active_domain ;
unlock ( input_event_lock )

(a) Initialising private variables, input-event
buffer, and compositor-indicated domain, to
an arbitrary initial value for active domain.
Zeroing the data fields prevents leaking any
High-sensitivity data they might initially contain.

l o ck ( input_event_lock ) ;
i f ( indicated_domain = active_domain )
then

current_event_type := input_event_type ;
current_event_data := input_event_data

e l s e
sk ip

f i ;
unlock ( input_event_lock )

(b) Copying from the input-event buffer to
private variables. The security analysis shows
that repeating the previous event is a safe
course of action when the environment mis-
behaves by violating indicated domain =
active domain.

Fig. 9: Excerpts of the SWITCH component interacting with the input-event buffer.

The software implementation (replacing the original FPGA-based implementation
(Beaumont et al., 2016)) of the CDDC’s HID switch is a system of software components
written in C, that all run in user mode on top of the seL4 microkernel (Klein et al., 2014).

Here, we have abstracted from the seL4-based C implementation’s details, to model
in the While language the basic functionality of its three main software components (as
depicted in Figure 6) as a shared-variable concurrent program of three threads:

• The INPUT driver is responsible for taking events from input-device interfaces and
placing them on an input-event buffer for consumption by the SWITCH (Figure 7a).

• The SWITCH is responsible for inspecting all input events on the buffer from
the INPUT driver, querying the compositor device (as modelled in Figure 8a) and
OVERLAY driver to determine if any constitute a user-directed change to the desti-
nation of subsequent events, and if so, updating the compositor device to display that
change (as modelled in Figure 8b). Finally, it is responsible for delivering all events
to their destination computer via the appropriate output-device interface (Figure 7b).

• The OVERLAY driver is responsible for servicing remote procedure calls (RPCs,
made by the SWITCH) that query a subset of the compositor-device interface, regard-
ing the position of certain mouse-clickable elements the compositor is rendering as
part of a visual overlay on the trusted user’s video monitor. (As no mixed-sensitivity



2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

R. Sison and T. Murray 51

reuse occurs in this part of the model, we leave its details to the Isabelle/HOL
supplement.)

The device interfaces, shared buffers (for input events and RPC mechanisms), and local
variables used by each component are all modelled as program variables in shared memory.
Consequently in the While model, mutex locks are used to model all synchronisation and
restriction of concurrent access by the components to those variables.

So that we do not need to add separate While semantics for interacting with private as
opposed to shared memory, we model thread-private memory as shared program variables
protected by a permanently held lock acquired at initialisation time (e.g. as in Figure 9a).
We consider this to be a stand-in for the memory isolation properties established by the
underlying operating system between the program threads that it hosts.

6.1.3 Mixed-sensitivity reuse

Inherently to the CDDC’s role as a multi-level secure user interface, its HID switch receives
data of differing sensitivity levels (at different times) from a single set of input device
memory locations (e.g. as modelled in Figure 7a, for the keyboard events), rather than
from those of distinct device sets for each sensitivity level.

Furthermore, the HID switch propagates all input event data (regardless of sensitivity)
through a single set of memory locations (the input-event buffer and SWITCH-internal
copies of its contents, as modelled in Figure 9), rather than duplicating those memory
locations for each security domain. Consequently in the While model, all of these memory
locations that are subject to mixed-sensitivity reuse are assigned value-dependent classi-
fications, reflecting the trusted user’s expectation of the sensitivity level of the data they
contain:

• To model a user that we trust to type sensitive information into the keyboard only
when the compositor device indicates the High domain computer is active (i.e. set to
receive all keyboard events), we have the INPUT driver draw keyboard events from
a shared variable named hid keyboard source (as depicted in Figure 7a) that has
classification dependent on a control variable indicated domain modelling the
relevant state of the compositor (here, DOM HIGH is a designated constant):{

High, if indicated domain= DOM HIGH

Low, otherwise.

• In contrast, as clicking on composited user interface elements has the potential abil-
ity to change the future indicated domain (which, as a control variable, is never
allowed to receive any High-sensitivity data), the model trusts the user not to encode
sensitive information into the mouse input in any way. Thus, the INPUT driver always
draws mouse events from a statically Low-classified shared variable.
Consequently, as the data portion input event data of the input-event buffer7

between the INPUT driver and SWITCH may carry either keyboard data of value-
dependent sensitivity or Low-sensitivity mouse data, we assign it a classification

7 We model in While only a single-place buffer, which could easily be extended to a buffer of arbitrary size by
duplicating the same basic pattern of access, classification, and lock-protection, for multiple places.



2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

52 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

dependent on the values of both its control portion and the indicated domain:{
High, if input event type= KEYBOARD ∧ indicated domain= DOM HIGH

Low, otherwise.

• Finally, we model the seL4-based SWITCH component’s copying of the event
from the buffer into its own local variables, giving its data portion a classifica-
tion dependent on its own private view of the currently active domain (modelled
as active domain):{
High, if current event type= KEYBOARD ∧ active domain= DOM HIGH

Low, otherwise.

To ensure active domain remains authoritative with what is composited by
the CDDC into the display, in the While model the SWITCH initialises
indicated domain to match the initial value of active domain (as depicted in
Figure 9a), updates it whenever active domain changes (as depicted in Figure 8b),
and checks at runtime that active domain= indicated domain when copying
data from the buffer to its own private variables (as depicted in Figure 9b).

The CVDNI properties’ (1) value dependence on control variables, (2) quantification
over all initial values for the control variables and (3) assumptions of environmental havoc
on write-unprotected shared variables between evaluation steps (Definition 2.6) then ensure
noninterference between High inputs and Low-classified sinks, regardless of the initial and
dynamically changing sensitivity of all such locations subject to mixed-sensitivity reuse.

6.2 CVDNI properties of the While model to be preserved

This section will now give a brief formal exposition of the security properties of the CDDC
HID switch’s While-language model that our compiler will preserve down to RISC.

As the per-thread proof techniques for While that we used for the case study are outside
the scope of this paper, we note only that they consist of an adaptation to mutex locks
by Sison (2020) of a security type system and local mode compliance check developed
by Murray et al. (2016b,c). Nevertheless, we have provided their full formalisation in our
Isabelle/HOL supplement, and we refer the reader to these prior works on their design, and
particularly to Sison (2020) for further discussion on their application to this case study.

In short, from applying local type checks on the While-language commands for each
of the three software components (INPUT, SWITCH, and OVERLAY) to obtain per-thread
security (com-secure, Definition 2.7) and modes compliance (local-mode-compliance,
Definition 2.11), we have from Theorem 2.8 that the concurrent program of all three
components satisfies the whole-system security property (sys-secure, Definition 2.9) as
instantiated to specify that no locks are held initially.

So that we can use the approach we gave in Section 3 to obtain the global modes
compatibility part of the sound-mode-use side-condition (Definition 2.10), we specify
no-locks-held (Definition 3.18) as the INIT requirement on memory, and use the initial
mode state mds0 (Definition 3.19) for all of the components in the system.



2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

R. Sison and T. Murray 53

This no-locks-held predicate and mds0 are both defined relative to a lock interpretation
parameter that we supply (as required by Section 3.1) for the CDDC model. The locks in
the CDDC model fall under the following categories:

• The locks coordinating inter-component interactions grant exclusive read–write
access to the shared variables they govern.

• There are also locks granting the SWITCH and INPUT components exclusive read–
write access to a set of “private” variables each, for internal use. The components
acquire these prior to entering their main loop, and never release them.

• Finally the model uses read-atomicity locks—a practice introduced in Section 5.1.1.
These grant exclusive write access to shared variables used to model hardware
interfaces, to make explicit an assumption (normally implicit in the atomicity of
expression evaluation in the While language) that these variables will not have their
value changed by the environment during a simple assignment from those variables.
Note that these read-atomicity locks are not needed to prove confidentiality for
the While model, but rather we add them to satisfy the requirements demanded
by the wr-compiler so that it can preserve confidentiality (via small-step semantic
preservation) down to the RISC model.

The While-language proof techniques we apply to each thread of the program yield
com-secureno-high-branching, a stronger version of the per-thread CVDNI property that
enforces no-high-branching (Definition 5.5). Furthermore, we have trivially from the
definition of com-secure (Definition 2.7) that if a program is secure without imposing
any initial conditions, then it remains secure if we impose any INIT parameter arbitrar-
ily. Therefore, for each thread we have com-secureno-high-branching

no-locks-held (Definition 2.7, with
INIT ≜ no-locks-held and EXTRA≜ no-high-branching):

Lemmas 6.1 (Per-thread confidentiality results for CDDC While model).

com-secureno-high-branching
no-locks-held (OVERLAY,mds0)

com-secureno-high-branching
no-locks-held (INPUT,mds0)

com-secureno-high-branching
no-locks-held (SWITCH,mds0)

From this and Theorem 2.8, using local compliance checks and Lemma 3.20 to dis-
charge the sound-mode-use (Definition 2.10) side condition, we have a whole-system
confidentiality theorem for the system of all three components running concurrently:

Theorem 6.2 (Whole-system confidentiality result for the CDDC While model).

sys-secureno-locks-held [(OVERLAY,mds0), (INPUT,mds0), (SWITCH,mds0)]

6.3 Confidentiality-preserving compilation to RISC model

We now turn to applying the COVERN wr-compiler of Section 5 to our While-language
model of the CDDC’s HID switch; we then have automatically that it preserves the security
properties presented in Section 6.2 down to the compiler’s RISC-language output.



2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

54 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

The wr-compiler is executable in the Isabelle proof assistant. Using Isabelle’s eval

tactic, we execute the wr-compiler’s main function, compile-cmd (whose implementation
was described in Section 5.1) on the While-language models for all three of the CDDC’s
INPUT driver, SWITCH, and OVERLAY driver components, to obtain their RISC-language
compilations. (Recall from Section 5.1 that we obtain the RISC text trivially as the map fst

of the CompRec-annotated RISC program, which is the fst output of compile-cmd.)

Definition 6.3 (RISC-language program texts of CDDC model’s components).

OVERLAYRISC ≜ map fst (fst (compile-cmd C0 None 0 OVERLAY))

INPUTRISC ≜ map fst (fst (compile-cmd C0 None 0 INPUT))

SWITCHRISC ≜ map fst (fst (compile-cmd C0 None 0 SWITCH))

Our approach to obtain per-thread confidentiality for each of these RISC texts will be to
use the theorem of its preservation by the wr-compiler (Theorem 5.24). Recall, this was:

Theorem 5.24 (Preservation of per-thread confidentiality by the wr-compiler).

com-secureno-high-branching
no-locks-held (c,mds0)

(PCs, l′, nl′,C′, False) = compile-cmd C0 l nl c compile-cmd-input-reqs C0 l nl c

com-securepc-security
no-locks-held (((0,map fst PCs), regs),mds0)

Then, for compile-cmd to execute successfully (i.e. to return failed = False), the model
must pass the stability-checks discussed in Section 5.1. All three of OVERLAY, INPUT, and
SWITCH pass the checks (1) because they use locks to protect the atomicity of reads from
(otherwise unstable) variables used to model hardware interfaces, and (2) as a consequence
of having passed the local security and mode compliance checks mentioned in Section 6.2.

We are now in a position to prove a whole-system confidentiality result for the compiled
RISC model—here, with each thread’s register bank initialised to zero: regs0 ≜ (λ . 0).

Theorem 6.4 (Whole-system confidentiality result for the CDDC RISC model).

sys-secureno-locks-held [(((0, OVERLAYRISC), regs0),mds0),

(((0, INPUTRISC), regs0),mds0),

(((0, SWITCHRISC), regs0),mds0)]

Proof A few approaches are available; we obtained formal proofs of this theorem in
Isabelle/HOL using all three of the following alternatives (unfolding Definition 6.3):

Option 1. Use either of Theorem 5.22 or Theorem 5.27, both of which estab-
lished whole-system security for RISC outputs of the wr-compiler when executed on
com-secureno-high-branching

no-locks-held While programs (which we have here from Lemmas 6.1). This
is the easiest option to take for programs that are already verified in the While language,
and then compiled successfully to RISC by the wr-compiler. It is possible to take here
because all of OVERLAYRISC, INPUTRISC, and SWITCHRISC were obtained in this manner.



2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

R. Sison and T. Murray 55

Option 2. Use Theorem 5.24 and Lemma 5.25 to obtain com-securepc-security
no-locks-held and

local-mode-compliance (resp.) for each of OVERLAYRISC, INPUTRISC, and SWITCHRISC,
then use Theorem 2.8 directly to obtain sys-secureno-locks-held. This option can be used
for systems where some of the threads are written directly in RISC; for such threads,
com-securepc-security

no-locks-held and local-mode-compliance would need to be proved directly
at RISC level. However, Lemma 5.26 still discharges the global-modes-compatibility

requirement for RISC, provided all threads are initialised with mds0 and no-locks-held.
Option 3. Use Theorem 2.23 directly. This option can be used for systems where all the

RISC threads are secure refinements (according to Definition 2.15) of the threads of some
While program that satisfied sound-mode-use with no-locks-held initially, but some were
obtained by other means than the wr-compiler (i.e. not all via the refinement Rwr). ■

7 Related work

First in Section 7.1, we describe other recent and related works that address concerns of
noninterference proof compositionality in a concurrent setting (of the kind we tackled in
Section 3). The remaining sections focus on related works on verified compilation: The
works in Section 7.2 and Section 7.3, like ours, focus on compilation preserving a form of
noninterference. In Section 7.4 we describe our work’s relationship with varieties of robust
property preservation, and other compilation verification efforts in Section 7.5.

7.1 Compositionality of concurrent noninterference proofs

Alternative approaches exist to establishing the non-compositional global modes compati-
bility condition we proved as invariant to concurrent While executions in Section 3. For the
precursor (non–value-dependent) notion of concurrent noninterference to CVDNI, Mantel
et al. (2011) originally proposed that such a condition be met by a non-compositional may
happen in parallel analysis (e.g. Masticola & Ryder (1993)). Then, instead of demanding
the explicit declaration of the sorts of guarantees implied by locking discipline (as we do),
Mantel et al. (2015) proposed automating their inference and proof of the compatibility
condition using a reachability analysis making use of dynamic pushdown networks. We
leave adapting and implementing such an approach for our CVDNI setting to future work.

We note also that, like the CVDNI theory and our work of Section 3, recent work by
Frumin et al. (2021) concerns compositionality of machine-checked proof efforts for non-
interference in a concurrent setting that are obtained potentially via a variety of proof
techniques. They model more fine-grained synchronisation than we do here, via atomic
compare-and-swap operations that can be used to implement mutex locking primitives.
However, they do not study compilation as a means of preserving such proofs, which is the
focus of our work here. We believe that the CVDNI refinement notions we presented could
support certain cases of compilation between different synchronisation primitives, pro-
vided only new thread-private state is needed (like the registers in RISC), and the shared
variable interactions can be proved as preserved. For example, we expect mutex locking
primitives (with slightly different semantics to ours here) could feasibly be refined to a
compare-and-swap–based implementation in this way—this we also leave to future work.



2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

56 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

7.2 Noninterference-preserving compilation

Tedesco et al. (2016) present a type-directed compilation scheme that preserves a fault-
resilient noninterference property. The compilation scheme of our wr-compiler was
inspired by theirs. Like our com-secure CVDNI security property that wr-compiler pre-
serves, Tedesco et al.’s security property is also strong bisimulation-based (Sabelfeld &
Sands, 2000). But where our property accounts (via mode states) for controlled interference
by other threads, theirs instead quantifies over all possible interference by the environment
with the memory contents. While this simplifies their task of proving that their security
property is preserved under compilation—as it need not require the compiler to preserve
the contents of memory—it means their security property cannot capture value-dependent
noninterference. In contrast, our wr-compiler must obey our secure-refinement notion’s
requirement that memory contents are preserved.

The line of work most relevant to ours is that which was conducted (concurrently)
by Barthe et al. (2020), wherein they achieved the remarkable result of proving that
a modification of the CompCert C compiler (Leroy, 2009) preserves the cryptographic
constant-time class of noninterference (2-safety) properties. Their proof approach was to
use various notions of constant-time simulation (CT-simulation) first presented by Barthe
et al. (2018), originally intended for application to the Jasmin compiler (Almeida et al.,
2017). Although not targeting programs with concurrency or mixed-sensitivity reuse (as
our work does), CT-simulation shares in common with the refinement notions used by this
paper that it in essence rests on a simulation diagram that is cube-shaped, as it must pre-
serve a 2-safety hyperproperty. We submit that Barthe et al. (2020) broadly validates the
argument we made in Sison & Murray (2019), that decomposing such cube-shaped dia-
grams into square-shaped ones is what will make them feasible to apply to the verification
of fully fledged compilers like CompCert—noting that they described the only compila-
tion pass they proved with their non-decomposed, cube-shaped diagram as “not especially
pleasant because the diagrams are difficult to exploit” (Barthe et al., 2020).

Note that the refinement theory of Barthe et al. (2018, 2020) preserves security via
refinement phrased in terms of forward simulation (Leroy, 2009)—that is, each step of the
abstract program must be simulated by the target program. In contrast, our theory presented
here is instead targeted towards preserving refinement via backward simulations,8 in which
each step of the concrete (compiled) program must be simulated by the abstract program.
This difference arises because in our setting we need to account for leakage that might
occur and be visible only in intermediate states. In their setting, in contrast, leakage that
occurs in intermediate states remains visible forever in the concrete program semantics via
a leakage trace. It remains unclear whether we could have adopted a similar approach in
our work, thereby enabling a (simpler) forward simulation argument. In particular, it is
not clear what the semantics of leakage traces should be for a language that supports both
value-dependent classification and shared-memory concurrency as ours does.

8 Again, as commonly referred to in the compiler verification literature from Leroy (2009) onwards. This is not to
be confused with the “backward simulations” of concurrency verification (Lynch & Vaandrager, 1996) and data
refinement (de Roever & Engelhardt, 1998; Cavalcanti & Naumann, 2002), where the refined program instead
simulates the original, and where simulation proceeds from the end of the program back to the beginning.



2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

R. Sison and T. Murray 57

7.3 Concurrency-compositional noninterference-preserving compilation

Neither of the above consider per-thread compositional compilation of concurrent, shared
memory programs, nor value-dependent noninterference policies – the focus of our theory
and compiler. Barthe et al. (2010, 2007a) however did aim to preserve noninterference of
multithreaded programs by compilation, extending a prior (security) type-preserving com-
pilation approach (Barthe et al., 2004, 2007b). Their noninterference property however
was termination- and timing-insensitive, so preventing internal timing leaks relied on the
scheduler disallowing certain interleavings between threads. Also, their type-preservation
argument was derived from a big-step semantics preservation property for their compiler.
Here we instead rely on preservation of a small-step semantics (specifically memory con-
tents), which is necessary for us to preserve value-dependent security under compilation,
as well as to avoid imposing non-standard requirements on the scheduler.

7.4 Robust property preservation

Other recent works have improved on fully abstract compilation (surveyed by Patrignani
et al. (2019)) by mapping out the spectrum (Abate et al., 2019) or developing specific
forms (Patrignani & Garg, 2019) of robust property preservation, concerned with robust-
ness of source program (hyper)properties to concrete adversarial contexts. Like Tedesco
et al. (2016), these works differ from ours in quantifying over a wider range of hostile inter-
ference. They also focus prominently on changes to data types, which we do not support.
Thus, as a 2-safety hyperproperty quantifying over a lesser range of interference, we expect
CVDNI-preservation to be implied by R2HSP (robust 2-hypersafety preservation), but do
not expect it to imply any other secure compilation criterion on Abate et al.’s spectrum.

While recently Patrignani & Garg (2019) instantiated their robustly safe compilation
for shared-memory fork-join concurrent programs, it only preserves (1-)safety properties.
Previously however, Patrignani & Garg (2017) proved their trace-preserving compilation
preserves k-safety hyperproperties (Clarkson & Schneider, 2010), including noninterfer-
ence properties. However, it disallows the removal or addition of trace entries, which would
be necessary to change the passage of time as seen in the observable trace events. Thus it
excludes the sorts of changes to pacing carried out by our compiler (regulated by abs-steps)
and studied as optimisations by the two other works (Tedesco et al., 2016; Barthe et al.,
2020) on timing-sensitive security-preserving compilation mentioned above.

7.5 Compiler verification in general

Finally, there has been much work on large-scale verified compilation (Leroy, 2009;
Kumar et al., 2014) some of which has also treated compilation of shared-memory con-
current programs (Lochbihler, 2018) including taking weak-memory consistency into
account (Podkopaev et al., 2019). Our work here does not consider the effects of
weak-memory models. In particular, such models are often defined axiomatically rather
than operationally. Our notion of secure refinement and our decomposition principle
(Definitions 2.15 and 2.18, respectively) are defined assuming an operational semantics
for the source and target languages.



2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

58 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

Our work differs to prior work on verified concurrent compilation, in that it formalises
and proves a compiler’s ability to use information about the application’s locking protocol,
both to exclude unsafe access to shared variables, and conversely to know when it is safe
to allow optimisations on shared variables that would typically be excluded.

8 Conclusion

To our knowledge, we have presented the first mechanised verification that a compiler
preserves concurrent, value-dependent noninterference. To this end, we provided a general
decomposition principle for compositional, secure refinement. Although our compiler is
a proof-of-concept targeting simple source and target languages, we nevertheless applied
it to produce a verified assembly-level model of an input-handling system for the CDDC
(Beaumont et al., 2016), a nontrivial mixed-sensitivity concurrent program.

We expect this decomposition principle to remain applicable in reducing
noninterference-refinement proof efforts for compilers that overcome the specific
limitations of ours here. For example, a compiler that inserts padding to equalise the time
taken on either side of a High-branch—which may change when it expands expressions
into multiple instructions—may instantiate the decomposition principle with a more
sophisticated concrete coupling invariant that does not require pc-security.

This work serves to demonstrate that verified security-preserving compilation for mixed-
sensitivity concurrent programs is now within reach, by augmenting traditional proof
obligations for verified compilation (e.g. square-shaped semantics preservation) with those
specific to security (e.g. absence of termination- and timing-leaks) as depicted in Figure 4.
We hope that this work paves the way for future large-scale verified security-preserving
compilation efforts.

Acknowledgements

We would like to thank our anonymous referees, and to thank again all those who provided
feedback on the conference version of this paper (Sison & Murray, 2019) and on Robert
Sison’s PhD thesis (Sison, 2020). This paper describes research that was conducted during
Robert’s PhD candidature at UNSW Sydney and CSIRO’s Data61, which was funded by
an Australian Government Research Training Program (RTP) Scholarship and a CSIRO
Data61 Research Project Award. We thank the Trustworthy Systems group at CSIRO’s
Data61 for cultivating an excellent working and learning environment.

Conflicts of Interest

None

References

Abate, C., Blanco, R., Garg, D., Hritcu, C., Patrignani, M. and Thibault, J. (2019) Journey beyond full
abstraction: Exploring robust property preservation for secure compilation. 32nd IEEE Computer



2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

R. Sison and T. Murray 59

Security Foundations Symposium, CSF 2019, Hoboken, NJ, USA, June 25-28, 2019 pp. 256–271.
IEEE.

Almeida, J. B., Barbosa, M., Barthe, G., Blot, A., Grégoire, B., Laporte, V., Oliveira, T., Pacheco,
H., Schmidt, B. and Strub, P.-Y. (2017) Jasmin: High-assurance and high-speed cryptography.
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
CCS ’17, pp. 1807–1823. ACM.

Barthe, G., Basu, A. and Rezk, T. (2004) Security types preserving compilation: (extended abstract).
Steffen, B. and Levi, G. (eds), Verification, Model Checking, and Abstract Interpretation, 5th
International Conference, VMCAI 2004, Venice, Italy, January 11-13, 2004, Proceedings. Lecture
Notes in Computer Science 2937, pp. 2–15. Springer.

Barthe, G., Rezk, T., Russo, A. and Sabelfeld, A. (2007a) Security of multithreaded programs by
compilation. Biskup, J. and López, J. (eds), Computer Security - ESORICS 2007, 12th European
Symposium On Research In Computer Security, Dresden, Germany, September 24-26, 2007,
Proceedings. Lecture Notes in Computer Science 4734, pp. 2–18. Springer.

Barthe, G., Rezk, T. and Basu, A. (2007b) Security types preserving compilation. Comput. Lang.
Syst. Struct. 33(2):35–59.

Barthe, G., Rezk, T., Russo, A. and Sabelfeld, A. (2010) Security of multithreaded programs by
compilation. ACM Trans. Inf. Syst. Secur. 13(3):21:1–21:32.

Barthe, G., Grégoire, B. and Laporte, V. (2018) Secure compilation of side-channel countermea-
sures: The case of cryptographic “constant-time”. 31st IEEE Computer Security Foundations
Symposium, CSF 2018, Oxford, United Kingdom, July 9-12, 2018 pp. 328–343. IEEE Computer
Society.

Barthe, G., Blazy, S., Grégoire, B., Hutin, R., Laporte, V., Pichardie, D. and Trieu, A. (2020) Formal
verification of a constant-time preserving C compiler. Proc. ACM Program. Lang. 4(POPL):7:1–
7:30.

Beaumont, M., McCarthy, J. and Murray, T. (2016) The cross domain desktop compositor: Using
hardware-based video compositing for a multi-level secure user interface. Schwab, S., Robertson,
W. K. and Balzarotti, D. (eds), Proceedings of the 32nd Annual Conference on Computer Security
Applications, ACSAC 2016, Los Angeles, CA, USA, December 5-9, 2016 pp. 533–545. ACM.

Cavalcanti, A. and Naumann, D. A. (2002) Forward simulation for data refinement of classes.
Eriksson, L.-H. and Lindsay, P. A. (eds), FME 2002:Formal Methods—Getting IT Right pp.
471–490. Springer Berlin Heidelberg.

Clarkson, M. R. and Schneider, F. B. (2010) Hyperproperties. J. Comput. Secur. 18(6):1157–1210.
de Roever, W. P. and Engelhardt, K. (1998) Data Refinement: Model-oriented Proof Theories and

their Comparison. Cambridge Tracts in Theoretical Computer Science, vol. 46. Cambridge
University Press.

Focardi, R., Gorrieri, R. and Panini, V. (1995) The security checker: a semantics-based tool for the
verification of security properties. Proceedings The Eighth IEEE Computer Security Foundations
Workshop pp. 60–69.

Frumin, D., Krebbers, R. and Birkedal, L. (2021) Compositional non-interference for fine-grained
concurrent programs. 42nd IEEE Symposium on Security and Privacy (S&P’21), to appear; CoRR
abs/1910.00905.

Jones, C. B. (1981) Development Methods for Computer Programs including a Notion of
Interference. D.Phil. thesis, University of Oxford.

Kaufmann, T., Pelletier, H., Vaudenay, S. and Villegas, K. (2016) When constant-time source
yields variable-time binary: Exploiting curve25519-donna built with msvc 2015. Cryptology and
Network Security pp. 573–582. Springer International Publishing.

Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R. and Heiser, G.
(2014) Comprehensive formal verification of an OS microkernel. ACM Transactions on Computer
Systems 32(1):2:1–2:70.

Kumar, R., Myreen, M., Norrish, M. and Owens, S. (2014) CakeML: A verified implementation
of ML. Peter Sewell (ed), ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages pp. 179–191. ACM Press.



2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

60 Verified Secure Compilation for Mixed-Sensitivity Concurrent Programs

Leroy, X. (2009) A formally verified compiler back-end. J. Autom. Reason. 43(4):363–446.
Lochbihler, A. (2018) Mechanising a type-safe model of multithreaded java with a verified compiler.

Journal of Automated Reasoning 61(1):243–332.
Lynch, N. and Vaandrager, F. (1996) Forward and backward simulations. Inf. Comput. 128(1):1–25.
Mantel, H., Sands, D. and Sudbrock, H. (2011) Assumptions and guarantees for compositional

noninterference. IEEE Computer Security Foundations Symposium pp. 218–232. IEEE.
Mantel, H., Müller-Olm, M., Perner, M. and Wenner, A. (2015) Using dynamic pushdown networks

to automate a modular information-flow analysis. 25th International Symposium on Logic Based
Program Synthesis and Transformation (LOPSTR).

Masticola, S. P. and Ryder, B. G. (1993) Non-concurrency analysis. Proceedings of the Fourth
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. PPOPP ’93, pp.
129–138. ACM.

Molnar, D., Piotrowski, M., Schultz, D. and Wagner, D. (2006) The program counter security
model: Automatic detection and removal of control-flow side channel attacks. Proceedings of the
8th International Conference on Information Security and Cryptology. ICISC’05, pp. 156–168.
Springer-Verlag.

Murray, T. (2015) On high-assurance information-flow-secure programming languages. ACM
SIGPLAN Workshop on Programming Languages and Analysis for Security pp. 43–48.

Murray, T., Sison, R., Pierzchalski, E. and Rizkallah, C. (2016a) Compositional security-preserving
refinement for concurrent imperative programs. Archive of Formal Proofs June. http://

isa-afp.org/entries/Dependent_SIFUM_Refinement.shtml, Formal proof development.
Murray, T., Sison, R., Pierzchalski, E. and Rizkallah, C. (2016b) Compositional verification

and refinement of concurrent value-dependent noninterference. IEEE 29th Computer Security
Foundations Symposium, CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016 pp. 417–431. IEEE
Computer Society.

Murray, T., Sison, R., Pierzchalski, E. and Rizkallah, C. (2016c) A dependent security type system
for concurrent imperative programs. Archive of Formal Proofs June. http://isa-afp.org/

entries/Dependent_SIFUM_Type_Systems.html, Formal proof development.
Murray, T., Sison, R. and Engelhardt, K. (2018) COVERN: A logic for compositional verification of

information flow control. European Symposium on Security and Privacy pp. 16–30. IEEE.
Patrignani, M. and Garg, D. (2017) Secure Compilation and Hyperproperty Preservation. IEEE

30th Computer Security Foundations Symposium, CSF 2017, Santa Barbara, USA, August 21 -
25, 2017. CSF’17.

Patrignani, M. and Garg, D. (2019) Robustly safe compilation. Programming Languages and Systems
pp. 469–498. Springer International Publishing.

Patrignani, M., Ahmed, A. and Clarke, D. (2019) Formal approaches to secure compilation: A survey
of fully abstract compilation and related work. ACM Comput. Surv. 51(6):125:1–125:36.

Podkopaev, A., Lahav, O. and Vafeiadis, V. (2019) Bridging the gap between programming languages
and hardware weak memory models. Proc. ACM Program. Lang. 3(POPL):69:1–69:31.

Sabelfeld, A. and Sands, D. (2000) Probabilistic noninterference for multi-threaded programs.
Proceedings of the 13th IEEE Workshop on Computer Security Foundations. CSFW ’00, pp.
200–. IEEE Computer Society.

Sison, R. (2020) Proving Confidentiality and Its Preservation Under Compilation for Mixed-
Sensitivity Concurrent Programs. PhD thesis, University of New South Wales, Sydney. http:

//doi.org/10.26190/5fab5c0a76454.
Sison, R. and Murray, T. (2019) Verifying That a Compiler Preserves Concurrent Value-Dependent

Information-Flow Security. Harrison, J., O’Leary, J. and Tolmach, A. (eds), 10th International
Conference on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in
Informatics (LIPIcs) 141, pp. 27:1–27:19. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

Staples, M., Jeffery, R., Andronick, J., Murray, T., Klein, G. and Kolanski, R. (2014) Productivity
for proof engineering. Empirical Software Engineering and Measurement p. 15.

http://isa-afp.org/entries/Dependent_SIFUM_Refinement.shtml
http://isa-afp.org/entries/Dependent_SIFUM_Refinement.shtml
http://isa-afp.org/entries/Dependent_SIFUM_Type_Systems.html
http://isa-afp.org/entries/Dependent_SIFUM_Type_Systems.html
http://doi.org/10.26190/5fab5c0a76454
http://doi.org/10.26190/5fab5c0a76454


2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

R. Sison and T. Murray 61

Tedesco, F. D., Sands, D. and Russo, A. (2016) Fault-resilient non-interference. IEEE 29th Computer
Security Foundations Symposium, CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016 pp. 401–
416. IEEE Computer Society.

Terauchi, T. and Aiken, A. (2005) Secure information flow as a safety problem. Hankin, C. and
Siveroni, I. (eds), Static Analysis pp. 352–367. Springer Berlin Heidelberg.

Volpano, D. and Smith, G. (1998) Probabilistic noninterference in a concurrent language.
Proceedings. 11th IEEE Computer Security Foundations Workshop (Cat. No.98TB100238) pp.
34–43.


	Introduction
	Noninterference and its refinement for mixed-sensitivity concurrent programs
	Illustrative example of a mixed-sensitivity concurrent program
	Concurrent value-dependent notions of noninterference
	Cube-shaped refinement for preserving noninterference
	Decomposition principle and its impact on refinement proofs
	Compositional whole-system secure refinement

	Source language: While with mutex locks
	Locking discipline and its semantics
	Restrictions on locking disciplines
	Proof of global modes compatibility as an invariant
	Initial conditions ensuring global modes compatibility

	Target language: RISC with mutex locks
	Verified secure compiler for mixed-sensitivity concurrent While programs
	Preserving race-free expression evaluation
	Requirements on inputs to the wr-compiler
	Proof that all tracked register contents are stable

	Preserving a ban on secret-dependent control flow
	Use of the decomposition principle
	Refinement relation Rwr and its invariants
	Refinement pacing function abs-stepswr
	Concrete coupling invariant Iwr
	Proof of CVDNI-preserving refinement

	Proof of compositional noninterference preservation
	Whole-system security preservation
	Per-thread compositional security preservation


	Case study: Cross Domain Desktop Compositor input handler
	Overview of the case study
	Information-flow security
	Shared-variable concurrency
	Mixed-sensitivity reuse

	CVDNI properties of the While model to be preserved
	Confidentiality-preserving compilation to RISC model

	Related work
	Compositionality of concurrent noninterference proofs
	Noninterference-preserving compilation
	Concurrency-compositional noninterference-preserving compilation
	Robust property preservation
	Compiler verification in general

	Conclusion

