
Appendices for “Verified Secure Compilation for
Mixed-Sensitivity Concurrent Programs”

Robert Sison∗ † and Toby Murray∗

∗School of Computing and Information Systems, University of Melbourne, Australia
†CSIRO’s Data61 and UNSW Sydney, Australia
(e-mail: [firstname].[lastname]@unimelb.edu.au)

A Label allocation and sequential composability

The wr-compiler fixes the label type Lab ≜ nat to allow it to ensure freshness merely by
using the highest natural number reached so far on a “next label” counter (the argument nl);
it then increments the counter before passing it to subsequent calls, and outputs the next
available unused label on return (the return value nl′).

Relative to this scheme, we prove that two consecutively compiled RISC programs—in
the sense that the relevant outputs from the first call are fed directly into the second call—
only ever jump to locations within themselves (and not in the other).

Specifically, we define two RISC programs P1,P2 to be joinable if they are both:

• joinable-forward: P1 only ever jumps to labels that are either

– labelling an instruction in P1 itself, or

– the label of the very first instruction in P2.

• joinable-backward: P2 does not jump to any of the labels of instructions in P1.

The lemma we prove then says that two RISC programs output by consecutive invocations
of the wr-compiler are joinable.

Proving that the control flow of programs compiled by the wr-compiler always remains
self-contained in this manner facilitates reasoning about their sequential composition.

B Register allocation scheme model

Like Tedesco et al. (2016) we generalise over the (user-supplied) register allocation scheme,
and assume there are enough registers to service the maximum depth of expressions in the
source program. We leave for future work the modelling and analysis of a compiler phase
that spills register contents to memory, in order to make this assumption unnecessary.

Here we model the (user-supplied) register allocation scheme with two functions
reg alloc and reg alloc cached on the register record Φ and the set A of registers whose

© Commonwealth Scientific and Industrial Research Organisation (CSIRO) ABN 41 687 119 230, Robert
Sison, and Toby Murray 2019-2021; licensed under Creative Commons Attribution license (CC BY 4.0)

1

http://creativecommons.org/licenses/by/4.0/


contents are needed to evaluate the current expression. To avoid loading from memory un-
necessarily, the compiler may first call reg alloc cached Φ A v to identify a register that Φ

records as already containing the variable v. When the compiler needs a fresh register, it will
call reg alloc Φ A. Neither function is allowed to allocate a register in A, so the allocator is
permitted to fail if it cannot find any suitable register. However, registers typically become
available again as expression evaluation is resolved.

C Informal descriptions of cases of refinement relation Rwr

C.1 Base cases

• stop: This case relates a terminated While program with a terminated RISC program
(i.e. one where the program counter is at the length of the program text).

• skip nop: This case relates the While program skip with the configuration where
the program counter is at the start of the RISC program [Nop].

• assign expr: This case relates the expression evaluation part (for the expression
e) of the While program v := e with the corresponding part of the RISC program
obtained by compiling it with the wr-compiler.

• assign store: As for assign expr, but for the very last Store instruction that
commits the result of the expression evaluation back to shared memory variable v.

It asserts additionally that v must be stable if lock-governed, and non-lock-governed
otherwise. This prevents threads from violating the locking discipline.

• lock acq: This case relates lock(k) with LockAcq k.

• lock rel: This case relates unlock(k) with LockRel k.

C.2 Inductive cases

• seq: This case relates the While program c1 ;c2 with the concatenation P1@P2 of the
RISC programs P1 and P2 that are respectively the outputs of successful consecutive
compilation (see Appendix A) of c1 and c2 by the wr-compiler. It is intended for
cases where the While (resp. RISC) program is currently in c1 (resp. P1).

It is an inductive case of Rwr, in that:

– c1 is required to be related by Rwr to the present location in P1.

– For all local configurations that obey the compiled-cmd-config-consistent re-
quirements, c2 is required to be related by Rwr to the first instruction of P2. This
quantification ensures that Rwr remains closed when execution progresses from
the first program to the second program.

It asserts that P1 and P2 are joinable (Appendix A), which is particularly relevant here
to ensure that P1 can only jump to locations within or at the end of itself (i.e. the start
of P2).

2



• join: This case relates a While program c with an offset pc > length P1 into a RISC
program P1@P2, assuming the inductive hypothesis that c is related by Rwr with the
offset pc− length P1 into the RISC program P2 alone.

It is intended primarily for cases where the While (resp. RISC) program is currently
in the c2 (resp. P2) of some consecutively compiled c1 ; c2 (resp. P1 concatenated with
P2) but applies more broadly to allow any prepend of dead, unreachable instructions
onto the front of a RISC program without breaking Rwr.

It also asserts that P1 and P2 are joinable, which is important here to ensure that P2
cannot jump back into P1.

• if expr: This case relates the expression evaluation part (for the expression e) of
the While program if e then c1 else c2 fi with the corresponding part (including the
conditional jump Jz at the end of expression evaluation) of the RISC program obtained
by compiling it with the wr-compiler.

It relies on both c1 and c2 being related by Rwr to its compiled RISC

counterparts when started with initialisation states judged valid by
compiled-cmd-config-consistent.

This case is depicted in full in Figure C.1, on page 4; for comparison, Figure C.2
depicts the relevant part of the compile-cmd implementation.

• if c1: This case relates some While program c′1 reachable from c1 with the cor-
responding part within the c1 part of the RISC program obtained by compiling
if e then c1 else c2 fi with the wr-compiler.

It relies on c1 being related by Rwr to its compiled RISC counterpart at the appropriate
program counter offset.

• if c2: As for if c1, but for c2.

• epilogue step: This case relates a terminated While program to the silent control
flow steps navigating to the end of a RISC program from the end of the “then” and
“else” branches of a compiled if-conditional.

It works only for the “epilogue” step forms: Jmp and Nop.

It is inductive in that it asserts closedness of Rwr over pairwise reachability from the
pair currently under consideration—the only case to do so directly.

• while expr: This case relates the While program (while e do c od)’s initial interme-
diate step to if e then (c ; while e do c od) else stop fi, and its expression evaluation
part, with the expression evaluation and conditional jump of the RISC program that
while e do c od was compiled to by compile-cmd.

It relies on c being related by Rwr to its compiled RISC counterpart when started with
initialisation states judged valid by compiled-cmd-config-consistent.

• while inner: This case relates some program cI ; while e do c od reachable from
c ; while e do c od to the loop body part of the RISC program compiled from
while e do c od.

3



It relies on cI being related by Rwr to its compiled RISC counterpart at the appropriate
program counter offset.

It also carries around the same reliance on c being related by Rwr to
its compiled RISC counterpart for all initialisation states judged valid by
compiled-cmd-config-consistent.

• while loop: This case handles epilogue steps for the inner loop body program, and
the final jump back to the beginning of the While-loop.

It requires Rwr to relate the terminated While program to the end of the compiled
loop body, and furthermore also carries around the same reliance on c being related
by Rwr to its compiled RISC counterpart for all initialisation states judged valid by
compiled-cmd-config-consistent.

c = if e then c1 else c2 fi compile-cmd-input-reqs C l nl c
(PCs, l′,nl2,C′,False) = compile-cmd C l nl c (Pe,r,C1,False) = compile-expr C ∅ l e

(P1, l1,nl1,C2,False) = compile-cmd C1 None (Suc (Suc nl)) c1 pc ≤ length Pe

(P2, l2,nl2,C3,False) = compile-cmd C1 (Some nl) nl1 c2 Cpc = (map snd PCs)[pc]
compiled-cmd-config-consistent Cpc regs mds mem regrec-stable Cpc

∀mds′ mem′ regs′. compiled-cmd-config-consistent C1 regs′ mds′ mem′ ∧ regrec-stable C1

−→ ((⟨c1,mds′,mem′⟩w,⟨((0,map fst P1),regs′),mds′,mem′⟩r) ∈ Rwr ∧
(⟨c2,mds′,mem′⟩w,⟨((0,map fst P2),regs′),mds′,mem′⟩r) ∈ Rwr)

(⟨c,mds,mem⟩w,⟨((pc,map fst PCs),regs),mds,mem⟩r) ∈ Rwr

Figure C.1: Introduction rule for case if expr of refinement relation Rwr.
This case pertains to the expression-evaluation part of an if-conditional compiled by
compile-cmd (see Figure C.2). Variables ignored are in gray.

compile_cmd C l nl (If e c1 c2) =
(let (Pe, r, C1, faile) = (compile_expr C {} l e);

(br, nl’) = (nl, Suc nl); (ex, nl’’) = (nl’, Suc nl’);
(P1, l1, nl1, C2, fail1) = (compile_cmd C1 None nl’’ c1);
(P2, l2, nl2, C3, fail2) = (compile_cmd C1 (Some br) nl1 c2);
(* Pre−compilation check ensures asmrec C2 = asmrec C3 *)
C’ = (regrec C2 ⊓R regrec C3, asmrec C2)

in (Pe @ [((if Pe = [] then l else None, Jz br r), C1)] @
P1 @ [((l1, Jmp ex), C2)] @ P2 @ [((l2, Nop’), C3)],
Some ex, nl2, C’, faile ∨ fail1 ∨ fail2))

Figure C.2: Excerpt of wr-compiler implementation: case for if-conditionals.
This case of the Isabelle/HOL function compile-cmd compiles the While command
if e then c1 else c2 fi. Here, @ denotes concatenation between two RISC program texts,
and Φ⊓R Φ′ denotes the subset of mappings on which the register records Φ and Φ′ agree.

4



References

Tedesco, F. D., Sands, D. and Russo, A. (2016) Fault-resilient non-interference. IEEE 29th
Computer Security Foundations Symposium, CSF 2016, Lisbon, Portugal, June 27 - July
1, 2016 pp. 401–416. IEEE Computer Society.

5


	Label allocation and sequential composability
	Register allocation scheme model
	Informal descriptions of cases of refinement relation Rwr
	Base cases
	Inductive cases


