
Linear Capabilities for Fully Abstract Compilation of
Separation-Logic-Verified Code
Technical Report

THOMAS VAN STRYDONCK, KU Leuven, Belgium

FRANK PIESSENS, KU Leuven, Belgium

DOMINIQUE DEVRIESE, Vrije Universiteit Brussel, Belgium

This technical report accompanies the JFP 2020 submission Linear Capabilities for Fully Abstract

Compilation of Separation-Logic-Verified Code and is an updated version of the technical report
accompanying the ICFP 2019 paper of the same name [Van Strydonck et al. 2019]. It aims to lay
out the full abstraction proof summarized there in all details here. In other words, this report
proves in all detail that our compilation from the subset of separation-logic-verified C-code to
linear capability-enhanced unverified C code is fully abstract. The proof is structured as follows.
First, section 1 describes the grammar of the source and target languages. These grammars build
statements out of expressions, components out of statements and programs out of components.
Before detailing the operational semantics of source and target programs in section 2, section 2.1
first explains how the smallest building blocks, namely expressions, behave. This includes, but is not
limited to, the semantics regarding source and target language expression. Next, section 3 describes
how source-level separation logic proofs are constructed by providing all possible separation logic
inference rules (or axioms). Section 4 builds further upon these separation logic axioms and shows
how the compiler compiles all different source statements, components and entire programs in a
separation-logic-proof-directed fashion, by using the separation logic axioms from the previous
section as input. After the compiler has been detailed in this section, the bulk of the proof can
finally commence. Section 5 defines what exact formulation of full abstraction we are proving
and dissects the proof, before diving into it. Section 6 proves the correctness direction of the fully
abstract compilation by constructing a simulation relation and proving that any well-typed source
program and its compilation perform a simulation. Section 7 proves the security direction of the
fully abstract compilation by constructing a back-translation (a kind of compilation, but now from
target to source) and another simulation relation, after which simulation between target and source
can again be proven.

Authors’ addresses: Thomas Van Strydonck, KU Leuven, Belgium, thomas.vanstrydonck@cs.kuleuven.be; Frank Piessens,
KU Leuven, Belgium, frank.piessens@cs.kuleuven.be; Dominique Devriese, Vrije Universiteit Brussel, Belgium, dominique.
devriese@vub.be.

2 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

Contents

Contents 2

1 Grammar 4

2 Operational Semantics 9

2.1 Expression evaluation 11

2.2 Source Language 12

2.3 Target Language 15

2.3.1 Linear Capability Erasure 16

2.3.2 Operational rules 18

3 Axioms 20

3.1 Separation-logic proofs and contracts 21

3.2 Some additional notation 23

3.3 Separation logic axioms 24

3.3.1 Basic statement rules 24

3.3.2 Function application axiom 28

3.3.3 Rules for return, consequence and frame 28

3.3.4 Rules for functions 30

3.3.5 Rules for components and programs 30

4 Compilation Rules 32

4.1 Basic statement rules 32

4.2 Function application compilation rule 36

4.3 Rules for return, consequence and frame 37

4.4 Rules for functions 39

4.5 Rules for components and programs 42

5 Full Abstraction Result 42

5.1 Definition 42

5.2 Proof Decomposition 43

6 Compiler Correctness 45

6.1 Definitions 45

6.2 Simulation 46

6.3 Assertion semantics 50

6.4 Component simulation relation 53

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 3

6.5 Simulation proofs 53

7 Compiler Security 67

7.1 Definitions 67

7.2 Auxiliary concepts for the back-translation 68

7.2.1 Back-translating types and values 68

7.2.2 Universal Contracts 69

7.2.3 Back-compiling expressions 71

7.2.4 Erasure in the source language 72

7.2.5 Converting between list and array resources 74

7.3 Back-translation rules 78

7.3.1 Basic statement rules 79

7.3.2 Function application back-translation rule 87

7.3.3 Rules for return and frame 88

7.3.4 Rules for functions 89

7.3.5 Rules for components and programs 98

7.4 Simulation 101

7.5 Assertion Semantics 102

7.6 Component simulation relations 102

7.7 Simulation proofs 106

7.7.1 Auxiliary simulation proofs 106

7.7.2 Proving simulation for S 119

References 121

4 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

1 GRAMMAR

This section details the legal input programs in both the source and target languages by means of a
grammar in BNF. Both grammars build statements out of expressions, components out of statements
and programs out of components. The source language also contains functions annotated with
separation logic contracts, for which a third kind of expression exp is needed, next to the regular
source and target expressions sexp and texp, as can be seen below.

In the below grammar and the rest of the technical report k denotes an integer, idlog a logical
variable identifier, idprog a program variable identifier, f a function identifier, τs a source type
identifier, τt a target type identifier and n a heap chunk identifier. During execution, the set of all
previously used program variables is from now on denoted IDprog, whereas the set of all logical
variables is denoted IDlog.

Chunks can either represent a single variable-length array resource, or encode an entire range of
resources and/or pure conditions. This second case is useful when we have universal quantification
over heap resources, ie. in the case where we do not know the length of an array resource that has
nested array resources. It is then not possible to represent each nested array resource individually,
and we are forced to bundle them together in a containing structure. The expression exp 7→τ exp

represents a flat array resource, and [assert | exp ≤ i < exp] a range resource. We also define
the simplified notation exp 7→τ [exp1, . . . , expk], which desugars to exp 7→τ l ∗ l[i] = expi ∗

length(l) = k , to represent fixed-length array resources.

An important restriction on range resources is that we cannot allow commutativity on different
impure parts of the range resource, because of the way these resources are reified. The resource
[a : b 7→ [int] ∗ c : d 7→ [int∗] | . . .] will reify to (int∗, int∗∗), whereas the resource [c : d 7→

[int∗] ∗ a : b 7→ [int] | . . .] reifies to (int∗∗, int∗). Both are hence not simply interchangeable. If we
would define an order on resources, we could allow some form of commutativity, but we choose
the simpler path here.

Chunks are assumed named using a heap chunk identifier n ; this is needed in the compilation
process later on. We use the syntax n : to denote a single name, and n : to denote a tuple of names.
If a name n does not appear in the precondition of a Hoare triple, it is assumed to be a fresh name.
Chunks are assumed named in the programmer’s code as well, seen as chunk names also appear
in separation logic contracts. We assume the existence of a relation assert ≈Names assert ranging
over two asserts, that is true if the assertions are identical up to chunk name substitution. We also
define a function CN(assert) (short for ChunkNames) that returns all chunk names present in a
separation logic assertion as a tuple in order of appearance.

We could introduce a convenience-based chunk renaming rule, to allow eg. the Hoare triple
{n : chunks} skip {m : chunks} to be a sound separation logic proof. This chunk renaming will be
handled by the classical separation logic Conseqence rule.

⟨op1⟩ ::= (Unary Operators)
− negative

| ! negation

⟨op2⟩ ::= (Binary Operators)
!= inequality

| == equality

| + addition

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 5

| ∧ conjunction

| ∨ disjunction

⟨exp⟩ ::= (Logical Expressions)
idlog logical var

| k int

| op1 exp unary op

| exp op2 exp binary op

| null logical null pointer

| (exp∗) tuple creation

| exp.k tuple projection

| length(exp) logical list length

| exp[exp] logical list indexing

| emp empty logical list

| cons(idlog, idlog) logical list cons

| ∀idlog : τ . exp forall

| ∃idlog : τ . exp exists

| . . . extensions allowed

⟨sexp⟩ ::= (Source Expressions)
idprog program var

| k int

| op1 sexp unary op

| sexp op2 sexp binary op

| null0 null pointer

| (sexp∗) tuple creation

| sexp.k tuple projection

⟨texp⟩ ::= (Target Expressions)
idprog program var

| k int

| op1 texp unary op

| texp op2 texp binary op

| null null pointer

| null0 address null pointer

| addr(texp) address of pointer

| length(texp) length of linear capability

| (texp∗) tuple creation

| texp.k tuple projection

⟨sstm⟩ ::= (Source Statements)
skip skip

| idprog = malloc(sexp ∗ sizeof(τs)) malloc statement

| //@split n[sexp] ghost split

| //@join n n ghost join

| //@flatten n ghost flatten

| //@collect n∗ · . . . · n∗ ghost collect

| foreach(sexp ≤ i < sexp){sstm} foreach loop

| sstm; sstm sequencing

6 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

| if sexp then sstm else sstm if

| τ idprog variable decl

| idprog = sexp var assign

| (id∗prog) = f (sexp∗) function app

| idprog[sexp] = sexp array mut

| idprog = sexp[sexp] array lookup

| guard(sexp) guarding

⟨tstm⟩ ::= (Target Statements)
skip skip

| idprog = malloc(texp ∗ sizeof(τt)) malloc statement

| (idprog, idprog) = split(idprog, texp) code split

| idprog = join(idprog, idprog) code join

| foreach(texp ≤ i < texp){tstm} foreach loop

| tstm; tstm sequencing

| if texp then tstm else tstm if

| τ idprog variable decl

| idprog = texp var assign

| (id∗prog) = f (texp∗) function app

| idprog[texp] = texp array mut

| idprog = texp[texp] array lookup

| guard(texp) guarding

⟨assert⟩ ::= (Outer Separation Logic Assertion)
⟨assert⟩ ::= (Inner Separation Logic Assertion)

exp expression

| assert ∗ assert sep conjunction

| exp ? assert conditional assertion

| n : exp 7→τs exp array resource

| n : [assert | exp ≤ idlog < exp] range resource

| exp 7→τs exp array resource

| [assert | exp ≤ idlog < exp] range resource

⟨τ ⟩ ::= (Logical Type)
int integer

| τ∗ pointer

| (τ ∗) tuple

| listτ list

⟨τs⟩ ::= (Source Type)
int integer

| τs∗ pointer

| (τ ∗s) tuple

⟨τt⟩ ::= (Target Type)
int integer

| τt∗ pointer

| (τ ∗t) tuple

| τt∗0 0-length address capability

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 7

⟨isfunc⟩ ::= (Implemented Source Function)
τ ∗s f ((τs id)

∗) //@pre assert //@post assert
{sstm; return sexp

∗}

⟨csfunc⟩ ::= (Context Source Function)
τ ∗s f ((τs id)

∗) //@pre assert //@post assert

⟨itfunc⟩ ::= (Implemented Target Function)
τ ∗t f ((τt id)

∗) {tstm; return texp
∗}

⟨ctfunc⟩ ::= (Context Target Function)
τ ∗t f ((τt id)

∗)

⟨scomp⟩ ::= (Source Component)
isfunc

+ //@import csfunc∗ //@export csfunc∗

⟨sprog⟩ ::= (Source Program)
scomp

+ //@main = id

⟨tcomp⟩ ::= (Target Component)
itfunc

+ //@import ctfunc∗ //@export ctfunc∗

⟨tprog⟩ ::= (Target Program)
tcomp

+ //@main = id

Note that neither the source nor the target language contains a free statement, although both
contain a malloc statement. Free has been removed, because it required (to uphold the C semantics
of only being able to free a block that has been malloced and only if the current pointer points to
the first word of data of that block) a malloc chunk in separation logic, essentially a simple abstract
predicate, that had to be compiled into a sealed capability. This, however, caused problems during
the back-translation, as operations on this chunk had to be representable as well. Also, as adding in
the free statement essentially boils down to adding support for abstract predicates that compile
to sealed capabilities, we leave this bit for when we extend the current formalization with a more
general form of abstract predicates. From this discussion, the formalization of the free statement
will then follow more easily. Removing the free statement entails that we have to allow leaking of
separation logic heap chunks, and our separation logic axioms (particularly the Conseqence rule,
as will be apparent later) should hence allow for this.

Note that there is no explicit boolean type present, neither in the source language, nor in the
target languages. The booleans are assumed embedded within the integers, where any value of 0 is
considered false and all other integers are considered true. This is a minor technicality that makes
the formalization easier in a couple respects. Pair types are included in both the source and target
language to make the back-translation possible. The target-level addr function takes a pointer of
type τ∗ and returns an τ∗0-value for the same location that describes the address of this pointer.
This function is needed to be able to tell whether a target-level linear capability and a target-level
length-0 capability correspond to the same address. It is back-translated to left projection.

Note that the addr function can also be applied to e.g. the type τ ∗0 ∗ of a reified resource with
integer pointer contents and would then return a τ ∗0 ∗0-type address.

All chunk names, program variable names and logical variable names are assumed mutually disjoint
throughout the whole program. This makes some compilation rules easier because it avoids name

8 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

clashes between the two groups of identifiers. For all input programs (both in target and source),
static type checking is assumed to be performed. We assume that this includes checking for
redeclarations of variables or usages of undeclared variables (although these first 2 checks can be
left out without consequences, as they are worked into the operational semantics too), disjointness
of variable names and chunk names, types of expressions used as input to statements and received
back from statements to be assigned to variables. Contracts are type-checked as well insofar possible,
as we do not want contracts of eg. the following form: a 7→ [b, c] ∗ b == 2 ∗ c 7→ [_]L .

Another important remark is that we do not strictly need the above foreach loop: every instance of
foreach in this report can be replaced by a call to a generated, recursive function that performs the
same task. This is, however, a less elegant and concise solution. Additionally, foreach loops do not
cause a lot of difficulties during the formalization, which is why they are employed.

We subscript null-pointers that correspond to the address of a 0-length address capability, rather
than a regular pointer, with a 0, as some inference rules will need this. Logical pointers work like
0-length address capabilities and are hence subscripted in this way as well. This forms no actual
language enhancement, as this type information would be available from the type checker anyway.

To be able to handle unknown-length separation logic lists, we introduce logical variables of list
type. These logical variables have type listτ , have a length attribute associated with them, are
prepended with values using cons, allow indexing [i] and the following Conseqence rules hold
for them:

l : listτ ⊩ length(l) = n ∧ n > 0 ⇔
∃x : τ , l ′ : listτ . l = cons(x , l ′) ∧ length(l ′) = n − 1

l : listτ ⊩ length(l) = 0 ⇔ l = ()

We also define the following functions as a shorthand (inspired by Z3), to make the notation
throughout this report easier to read:

l : listτ ⊩ l == repeat(k, exp) ⇔
∀0 ≤ i < length(l). l[i] == k∧
length(l) == exp

l : listτ , l ′ : listτ , l ′′ : listτ ⊩ l == append(l ′, l ′′) ⇔
∀0 ≤ i < length(l ′). l[i] = l ′[i]∧
∀ length(l ′) ≤ i < length(l ′) + length(l ′′). l[i] = l ′′[i − length(l ′)]∧
length(l) = length(l ′) + length(l ′′)

l : listτ , l ′ : listτ ⊩ l == take(l ′,k1,k2) ⇔
∀k1 ≤ i < k2. l[i − k1] = l

′[i]∧

length(l) == k2 − k1

l : listτ , l ′ : listτ ⊩ l == update(l ′,k, exp) ⇔
l[k] == exp∧

∀0 < i < k . l[i] == l ′[i]∧

∀k < i < length(l ′). l[i] == l ′[i]

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 9

length(l) == length(l ′)

The Conseqence rule allows switching between the logical functions and their implementations
in both directions. The above definitions can also be instantiated with logical expressions exp, exp′
and exp′′ instead of logical lists l , l ′ and l ′′ and integers k . Note that the above definitions also allow
using any of the introduced shorthands as expressions, because any separation logic assertion
P(shorthand) can always be rewritten as P(l) ∗ shorthand == l with l fresh, through the use of the
use of the Conseqence rule.

For the entirety of this report, we assume the existence of a TypeOfVar meta-function, which,
given the name of a variable, returns its type (if it is given a non-variable, it returns int, because
pointer arithmetic or other pointer operations are not present in the target). The variable type
is entirely statically known and hence forms no limiting assumption for the formalization. The
function TypeOfVar can both be used on the source, target level and the context usually clarifies
the applied version.

2 OPERATIONAL SEMANTICS

Now that the previous section has detailed how to manipulate expressions, we have the tools to
formalize the behavior of larger grammatical entities in our source and target language. This section
describes the operational semantics of source and target level statements, components and entire
programs. The first subsections defines operational semantics for the source language, whereas the
second section details operational semantics for the target language.

A component-wise environment Σi of functions in component Ci is assumed implicitly given for
both the target and the source languages. A similar assumption is made in the next section when
formalizing the compilation. This environment Σi is indexed by function name and contains all
information on functions, namely the separation-logic contracts in the case of source functions, the
tuple of return types, the tuple of argument types with argument identifiers, the type of function:
component-internal/exported/imported and the function body in the case of a non-imported
function. The environment Σi can easily be automatically parsed from a given source program
consisting of components C1, . . . ,Cm , because each component contains a full declaration of its
own functions and of the functions it exports and imports.

Since we are executing a whole program, consisting of different components, scoping comes into
play and has to be factored in when executing the program, especially during function calls. Assume
the program P consists of components C1,. . . ,Ci , . . . ,Ck , all with their own function environment
Σi . The different component environments are assumed completely disjoint for a given source or
target program, as will be apparent from the separation logic axioms in the next section. For the
operational semantics, we just need the overall operational program environment Σop, defined as the
union of the exported function parts of the function environments Σi where only the information
on function bodies and arguments is kept, as all checks concerning proper function application are
already performed in the separation logic axioms.We also define the functions PRE(f) and POST(f),
which return a function’s pre-, respectively postcondition, as we will need this for the FApp and
Return rules in the operational semantics. In the separation logic axioms, the separate Σi are used,
but the function bodies are not needed and hence dropped there. The resulting environments are
denoted Σaxi and if clear from the context which component environment we mean, we abbreviate
to simply Σ or drop the environment entirely.

10 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

Before the operational semantics rules can be given, some notation technicalities need to be
delineated first. As usually the case with operational semantics, our semantics will make use of
a stack s and a heap h. The stack is a list of partial functions from the set of program variables
IDprog to values of source or target types (depending on the language we are defining semantics
for). The partial functions are called stack frames and the full stack is split into stack frames using
the concatenation notation s = s :: s ′. Evaluation of a source or target expression e in the current
stack frame s is denoted JeKs , as mentioned in the previous section. The heap h is a partial function
from a pair value (l , i), with l a location from a set of locations L and i an integer index. We write
h(l) = [v0, . . . ,vm] or l → [v0, . . . ,vm] ∈ h to express that heap h, at location l , contains the value
vj at index j (0 ≤ j ≤ m; heap allocation always starts at index 0). Alternatively, the notation
h(l , j) = vj can be used to single out one of these values, and (l , j) to pinpoint any one heap value.
The use of locations makes the formalization easier, because separately malloced variables are
logically separate as well.

Given that the stack is a list of partial functions with as range the values of source or target types,
we need to have a notion of what the values that populate types are. The values vs ∈ VALs that
populate the source types τs are:

• Integers k for int
• Heap location-index pairs (l ,i) and null0 for pointers τs∗
• Pairs (vs1,. . . ,vsk) for types (τs,1,. . . , τs,k) with vs1 a value of type τs,1,. . . , vsk a value of type τs,k

The values vt ∈ VALt that populate the source types τt are:

• Integers k for int
• Pointers in the target language will always be linear capabilities (except if they have length 0,
see below), and should hence be formalized as more than just a heap location-index pair, as
is the case in the source. We choose the notation l [i1,i2] (with i1 ≤ i2) to denote that there is a
capability pointing to heap location l with permissions for the region in the closed heap address
interval [i1, i2]. There is no need to keep track of the index a linear capability currently points
to, because of the way integer arithmetic is handled during compilation; the memory location a
capability points to is never altered, but the index used for dereferencing it is. Pointer arithmetic
can hence just be disallowed in the target language. We hence have heap location-index pair
values l [i1,i2] for pointers τt∗, and the null-pointer null.

• Pairs (vt1,. . . ,vtk) for types (τt,1,. . . , τt,k) with vt1 a value of type τt,1,. . . , and vtk a value of type
τt,k

• Capabilities that cannot be dereferenced anywhere are so-called length-0 capabilities and are of
type τs∗0. These types of values are not linear, as they do not allow any permissions on the heap
anyway. Values of length 0 capabilities do have an index, contrary to the regular target-level
linear capabilities, as we need to perform pointer arithmetic on them. Length-0 capabilities are
not linear and do not have a range because they cannot be dereferenced anywhere. Hence the
notation l i0, with l the location and i the index of the capability, for values of type τt∗. We also
have the null-pointer null0.

For the small-step operational semantics, we use the notation ⟨s,h⟩ | c to describe a state, with s the
stack, modeled as a list of stack frames, h the heap and c a list of the currently executing functions
bodies. Each stack frame si will correspond to a currently executing function body ci . The splitting
of the executing code into executing function bodies ci and the correspondence between these
ci and stack frames si will make the correctness proof of section 6 easier to perform compared

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 11

to the case where the executing code is not split up. A transition from program state ⟨s,h⟩ | c to
program state ⟨s ′,h′⟩ | c ′ by means of the small-step operational semantics will be denoted using
an inference rule as follows:

Precondition

⟨s,h⟩ | c ↪→ ⟨s ′,h′⟩ | c ′
(RuleName)

For every statement present in the grammar of the source and target language in section 1, there
will be at least one rule in the operational semantics of the respective language. There is also an
extra rule ProgExec for the execution of entire programs.

The sequencing statement is the only statement that cannot be immediately executed in a top-down
fashion, as it is our only statement that contains other statements. To avoid having a Seqence
congruence rule, we define an evaluation context to capture the non-immediately executable
statements. The evaluation context does not have a single hole as is usually the case, but it has
a hole for every function body ci currently in execution. The evaluation context is formalized as
follows, where the return statements denote a transition in stack frame si and in body ci and stmlan
is a sstm for the source language and a tstm for the target language:

⟨F ⟩ ::= return exp | stmlan; F (Executing Component)

⟨C⟩ ::= ∅ | C :: F (Execution Context)

In the first case of Executing Component, the hole will always be filled with a return statement,
whereas in the second case, a regular non-return statement will fill the hole. This will be apparent
from the operational semantics below.

Nonsensical input programs in both target and source get stuck because no operational semantics
rules apply. There is no such thing as en error state in our formalization.

Notation and rules for the operational semantics are based on the notation of Agten et al. in their
paper on sound modular verification of C code [Agten et al. 2015].

2.1 Expression evaluation

This section details how expressions are formally evaluated. With the inclusions of pairs to the
expressions in source and target language, it becomes increasingly important to properly define
the semantics of expression evaluation with respect to the current stack frame s , denoted J·Ks , in
both source and target language.

We make abstraction of the difference between sexp and texp and denote both by exp, except for
the parts where a distinction has to be made.

s(idprog) = v

JidprogKs = v
(ProgramVar)

JkKs = k
(Int)

12 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

JexpKs = v1 op1(v1) = v2
Jop1 expKs = v2

(UnaryOp)

Jexp1Ks = v1 Jexp2Ks = v2 op2 (v1,v2) = v3
Jexp1 op2 exp2Ks = v3

(BinaryOp)

JnullKs = null
(Null)

Jnull0Ks = null0
(Null0)

This rule is target language only:
JexpKs = v1 addr(v1) = v2

Jaddr(exp)Ks = v2
(PtrAddress)

This rule is target language only:

JexpKs = l [a,b] v = b − a + 1

Jlength(exp)Ks = v
(LincapLength)

Jexp1Ks = v1 Jexp2Ks = v2

J(exp1, exp2)Ks = (v1,v2)
(PairCreate)

JexpKs = (v1, _)

Jexp.1Ks = v1
(LeftProject)

JexpKs = (_,v2)

Jexp.2Ks = v2
(RightProject)

2.2 Source Language

⟨s,h⟩ | C :: skip; F ↪→ ⟨s,h⟩ | C :: F
(Skip)

int⇝def 0
(DefInt)

For the following rule, there is a difference between the source and target languages, because a
pointer only represents a permission in the target language.

τ∗⇝src
def null0

(DefPtrSrc)

τ∗⇝tgt
def null

(DefPtrTgt)

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 13

The following case is only used in the target language:

τ∗0 ⇝def null0
(DefSrcPtr)

τ1 ⇝def def1
. . .

τk ⇝def defk

(τ1, . . . ,τk)⇝def (def1, . . . , defk)
(DefTuple)

We also define the corresponding function NULL(τ) that we define as NULL(τ) = v ⇔ τ ⇝def v .
This function can be used both in the target and the source language, and is appropriately annotated
if the concrete usage is unclear, eg. in the source language we would then write NULLsrc(τ).

As seen in the below rule, any malloc’ed pointer starts out at index 0 of the heap location it is
malloced at.

s = s :: st s ′ = s ′ :: st
s ′ = s[idprog → (l , 0)] l < dom(h) τ ⇝def v
JsexpKs = k k > 0 h′ = h[l → [v, . . . ,v]k]

⟨s,h⟩ | C :: idprog = malloc(sexp ∗ sizeof(τ)); F ↪→ ⟨s ′,h′⟩ | C :: skip; F
(Malloc)

Skip and join only have an effect on the separation logic proof and hence do not have any effect on
the source-level operational semantics.

⟨s,h⟩ | C :: //@split n1[sexp2]; F ↪→ ⟨s,h⟩ | C :: skip; F
(Split)

⟨s,h⟩ | C :: //@join n1 n2; F ↪→ ⟨s,h⟩ | C :: skip; F
(Join)

⟨s,h⟩ | C :: //@flatten n1; F ↪→ ⟨s,h⟩ | C :: skip; F
(Flatten)

⟨s,h⟩ | C :: //@collect n0j · . . . · n(k−1)j ; F ↪→ ⟨s,h⟩ | C :: skip; F
(Collect)

s = s :: st Jsexp1Ks = true

⟨s,h⟩ | C :: if sexp1 then sstm1 else sstm2; F ↪→ ⟨s,h⟩ | C :: sstm1; F
(IfTrue)

s = s :: st Jsexp1Ks = false

⟨s,h⟩ | C :: if sexp1 then sstm1 else sstm2; F ↪→ ⟨s,h⟩ | C :: sstm2; F
(IfFalse)

To declare a variable, it shouldn’t have been declared yet.

s = s :: st s ′ = s ′ :: st
τ ⇝def v s ′ = s[idprog → v]

⟨s,h⟩ | C :: τ idprog; F ↪→ ⟨s ′,h⟩ | C :: skip; F
(VarDecl)

14 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

To assign a variable, it has to already have been declared earlier.

s = s :: st s ′ = s ′ :: st
s ′ = s[idprog → v] JsexpKs = v

⟨s,h⟩ | C :: idprog = sexp; F ↪→ ⟨s ′,h⟩ | C :: skip; F
(VarAsgn)

The approach for the FApp rule below follows the usual operational semantics-formalization of
function calls. Usually, after execution of a function call of the form idprog = f (sexp), the concrete
function identifier and the supplied arguments are not needed anymore and replaced with a hole.
To avoid notational confusion with the context C and its holes, we will denote a hole as • instead
of [·] in this technical report. The result of the function call would be the following statement:
idprog = •. This would suffice for the proof, if we were compiling unverified source code.

This does not suffice, however, to perform the full abstraction proof in our case, since we have
to incorporate the fact that our source code is verified and remains verified while running it (ie.
we use a type of lifted operational semantics). In the full abstraction proof, it will be necessary to
specify the separation-logic proof of a partly-executed program, which includes programs with
a code-level hole (such programs cannot be written by a programmer, but they can result from
execution). The next paragraphs discuss how to handle this case, but use a lot of concepts from
further on in the report. The reader is advised to skip this discussion for now, and neglect the lifted
semantics (green) parts of the rules, sticking to the simplified versions for now and revisiting the
proof-related extensions when reading about the correctness proof in section 6.

To be able to make a separation logic proof for a partly executed program, a hole • needs to be able
to correspond to a separation logic triple. We hence annotate this hole with the original function
f ’s postcondition in order to be able to use it in a separation logic proof. This is, however, still
not sufficient. The hole has to be annotated with the arguments supplied to f and their names as
well, since in section 3 the FApp function application separation logic axiom will use the function
arguments in the construction of the separation logic proof.

The final notation for a hole in the lifted semantics is hence •
idarg=sexp

POST(f) , with sexp the arguments
supplied to f and POST(f) f ’s postcondition. In the target language, holes do not need to be
annotated as no separation logic proof has to be made, and we can just write •

idarg=texp . The argument
expressions are necessary for the back-translation later on.

Note that the above discussion necessitates two versions for both the FApp and the Return rules
below: one for the regular and one for the lifted operational semantics. The additions required for
the lifted operational semantics rules (ie. hole annotations) are highlighted in green. It is obvious
that the lifted and non-lifted versions of the rules will equi-terminate and that the additions serve
solely separation-logic- and proof-related functions, causing no problems for coherence between
non-verified and verified code.

Σop(f) = {τarg idarg {BODY ; return sexp
′}}

JsexpKs = n s = s :: st s ′ = [idarg → n] :: s

⟨s,h⟩ | C :: idprog = f (sexp); F ↪→ ⟨s ′,h⟩ |

C :: {idprog} = •
idarg=sexp

POST(f) ; F :: BODY ; return sexp
′

(FAppLifted)

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 15

s = s :: s ′ :: st s ′ = s ′[idprog → n] :: st Jsexp′Ks = n

⟨s,h⟩ | C :: {idprog} = •
idarg=sexp

POST(f) ; F :: return {sexp′}

↪→ ⟨s ′,h⟩ | C :: skip; F

(ReturnLifted)

For the final return statement (which is the return statement created by the ProgExec rule below),
there is no si - ci pair to return to. The execution will hence not end in a skip statement, but in a
return statement.

s = s :: st s(idprog) = (l , i) h(l) = [v0, . . . ,vk]
Jsexp1Ks = n Jsexp2Ks = v

0 ≤ i + n ≤ k h′ = h[l → h(l)[i + n : v]]

⟨s,h⟩ | C :: idprog[sexp1] = sexp2; F ↪→ ⟨s,h′⟩ | C :: skip; F
(ArrayMut)

s = s :: st s ′ = s ′ :: st h(l) = [v0, . . . ,vk]
Jsexp1Ks = (l , i) Jsexp2Ks = n

0 ≤ i + n ≤ k s ′ = s[idprog → vi+n]

⟨s,h⟩ | C :: idprog = sexp2; F ↪→ ⟨s ′,h⟩ | C :: skip; F
(ArrayLkup)

There is no explicit check that i is part of the current stack frame, as we suppose, for the sake of
simplicity, that this check is handled during type checking, as was the case for variable declaration
and lookup.

s = s :: st
JsexpKs = n Jsexp′Ks = n′ n < n′

⟨s,h⟩ | C :: foreach(sexp ≤ i < sexp
′){sstm}; F ↪→ ⟨s,h⟩ | C::

i = n; sstm; i = n + 1; . . . ; sstm; i = n′; F

(ForUnroll)

s = s :: st JsexpKs = true

⟨s,h⟩ | C :: guard(sexp); F ↪→ ⟨s,h⟩ | C :: skip; F
(GuardTrue)

The below rule describes the transition from the initial state of any function execution. Notice the
distinction in notation between an empty stack frame/a stack with one empty frame/an empty
heap •, versus a stack without frames ϵ .

Σop(id) = {ϵ {BODY ; return {sexp}}}

⟨ϵ, ϵ⟩ | (C1 . . .Ck //@main = id) ↪→ ⟨•, ϵ⟩ | BODY ; return {sexp}
(ProgExec)

2.3 Target Language

Whenever the value of a pointer variable is stored in a different variable in the target language, the
linear capability present in this pointer variable (except if it has the value null of course), has to be
erased in the copied variable. This erasure was described and formally defined in section 2.1 and
will be used in a couple instances in the operational semantics of this subsection.

First, an auxiliary concept, then the rules.

16 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

2.3.1 Linear Capability Erasure. This section describes the environment that has to be created
to erase the correct linear capabilities when evaluating expressions in the target language. The
environment in question is given by the output of StoreLinCap.

We first define a judgment⇝ValErase to replace stack values by stack values that are identical, except
for the fact that all linear capabilities have been replaced by null pointers. This judgment is used
in the judgment⇝GatherLinCap, that gathers expressions for all linear capabilities that need to be
erased as a tuple of the form (exp,v) . . . (exp,v), where each exp is the expression that accesses the
linear capability that has to be erased, and v is the value to replace it with. Finally, the judgment
⇝StoreLincap transforms this tuple of gathered linear capabilities into a proper stack assignment that
can be used in the operational semantics.

k ⇝ValErase k
(IntToNull)

la ⇝ValErase l
a

(SrcPtrToNull)

l [a,b] ⇝ValErase null
(PtrToNull)

m1 ⇝ValErase v1 . . . mk ⇝ValErase vk

(m1, . . . ,mk)⇝ValErase (v1, . . . ,vk)
(PairToNull)

JidprogKs ⇝ValErase erase

idprog, s ⇝GatherLinCap (idprog, erase)
(IDProgStore)

k, s ⇝GatherLinCap
•

(IntStore)

op1 exp, s ⇝GatherLinCap
•

(Op1Store)

No pointer arithmetic is allowed, so the expression operations with arity 2 can never result in
capability erasure.

exp1 op2 exp2, s ⇝GatherLinCap
•

(Op2Store)

null, s ⇝GatherLinCap
•

(NullStore)

null0, s ⇝GatherLinCap
•

(Null0Store)

addr(exp), s ⇝GatherLinCap
•

(AddressStore)

length(exp), s ⇝GatherLinCap
•

(LengthStore)

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 17

Any target-level tuple values causing the erasure of the same capability twice are disallowed. This
is not a situation that can occur in a compiled program, so it is only relevant to the back-translation.
We make this evaluation stuck using the below CheckStuck predicate, so that this stuck state
will also cause the operational semantics to get stuck in the places where capability erasure is
applicable. We did not use this CheckStuck in the TupleStore here, as that would be inefficient,
but use it once at the end in the StoreLinCap rule below.

CheckStuck(ϵ)
(CheckEps)

(idprog, _) < vrest
∀i . (idprog.i, _) < vrest
CheckStuck(vrest)

CheckStuck((idprog,val) vrest)
(CheckIdprog)

(idprog, _) < vrest
(idprog.i, _) < vrest
CheckStuck(vrest)

CheckStuck((idprog.i,val) vrest)
(CombineIdprogIndex)

exp1, s ⇝GatherLinCap v1
. . .

expk , s ⇝GatherLinCap vk

(exp1, . . . , expk), s ⇝GatherLinCap v1 . . . vk
(TupleStore)

The following 2 rules should not erase capabilities on the elements that are not being used for the
projection, as this would leak capability values. We also have to make an exception for the case
where exp is actually a program variable idprog, as program variables are handled differently by
GatherLinCap.

exp = (exp1, . . . , expi , . . . , expk) expi , s ⇝GatherLinCap v

exp.i, s ⇝GatherLinCap v
(ProjectTupleStore)

exp = idprog idprog, s ⇝GatherLinCap (idprog, (erase1, . . . , erasek))

exp.i, s ⇝GatherLinCap (idprog.i, erasei)
(ProjectIDProgStore)

Lastly, we define a judgment⇝TupleToSAsgn to convert the assignments to linear capabilities that we
gathered using⇝GatherLincCap into proper stack assignments.

An auxiliary filter judgment is used, that filters out all assignments to the same idprog. This is used
in⇝TupleToSAsgn, that converts the previously created list of tuples to a list of stack assignments.

18 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

ϵ, idprog ⇝IDFilter ϵ, ϵ
(FilterBase)

vrest, idprog ⇝IDFilter v1,v2

(idprog.i,v) vrest, idprog ⇝IDFilter (idprog.i,v) v1,v2
(FilterFound)

vrest, idprog ⇝IDFilter v1,v2 exp , idprog.i

(exp,v) vrest, idprog ⇝IDFilter v1, (exp,v) v2
(FilterNotFound)

ϵ, s ⇝TupleToSAsgn ϵ
(TupleToSAsgnEps)

vrest, s ⇝TupleToSAsgn asgn

(idprog,v) vrest, s ⇝TupleToSAsgn asgn[idprog : v]
(TupleToSAsgnID)

v ′, s ⇝TupleToSAsgn asgn

vrest ⇝IDFilter (idprog.i2,v2) . . . (idprog.ik ,vk),v
′

TypeOfVar(idprog) = (τ1, . . . ,τk) v = (v ′
1, . . .v

′
k)∀i j ∈ {i1, . . . ik }.v

′
i j = vj

∀i < {i1, . . . ik }.v ′
i = Jidprog.iKs

(idprog.i1,v1) vrest, s ⇝TupleToSAsgn asgn[idprog : v]
(TupleToSAsgnIDIndex)

exp, s ⇝GatherLinCap tuple

tuple, s ⇝TupleToSAsgn asgn

CheckStuck(tuple)

exp, s ⇝StoreLinCap asgn
(StoreLinCap)

2.3.2 Operational rules.

⟨s,h⟩ | C :: skip; F ↪→ ⟨s,h⟩ | C :: F
(Skip)

The variable idprog is of type τ∗.

s = s :: st s ′ = s ′ :: st
s ′ = s[idprog → l [0,k−1]]

l < dom(h) τ ⇝def v
JtexpKs = k k > 0 h′ = h[l → [v, . . . ,v]k]

⟨s,h⟩ | C :: idprog = malloc(texp ∗ sizeof(τ)); F ↪→ ⟨s ′,h′⟩ | C :: skip; F
(Malloc)

The variable idproд3 is erased in the rule below. We do not need the erasure rules from section 2.1,
however, since we know we are dealing with a target variable and not a more general target
expression.

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 19

s = s :: st s ′ = s ′ :: st
JtexpKs = n 1 ≤ n ≤ b − a

s(idproд3) = l
[a,b] s ′ = s[idproд1 → l [a,a+n]][idproд2 → l [a+n,b]][idproд3 → null]

⟨s,h⟩ | C :: {idproд1, idproд2} = split(idproд3, texp); F ↪→ ⟨s ′,h⟩ | C :: skip; F
(Split)

s = s :: st s ′ = s ′ :: st
s(idproд2) = l

[a,n] s(idproд3) = l
[n,b]

s ′ = s[idproд1 → l [a,b]][idproд2 → null][idproд3 → null]

⟨s,h⟩ | C :: idproд1 = join(idproд2, idproд3); F ↪→ ⟨s,h⟩ | C :: skip; F
(Join)

s = s :: st Jtexp1Ks = true

⟨s,h⟩ | C :: if texp1 then tstm1 else tstm2; F ↪→ ⟨s,h⟩ | C :: tstm1; F
(IfTrue)

s = s :: st Jtexp1Ks = false

⟨s,h⟩ | C :: if texp1 then tstm1 else tstm2; F ↪→ ⟨s,h⟩ | C :: tstm2; F
(IfFalse)

s = s :: st s ′ = s ′ :: st
τ ⇝def v s ′ = s[idprog → v]

⟨s,h⟩ | C :: τ idprog; F ↪→ ⟨s ′,h⟩ | C :: skip; F
(VarDecl)

Self-assignment is no problem below because env is added to the stack frame before idprog.

s = s :: st s ′ = s ′ :: st
JtexpKs = n texp, s ⇝StoreLinCap [env] s ′ = s[env][idprog → n]

⟨s,h⟩ | C :: idprog = texp; F ↪→ ⟨s ′,h⟩ | C :: skip; F
(VarAsgn)

In the below rule, we consider StoreLinCap to be applied to the entire tuple texp simultaneously,
so that even if different arguments use the same linear capability, execution still gets stuck.

As described in the source operational semantics, we use the notation •
idarg=texp for target-level

holes, because the argument expressions texp will be required information when performing the
back-translation later on. Technically, we should define a ’non-lifted’ (ie. one without proof-related
clutter) target operational semantics as well, where holes are simply represented as • and prove
that this operational semantics equi-terminates with our current one. As this is trivial, we leave
this last uncluttering step implicit in the rest of the full abstraction proof.

Σop(f) = {τarg idarg {BODY ; return {texp′}}}

JtexpKs = k texp, s ⇝StoreLinCap [env]

s = s :: st s ′ = [idarg → k] :: s[env] :: st

⟨s,h⟩ | C :: {idprog} = f (texp); F ↪→ ⟨s ′,h⟩ |

C :: {idprog} = •
idarg=texp; F :: BODY ; return {texp′}

(FApp)

20 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

No linear capability erasure needed below, as the current stack frame is erased anyway. We add
StoreLinCap to the precondition anyway, because it fails if the same capability is erased twice.

s = s :: s ′ :: st s ′ = s ′[idprog → n] :: st Jtexp′Ks = n
texp, s ⇝StoreLinCap _

⟨s,h⟩ | C :: {idprog} = •
idarg=texp; F :: return {texp′} ↪→ ⟨s ′,h⟩ | C :: skip; F

(Return)

Note that 0 ≤ n ≤ b − a also implies n ∈ dom(h(l)) given l ∈ dom(h), because l [a,b] is obtained by
splitting and combining intervals from the original allocated linear capability. The same applies for
the ArrayLkup rule.

s = s :: st s ′ = s ′ :: st s(idprog) = l
[a,b]

Jtexp1Ks = n Jtexp2Ks =m
l ∈ dom(h) 0 ≤ n ≤ b − a h′ = h[l → h(l)[a + n :m]]

texp, s ⇝StoreLinCap [env] s ′ = s[env]

⟨s,h⟩ | C :: idprog[texp1] = texp2; F ↪→ ⟨s ′,h′⟩ | C :: skip; F
(ArrayMut)

s = s :: st s ′ = s ′ :: st
Jtexp1Ks = l

[a,b] Jtexp2Ks =m
h(l ,a +m) = val s ′ = s[idprog → val] 0 ≤ m ≤ b − a
val ⇝ValErase val

′ h′ = h[l → h(l)[a +m : val ′]]

⟨s,h⟩ | C :: idprog = texp1[texp2]; F ↪→ ⟨s ′,h′⟩ | C :: skip; F
(ArrayLkup)

s = s :: st
JtexpKs = n Jtexp′Ks = n′ n < n′

⟨s,h⟩ | C :: foreach(texp ≤ i < texp
′){sstm}; F ↪→ ⟨s,h⟩ | C::

i = n; sstm; i = n + 1; . . . ; sstm; i = n′; F

(ForUnroll)

s = s :: st JtexpKs = true

⟨s,h⟩ | C::
дuard(texp); F ↪→ ⟨s,h⟩ | C :: skip; F

(GuardTrue)

Σop(id) = {ϵ {BODY ; return {texp}}}

⟨ϵ, ϵ⟩ | (C1 . . .Ck //@main = id) ↪→ ⟨•, ϵ⟩ | BODY ; return {texp}
(ProgExec)

3 AXIOMS

This section details how the separation logic proofs that are used as input to our compiler are
constructed from the separation-logic annotated source code. The building blocks for these proof are
the separation logic axioms for each source level statement, presented in this section in the form of
inference rules. Before being able to present detailed separation logic axioms for source statements,
components and entire source programs, this section first formalizes some separation-logic proof
notation and defines what separation logic contracts and separation logic proofs look like exactly.

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 21

3.1 Separation-logic proofs and contracts

Classical separation logic uses Hoare triple notation of the form {P} c {Q} to construct proofs of
Q given precondition P for the piece of source code c . We use c to denote a command, ie. either a
source expression or a source expression followed by a return statement. A proof {P} c {Q} is only
sound if it can be constructed as a proof tree from the individual separation logic axioms. For this
technical report, we use the partial correctness interpretation of separation logic, which allows
non-termination of separation logic-verified code [Reynolds 2002].

In our formalization of separation logic, we do not use the classical Hoare triple notation {P} c {Q}.
Instead, we split the conditions P and Q into two separate parts, namely:

(1) The symbolic heap P (often Q in a postcondition) is a ∗-separated list of separation logic expres-
sions, ranging over symbolic variables only. It contains both spatial and pure parts, and both
types of parts can be combined within one separation logic expression. This is identical to the
separation logic assertion defined above.
Wewill sometimes (in the case of boundary functions, cfr. later on) require the symbolic assertion
P to be separable into a spatial or chunk heap Pc, consisting of separation logic array resources
only, and a pure pure heap Pp.
The spatial heap Pc (sometimes just P if the context is clear) is a list of array chunks and contains
the spatial part of the separation logic conditions. As the different chunks are connected using
separating conjunctions ∗, facts in the spatial heap cannot be copied without changing the
spatial heap’s meaning. To stress the fact that chunks are named within our formalization,
often n : Pc or n : Pn is used to denote the spatial heap. The spatial heap is constructed from
non-desugared array chunks only.
The pure heap PP contains assumptions that are non-spatial or heap-independent. Pure assump-
tions can be copied any number of times within the pure heap. Control flow decisions and the
pure parts of function postconditions are added to the pure heap. The pure heap is constructed
from the first half of the expressions exp in the BNF grammar.

(2) The environment γ for all variable assigments. Our separation logic makes a distinction between
program variables which appear in source programs and logical (or symbolic) variables, which
only appear in separation logic triples. The environment γ provides a mapping from program
variables to logical variables, and hence relates the separation logic proof (ie. the symbolic
assertion) to the concrete program that is being verified.

The notation for these aspects of our extended version of Hoare triples and the notation for the
extended Hoare triples themselves is defined by the following BNF grammar:

⟨P⟩ ::= (Symbolic Heap)
assert separation logic assertion

⟨γ ⟩ ::= (Symbolic Stack)
•[idprog : exp]∗ map

⟨c⟩ ::= (Command)
sstm | sstm; return sexp

⟨triple⟩ ::= (Hoare Triple)
{P}γ c {P}γ

22 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

In the extended Hoare triple {P}γ c {Q}γ ′ , the subscripts can be left out in a given separation logic
axiom if they are not altered and do not influence the pre- or postcondition in any way. The extended
tuple notation can easily be desugared to the classical separation logic notation, resulting in the
following classical triple: {P ∗ ∗{x == γ (x) | x ∈ dom(γ)}} c {Q ′ ∗ ∗{x == γ (x) | x ∈ dom(γ ′)}}.
The only requirement for this desugaring is that the namespaces for program and symbolic variables
are disjoint, to avoid name clashes in the desugared separation logic triple. This condition can
easily be achieved by renaming logical variables or requiring them to be fresh.

A triple {P}γ c {Q}γ ′ is always (often implicitly) constructed in the context of a component
environment Σaxi of the type described in section 2, as we need called function’s contracts in order
to create Hoare triples for function calls. We denote this contextual triple as Σaxi ⊢ {P}γ c {Q}γ ′ ,
but mostly leave the component environment implicit in the arguments.

The reason for using this extended form of Hoare tiples instead of the classical notation is that is
makes multiple separation logic axioms easier and different parts of the formalization more coherent.
First of all, name clashes are avoided between program and logical variables by making a clear
conceptual distinction. Because of this distinction between variable assignment and declaration,
for example, only have to change the environment, whereas eg. array mutation and lookup only
change the symbolic heap. This is easier to formalize and more coherent than in the case where
the Hoare triple consists of a single piece of information. The same holds true when we define
simulation relations during the full abstraction proof: the conceptually distinct parts make it easier
to define a relation between the separation logic contract and the state of the program itself.

Having talked about the formalization of separation logic triples, we can now have a more in-depth
discussion of what we are trying to prove using these triples: the separation logic contracts. A
separation logic contract consists of a pre- and a postcondition, both of which are a separation
logic assertion. Function contracts are hence very similar to separation logic triples. One difference
we will digress on in the following 3 paragraphs is the fact that we have 3 extra form-restraints
for certain separation logic contracts compared to regular triples. These restrictions only hold for
contracts of so called boundary functions. We define import boundary functions as functions that
are imported by some module from another module and export boundary functions as functions
that are exported by a module. Boundary functions play an important role in the compilation, as
will be explained in section 4. For import boundary functions, the conditions in principle hold on
the precondition, whereas for export boundary functions, the same conditions now hold for the
postcondition in principle. An important caveat is that from the perspective of another component
and during the back-translation, the roles of import and export boundary functions are swapped,
also swapping the conditions from pre- to postcondition and the other way around. This implies
that we have to require the below conditions to hold on both the pre- and postcondition of both
import and export boundary functions, otherwise the back-translated program would not be a
valid source program. We hence make no difference between the restrictions on import and export
boundary functions.

Firstly, we require the contract to consist of two separable parts in both the pre- and postcondition.
The first part consists of a list of fixed-length, non-conditional (conditionals make reification harder)
array chunks over symbolic variables (which is the spatial heap mentioned before) named PREs,
resp. POST s, whereas the second part is a restricted form of expression over symbolic variables
(which is the pure heap mentioned before) named PREp, resp. POSTp . These parts reflect 1 of the 2
parts present in our extended Hoare triples, which means that contracts only lack the environment
part when compared to extended Hoare triples. The reason for this is that at the start of the function,
all function arguments are assumed to map to symbolic variables with the same name. The function

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 23

with declaration τ f (idarg τarg) thus has the environment [idarg:idarg] as starting environment.
Function contracts are hence made up of logical variables that represent the original values of
the function’s program arguments, seen as the value of logical variables does not change. For the
returned program expressions, the privileged symbolic variables resulti are provided, corresponding
to the ith return value. These variables are only allowed to appear in the pure heap of the contract’s
post-condition. For example, the expression result3 == 3 means that the third returned value must
be equal to 3.

The second restriction is in the fact that separation logic contracts have to be linear. This means that
variable names cannot be repeated between the function arguments, the chunks in the precondition
and the chunks in the postcondition. This is formalized in the FDeclWellFormed rule below.
Repetitions of e.g. the variable a are to be avoided by replacing a by a variable a′ on the second
occurrence of a and adding a == a′ to the linear equalities. Also, integers k (and later constants in
general) are avoided inside array chunks, by replacing them with a new variable id and adding the
equality id == k . The result variables that were mentioned before were automatically made linear
by definition, as they do not appear in the arguments nor the chunks. Additionally, the pure heap
should not introduce new symbolic variables in this case, and in the case of the postcondition not
use symbolic variables that were defined in the pure heap of the precondition.

The third restriction states that all logical variables denoting addresses of the chunks in the contract
of f are bound to a single expression in the pure heap, where this single expression contains only
logical variables that we can reify into program variables. This condition is necessary because of the
compilation of boundary functions in section 4 andwill be detailed there in the BoundaryContrWF
rule.

Another important caveat concerns the implicit assumptions on quantifier use in function contracts
that we make. Similarly to what the VeriFast tool does, we assume that any logical variables
appearing in a precondition are implicitly universally quantified, whereas fresh logical variables
appearing in a postcondition are existentially quantified. As an example, consider the following
source function:

int f (int∗ x)
//@pre n : x 7→ y //@post n : x 7→ z ∗ result == 0

{∗x = 3; return 0}

Then we assume that x and y are universally quantified, whereas z is existentially quantified. This
allows any function possessing the right precondition to call f , and use the results without concern.

3.2 Some additional notation

An expression that often appears in the separation logic axioms of this section is sexpγ , which
means that the environment γ is applied to the source expression sexp. Concretely, all program
variables idprog in sexp are replaced by γ (idprog).

The notations <pointer> 7→τ <array> and <pointer> Z⇒τ <array>, [. . .] are used for heap chunks
to specify that the contents of the array pointed to are of type τ . This syntax is necessary because
nested arrays are possible and the separation logic syntax could otherwise leave the type of the
array contents ambiguous. In principle, this typed points-to chunk is not necessary, as static type
checking of the source program should be able to derive the proper types for all chunks. As the issue
of type checking has been intensively investigated and is orthogonal to the challenges presented in

24 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

this paper, it has not been applied. In most occasions, the τ is left out because it is irrelevant to the
formalization. The only place where this notation really plays a role is when chunks in function
contracts are reified during compilation. This occurs in the ResDecl rule.

Abstract heap locations, which are the separation logic equivalent of the operational semantics
heap locations and indexes, are denoted as la , to avoid confusion with the concrete locations l
from the operational semantics. In the current memory model, each chunk in a function contract is
assumed to be positioned at a separate memory location la .

3.3 Separation logic axioms

3.3.1 Basic statement rules.

{} skip {}
(Skip)

Notice that the malloc function used in the below axiom doesn’t correspond to the vanilla malloc
function in C, as it guarantees a fresh location for the allocated variable. Our malloc call can be
seen as a wrapper (depending on architecture and implementation) around the regular malloc
function in C, with the extra guarantee that any newly allocated space hasn’t been used before by
the context (which could otherwise have kept references). An alternative would be to introduce a
specific capability-based memory manager, which does allow reallocation of a region in memory if
all capabilities corresponding to this region have gone out of scope. This would, however make
the formalization more difficult and has hence been left out of scope. No Free statement has been
formalized for similar reasons: it forces us to formalize some kind of memory management in the
operational semantics and hence in the separation logic, and does not add a lot the the power and
relevance of the full abstraction result.

Note that we often use the short-hand notation ∀0 ≤ i < length(l)., which desugars to ∀i : int. 0 ≤

i < length(l) ⇒.

τ ⇝def v n, idlog fresh
idprog ∈ dom(γ) γ ′ = γ [idprog : idlog]

{sexpγ > 0}γ idprog = malloc(sexp ∗ sizeof(τ))
{n : idlog 7→τ repeat(sexpγ ,v)}γ ′

(Malloc)

To define the Flatten rule below, we need to be able to add fresh chunknames to a given assertion
assert. We introduce the judgment assert ⇝NameChunks assert ′,n to transform an inner separation
logic assertion to an outer assertion (ie. including chunk names). The names n contain the target
level declarations for the freshly named chunks we need to create during compilation.

The only two non-identity rules (identity rules create no names) for this judgment are the following:

[assert | exp ≤ idlog < exp
′]

⇝NameChunks n : [assert | exp ≤ idlog < exp
′],n

(NameNestedChunks)

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 25

exp 7→τ exp
′

⇝NameChunks n : exp 7→τ exp
′,n

(NameFlatChunks)

We also introduce the notation asserti 7→0...k to mean the tuple of assertions obtained by substituting
i in assert for all values in the range 0 . . .k (including k).

assert[i 7→ k1 . . .k2 − 1]⇝NameChunks assert
′,nij

nij fresh

{n : [assert | k1 ≤ i < k2]}γ
//@flatten n

{assert ′}γ

(Flatten)

When collecting chunks, the reverse of assert ⇝NameChunks assert ′,vardecl needs to happen:
assert ⇝UnNameChunks assert ′, exp,τ ,n, where chunk names are erased. The chunk addresses exp,
types τ and chunk names n for each assertion are also part of the output, as these play a role in the
Collect rule. This judgment again has only two non-identity rules:

n : [exp | exp′ ≤ τ < assert][idlog]

⇝UnNameChunks ([exp | exp′ ≤ τ < assert][idlog]),n

(UnnameRangeResource)

n : exp 7→τ exp
′

⇝UnNameChunks (exp 7→τ exp
′),n

(UnnameFlatResource)

Notice that collect is non-deterministic wrt the inclusion of pure conditions. This does not matter,
as these conditions can be moved in and out of the tree anyway.

To avoid ambiguity, the collect rule has the range for i start out on 0. The Conseqence rule can
be used to adjust this value, if need be.

assert[i 7→ 0 . . .k − 1]⇝UnNameChunks assert
′[i 7→ 0 . . .k − 1],nij

n fresh
{assert[i 7→ 0] ∗ . . . ∗ assert[i 7→ k − 1] ∗ k > 0}γ

//@collect n0j · . . . · n(k−1)j
{n : [assert ′ | 0 ≤ i < k]}γ

(Collect)

In the below rule, the separation logic assertion Inv[is] and the environmentγ [is] are both functions
of some general parameter is, which is the logical variable corresponding to i .

Note that we do not disallow assignments to the variable i inside a f or loop; both in the target and
in the source. This is not necessary, as the operational semantics guarantee that i has the correct
value at the start of each for loop. This is the reason why the expression γ [is + 1][i : _] allows any
expression instead of is in the below rule, as i’s mapping might have been changed by the for loop
in the general expression γ (is).

26 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

{sexpγpre ≤ is < sexp
′
γpre ∗ Inv[is]}γ [is] sstm {Inv[is + 1]}γ [is+1][i :_]

γ [is](i) = is γ [sexpγpre] = γpre[i : sexpγpre] γ [sexp′γpre] = γpost

{Inv[sexpγpre]}γpre foreach(sexp ≤ i < sexp
′){sstm} {Inv[sexp′γpre]}γpost

(For)

The below split and join rules are also defined on range-shaped resources. This does add expressive
power, as both cannot be emulated easily be a consecutive flatten and two collect statements in the
case of split, or by 2 flatten and one collect statement in the case of join: we do not know what
the length of the collect should be, as we do not know the value of the split index or any of the
lengths beforehand, as they might not be constants. We will need this version of split and join in
the back-translation, because all manipulated chunks are tree chunks.

Furthermore, we also use the resource name and not the address in the case where we split a flat
array resource, to keep the rules for flat resources more uniform with the rules for range resources,
and because it makes sense to use the name of the heap resource as a handle to access this resource
in ghost commands.

Notice that the target language only has 1 set of built-in split and join functions. The reason for
this is that both types of source-language split and join just come down to merging or splitting
linear capabilities in the target language.

n′,n′′ fresh
{n : expa 7→τ l ∗ length(l) == expl ∗ 0 < sexpγ < expl}γ

//@split n[sexp]
{n′ : expa 7→τ take(l , 0, sexpγ)

∗ n′′ : (expa + sexpγ) 7→τ take(l , sexpγ , expl)}γ

(Split)

n′,n′′ fresh
{n : [assert | exp ≤ i < exp

′] ∗ 0 < sexpγ < exp
′ − exp}γ

//@split n[sexp]
{n′ : [assert | exp ≤ i < exp + sexpγ] ∗

n′′ : [assert | exp + sexpγ ≤ i < exp
′]}γ

(SplitRange)

n, l fresh
{n′ : exp′a 7→τ l ′ ∗ length(l ′) == exp

′
l

∗ n′′ : exp′′a 7→τ l ′′ ∗ length(l ′′) == exp
′′
l

∗ exp′′a = exp
′
a + exp

′
l + 1}γ

//@join n′ n′′

{n : exp′a 7→τ append(l ′, l ′′)}γ

(Join)

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 27

n fresh
{n′ : [assert | exp ≤ i < exp

′] ∗

n′′ : [assert | exp′ ≤ i < exp
′′]}γ

//@join n′ n′′′

{n : [assert | exp ≤ i < exp
′′]}γ

(JoinRange)

{P}γ sstm1 {Q}γ ′

{Q}γ ′ sstm2 {R}γ ′′

{P}γ sstm1; sstm2 {R}γ ′′

(Seq)

The idea behind the conditional rule is to hand the responsibility of matching the postconditions of
sstm1 and sstm2 to the programmer or the verification tool. This requires that the power to perform
this actual matching be put in the Conseqence rule below.

{P ∗ sexpγ }γ sstm1 {Q}γ ′

{P ∗ !sexpγ }γ sstm2 {Q}γ ′

{P}γ if sexp then sstm1 else sstm2 {Q}γ ′

(If)

idprog < dom(γ) τ ⇝def v
γ ′ = γ [idprog : v]

{}γ τ idprog {}γ ′

(VarDecl)

idprog ∈ dom(γ) γ ′ = γ [idprog : sexpγ]

{}γ idprog = sexp {}γ ′

(VarAsgn)

The below 2 rules force the programmer to use appropriate split statements to ensure that array
mutation and lookup happen on the first element of a heap chunk. This is a simplifying assumption
without loss of generality. We might just as well allow mutation and lookup to happen in any
element of a heap chunk, but do not do this for simplicity’s sake and because it isn’t allowed for
split and join statements either.

Array mutation and lookup are supposed to be performed on non-tree chunks, as the values that
are assigned in the target language are also compiled values, and we are hence manipulating the
reified flat array chunks, and not the tree chunks. Appropriate split commands on trees are hence
in order, to allow for a flatten to happen in order to manipulate a tree chunk.

Array mutation and lookup require the program variable to correspond to the address of the
corresponding chunk, disallowing them to differ by an expression sexp. This requires a programmer
to also perform a split after pointer arithmetic, if he still wishes to manipulate the result. This
simplifies the below 2 axioms slightly, but mostly simplifies the back-translation.

28 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

{n : idprog,γ 7→ exp ∗ length(exp) == expl
∗ 0 ≤ sexp1,γ < expl}γ

idprog[sexp1] = sexp2 {n : idprog,γ 7→ update(exp, sexp1,γ , sexp2,γ)}γ

(ArrayMut)

idprog ∈ dom(γ) γ ′ = γ [idprog : expread]

{n : sexp1,γ 7→ exp ∗ exp[sexp2,γ] == expread}γ
idprog = sexp1[sexp2] {n : sexp1,γ 7→ exp}γ ′

(ArrayLkup)

{P} guard(sexp) {P ∗ sexpγ }
(Guard)

3.3.2 Function application axiom. The variables n in the below rule are chosen fresh so we do not
have to care about redeclaring existing chunks. Renaming chunks has no impact on the proof, as
there are no conditions over the chunk names themselves; they are only used during compilation.
Renaming can happen through the Conseqence rule. The rule renames the result variables to
fresh dummy variables idres.

Σ(f) = {PREf , POST f , idarg}
PREf ≈Names PRE POSTf ≈Names POST

id ∈ dom(γ) γ ′ = γ [id : idres] idres,n fresh
[substpre] = [idarg 7→ sexpγ]

[substpost] = [substpre][result 7→ idres]

{PRE[substpre]}γ id = f (sexp) {POST [substpost]}γ ′

(FApp)

Code-level holes •
id=sexp

POST,PRE , resulting from FApp calls in the operational semantics above, are handled
as a special kind of ad-hoc function call by the above FApp rule. They are seen as functions with
name •, for which the following ad-hoc environment entry is used: Σ(•) = {true, POST , id} and
where the expressions sexp are used as arguments to the function call. No separate separation logic
axiom is needed for them.

3.3.3 Rules for return, consequence and frame. The below rules are needed as extra rules to be
able to complete proof trees, but are pretty standard in separation logic formalizations and hence
presented last.

• Return rule: As every function has one explicit return statement, written as just a sexp, there is
no need for an explicit return rule. We do, however, have to define a rule for sequencing a sexp
and a sstm.
In this case, sstm is allowed to be the empty statement as well, this is for the case where a
function’s body consists only of a return statement.

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 29

{P}γ sstm {Q}γ ′

{P}γ sstm; return {sexp} {Q ∗ result == sexpγ ′}γ ′

(Return)

• Consequence The Conseqence rule is the glue between different axioms. It works by means of
strengthening preconditions and weakening postconditions. Strengthening preconditions is
not required here, as proofs can just be described start-to-end. The consequence rule is applied
modulo some logical theory, and hence formalizes a full-fledged SMT solver. Luckily, we do not
need to formalize this SMT solver, as we assume the proof to be given.
Consequence also includes chunk leaking.
Actually, the Conseqence rule below should also be applicable to the Return axiom results,
as it needs to drop the result variables again if they do not appear in the function contract’s
postcondition. For this reason, we write c instead of sexp in the below 2 rules, where c represents
an sstm or a sstm; return sexp.
We do not allow forgetting parts of γ as we do not allow different branches of an If-statement
or For-loops to contain declarations. Declarations also cause problems because variables should
go out of scope after an if, which is what happens automatically at the logical level because the
symbolic variables of the different if brancheswill be different, but does not happen automatically
at the level of the operational semantics, and is a pain to formalize in the current operational
semantics.
Another important assumption (without loss of generality) we make is that the values of sym-
bolic variables are never reused, within the same function’s body, when they have gone unused
in the current separation logic assertion. The reason for this is that parts of the formalization
(ie. the δ function defined further on) depend on the fact that logical variables always refer
to the same symbolic concept. If at any point in any of the proofs in this report a symbolical
variable reappears, this will happen for aesthetic reasons and because it makes explanations
easier, but the reader should assume implicit renamings for all these cases. This also means that
after a function call, any logical variables that appear in the called function’s postcondition
but not in the precondition are implicitly renamed if the name in question already existed as a
logical variable name in the caller’s separation logic proof before the call.

{P}γ c {Q}γ ′

dom(γpost) == dom(γ ′) dom(γpre) == dom(γ)
∀x ∈ dom(γpost).Q ⊢ γ ′(x) == γpost(x)
∀x ∈ dom(γ). P ⊢ γpre(x) == γ (x)

Pleak ⊆ Ppre Qleak ⊆ Q
Pleak ≈Names Prename Qleak ≈Names Qrename

⊢ Prename ⇒ P ⊢ Qrename ⇒ Qpost

{Ppre}γpre c {Qpost}γpost
(Conseq)

• Frame rule This is one of the most classical separation logic axioms out there and one of the
reasons for the power and general usability of separation logic.

{P}γ c {Q}γ ′

CN(R) = n n fresh
γs = γ ⊎ γframe γ ′

s = γ
′ ⊎ γframe

{P ∗ R}γs c {Q ∗ R}γ ′
s

(Frame)

30 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

3.3.4 Rules for functions.

isfunc = τret f (τarg idarg)//@pre PRE //@post POST
{PRE}

[idarg:idarg] sstm; return sexp {POST }γ

⊢ isfunc {sstm; return sexp}
(ImplFVerif)

csfunc = τret f (τarg idarg)//@pre PRE //@post POST

⊢ csfunc
(ContFVerif)

3.3.5 Rules for components and programs.

Well-formdness/well-scopedness rules. The rules below are well-formdness/well-scopedness rules
for separation logic contracts of boundary functions. Also, ⊢name denotes affine closedness (all
variables to the left are used 0 or 1 times to the right).

x ,x1, . . . ,xk distinct

x ,x1, . . . ,xk ⊢s n : x 7→ [x1, . . . ,xk]
(ArrayWF)

The operation ⊕ is disjoint environment concatenation.

Γ ⊢s C Γ′ ⊢s C
′

Γ ⊕ Γ′ ⊢s C ∗ C ′
(SepConjChunkWF)

The function FV (·) returns a set of all variable names idlog appearing free in an expression exp or a
symbolic assertion P.

FV (exp) = {x1, . . . ,xk }
{x1, . . . ,xk } ⊆ Γ

Γ ⊢p exp
(ConditionWF)

Γ ⊢p C Γ ⊢p C
′

Γ ⊢p C ∗ C ′
(SepConjCondWF)

Remember; the contract of any boundary function has to be separable into a spatial heap PRE/POST s
and a pure heap PRE/POST s, as described before.

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 31

Γ = idarg
∆pre ⊢s m : PREs Γ ⊕ ∆pre ⊢p PREp

∆post ⊢s n : POST s Γ ⊕ ∆pre ⊕ ∆post ⊢p POSTp

PREs = idpre 7→ [. . .] PREs = idpost 7→ [. . .]

(idpre == expm) ⊆ PREp

(idpost == expn) ⊆ POSTp
FV (expm) = v1 FV (expn) = v2

v1 ⊆ idarg v2 ⊆ idarg ∪ result ∪ ∆pre

⊢WFBD τret f (τarg idarg)//@prem : PREs ∗ PREp //@post n : POST s ∗ POSTp

(BoundaryContrWF)

Component/program rules. The imported and exported functions are forced to be disjoint by the
UniqueId requirement combined with the Subset requirement. The predicate UniqueId(f decl)
enforces the function names in the given set of function declarations to be different. The predicate
Subset(f decl , f) enforces all left-hand function declarations to reappear in the right-hand function
bodies.

UniqueId(isfunc csfunci) UniqueId(ctfunce)
Subset(ctfunce, isfunc)

⊢WFBD csfunci ⊢WFBD ctfunce

⊢WF isfunc //@import csfunci //@export ctfunce
(CompWF)

The component environment Σi has to be passed downwards from this rule, because the component
falls apart at this point. This operation of passing the environment throughout the separation logic
derivation is performed implicitly; for every rule in the proof tree below this one, a subscript Σ can
be added mentally to the precondition of every triple.

scomp = isfunc//@import csfunci //@export csfunce
⊢WF scomp

∀x ∈ isfunc. ⊢ x

∀x ∈ csfunci. ⊢ x

∀x ∈ csfunce. ⊢ x

⊢ scomp

(CompVerif)

Every function needs a return type, so main does too here. Because we are not really interested
in the concrete value our main programs output, we restrict the main function to have the void
type as its return type. It has the trivial precondition as precondition, and we do not care about its

32 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

postcondition.

C = C1 . . . Cj . . . Ck Cj = isfuncj //@import csfuncij //@export csfuncej
∀j ∈ {1..k}. ∀l ∈ {1..k}. j , l ⇒ UniqueId(isfuncj isfuncl)

∀j ∈ {1..k}. Subset(csfuncij , csfunce1 . . . csfuncek)
∃j ∈ {1..k}. Subset((void id() //@pre true //@post _), csfuncej)

⊢WF C //@main = id

(ProgWF)

sprog = C //@main = id ⊢WF sprog

∀X ∈ C . ⊢ X

⊢ sprog
(ProgVerif)

4 COMPILATION RULES

The axioms written down in section 3 demonstrate what separation logic proofs look like. On the
other hand, they are also an aid to write down the compilation rules presented in this section; all
axioms are implicitly present in the compilation rules, as the astute reader will immediately notice.

4.1 Basic statement rules

{} skip {} ⇝ skip
(Skip)

The below CompileType rules can be used to get the correct type for the contents of a reified linear
capability.

int⇝CompileType int
(CompileInt)

τ∗⇝CompileType τ∗0
(CompileSrcPtr)

τ1 ⇝CompileType τ
′
1 . . . τk ⇝CompileType τ

′
k

(τ1, . . . ,τk)⇝CompileType (τ
′
1, . . . ,τ

′
k)

(CompileTuple)

τ ⇝def v τ ⇝CompileType τ
′ n, idlog fresh

idprog ∈ dom(γ) γ ′ = γ [idprog : idlog]

{sexpγ > 0}γ idprog = malloc(sexp ∗ sizeof(τ))
{n : idlog 7→τ repeat(sexpγ ,v)}γ ′

⇝ τ ′∗ n; n = malloc(sexp ∗ sizeof(τ ′)); idprog = addr(n)

(Malloc)

The judgment resource ⇝ChunkType τt returns the tuple of types the given separation-logic resource
will reify to.

exp⇝ChunkType ϵ
(ExpResType)

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 33

C ⇝ChunkType τ1 C ′ ⇝ChunkType τ2

C ∗ C ′ ⇝ChunkType τ1,τ2
(ChunkAssertToDecl)

assert ⇝ChunkType τ

exp ? assert ⇝ChunkType τ
(CondResType)

τ ⇝CompileType τ
′

exp 7→τ exp
′ ⇝ChunkType τ

′∗
(ArrayResType)

assert ⇝ChunkType τ1, . . . ,τk

[assert | exp ≤ i < exp
′]⇝ChunkType (τ1, . . . ,τk)∗

(RangeResType)

Notice how we do not need built-in functions for flatten and collect. The reason for this is that
we are just moving a known amount of capabilities outside of a wrapping capability. There is no
manipulation of the capabilities itself needed. This simplifies the back-translation, because we do
not have to create back-translation rules for flatten and collect.

assert[i 7→ k1 . . .k2 − 1]⇝NameChunks assert
′,nij

nij fresh assert ⇝ChunkType τj τij = τj
(k2−k1)

{n : [assert | k1 ≤ i < k2]}γ
//@flatten n

{assert ′}γ

⇝ τ
ij
nij ; (τj) ni ;ni = n[i];nij = ni .j

(Flatten)

assert[i 7→ 0 . . .k − 1]⇝UnNameChunks assert
′[i 7→ 0 . . .k − 1],nij

n fresh [assert ′ | 0 ≤ i < k]⇝ChunkType τ∗

{assert[i 7→ 0] ∗ . . . ∗ assert[i 7→ k − 1] ∗ k > 0}γ
//@collect n0j · . . . · n(k−1)j
{n : [assert ′ | 0 ≤ i < k]}γ

⇝ τ∗ n;n = malloc(k ∗ sizeof(τ));n[0] = (n0j); . . . ;n[k − 1] = (n(k−1)j)

(Collect)

To avoid errors because we redeclare newly-reified target declarations in every iteration of a
compiled for loop, we need to define declaration hoisting for the compilation of for loops.

ϵ ⇝ExtractDecl ϵ, ϵ
(GatherDecl)

stm ⇝ExtractDecl decl, nondecl

τ id; stm ⇝ExtractDecl τ id; decl, nondecl
(GatherDecl)

stm , τ id

stm ⇝ExtractDecl decl, nondecl

stm; stm ⇝ExtractDecl decl, stm; nondecl
(GatherNonDecl)

34 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

{sexpγpre ≤ is < sexp
′
γpre ∗ Inv[is]}γ [is] sstm {Inv[is + 1]}γ [is+1][i :_] ⇝ p

γ [is](i) = is γ [sexpγpre] = γpre[i : sexpγpre] γ [sexp′γpre] = γpost
p ⇝ExtractDecl decl, nondecl

{Inv[sexpγpre]}γpre foreach(sexp ≤ i < sexp
′){sstm} {Inv[sexp′γpre]}γpost ⇝

decl; foreach(sexp ≤ i < sexp
′){nondecl}

(For)

n′,n′′ fresh τ ⇝CompileType τ
′

{n : expa 7→τ l ∗ length(l) == expl ∗ 0 < sexpγ < expl}γ
//@split n[sexp]

{n′ : expa 7→τ take(l , 0, sexpγ)
∗ n′′ : (expa + sexpγ) 7→τ take(l , sexpγ , expl)}γ
⇝ τ ′∗ n′;τ ′∗ n′′; {n′,n′′} = split(n, sexp)

(Split)

n′,n′′ fresh [assert | exp ≤ i < exp
′]⇝ChunkType τ

{n : [assert | exp ≤ i < exp
′] ∗ 0 < sexpγ < exp

′ − exp}γ

//@split n[sexp]
{n′ : [assert | exp ≤ i < exp + sexpγ] ∗

n′′ : [assert | exp + sexpγ ≤ i < exp
′]}γ

⇝ τ n′;τ n′′; {n′,n′′} = split(n, sexp)

(SplitRange)

n, l fresh τ ⇝CompileType τ
′

{n′ : exp′a 7→τ l ′ ∗ length(l ′) == exp
′
l

∗ n′′ : exp′′a 7→τ l ′′ ∗ length(l ′′) == exp
′′
l

∗ exp′′a = exp
′
a + exp

′
l + 1}γ

//@join n′ n′′

{n : exp′a 7→τ append(l ′, l ′′)}γ
⇝ τ ′∗ n;n = join(n′,n′′)

(Join)

Notice that we cannot use the built-in target language join statement for the below compilation
rule. The reason is that we cannot be sure that the two given linear capabilities, that both represent
the reifications of arbitrary range statements, are adjacent in memory. It is hence necessary to
allocate a new linear capability and copy the contents of the other two linear capabilities to this
one. Notice that we could have used this technique in all of the above compilation rules, to avoid
any uses of split and join, but this would be more memory-inefficient, and would forgo part of the
power of linear capabilities and the capability machines they are implemented on.

n fresh [assert | exp ≤ i < exp
′]⇝ChunkType τ∗

{n′ : [assert | exp ≤ i < exp
′] ∗

n′′ : [assert | exp′ ≤ i < exp
′′]}γ

//@join n′ n′′′

{n : [assert | exp ≤ i < exp
′′]}γ

⇝ τ∗ n;n = malloc((exp′′ − exp) ∗ sizeof(τ));
foreach(exp ≤ i < exp

′){n[i] = n′[i]};
foreach(exp ≤ i < exp

′′){n[i] = n′′[i − exp
′]}

(JoinRange)

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 35

{P}γ sstm1 {Q}γ ′ ⇝ p1
{Q}γ ′ sstm2 {R}γ ′′ ⇝ p2

{P}γ sstm1; sstm2 {R}γ ′′ ⇝ p1;p2
(Seq)

For the below compilation rule to work, we forbid the appearance of the same resource with
different ReifiesToType-values in different If statement branches in the source language. This
makes sure that the union decl1 ∪ decl2 does not contain a double declaration for the same variable.
The declarations in the below rule are hoisted outside of the If statement to make sure that no
declarations occur inside of If statements in the target language either. Notice that this hoisting
works for nested If statements as well. This causes no problems with the correctness relation R, as
it allows for extra null-variables in the target language that do not (yet) correspond to resources in
the source language proof. Hoisting happens analogously to the case for For statements.

{P ∗ sexpγ }γ sstm1 {Q}γ ′ ⇝ p1
{P ∗ !sexpγ }γ sstm2 {Q}γ ′ ⇝ p2
p1 ⇝ExtractDecl decl1, nondecl1
p2 ⇝ExtractDecl decl2, nondecl2

decl = decl1 ∪ decl2

{P}γ if sexp then sstm1 else sstm2 {Q}γ ′

⇝ decl; if sexp then nondecl1 else nondecl2

(If)

idprog < dom(γ) τ ⇝def v τ ⇝CompileType τ
′

γ ′ = γ [idprog : v]

{}γ τ idprog {}γ ′ ⇝ τ ′ idprog
(VarDecl)

idprog ∈ dom(γ) γ ′ = γ [idprog : sexpγ]

{}γ idprog = sexp {}γ ′ ⇝ idprog = sexp

(VarAsgn)

Statements like a = a+ 1 for a source pointer a (which corresponds to a chunk n) are left untouched
during compilation, as can be seen in the VarAsgn compilation rule. Only during array access
(mutation or lookup) is the pointer arithmetic calculated in, because a’s value is used. Because
arithmetic isn’t translated on a pointer level, the linear capabilities we use for arrays will always
point to the first element in their domain, rendering their concrete location useless. This is the
reason we were able to formalize linear capabilities without an index i , and it makes the operational
semantics and the further proof somewhat easier.

{n : idprog,γ 7→ exp ∗ length(exp) == expl
∗ 0 ≤ sexp1,γ < expl}γ

idprog[sexp1] = sexp2 {n : idprog,γ 7→ update(exp, sexp1,γ , sexp2,γ)}γ
⇝ n[sexp1] = sexp2

(ArrayMut)

36 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

idprog ∈ dom(γ) γ ′ = γ [idprog : expread]

{n : sexp1,γ 7→ exp ∗ exp[sexp2,γ] == expread}γ
idprog = sexp1[sexp2] {n : sexp1,γ 7→ exp}γ ′

⇝ idprog = n[sexp2]

(ArrayLkup)

{P} guard(sexp) {P ∗ sexpγ } ⇝ guard(sexp)
(Guard)

4.2 Function application compilation rule

Before we can get into the details of how the function application compilation rule works, we have
to introduce a new kind of function that pops up during compilation: the stub function. Generally
speaking, stubs are target-level functions that enforce the separation logic contracts present at the
source level when a transition between trust domains (in this case components) occurs. There are 2
kinds of stubs; incall and outcall stubs.

Outcall stub For each function outcall from one component to another, a function outcall stub has
to be created and added to the outcalling components’ function context Σi . This stub is a wrapper
around the original function call, that enforces the called function’s postcondition. Given the called
function is f , this stub will be called fcomp (for compiled function) so that the csfunc can keep its
name. The outcall stub asserts whether all constraints from the called function’s postcondition
hold after the function call. To do this, variables have to be stored before the function outcall to
avoid them being overwritten. The precondition does not need to be checked, as an outcall stub is
a tool for a caller to check whether a callee behaves properly. The calling component of course
trusts itself. Outcall stubs are formalized in the Outcall rule below, when we have all necessary
notation.

Incall stub For each function incall from one component to another, a function incall stub has to be
created and added to the incalled components’ function context Σi . The concept is symmetrical
to that of an outcall stub, but now the untrusted party is the caller and not the callee. When
an implemented function is called from an unverified context, we are unsure whether or not its
precondition will be upheld. The stub is a wrapper around the called function, that enforces the
called function’s precondition. The postcondition does not need to be checked, as an incall stub is a
tool for a callee to check whether a caller behaves properly. The called component of course trusts
itself. Incall stubs are formalized in the Incall rule below, when we have all necessary notation.
Given an implemented function f , this incall stub will be named f (to avoid changing the caller
code) and the old function fcomp. The new stub function f will now be exported instead of fcomp.

We use the new name fcomp for both incall and outcall stubs to make compilation of function names
easier and more uniform. Every function f mentioned in a component, will now have a compiled
version fcomp, and also a stub-related f if it is an imported or exported function.

To define the FApp rule, we first need rules that allow us to reify separation logic assertions to target-
level program variable declarations. The rule assert ⇝ResDecl decl reifies a target-level declaration
from a given impure separation-logic assertion. The auxiliary judgment resource ⇝ChunkType τt was
defined above and returns the tuple of types the given separation-logic resource will reify to.

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 37

exp⇝ResDecl ϵ
(ExpToDecl)

C ⇝ResDecl decl1 C ′ ⇝ResDecl decl2

C ∗ C ′ ⇝ResDecl decl1 decl2
(ChunkAssertToDecl)

assert ⇝ResDecl decl

exp ? assert ⇝ResDecl decl
(CondToDecl)

exp 7→τ exp
′ ⇝ChunkType τ

n : exp 7→τ exp
′ ⇝ResDecl τ n;

(FixChunkToDecl)

[assert | exp ≤ i < exp
′]⇝ChunkType τ

n : [assert | exp ≤ i < exp
′]⇝ResDecl τ n;

(RangeChunkToDecl)

We also define the function ReifiesToType, that takes a resource name n as an argument and
returns the type of the chunk it reifies to, based on the types in the rules FixChunkToDecl and
RangeChunkToDecl for ResDecl: pointers for regular points-to chunks and tuples for array
chunks.

Σ(f) = {PREf , POST f , idarg}
PREf ≈Names PRE POSTf ≈Names POST

id ∈ dom(γ) γ ′ = γ [id : idres] idres,n fresh
[substpre] = [idarg 7→ sexpγ]

[substpost] = [substpre][result 7→ idres]
CN(PRE) =m POST ⇝resDecl τn n

{PRE[substpre]}γ id = f (sexp) {POST [substpost]}γ ′ ⇝
τn n; {id,n} = fcomp(sexp,m)

(FApp)

Code-level holes •
id=sexp

POST,PRE in the source will compile to regular non-annotated code-level holes
•
id=sexp in the target.

4.3 Rules for return, consequence and frame

{P}γ sstm {Q}γ ′ ⇝ p CN(Q) = n

{P}γ sstm; return {sexp} {Q ∗ result == sexpγ ′}γ ′

⇝ p; return {sexp,n}

(Return)

The following rules for conditional chunks should also be part of consequence:

• Addition or removal of a condition that is equivalent to true to/from any chunk. This is eg.
needed to deconstruct/reconstruct universal contracts containing chunks.

exp == true ⊢ assert ⇔ exp ? assert

38 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

• Adding a condition that is equivalent to false, around a freshly made-up separation logic
assertion, or removal of such a condition. This first case results in a null-assignment of all (nec-
essarily fresh) chunk names in the made-up assertion after compilation. This rule equivalence
is eg. needed to deconstruct/reconstruct universal contracts containing null-valued variables
(although deconstruction can happen through chunk leaking anyway).

exp == false ⊢ true ⇔ exp ? assert

The last two lines in the below Conseqence rule create the declarations that should be reified
in the target language because of this ’making up’ of chunks.

The judgment ⇝RenameDecl used below creates declarations in the target language, that allow
a transition from the first set of names to the second set of names by using declarations and
assignments. Herein, it is assumed that any name that changes is fresh. A name is still fresh if it is
only used in a different branch of an if statement. This allows us to rename chunks in different If
branches to identical names, which is often required to satisfy the If axiom.

ϵ, ϵ ⇝RenameDecl ϵ
(RenameEmpt)

names1, names2 ⇝RenameDecl rename

n1 :: names1,n1 :: names2 ⇝RenameDecl rename

(RenameEq)

n1 , n2 n2 fresh ReifiesToType(n1) = τ
names1, names2 ⇝RenameDecl rename

n1 :: names1,n2 :: names2 ⇝RenameDecl τ n2;n2 = n1; rename

(RenameNeqFresh)

Important note: the below rule is the only way to reintroduce non-fresh chunk names! In all
other places, chunk names are required to be fresh. If they do not appear to be fresh in any place in
this report, that means that this rules has been implicitly applied. Allowing non-fresh chunks to
pop up in a single place is a simplifying measure that avoids formalizing the same measures on
chunk names in multiple places.

n1 , n2 n2 ∈ dom(γ) ReifiesToType(n1) = ReifiesToType(n2)
names1, names2 ⇝RenameDecl rename

n1 :: names1,n2 :: names2 ⇝RenameDecl n2 = n1; rename

(RenameNeqNotFresh)

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 39

{P}γ c {Q}γ ′ ⇝ p
dom(γpost) == dom(γ ′) dom(γpre) == dom(γ)

∀x ∈ dom(γpost).Q ⊢ γ ′(x) == γpost(x)
∀x ∈ dom(γ). P ⊢ γpre(x) == γ (x)

Pleak ⊆ Ppre Qleak ⊆ Q

Pleak ≈Names Prename Qleak ≈Names Qrename
CN(Pleak),CN(Prename)⇝RenameDecl renamepre
CN(Qleak),CN(Qrename)⇝RenameDecl renamepost

⊢ Prename ⇒ P ⊢ Qrename ⇒ Qpost npre,npost fresh
CN(P) \ CN(Prename) = npre CN(Qpost) \ CN(Qrename) = npost

ReifiesToType(npre) = τpre ReifiesToType(npost) = τpost
{Ppre}γpre c {Qpost}γpost ⇝ renamepre;τpre npre;p; renamepost;τpost npost

(Conseq)

{P}γ c {Q}γ ′ ⇝ p
CN(R) = n n fresh

γs = γ ⊎ γframe γ ′
s = γ

′ ⊎ γframe

{P ∗ R}γs c {Q ∗ R}γ ′
s ⇝ p

(Frame)

4.4 Rules for functions

PRE ⇝ResDecl τpre m POST ⇝ResDecl τpost n

τarg ⇝CompileType τ
′
arg τret ⇝CompileType τ

′
ret

τret f (τarg idarg)//@pre PRE //@post POST
⇝Decl {τ

′
ret,τpost} f (τ ′arg idarg,τpre m)

(FDecl)

Compilation of functions is handled by the following rules (detailed below) during compilation:

• Implemented functions: each implemented function f is compiled to the function fcomp, as
detailed in ImplFVerif, and if it is called from an unverified context, an incall stub f is also
generated, as detailed in Incall.

• Context functions: each context function f is compiled to the function f , as detailed in Con-
tFVerif, and if it is called from a verified context, an outcall stub fcomp is also generated, as
detailed in Outcall.

We should recheck the set n below, because Conseq might have leaked resources by now. A simple
fix is to disallow Conseq from leaking, renaming or fabricating resources after a return, which we
do from now on.

isfunc = τret f (τarg idarg)//@pre PRE //@post POST
isfunc ⇝Decl {τ

′
ret,τpost} f (τ ′arg idarg,τpre m)

{PRE}
[idarg:idarg] sstm; return sexp {POST }γ

⇝ p1; return {texp,n}

⊢ isfunc {sstm; return sexp}

⇝ {τ ′ret,τpost} fcomp(τ
′
arg idarg,τpre m) {p1; return {texp,n}}

(ImplFVerif)

40 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

csfunc = τret f (τarg idarg)//@pre PRE //@post POST
csfunc ⇝Decl {τ

′
ret,τpost} f (τ ′arg idarg,τpre m)

⊢ csfunc ⇝ {τ ′ret,τpost} f (τ ′arg idarg,τpre m)
(ContFVerif)

Separation logic assertion desugaring/elaboration The below rules define the necessary checks,
declarations and assignment (store) statements that are generated from a given separation logic
contract. These different pieces are then used in the rules for incall and outcall stubs below.

The names of the variables that are stored are the same as the logical variables that are used in the
contracts. This causes no problems, since logical variables are required to be fresh at malloc time,
contracts are linear and no argument variables (that would already exist) will be assigned in this
way.

Note that in case a variable is not stored and we do have a condition over it, the guard statement
created for this condition gets stuck. This enforces the restriction that the pure heap of the reified
contract cannot contain symbolic variables that don’t appear in either the arguments or in the
spatial heap, as was mentioned before when we defined boundary contracts in section 3.

τ ⇝CompileType τ
′

check = (guard(n != null); guard(length(n) == k))
decl = (τ∗0 x ; τ ′ x1; . . . ; τ ′ xk)

assign = (x = addr(n); x1 = n[0]; . . . ; xk = n[k − 1])

n : x 7→τ [x1, . . . ,xk]⇝s (check, decl, assign)
(ResReify)

C ⇝s (c1,d1,a1) C ′ ⇝s (c2,d2,a2)

C ∗ C ′ ⇝s (c1; c2,d1;d2,a1;a2)
(SepConjCReify)

exp⇝p guard(exp)
(ConditionReify)

C ⇝p c1 C ′ ⇝p c2

C ∗ C ′ ⇝p c1; c2
(SepConjPReify)

With the introduction of the reification rules above, we have enough to define incall and outcall
stubs in the following two rules. The condition n fresh is in place to avoid name clashes between n
andm, as we did in FApp.

Reification of symbolic variables in the below rules causes no name clashes, since the only program
variables present are the argument and the return values, and they already correctly correspond
to logical variables. There is no need to store the argument variables, not even pointers, as their
addresses cannot be changed by the call to f , only their contents can, and that is no problem here.

The check ccpre happens before any assignments in spre, because it makes sense to check if the
size of the chunks is correct and if they are not null before starting to assign values. This order
is actually required to have a correct back-translation later on. Analogous order issues for ccpost
versus spost in the Outcall rule below.

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 41

To avoid having to declare a renamed version n′ of n that’s fresh in the below two rules (due to
possible overlap withm), we introduce the extra requirement that chunk names in the precondition
versus the postcondition of function contracts need to be disjoint. This forms no restriction, as we
can always rename chunks using the Conseq rule. We will therefore not always explicitly mention
or visibly follow this restriction, as it is solely name clash related.

fe = τret f (τarg idarg)//@prem : PREs ∗ PREp //@post n : POST s ∗ POSTp

pe = {τ ′ret,τpost} f (τ ′arg idarg,τpre m)

⊢ fe ⇝ pe
m : PREs ⇝s (cspre,dpre,apre)

PREp ⇝p cppre
stubincall =

{τ ′ret,τpost} f (τ ′arg idarg,τpre m){

cspre;
dpre;apre; cppre;
τ ′ret result;τpost n;
{result,n} = fcomp(idarg,m);
return {result,n}}


⊢ fe ⇝Incall pe, stubincall

(Incall)

fi = τ
′
ret f (τarg idarg) //@prem : PREs ∗ PREp //@post n : POST s ∗ POSTp

pi = {τ ′ret,τpost} f (τ ′arg idarg,τpre m)

⊢ fi ⇝ pi
m : PREs ⇝s (cspre,dpre,apre)

n : POST s ⇝s (cspost,dpost,apost)
POSTp ⇝p cppost

stuboutcall =

{τ ′ret,τpost} fcomp (τ
′
arg idarg,τpre m){

dpre;apre;
τ ′ret result;τpost n;
{result,n} = f (idarg,m);
cspost;
dpost;apost; cppost;
return {result,n}}


⊢ fi ⇝Outcall pi , stuboutcall

(Outcall)

42 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

4.5 Rules for components and programs

scomp = isfunc//@import csfunci //@export csfunce
⊢WF scomp

∀x ∈ isfunc. ⊢ x ⇝ pvx
∀x ∈ csfunci. ⊢ x ⇝Outcall pix , stubout,x

∀x ∈ csfunce. ⊢ x ⇝Incall pex , stubin,x

⊢ scomp

⇝ (pvx stubout,x stubin,x) //@import pix //@export pex

(CompVerif)

No need to put idold here, as the incall stub for main will do nothing useful anyway, because its
contract is empty.

sprog = C //@main = id ⊢WF sprog

∀X ∈ C . ⊢ X ⇝ CX

⊢ sprog ⇝ CX //@main = id

(ProgVerif)

5 FULL ABSTRACTION RESULT

This section describes a summary of the full abstraction proof that will be further detailed in the
coming two sections. In this section, notions relating to the source and target language are typeset
in green and pink respectively.

The first subsection formally defines both directions of full abstraction. Subsection 5.2 outlines how
the full abstraction proof is conceptually split up.

5.1 Definition

To formally define the notion of full abstraction, we require the notion of contextual equivalence ≃.

Terms x and x ′ are contextually equivalent, denoted x ≃ctx x
′, if ∀C : C[x] ⇓ ⇔ C[x ′] ⇓ where ⇓

denotes termination of execution (starting from an empty heap and stack) and C is any program
context with a hole that x and x ′ can be plugged into. Both x and x ′ will be either source or
target components in our case. A context C consists of two parts in both our source and target
languages: a component context Cs or Ct, which is a sequence of components, and a main function

identifier //@main = id , identifying the main function to execute when starting execution of
the full program. A context is hence denoted (C, id) and an entire program C[x]//@main = id .
Correctly applying the notion of plugging from the contextual equivalence definition above to
the source language also requires (next to the usual well-formedness constraints) that given the
source component proof ⊢ s and the context (Cs, id), a program proof ⊢Cs[s]//@main = id is
constructible.

Full abstraction is then defined as the reflection and preservation of contextual equivalence ≃ctx
[Abadi 1999]. Given source components s and s′ and target components t and t′, we hence have
that fully abstract compilation is achieved iff. ⊢ s⇝ t ∧ ⊢ s′ ⇝ t′ ⇒ (t ≃ctx t′ ⇔ s ≃ctx s′). This
statement depends on the concrete proofs ⊢ of s and s′ that were chosen, but has to hold for any
such choice. Notice how our formulation of full abstraction does not make a distinction between
code that gets stuck and code that diverges. This is, however, not a problem; since our compiler does
not alter control flow, it is easy to prove that it preserves divergence and stuck-ness, as expected.

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 43

Fully abstract compilation proofs are usually split up in a correctness proof direction ⇒ that
states (by contraposition) that non-equivalent source programs should yield non-equivalent target
programs and a security proof direction⇐ that (by contraposition) states that any non-equivalence
in the target programs should already have been there in the source programs, and hence attackers
have no more power in the absence of contracts than they do in their presence. Both proof directions
are summarized by the following equations:

∀ s, s′, t, t′. ⊢ s⇝ t ∧ ⊢ s′ ⇝ t′ ⇒ (t ≃ctx t′ ⇒ s ≃ctx s′) (Correctness)
∀ s, s′, t, t′. ⊢ s⇝ t ∧ ⊢ s′ ⇝ t′ ⇒ (t ≃ctx t′ ⇐ s ≃ctx s′) (Security)

5.2 Proof Decomposition

This subsection decomposes the correctness and security proof directions into the full correctness
and security proof outline schemata of figures 1 and 2 (following the schema’s of [Devriese et al.
2016]) that are used to make the full abstraction proof more modular and manageable. It also
demonstrates the similarities between the techniques used and concrete lemma’s proven in both
proof directions. For compactness’ sake, the invariant part //@main = id has been left out of the
source and target program descriptions in both schemata, abbreviating e.g. ⊢Cs[s]//@main = id

to ⊢Cs[s] and Ct[t]//@main = id to Ct[t].

The notation J•K is used as a functional shorthand for the compilation of proven source code and
⟨⟨•⟩⟩ is used as a functional shorthand for a new notion, called the back-translation, taking target
code as input.

This back-translation is a standard tool in full abstraction proofs. It is a type of opposite-direction
compilation that features in the security proof and is denoted⇝b. It is necessary, because we need
a source-level representation of the target program during the security proof, and we cannot just
invert compilation. The back-translation relates a target statement, a target function or a target
component ct to a behaviourally-equivalent source-level proof ⊢ cs, i.e., ct ⇝b ⊢ cs. Behavioural
equivalence is taken to mean equi-termination of a target program and its back-translation, as this
is required in the security proof below. The back-translation⇝b is rule-based like the compilation
⇝, also building back-translations from single statement to entire programs.

Contrary to what compilation does in the opposite direction, we cannot just back-translate entire
programs freely given a target context (Ct, id) , as a verified source component ⊢ s is always given
and constrains the back-translation. Back-translation of entire programs is hence described by the
rule Ct[t]//@main = id ⇝b ⊢Cs[s]//@main = id , given ⊢ s, with ⊢ s⇝ t, and a context (Ct, id),
that t can be plugged into. The back-translation derives a verified source context ⊢Cs from the
context Ct and constructs the proof ⊢Cs[s]//@main = id given the proof ⊢ s. Again, a program
and its back-translation will be equi-terminating.

For reasons of presentational clarity in figure 2, the notation ⟨⟨•⟩⟩ only denotes the code output by the
back-translation, not the proof. The full back-translation, ie. including the source proof, is denoted
⊢⟨⟨•⟩⟩. We also denote Cs from the previous paragraph as ⟨⟨Ct⟩⟩, even though the back-translated
context Cs actually depends on ⊢ s too.

In the schemata of figures 1 and 2 The proof in both proof schemata starts at the left side of⇒?⇒?⇒?

and goes full circle before arriving at its right side. For both correctness and security, the proof
steps⇒⇒⇒ are explained by either the definition of contextual equivalence ≃ctx, or one of a set of

44 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

s ≃ctx s′

⇑?⇑?⇑? ≃ctx

∀(Cs, id). Cs[s] ⇓ ⇒?⇒?
⇒?

Cs[s′] ⇓

⇓⇓⇓ (1) ⇑⇑⇑ (1)

⊢Cs[s] ⇓ ⊢Cs[s′] ⇓

⇓⇓⇓ (2) + (3) ⇑⇑⇑ (2) + (3)

J⊢CsK[t] ⇓ ⇒⇒⇒ J⊢CsK[t′] ⇓
⇑⇑⇑ ≃ctx

t ≃ctx t′

(1) ∀ ⊢ cs. ⊢ cs ⇓ ⇔ cs ⇓ (Coherence)
(2) ∀ ⊢ s, (Cs, id).

⊢Cs[s]//@main = id

⇝ Ct[t]//@main = id

⇒
(⟨•, ϵ⟩ | ⊢Cs[s]//@main = id) R
(⟨•, ϵ⟩ | Ct[t]//@main = id)

(CompilIsCorr)
(3) ∀ ss, hs⊢ cs, st, ht, ct.

(⟨ss, hs⟩ | ⊢ cs)R(⟨st, ht⟩ | ct)
⇒ ⊢ cs ⇓ ⇔ ct ⇓

(CorrToEqiTermin)

Fig. 1. Correctness proof outline

s≃ctx s′

⇓⇓⇓ ≃ctx

⟨⟨Ct⟩⟩[s] ⇓ ⇒⇒⇒ ⟨⟨Ct⟩⟩[s′] ⇓

⇑⇑⇑ (1) ⇓⇓⇓ (1)

⊢⟨⟨Ct⟩⟩[s] ⇓ ⊢⟨⟨Ct⟩⟩[s′] ⇓

⇑⇑⇑ (2) + (3) ⇓⇓⇓ (2) + (3)

∀(Ct, id). Ct[t] ⇓ ⇒?⇒?
⇒?

Ct[t′] ⇓

⇓?⇓?⇓? ≃ctx

t ≃ctx t′

(1) ∀ ⊢ cs. ⊢ cs ⇓ ⇔ cs ⇓ (Coherence)
(2) ∀ ⊢ s, (Ct, id).

Ct[t]//@main = id

⇝b ⊢Cs[s]//@main = id

⇒
(⟨•, ϵ⟩ | ⊢Cs[s]//@main = id) S
(⟨•, ϵ⟩ | Ct[t]//@main = id)

(CompilIsSec)
(3) ∀ ss, hs⊢ cs, st, ht, ct.

(⟨ss, hs⟩ | ⊢ cs) S (⟨st, ht⟩ | ct)

⇒ ⊢ cs ⇓ ⇔ ct ⇓

(SecToEqiTermin)

Fig. 2. Security proof outline

three proof implications. These three implications are similar between correctness and security
and numbered (1), (2) and (3) in both. We discuss both types of proof step annotations in order.

The arrows annotated with ≃ctx and ≃ctx denote an application of the definition of source- and
target-level contextual equivalence, respectively. Contextual equivalence features in both proofs
in the following way. Correctness proves that ∀(Cs, id).Cs[s] ⇓ ⇒?⇒?⇒?Cs[s′] ⇓ by taking any (Cs, id)
and proving that if Cs[s] terminates, then so does Cs[s′]. This single implication is sufficient
to prove that s ≃ctx s′, since the proof is not dependent on the identities of s and s ′ and hence
reversible. On the other side of the schema, correctness uses the given ≃ctx to prove the implication
J⊢CsK[t] ⇓ ⇒⇒⇒J⊢CsK[t′] ⇓. Security uses contextual equivalence in a dual way with respect to the
source and target language and proves a similar implication on the target level.

Before we can get into what the number-annotated ⇒⇒⇒ mean, we first have to introduce two
relations S and R. Both are binary relations, used in the proof of correctness and the proof of
security, respectively. The relations R and S both relate source states to target states. These related
states are the same ⟨s,h⟩ | c-states, where the states from the lifted operational semantics are used
for the source language, ie. c is a sequence of separation logic proofs of partially executed function
bodies.

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 45

Execution of a full programproд starts by executing the functionwhose id is given in //@main = id .
The initial state in this case is ⟨ϵ, •⟩ | proд: it contains an empty stack ϵ (• is an empty stack frame)
and an empty heap •. We denote an arbitrary value of c by ⊢ cs for the source language and by ct
for the target. This includes the aforementioned case where c = proд.

The relations R and S are proven to be simulation relations, meaning that these relations admit a
bisimulation between the executions of the source and target states they relate. These bisimulation
arguments are used to prove equi-termination in the respective directions of the full abstraction
proof below. Both the definitions of R and S and their simulation relation proofs are extensive and
hence only detailed in the technical report.

We now have the context necessary to discuss the sets of proof implications (1), (2) and (3).

The Coherence rule (1) is used in both correctness and security to add proofs to source programs
and conversely strip away proofs while preserving termination. This conversion is necessary since
≃ctx is defined on proof-less code, whereas the compiler requires a source proof as input and the
back-translation creates a source proof as output.

Rules (2) and (3) are used in combination to prove equi-termination between a source program
and its compilation or between a target program and its back-translation, respectively. Rule (2)
proves that any source program and its compilation are related by R for correctness, and that
any target program and its back-translation are related by S for security. Rule (3) finishes the
combined equi-termination argument by stating that if source and target code is related by S and
R, respectively, then the source and target code equi-terminates (from the given stack and heap).
The proof of rule (3) follows immediately from the fact that S and R are proven to be simulation
relations. Together, rules (2) and (3) for security indeed prove that the back-translation preserves
(non-)termination between the target and the source languages, as it was designed to do.

By combining the rules (1), (2) and (3) in both proof schemata, we arrive at two equi-termination
statements, namely CorrectnessEqiTermination and SecurityEqiTermination below, that
are sufficient to prove respectively Correctness and Security, as justified by figures 1 and 2. Once
the individual statements (1), (2) and (3) are proven, these resulting statements make completing
both directions of the full abstraction proof trivial, as they link contextual equivalence in the target
language with contextual equivalence in the source.

∀ ⊢ s, (Cs, id).⊢Cs[s]//@main = id ⇝ Ct[t]//@main = id

⇒ Cs[s]//@main = id ⇓ ⇔ Ct[t]//@main = id ⇓

(CorrectnessEqiTermination)
∀ ⊢ s, (Ct, id).Ct[t]//@main = id ⇝b ⊢Cs[s]//@main = id

⇒ Cs[s]//@main = id ⇓ ⇔ Ct[t]//@main = id ⇓

(SecurityEqiTermination)

6 COMPILER CORRECTNESS

6.1 Definitions

Before we can introduce this section’s central inference rule we aim to prove, we require the notion
of equi-termination and the notion of contextual equivalence ≃ctx:

Definition (Equi-termination).
Terms x and x ′

equi-terminate, denoted x ⇓⇔ x ′ ⇓, if either x and x ′
reduce to an irreducible return

46 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

statement using the operational semantics in a finite number of steps starting from empty stack ϵ and

empty heap ·, or neither x nor x ′
reduce to an irreducible return in a finite number of steps.

Definition (Contextual equivalence).
Terms x and x ′

are contextually equivalent, denoted x ≃ctx x
′
, if ∀C : C[x] ⇓ ⇔ C[x ′] ⇓ where C is

any program context with a hole that x and x ′
can be plugged into.

It is important to see that a context C in both the source and target languages consists of two
parts throughout the full abstraction proof: a component context Cs or Ct, which is just a sequence
of components, and a main function identifier //@main = id , identifying the main function to
execute when starting the run of the full program. A context is denoted (C, id) .

The notion of plugging from the contextual equivalence definition applied to the source language,
also requires (next to the usual well-typedness/formedness and scoping constraints) that for source
component proof ⊢ s and context (Cs, id), a proof ⊢ Cs//@main = id exists.

Proving compiler correctness entails proving that given the compiler⇝ from the previous section
and source components with separation logic derivations s and s’, the following holds:

t ≃ctx t
′

⊢ s ⇝ t ⊢ s ′ ⇝ t ′

s ≃ctx s
′

(CompilerCorrectness)

To prove the CompilerCorrectness rule, it suffices to show that for any source context (Cs, id)
and any proof ⊢ Cs[s]//@main = id constructed using the concrete proof ⊢ s of s used in
CompilerCorrectness, the following inference rule holds:

⊢ s ⇝ t
⊢ Cs[s]//@main = id ⇝ Ct[t]//@main = id

Cs[s]//@main = id ⇓ ⇔ Ct[t]//@main = id ⇓
(CompilerEqiTermination)

This rule suffices because it allows using the given target-level equi-termination result by linking
equi-termination of source and target programs.

6.2 Simulation

We will prove the above statement using a simulation argument. This argument employs a simula-
tion relation to relate source to target states, denoted as follows: (⟨ss,hs⟩ | s) R (⟨st,ht⟩ | t), s is the
current separation logic derivation (which also implicitly contains the source code) in the source
language and t is the corresponding target level code. The variable s is a sequence of the currently
executing function bodies ci and their separation logic proofs. It is hence a sequence of proof trees.
The variables sx and hx denote the stack and heap, where x = s for the source language and x = t
for the target. The full notation for the relation R is in fact sprog ⊢ (⟨ss,hs⟩ | s) R (⟨st,ht⟩ | t) with
sprog the original source program that is being executed. This program is necessary because the
FApp rule uses the component environments Σi . These can be derived from sprog in the source
and from its compilation in the target. Usually, the concrete sprog is either unimportant or clear
from the context and hence omitted. Given sprog, R can thus be seen as a per-program relation, or
it can be seen as one element of a larger relational family Rsproдram . We often write s1 R s2 as a

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 47

shorthand notation, where s1 denotes the source state consisting of the current stack, heap and
proven code and s2, analogously, denotes the target state.

For reasons that become clear below, we define R using an alternative notion of compilation:

Definition.

Given the relation⇝ above, we define⇝
NoStubs

.⇝
NoStubs

is identical to⇝, except for the generation

of stubs: all target-level functions keep their source-level names during compilation (so no fcomp name-

change is needed) and no stubs are generated (the rules Incall and Outcall from the compilation

become obsolete).

The definition of the relation R consists of a listing of state interrelation invariants and is detailed
below. Two cases can be distinguished in the definition of R, one for full programs that have not
yet taken a step, and one for partially-executed programs.

The relation R (and the definition of linking below) contains an environment δi , defined for each
different executing function body i . The function δi should be seen as a kind of inverse to γ ,
that now maps logical variables to program values. Applying δ to any structure is formalized as
replacing any logical variable idlog present in this structure by δ (idlog). Notice that the range of
δ is the set VALs ∪ [VALs(,VALs)∗] and not just VALs. The type [VALs(,VALs)∗] can be seen as
an alternative notation for cons(VALs, cons(. . . , ())) that fits more closely to fixed-length chunk
notation. The reason for this is that the logical types contain logical lists, whereas the physical types
do not, ie. we need to emulate them ourselves. We add the set of values [VALs(,VALs)∗] as a sort of
ad-hoc source-level list, so we can represent the values of eg. a source-mapped list variable lδ . This
environment is defined using the following predicate (using γ , P , ss and hs, ie. every aspect of both
the symbolic and source program state of the execution - together they sufficiently determine the
target program state, which is hence not required to narrow down the set of satisfying functions δ ,
but will be used in Rcomp later on):

InverseMap(δ , P ,γ , ss,hs) ⇔
δ : IDlog → VALs ∪ [VALs(,VALs)∗]
∀x ∈ dom(γ). ss(x) = [γ (x)]δ

hs ⊢
src
δ P

where hs ⊢srcδ P is defined below, and intuitively forces the separation logic state and physical heap
to correspond. This last correspondence is an important part of all 4 types of relations (one of
which is Rcomp) we will be defining for the security proof.

Another important aspect is the appearance of IDlog; the set of all previously and currently used
symbolic variable names for the current frame. This set is used for scoping purposes and during
frame linking below and is implicitly constructed during execution of the lifted operational seman-
tics (we never explicitly denote this). It necessarily contains any variables in V(P) ∪ range(γ), all
arguments idarg provided to the current frame, but also any variables in the set V(POST) ∩ ID

′
log,

with POST the current frame’s postcondition and ID
′
log the previous frame’s IDlog set, because

these are the logical variables that were passed in from the previous frame (actually, the full set
is V(PRE) ∩ ID

′
log, but we do not retain the function’s precondition after the function call). This

48 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

condition on the contents of IDlog will implicitly be assumed to hold for any frame for each relation
defined further on in this report.

Before being able to define the correctness relation, we need to define the auxiliary concept of
separation logic linking between the function bodies si /ti of the executing stack frames i . Without
any constraints between different consecutive stack frames, the code executing in the next frame
could be chosen freely and wouldn’t have to match the function invoked by the previous frame.
This can break the relation R (and other relations in the security proof later on) when the next
stack frame returns to the non-matching, previous one. An example follows in the next paragraph.

Some subtleties have to be watched out for when considering the correspondence of the separation
logic state with the program state. For example, imagine the only separation logic linking condition
we apply is that the separation logic postcondition of the callee frame and of the caller’s function
need to correspond. Then a function with argument int a that has result == a in its postcondition
could be run with a == 3 as an argument value, whereas the previous stack frame could have
a : a stored in the environment and a == 2 in the symbolic heap. This would, because of the
FApp rule, result in a contract containing a == 2 ∧ a == 3, which is a contradiction and clearly
undesired behavior. An extra condition on the arguments prohibits this behavior, by requiring that
aδi = 3 == aδi−1 = 2, which is clearly not the case here.

The question then is: what constraints are sufficient in general? We do not have to require the callee
frame to be an exact execution of what the caller suspects. It suffices that any information returned
from the callee frame matches what the caller would expect (ie. does not break the relation R in the
caller’s frame after the return). The more general condition will then (intuitively speaking) require
that any information that is passed from the callee to the caller at the end of function execution
matches any preconceptions the caller had about this information, no matter what execution we
substitute the callee frame with. The expectations of the caller frame are captured by the hole’s
postcondition POST , which had to match the callee’s postcondition. Equality on a logical level is
not enough, however, as was shown in the example above. Any variables appearing in POST that
already existed in the caller frame (ie. were part of its IDlog, the set of previously used symbolic
variables) before the call, should have the same program value in the callee frame; this forces a
correspondence between the information caller and callee communicate at the end of function
execution. The same condition also has to hold over any function arguments appearing in the
postcondition and the expression that was used for them by the caller. Formally then, linking
states that δ applied to any predeclared (∈ IDlog) logical variable appearing in POST should still
have the same value in the callee frame (through its δ). The rationale behind the statement of this
condition is that logical variables don’t change value (this is the reason for our earlier assumption
that logical variable names are never reused); δ hence has to map back the logical variables that
existed from the beginning of execution to the originally supplied values at any point during
execution. Separation logic linking is formally defined as the following predicate (with si−1 and si
two consecutive executing source function bodies and δi−1, δi their inverse environment mappings):

Link(si−1, si ,δi−1,δi) ⇔

Form constraints

si−1 = ⊢ {P ′}γi−1 idprog = •
idarg=sexp

POST
; sstm {Q ′}γ ′

i−1

si = ⊢ {P}γi sc {Q}γ ′
i

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 49

Actual frame linking constraints

Q == POST

[sexpγi−1]δi−1 == δi (idarg)

idlink = (IDlog,i−1 \ idarg) ∩ V(POST)

δi−1(idlink) == δi (idlink)

Actually, not all function arguments idarg strictly have to correspond in the above definition; only
the variables idarglink = idarg ∩ V(POST) do. There is, however, no need to use this more complicated
condition. Also note that the appearance of IDlog could have been avoided, had we used explicit
quantifiers for new variables appearing in contracts, as is the case in VeriFast, because we would
then immediately know what variables to enforce consistency on.

We will also need to have a formal way of partitioning source and target heaps, defined as follows:

Definition (partition of the heap h).
The set of heaps {h1, . . . ,hk } is a partition of the heap h if the following conditions are met:⋂

∅{h1, . . . ,hk } ≜ ∀i, j . i , j ⇒

l ∈ dom(hi) ⇒ l < dom(hj)∨

l ∈ dom(hj) ∧ dom(hi (l)) ∩ dom(hj (l)) = ∅⋃
{h1, . . . ,hk } = h

The previous definition is written as h1 ⊎ . . . ⊎ hk = h or

⊎
hi = h.

Lastly, we define a function Loc(s) that obtains a list of all locations l appearing in the range of the
set of stack frames s . This function can either take source or target frames as input. We use it to
define a bijection b between locations ls in the source language and a subset of the locations lt used
in the target language. The subset considered is the subset of real locations, ie. non-reified location
that have an equivalent in the source language as well and do not purely arise from the reification
of logical concepts (ie. the target locations corresponding to the reification of a range resource).
This bijection is useful when mapping (source or heap) values or locations between the source and
target language. Its domain defined as follows:

Loc(b, ss,hs, st,ht) ⇔
locs = Loc(ss) ∪ dom(hs)

loct = Loc(st) ∪ dom(ht)

loct = locreal ⊎ locreify

b : locs ↔ locreal

The function b’s contents are further constrained by each individual frame. It thereby enforces
consistency constraints between different frames. In the security proof later on, it will eg. enforce
the fact that the mapping between locations in source and target language should be preserved by
locations that are passed through an in- or outcall frame.

50 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

sprog, tprog ⊢ (⟨ss,hs⟩ | s) R (⟨st,ht⟩ | t) ⇔

⊢ sprog ⇝NoStubs tprog

Initial case
s = ⊢ sprog, t = tprog

hs = ht = •, ss = st = ϵ

Executing case

s = si , t = ti , ss = ssi , st = sti⊎
hsi = hs,

⊎
hti = ht,

Loc(b, ssi ,hs, sti ,ht)
∀i .
Component relation
InverseMap(δi , Pi ,γi , ssi ,hsi) given si = ⊢ {Pi }γi sci {Qi }γ ′

i

sprog, tprog ⊢
δi
b (⟨ssi ,hsi ⟩ | si) Rcomp (⟨sti ,hti ⟩ | ti)

Separation logic linking
i > 0 ⇒ Link(si−1, si ,δi−1,δi)

In the second case, R is composed of frame-wise Rcomp relations. This second component-level
relation is defined below.

From now on, we call the state Rcomp is dependent on (the source and target heap and stack and
the source and target function body code) a frame. The relation R then holds over a set of frames in
the non-trivial case.

6.3 Assertion semantics

Another auxiliary definition is needed:

Definition (δ applied to expression exp).
Applying the mapping δ to a given separation logic assertion exp is defined as follows:

FV (exp) = {x1, . . . ,xk }

expδ ≜ exp[x1, . . . ,xk 7→ δ (x1), . . . ,δ (xk)]
(DeltaApp)

We use the following rules to enforce correspondence between the symbolic state P and the source
heap hs. The judgment hs ⊢srcδ assert holds if the program-level assertion resulting from applying
δ to every logical variable in the separation logic assertion assert is satisfied in the source-level
program state hs. The judgment hence tests for Logical state to Source heap Correspondence,
abbreviated to LogSrcCorr.

The below rule’s precondition is not rigorously defined, but the meaning of the precondition is that
δ applied to the pure expression holds true in the current stack frame. Here, ’holding true’ means
that all logical expression constructs get a parallel interpretation for source-level values as they
have for logical values, and that the resulting boolean expression results in the value true. The
interpretation of the first block of exp’s maps nicely to existing source expressions sexp, whereas

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 51

the logical lists operate on the ad-hoc source-level list values [VALs(,VALs)∗] and quantifications
are straightforward to adjust to a program setting. We have to reinterpret cons, ∀, . . . for program
values, whereas these concepts were originally used for logical values. Their meanings stay the
same, however, and these concepts are now interpreted on the physical heap, for physical values,
rather than on the symbolic heap and for symbolic values. This permits us not to change any
keywords when applying δ .

⊢ expδ

hs ⊢
src
δ exp

(LogSrcCorrExp)

hs1 ⊎ hs2 = hs
hs1 ⊢

src
δ assert1

hs2 ⊢
src
δ assert2

hs ⊢
src
δ assert1 ∗ assert2

(LogSrcCorrSConj)

expδ == false

hs ⊢
src
δ exp ? assert

(LogSrcCorrCondFalse)

expδ == true
hs ⊢

src
δ assert

hs ⊢
src
δ exp ? assert

(LogSrcCorrCondTrue)

expδ == (l , i)
exp

′
δ == [v0, . . . ,vk]

hs(l , [i, , . . . , i + k]) = [v0, . . . ,vk]

hs ⊢
src
δ n : exp 7→ exp

′
(LogSrcCorrArrName)

hs,expδ ⊎ . . . ⊎ hs,exp′δ−1 = hs∀expδ ≤ i < exp
′
δ .hs,i ⊢

src
δ asserti

hs ⊢
src
δ n : [assert | exp ≤ i < exp

′]
(LogSrcCorrRangeName)

Another check we need is the check that chunk names appearing in (outer) separation logic
assertions get reified to the correct locations (according to b) and ranges in the target-stack st and,
in the case of range chunks (since those do not have a counterpart in the source heap and are
hence not checked in the judgment above) to some sensible location in the heap ht for reified heap
chunks, because these are not present in the source heap. We denote this check as the judgment
st,ht ⊢

tgt
δ,b assert, or as st,ht ⊢

tgt
δ,b assert,vt in the case of inner assertions. We use the color red for

vt if the judgment is applicable to both outer and inner assertions. In this case, the red part only
applies in the case of inner assertions. The reason for this extra target-level output value, is that it
is necessary to correctly restrict the target heap for range assertions. vt contains all addresses of
the enclosed assertions.

st,ht ⊢
tgt
δ,b exp, ()

(LogTgtCorrExp)

52 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

ht1 ⊎ ht2 = ht
st,ht1 ⊢

tgt
δ,b assert1,vt

st,ht2 ⊢
tgt
δ,b assert2,v

′
t

st,ht ⊢
tgt
δ,b assert1 ∗ assert2,vt v

′
t

(LogTgtCorrSConj)

expδ == false
assert ⇝ChunkType τ

st,ht ⊢
tgt
δ,b exp ? assert,NULLtgt(τ)

(LogTgtCorrCondFalse)

expδ == true
st,ht ⊢

tgt
δ,b assert,vt

st,ht ⊢
tgt
δ,b exp ? assert,vt

(LogTgtCorrCondTrue)

expδ == (l , i) exp
′
δ == [v0, . . . ,vk]

st,ht ⊢
tgt
δ,b exp 7→ exp

′,b(l)[i,i+k]
(LogTgtCorrArr)

expδ == (l , i) exp
′
δ == [v0, . . . ,vk]

st(n) = b(l)
[i,i+k]

st,ht ⊢
tgt
δ,b n : exp 7→ exp

′
(LogTgtCorrArrName)

hrange ⊎ ht,expδ ⊎ . . . ⊎ ht,exp′δ−1 = ht l < range(b)
∀expδ ≤ i < exp

′
δ . st,ht,i ⊢

tgt
δ,b asserti ,vt,i

hrange(l , [k + expδ ,k + exp
′
δ − 1]) = [(vt,expδ), . . . , (vt,exp′δ)]

st,ht ⊢
tgt
δ,b [assert | exp ≤ i < exp

′], l [k+expδ ,k+exp
′
δ−1]

(LogTgtCorrRange)

hrange ⊎ ht,expδ ⊎ . . . ⊎ ht,exp′δ−1 = ht l < range(b)
∀expδ ≤ i < exp

′
δ . st,ht,i ⊢

tgt
δ,b asserti ,vt,i

st(n) = l
[k+expδ ,k+exp

′
δ−1]

hrange(l , [k + expδ ,k + exp
′
δ − 1]) = [(vt,expδ), . . . , (vt,exp′δ)]

st,ht ⊢
tgt
δ,b n : [assert | exp ≤ i < exp

′]
(LogTgtCorrRangeName)

Another auxiliary function, valmapb , maps source values to target values. It is defined as follows
(with b some bijection between locations):

valmapb : VALs → VALt
valmapb (k) = k
valmapb (null0) = null0
valmapb ((l , i)) = b(l)

i
0

valmapb ((v1, . . . ,vk)) = (valmapb (v1), . . . , valmapb (vk))

An important property of valmapb is its compositionality:

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 53

Theorem 1 (Compositionality).
The function valmapb is compositional. We define this as follows: if st(idt) = valmapb (ss(ids)) for
some sets of source and target variables ids and idt , then for any parametrized source (and hence

also target) expression sexp[ids], it holds that Jsexp[idt]Kst = valmapb (Jsexp[ids]Kss). In other words,

applying the same expression to variables related by valmap, keeps the results related.

Proof.

Trivial case-based analysis on the form of source expressions sexp. □

6.4 Component simulation relation

sprog, tprog ⊢δb (⟨ss,hs⟩ | s) Rcomp (⟨st,ht⟩ | t) ⇔

s ⇝NoStubs t

s = Σax ⊢ {P}γ sstm; return sexp {Q}γ ′ ∧ Σax ∈ Σax
sprog

CN (P) =m

Relating target to source
st ≈ ss

dom(st) = dom(ss) ⊎m ⊎ nnull ⊎ idaux

∀id ∈ dom(ss). st(id) = valmapb (ss(id))
ht ≈ hs

ht = ht,real ⊎ ht,reify

dom(ht,real) ⊆ range(b) dom(ht,reify) ∩ range(b) == ∅

∀l .hs(l) = [v0, . . . ,vk]

⇔ ht,real(b(l)) = [valmapb (v0), . . . , valmapb (vk)]
Relating logical state to reification

st,ht,reify ⊢
tgt
δ,b P

In the above, we do not require any condition of the form dom(ss) == dom(γ), because if the first
is a subset of the second, nothing happens and execution can go through as usual, because any
values dom(γ) \ dom(ss) do not correspond to the stack anymore, whereas if the second is a subset
of the first, we know all variables in dom(ss) \ dom(γ) will never be used again anyway, otherwise
a separation logic proof could not have been constructed. If both set differences are non-empty, a
combination of both arguments applies. In every practical execution using our lifted operational
semantics, dom(ss) == dom(γ) will hold, but we do not need this restriction for the proof.

6.5 Simulation proofs

Now we show that this relation R is a valid simulation relation. This comes down to proving that it
has the following two properties (based on the definition in Chlipala’s FRAP handbook [Chlipala
2017]):

Theorem 2 (R is a simulation relation).
Given a relation R. If the following 2 properties hold, then R is a simulation relation:

54 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

(1) If (⟨ss,hs⟩ | {P} return {Q}) R (⟨st,ht⟩ | t), then t = return. This rule is used to guarantee

equi-termination in the proof, when we know that the source program terminates.

(2) Whenever s1 R s2 and s1 ↪→ s ′1 (using the shorthand notation) , there exists an s ′2 such that

s2 ↪→
+ s ′2 and s ′1 R s ′2. Note that this condition requires ↪→ to perform multiple steps at once,

denoted ↪→∗
and ↪→+ if at least one step is taken. Also note that at the source level, not the code

itself is executed by ↪→, but a separation-logic derivation of the code. We will thus need to lift ↪→
from the semantics of regular source code to semantics for the execution of separation logic proven

code, hence manipulating separation logic triples instead of regular source expressions. This lifted
version of the source-level operational semantics is defined in the preservation theorem below.

If we were to use⇝ instead of⇝NoStubs in the definition of R when proving the second property
for the simulation relation, namely that there are n steps in the target language for each step in the
source, we run into problems with outcall stubs, as the outcall stubs also perform checks after the
wrapped function call, and there is no proper 1 : n mapping of steps anymore. This is exactly the
reason for defining the alternative form of compilation⇝NoStubs above. The thus defined simulation
relation R can be linked back to the original compilation using the following theorem (assuming
that we have already proven that the described R is a simulation relation, which we will do below):

Theorem 3.

If s ⇝ t and (⟨ss,hs⟩ | s) R (⟨st,ht⟩ | t
′), then t equi-terminates with t ′ for the given heap and stack.

Proof.

A sufficient condition for the above theorem to hold is that none of the guards encountered in stubs
during the execution of t ever return false, as stubs take only finitely many steps to execute and do
nothing else than performing guards and passing on return values or function arguments. This fact
has to be proven for both incall and outcall stubs, which results in a proof in two parts.

1. Incall stubs

Two types of precondition checks are performed before the function call; checks cspre of the chunks
lengths (and non-null checks) and checks of the pure heap cppre.

• cspre: holds almost trivially, because of the relation between st and Pδ , which dictates that the
linear capabilities that are provided to the function f have to have the same length as the
separation logic chunks they correspond to (and these capabilities cannot be null either).

• cppre: From the fact that ⊢ ϕδ holds in the definition of the simulation relation and the fact that
ϕ is the pathcondition of the called function in this case, we have that ⊢ [PREp]δ . The guards in
cppre on the other hand check if ⊢ PREp. In other words, if δ maps each symbolic variable x to
the value stored in the incall stub, then the incall stub will never fail. This is indeed the case, as
the definition of δ requires that ∀x ∈ IDprog. ss(x) = [γ (x)]δ , where γ is the identity function
(over the argument names) at the start of function execution and x is equal to st(x) (which is
equal to ss(x) up to the representation of pointers).

2. Outcall stubs

Analogous.

□

Corollary.

It suffices to use the previously defined relation R to prove equi-termination for the original compilation

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 55

as well. The reason is that if we know that (⟨ss,hs⟩ | s) R (⟨st,ht⟩ | t ′) and if we prove that the

simulation relation implies equi-termination (one of the proven inference rules below), the previous

theorem implies that s and t also equi-terminate.

In order to be able to prove that R is indeed a valid simulation relation, we need the following
preservation theorem for separation logic derivations with respect to the operational semantics.

Theorem 4 (Preservation).
Given a sequence si of function bodies being executed, where ∀ i . si = {P}γ1 s

p
i {Q}γ2 (or special

case: si = ⊢ sprog) and the fact that ⟨s,h⟩ | s
p
i ↪→ ⟨s ′,h′⟩ | s

′p
i by a specific rule in the operational

semantics. There exists a separation logic derivation s ′i , with ∀ i . s ′i = {P ′}γ ′
1
s
′p
i {Q ′}γ ′

2
, obtained by

reducing the proof tree of si , corresponding to the taken operational semantics step (the form of this

proof tree is given in the proof to this theorem). For each such separation logic derivation, we write

⟨s,h⟩ | si ↪→ ⟨s ′,h′⟩ | s ′i to denote the corresponding transformation between the two separation logic

derivations, and call the semantics defined in this way the lifted operational semantics, as they lift the

previously defined operational semantics to include separation logic derivations as well.

Proof.

This proof proceeds as a case-based analysis, splitting on the specific operational semantics rule used
in the source language and then applying inversion on the root of the separation logic derivation.
Some attention has to be paid to the Conseq and Frame separation logic axioms, because these
can interfere with the proof in many different locations. In general, they can be considered as
nothing more than ’proof glue’ and are deleted as soon as the statement that they’re glue towards
(= the lower statement, closer to the root in the proof tree) is deleted. They are hence not explicitly
mentioned in the proof below.

Because most rules in the operational semantics (except for function application FApp and Return)
only affect the last function execution in the current sequence of function body executions, we can
leave the other, unchanged function executions implicit in most rules, simplifying the proof notation
and avoiding clutter. The same goes for Seq statements within the current function execution.
These Seq statements, corresponding to the rest of the function body, have to be skipped as well
in the separation logic proof tree, since this part of the tree remains unaltered. This operation is
also kept implicit, and the proof uses the currently executing source statement as a starting point,
omitting the unaltered parts of the proof tree. This discussion boils down to the fact that we omit
the separation logic proof of the execution context C in the proof below and show only the proofs
of the contents of its holes, for convenience of notation. If we require the contents of the last 2
holes of C , as is the case for the FApp and Return rules below, we use the notation h1 :: h2 with
h1 and h2 the proofs of the before-last and last holes of C , respectively. In the below notation of
the lifted operational semantics ↪→, the stack and heap are left out as well, as they are identical to
the stack and heap in the standard operational semantics. For clarity, ↪→ is subscripted with the
operational semantics rule that is applied.

As discussed with the introduction of the source-level operational semantics, the FApp and Return
rules used here are the lifted versions presented earlier. Without the extra hole annotations, the
proof would not be completable.

Skip
By inversion, we have that the proof tree of skip; c must have a Seq rule applied to a Skip rule and
the proof of c , Proof c, as root. Proof c is -by definition- the proof of the resulting source program c .

56 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

{m : P}γ1 skip {m : P}γ1
(Skip) Proof c

{m : P}γ1 skip; c {n : Q}γ2
(Seq) ↪→(Skip) Proof c

Malloc
The malloc postcondition shifts to the precondition, so that the implicit Seq statements are still
valid.

{m : P}γ1 idprog = malloc(sexp ∗ sizeof(τ)) {n : Q}γ2
(Malloc)

↪→(Malloc)
{n : Q}γ2 skip {n : Q}γ2

(Skip)

For
Since the ForUnroll rule in the source-level operational semantics simply unrolls a foreach loop
when executing it, we have to make sure the separation logic proof of the For rule can be used
to prove each consecutive iteration. This is easily seen to be true, since the triple {sexpγpre ≤ is <

sexp
′
γpre ∗ Inv[is]}γ [is] sstm {Inv[is + 1]}γ [is+1][i :_] in the For axiom can be instantiated with each

value sexpγpre ≤ is < sexp
′
γpre of is to prove each individual For iteration.

The only caveat is that axioms such as Split in principle always create fresh resources, which
will not be the case if we use the same proof for each iteration of the for loop. Since this is a
simple renaming issue, we ignore this for the rest of the proof, and implicitly assume that every
iteration of the unrolled for loop uses fresh variables, that were introduced when the loop was
unrolled. Analogously, the compiled target code will not require hoisting anymore (we hence ignore
for-hoisting for the rest of this proof), since all generated declarations will be fresh as well. This
alternative mode of execution allows us to more easily construct the proof and is quite obviously
equivalent to the hoisting and normal loop unrolling we defined in the compilation and normal
semantics, respectively. We could alternatively have allowed the Split axiom to use non-fresh
resources too, which would be a cleaner solution, but this would have complicated compilation.

Split/SplitRange (depending on the form of the resource),Join/JoinRange (depending on the
form of the resource), Flatten ,Collect
Analogous to Malloc.

IfTrue
The If compilation-rule also uses hoisting to avoid mismatch between the sets of variables declared
in different branches. Since hoisting itself clearly does not influence equi-termination, we ignore it
in If-statements for the rest of this proof.

Proof 1 Proof 2

{m : P}γ1 if sexp thenp1 elsep2 {n : Q}γ2
(If) ↪→(IfTrue) Proof 1

IfFalse
Symmetric to IfTrue.

VarDecl
Analogous to Malloc.

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 57

VarAsgn
Analogous to Malloc.

FApp
A new function execution is created in the FApp rule. The proof tree for the current execution is
replaced by a proof tree for a hole. A proof tree is added for the new execution. This proof tree
corresponds to the Hoare triple appearing in the ImplVerif axiom for the called function. The root
axiom X of the new separation logic derivation can either be Return, Conseq or Frame. In the
last 2 cases, as mentioned, the top-level rules up to the Return rule are dropped for the following
steps of the lifted semantics execution.

Cond

{m : P}γ1 idprog = f (sexp) {n : Q}γ2

(FApp)

↪→(FApp)
Cond ′

{}γ1 idprog = •
idarg=sexp

POST(f),PRE(f) {n : Q}γ2

(FApp)

::
Proof

′

{p : PRE}
[idarg:idarg] BODY ; return sexp {q : POST }γ

(X)

Return

Cond

{}γ1 idprog = •
idarg=sexp

POST(f) {n : Q}γ2

(FApp)

::
{p : R}γ return sexp {p : R ∧ result == sexpγ }γ

(Return)

↪→(Return)
{n : Q}γ2 skip {n : Q}γ2

(Skip)

ArrayMut
Analogous to Malloc.

ArrayLkup
Analogous to Malloc.

ProgExec
The specific form of the FApp statement below is achievable because the program well-formedness
requires the main function to have such a compatible contract in the ProgWF axiom.

Cond

⊢ (C1 . . .Ck //@main = id)
(ProgVerif) ↪→(ProgExec)

Cond ′

{true}• τ x {true}•[x :v]
(VarDecl)

Cond ′′

{true}•[x :v] x = id() {true}γ
(FApp)

Cond ′′′

{true}γ return x {true}γ
(Return)

{true}• (τ x ;x = id(); return x) {true}γ
(Seq)

58 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

□

The specific form of the new reduced proof for s ′pi above, the relation between the proof tree
reduction and the applied source-level operational semantics step, together with the relation
between the source-level and target-level operational semantics steps are used to prove that R is a
simulation relation. This proof follows below:

Proof of theorem 2 property 1.

Follows trivially from the fact that s ⇝ t , because R holds, and inversion, leading to the Return
compilation rule as the only option. □

Proof of theorem 2 property 2.

The proof is again structured in a case-based fashion, in the sameway as the proof of the preservation
theorem. The trees for s ′pi from the preservation theorem are reused here, as is the notation. This
means that consequence and frame rules are again left out in the proof, but we will talk about
Conseq below and the Frame does not fundamentally alter anything, as is the context in the case
of the operational semantics. The source program si is denoted as s and the target program ti as t .

The rule Conseq can be conceptually split up into three parts:

{Ppre}γpre
ghostStep1

{P}γ

c

{Q}γ ′

ghostStep2

{Qpost}γpost

The second step is then conceptually justified by the underlying proof {P}γ c {Q}γ ′ and reified in
the compilation rule by the compilation p of this underlying proof. The first and third step then
share a common structure and form, and are compiled in the same way too, so we will only look
at ghostStep1, which corresponds to the compiled statements renamepre;τpre npre. In this case, we
have the assumptions that ∀x ∈ dom(γ). P ⊢ γpre(x) == γ (x), Pleak ⊆ Ppre, Pleak ≈Names Prename,
CN(Pleak),CN(Prename) ⇝RenameDecl renamepre, ⊢ Prename ⇒ P , npre fresh, CN(P) \ CN(Ppre) = npre
and ReifiesToType(npre) = τpre. It suffices to prove that if the program states are related before the
start of the Conseq axiom, then the target statements renamepre;τpre npre will take a finite number of
steps and end up in a state that is still related to the original source state (with the new precondition
P). From the definition of R, it is clear that dropping the assertions that are not in Pleak preserves
the relation (since the judgement hs ⊢srcδ P is monotonous in the heap). renamepre will preserve
relatedness when simultaneously changing the precondition to Prename. Declaring the new variables
npre (and initializing them to nulls) will preserve relatedness when simultaneously changing the
precondition to P , because the separation logic implication does not allow manipulating impure
chunks, except for implications of the following form:

exp == true ⊢ assert ⇔ exp ? assert
exp == false ⊢ true ⇔ exp ? assert

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 59

For such implications, simply declaring the fresh resource names is enough to restore relatedness.

Every other case of the proof consists of three consecutive proof steps:

(1) First, the operational semantics rule that can be applied on t is derived from the fact that s ⇝ t
and inversion. This step is kept implicit, because the core rule in source and target language will
always match (there are often some extra rules for eg. declarations that have to be executed,
which we often disregard).

(2) The fact that the compiled code is applicable (the precondition of each required operational
semantics rule is upheld in the current program state) to t is proven.

(3) Given the source and target level operational semantics steps that are taken, namely ⟨ss,hs⟩ |
s ↪→ ⟨s ′s,h

′
s⟩ | s ′ and ⟨st,ht⟩ | t ↪→ ⟨s ′t ,h

′
t⟩ | t ′, it is proven that if (⟨ss,hs⟩ | s) R (⟨st,ht⟩ | t),

then also (⟨s ′s,h
′
s⟩ | s

′) R (⟨s ′t ,h
′
t⟩ | t

′).

Skip
Applying the Seq compilation rule to s tells us that t has the form skip; Proof tc, where Proof c ⇝
Proof

t
c. By inversion, only the Skip operational semantics rule can be applied to t to obtain t ′ =

Proof
t
c.

Prove that the rules are applicable:

Trivially true, since there are no conditions for applying the Skip rule.

Prove that R still holds after the steps:

The definition of t ′ immediately implies that s ′ ⇝ t ′. Since the heap and the stack are unaltered in
both target and source language, s ′ R t ′ holds trivially.

Malloc
Applying the Malloc compilation rule, t will evaluate to skip using VarDecl, Malloc, VarAsgn
and 2 applications of Skip.

Prove that the rules are applicable:

Trivial.

Prove that R still holds after the steps:

The target level allocated 0-length capability idproд1 corresponds to the original source pointer
idproд1 through function valmapb , where the couple (lsource , ltarдet) has to be added to b. Target
variable idproд2 corresponds to the newly malloced separation-logic chunk, because the couple
(la , (lsource , 0)) is added to δ . Multiple steps are taken in the target language because of variable
declarations, but that does not matter.

Ghost Commands
The corresponding axioms: Split/SplitRange (depending on the form of the resource),Join/JoinRange
(depending on the form of the resource), Flatten ,Collect
Nothing new; it has to be shown that the newly created chunks map to variables in the target stack;
the source state doesn’t alter.

IfTrue
Prove that the rules are applicable:

Prove that if JsexpKs = true in the source, that the same holds in the target, so the IfTrue rule is
the only one that can be applied there. This follows directly from Theorem 1.

60 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

Prove that R still holds after the steps:

Only the symbolic heap changes. The expression sexpγ is added to it, and we know that [sexpγ]δ =
JsexpKs = true, which means the new symbolic heap is still satisfied.

IfFalse
Analogous to IfTrue.

VarDecl
Prove that R still holds after the steps:

This step is trivial, because the variables will receive default values, related by valmap, given how
⇝CompileTypes maps source types to target types and the definition of⇝def. The appropriate new
associates have to be added to b and δ .

VarAsgn
Prove that R still holds after the steps:

We have to show that JsexpKs has corresponding values in the target and source language. This
follows directly from Theorem 1.

FAppLifted
This case becomes far more straightforward because R uses the⇝NoStubs compilation, rather than
⇝. Because of this fact, we don’t have to take stubs into account here.

By applying FAppLifted, we have that (⟨ss,hs⟩, s) evaluates to (⟨s ′s,hs⟩, s
′) with

• s = C :: idprog = f (sexp); F

• s ′ = C :: {idprog} = •
idarg=sexp

POST f
; F :: {PREf }[idarg:idarg] BODY s; return sexp

′ {POST f }_

• Σop,s (f) = {τarg idarg {BODY ; return sexp
′}}

• JsexpKss = ns

• s = ss :: ss,r

• s ′ = [idarg 7→ ns] :: s

From the compilation rule, we know that

•

s = C :: (⊢ {PRE[substpre]}γ id = f (sexp) {POST [substpost]}γ ′); ⊢ F

•

t = Ct :: τn n; {id,n} = fcomp(sexp,m); Ft

• ⊢ F ⇝NoStubs Ft

• Σ(f) = {PREf , POST f , idarg}

• PREf ≈Names PRE

• POSTf ≈Names POST

• id ∈ dom(γ)

• γ ′ = γ [id : x]

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 61

• x ,n fresh

• [substpre] = [idarg 7→ sexpγ]

• [substpost] = [substpre][result 7→ x]

• CN(PRE) =m

• POST ⇝resDecl τn n

By applying the VarDecl, Skip and FApp rules in the target, we get that (⟨st,ht⟩, t) evaluates to
(⟨s ′t ,ht⟩, t

′), with

• Σop,t (f) = {τarg idarg,τn m {BODY t; return {texp′}}}

• Jtexp,mKst = kt ,kt,m

• (texp,m), st ⇝StoreLinCap [env]

• st = st :: sr

• s ′t = [idarg,m 7→ kt ,kt,m] :: st [env] :: sr

• t ′ = Ct :: {idprog} = •
idarg=texp,m=m ; Ft :: BODY t; return {texp′}

Prove that R still holds after the steps:

It remains to prove that the two new frames in source and target both satisfy Rcomp, assuming that
Rcomp held for the original frames of s and t . Specifically, we prove that

• sprog, tprog ⊢δ
′

b (⟨idarg 7→ ns ,hs⟩ | BODY s) Rcomp (⟨idarg,m 7→ kt ,kt,m ,ht⟩ | BODY t) with
idlink = (IDlog,i \ idarg) ∩ V(POST f) (for i the id of the current frame in the R relation), δ ′ =

(δ |idlink)[idarg 7→ ns]

• sprog, tprog ⊢δb (⟨ss, ∅⟩ | {idprog} = •
idarg=sexp

POST(f) ; F) Rcomp (⟨st [env], ∅⟩ | {idprog} = •
idarg=texp,m=m ; Ft)

Additionally, we need to show that frame linking holds.

Notice first that

• {idprog} = •
idarg=sexp

POST(f) ; F ⇝ {idprog} = •
idarg,m=texp,m ; Ft This follows from decomposing the

corresponding assumption in the proof of (⟨ss,hs⟩, s) R (⟨st;ht⟩, t)

• ⊢ BODY s ⇝NoStubs BODY t This follows from a global assumption about the bodies in Σop,s and
Σop,t . It follows from the fact that both are deduced from sprog and tprog and the assumption
that ⊢ sprog ⇝NoStubs tprog in the definition of R.

The proof validity of the source statements follows similarly.

Next, we need to prove the different facts in Rcomp.

• st ≈ ss. For the callee stacks, this follows from Theorem 1 and from the relatedness of the stack
variables in the old stack frame. For the caller stacks, this follows from the relatedness of the
old stack frames, from the fact that the GatherLinCap rules will never modify variables that

62 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

do not contain linear capabilities and the fact that such values containing linear capabilities are
not in the range of valmapb .

• ht ≈ hs For the callee heaps, the properties follow from the corresponding properties of the
original frames’ Rcomp relation. For the caller heaps, the heaps are simply empty, and the
properties are trivial.

• The property that (idarg,m 7→ kt ,kt,m),ht,reify ⊢
tgt
δ ′,b

PREf follows (for the callee frames) from
the fact that st,ht,reify ⊢

tgt
δ,b PRE[substpre], because of what we know about substpre, kt and ns, st.

For the caller frames, the property is trivial, since the precondition is trivial.

We also need to prove the InverseMap property for the old and new frame:

• InverseMap(δ ′, PREf , [idarg 7→ idarg], idarg 7→ ns ,hs): First, δ ′(idarg) = ns is true by definition,
so this is fine. Second, the fact that hs ⊢srcδ ′ PREf follows from the corresponding fact that
hs ⊢

src
δ PREf [idarg 7→ sexp] which we have from the InverseMap property for the old frame.

• InverseMap(δ , true,γ , ss, ∅): In this case, ∅ ⊢srcδ true holds trivially, and the fact that ss(x) =
[γ (x)]δ for all x ∈ dom(γ) is known from the InverseMap property for the old frame.

Finally, we need to prove the frame linking property for the R obtained from composing the new
frame relations. Concretely, we need to think about the link between

• the caller frame to its parent. In this case, the required equalities follow from linking in the
previous simulation step, as the postcondition and δ have not been modified.

• the callee frame and the caller frame: in this case, equality of the postcondition follows by
definition, equality of δ ′(idarg) and equality of δ ′ on the idlink to δ follow immediately from the
choice of δ ′

ReturnLifted

From ReturnLifted, we know that (⟨ss,hs⟩, s) evaluates to (⟨s ′s,hs⟩, s
′) with

• s = C :: {idprog} = •
idarg=sexp

POST(f) ; F :: return {sexp′}

• s ′ = C :: skip; F

• ss = ss,0 :: ss,1 :: ss,r

• s ′s = ss,1[idprog → vret] :: ss,r

• Jsexp′Kss,0 = vret

From the compilation rule, we know that

• t = Ct :: {idprog,n} = •
idarg=sexp; Ft :: return {sexp′,m}

• ⊢ F ⇝NoStubs Ft

By applying the Return rule in the target, we know that (⟨st,ht⟩, t) evaluates to (⟨s ′t ,ht⟩, t
′), with

• st = st,0 :: st,1 :: st,r

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 63

• s ′t = st,1[idprog 7→ vret, t][n 7→ v ′
ret, t] :: st,r

• Jsexp′Kst,0 = vret, t

• JmKst,0 = v ′
ret, t

• (sexp′,m), st,0 ⇝StoreLinCap _

• t ′ = skip; Ft

Note that by the lifted operational semantics and the axiom FApp, the new precondition of skip; F
is POST f [idarg 7→ sexpγ1] except for renaming of the chunks from m to n. The new γ ′

1 in the
precondition is defined as γ1[idprog 7→ idres].

Prove that R still holds after the steps:

It remains to prove that the new frame in source and target both satisfy Rcomp, assuming that Rcomp
held for the two original frames of s and t . Specifically, we assume that

• sprog, tprog ⊢
δ1
b (⟨ss,1,hs,1⟩ | {idprog} = •

idarg=sexp

POST f
; F) Rcomp (⟨st,1,ht,1⟩ | {idprog,n} = •

idarg=sexp; Ft)

• sprog, tprog ⊢
δ0
b (⟨ss,0,hs,0⟩ | return {sexp′}) Rcomp (⟨st,0,ht,0⟩ | return {sexp′,m})

and we will prove that sprog, tprog ⊢
δ1
b (⟨ss,1[idprog → vret],h

′
s,1⟩ | skip; F) Rcomp (⟨st,1[idprog 7→

vret, t][n 7→ v ′
ret, t],h

′
t,1⟩ | skip; Ft) where

• h′
s,1 = hs,0 ⊎ hs,1

• h′
t,1 = ht,0 ⊎ ht,1

• δ ′
1 = δ1[idres 7→ vret]

Additionally, we will show that frame linking holds.

Considering the requirements in the definition of Rcomp, the requirements that skip; F ⇝NoStubs
skip; Ft, that skip; F is of the form Σax ⊢ {P}γ sstm; return sexp {Q}γ ′ for Σax ∈ Σax

sprog
andCN (P) =

m follow easily from the corresponding requirements for the caller stack frame.

We need to show that s ′t ≈ s ′s, i.e. that

• dom(s ′t,1) = dom(s ′s,1) ⊎ n ⊎ nnull ⊎ idaux

• ∀id ∈ dom(s ′s,1). s
′
t,1(id) = valmapb (s ′s,1(id))

Both follow from the definition of s ′s and s ′t , the corresponding properties about ss,1 and st,1, and
Theorem 1 with the facts about ss,0 and st,0.

We define h′
t,1,real = ht,0,real ⊎ ht,1,real and similarly h′

t,1,reify = ht,0,reify ⊎ ht,1,reify. The properties
about ht,1,real follow directly from the corresponding properties about the old frames, and likewise
for the fact that dom(h′

t,1,reify) ∩ range(b) == ∅.

It remains to prove that s ′t,1,h
′
t,1,reify ⊢

tgt
δ ′
1,b

POST f [idarg 7→ sexpγ1][result 7→ idres]γ
′
1 . We know that

POST f does not contain program variables except for idarg and the special variables result, so we
can drop the last γ ′

1 . From frame linking, we know that POST f is also the postcondition of the

64 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

callee frame, that [sexpγ1]δ1 == δ0(idarg) and that δ0(idlink) = δ1(idlink) for idlink = (IDlog,1 \ idarg) ∩

V(POST f). We also know that δ ′
1(idres) = vret.

Because of this, it suffices to prove that s ′t,1,h
′
t,1,reify ⊢

tgt
δ0[idres 7→vret],b

POST f . From theRcomp relation for

the callee frame, we know that st,0,ht,0,reify ⊢
tgt
δ0,b

POST f . From that last judgement and the facts that
s ′t = st,1[idprog 7→ vret, t][n 7→ v ′

ret, t] :: st,r, JmKst,0 = v ′
ret, t, it follows that (sexp,m), st,0 ⇝StoreLinCap _

and that s ′t,1(n) = st,0(m). Additionally, we have that h′
t,1,reify ⊇ ht,0,reify, so it follows easily that

s ′t,1,h
′
t,1,reify ⊢

tgt
δ0,b

POST f .

We still need to prove that the InverseMap property holds for the new frame, i.e.
InverseMap(δ ′

1, POST f [idarg 7→ sexpγ1][result 7→ idres],γ
′
1, s

′
s,1,h

′
s,1). The fact that s

′
s,1(x) = [γ ′

1(x)]δ ′
1

for all x ∈ dom(γ ′
1) follows from the same fact for the old caller stack frame, as well as the definitions

of s ′s,1, γ
′
1 and δ ′

1. The fact that h
′
s,1 ⊢src

δ0[idres 7→vret],b
POST f [idarg 7→ sexpγ1][result 7→ idres] follows

from the corresponding fact in the InverseMap property of the old callee frame, using what we
know about the shape of POST f from the axiom Return and the definition of vret.

Frame linking follows easily because the relevant components of the old caller frame have not been
modified.

ArrayMut
Again uses the correspondence, caused by compositionality, between the source and target values
of evaluated expressions to prove that the resulting heaps will still be related.

ArrayLkup
Uses the correspondence between the source and target heaps to prove that the new stack frames
will correspond as well.

ForUnroll
The operational semantics rule ForUnroll consists of nothing more than unrolling the for loop, in
both the source and target languages.

Remember that we mentioned in the definition of the lifted operational semantics that we will
be ignoring hoisting for the duration of this proof, because we assume resources in the source
language and reified variables in the target language to be implicitly renamed in the operational
semantics when a for-loop is unrolled.

Prove that the rules are applicable:

Since the expressions texp and texp
′ in the target ForUnroll rule are equal to sexp and sexp

′ in
the source, since valmap holds over the source and target stack frames due to Rcomp and given the
compositionality of valmap, it holds that both for loops will either be unrolled or neither one will
be.

Prove that R still holds after the steps:

This is trivial, since simply unrolling the for loop does not change any state.

GuardTrue Trivial.

ProgExec
Trivial, because stack and heap are empty in the produced source and target code, and so are the
symbolic heap and the arguments, since main functions are without arguments.

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 65

□

Now that the relation R has been properly defined and it has been proven to be a simulation relation,
we split up the CompilerEqiTermination inference rule we wanted to prove into 3 consecutive
inference rules and prove these

First off, we prove that any source program is related to its compilation in the empty starting state
(empty stack and heap).

⊢ s ⇝ t
⊢ Cs[s]//@main = id ⇝ Ct[t]//@main = id

(⟨•, ϵ⟩ |⊢ Cs[s]//@main = id) R (⟨•, ϵ⟩ | Ct[t]//@main = id)
(CompilIsSim)

Proof.

The correctness of this inference rule follows directly from the base case of the definition of the
simulation relation. □

A second inference rule demonstrates the purpose of proving that R is a simulation relation, by
linking the concepts of simulation relation and equi-termination.

(⟨ss,hs⟩ | s) R (⟨st,ht⟩ | t)

s ⇓ ⇔ t ⇓
(SimToEqiTermin)

Proof.

Left to right direction

A case-based analysis on the compilation rules shows that the target code takes a finite number of
steps for each step the source code takes. If the source code terminates, it ends in a return statement,
and so does the target code in that case (by the first result of Theorem 2 and assuming it does not
get stuck during execution). The target program hence terminates as well.

Right to left direction

Starting from the current (terminating) target program t , either the corresponding source program
s

• is stuck. We have to prove that this case cannot occur. We have to prove that if the target
program does not get stuck during its execution, then neither does the source program that it
was compiled from, or, by contraposition, that if the source program gets stuck during execution,
then so does the target program. This intuitively follows from the fact that all source-language
checks are either reified during compilation or present in the target-language operational
semantics.

• has terminated in a single return statement (the only statement a non-stuck program can
naturally terminate in).

• can take a step, and hence (by the second result of Theorem 2) there is some number n of steps
that t can take to t ′, which correspond to one step taken from s to s ′. The source program takes
at most as many steps as the terminating target program. Using determinacy of target language

66 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

semantics and the second result of Theorem 2, the resulting programs s ′ and t ′ are still related
by R.

This case-based analysis is repeated until termination (which will happen, since we know that t
terminates). □

An important caveat for the above proof is that the left-to-right and right-to-left directions of
the proof assume that if the source code does not get stuck, then neither does the target code,
and vice versa. Both directions combined hence assume that all small programming errors (eg.
index out bounds errors, runtime typing errors - the input program is assumed type-checked, . . .)
either appear simultaneously in both the source and target language, or do not appear at all. It
is important for the sanity of our compiler, that stuck code is compiled to stuck code, and never
to diverging code (or properly terminating code), as stated in the assumptions at the start of this
section. We do not explicitly prove this, although it would be reasonably easy, but assume this
to be a reasonable property of the compilation and the source- and target language operational
semantics, as eg. linearity of separation logic chunks is translated to linearity of linear capabilities,
array lengths are kept equal, etc. We will make similar assumptions on the presence of these types
of program-integrity errors for all future relations we define.

Note that no explicit inductive proof is required here, in contrast to analogous proofs in a trace
semantics setting [Chlipala 2017], where equality of the constructed traces has to be checked, and
not just equality of the execution outcome.

Equi-termination from the empty state is implied by the above inference rule. Full source and target
programs related by R hence equi-terminate given the empty heap and stack at the start.

Note how the SimToEqiTerm rule states its results in terms of the separation-logic verified source
code, and not in terms of the regular source code without separation logic proof.

The last inference rule we need to prove CompilerEqitermination is a form of coherence to
prove that no matter the proof used, the code in the lifted semantics and the code in the regular
operational semantics equi-terminate. The following Coherence statement proves exactly that; we
can strip away separation logic proofs without influencing termination.

(⊢ sprog) ⇓ ⇔ sprog ⇓
(Coherence)

Proof.

Follows from the definition of the lifted semantics in the preservation proof for the right-to-
left direction, and simple separation-logic proof erasure in the left-to-right direction. The lifted
semantics uses FAppLifted and ReturnLifted instead of FApp and Return, respectively, but the
extra annotations do not influence equi-termination. □

The CompilerEqiTermination rule follows immediately from the sequential combination of the
CompilIsSim, SimToEqiTermin and Coherence rules.

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 67

7 COMPILER SECURITY

7.1 Definitions

This section is structured similarly to section 6, since the security proof has the same building
blocks as the correctness proof, but just occurs in the opposite direction.

Proving compiler security comes down to proving the following inference rule, which is the reverse
direction of compiler correctness:

s ≃ctx s
′

⊢ s ⇝ t ⊢ s ′ ⇝ t ′

t ≃ctx t
′

(CompilerSecurity)

To prove the CompilerSecurity rule, it suffices to show that for any target context (Ct, id) and
given the concrete proof ⊢ s of s used in CompilerSecurity, the following inference rule holds:

⊢ s ⇝ t
⊢ s, (Ct, id)⇝b ⊢ Cs[s]//@main = id

Cs[s]//@main = id ⇓ ⇔ Ct[t]//@main = id ⇓
(BTEqiTermination)

This rule suffices because it allows using the given source-level equi-termination result by linking
equi-termination of source and target programs. In this rule, the notation⇝b is used to denote a so-
called back-translation, which is a type of opposite direction compilation performed on the context
Ct’s functions, effectively giving them provable separation-logic contracts. The back-translation is
constructed in such a way that the equi-termination result of BTEqiTermination holds. This
back-compilation⇝b will be defined in detail below.

We will again prove the above BTEqiTermination rule using a simulation argument. This
argument employs a simulation relation (analogous to R in the previous section) to relate source
to target states, denoted as follows: (⟨ss,hs⟩ | s) S (⟨st,ht⟩ | t), s is the current separation logic
derivation (which also implicitly contains the source code) in the source language and t is the
corresponding target level code. The variable s is a sequence of the currently executing function
bodies ci and their separation logic proofs. It is hence a sequence of proof trees. The variables sx
and hx denote the stack and heap, where x = s for the source language and x = t for the target.
The full notation for the relation S is in fact sprog, tprog ⊢ (⟨ss,hs⟩ | s) R (⟨st,ht⟩ | t) with sprog the
source program that is being executed and tprog the target program. We often write s1 S s2 as a
shorthand notation, where s1 denotes the source state consisting of the current stack, heap and
proven code and s2, analogously, denotes the target state.

The above CompilerSecurity rule has to hold for any separation logic proof ⊢ of the source
components s and s ′. We have to, however, perform a back-translation of target context functions
to the most general (hence simplest) separation logic contract possible, since this is the only way to
construct separation logic proofs for the contracts of back-translated target functions. We call this
general separation logic contract the universal contract. If we were to back-translate target level
functions to functions having concrete contracts and not the universal contract, then application
of the FApp rule to construct the separation logic proofs would get stuck on having to fulfill the
concrete preconditions of the called functions’ contract. Using the universal contract as basis for
the back-translation also makes it easier to formalize, as will become clear in the next subsection.

68 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

A problem that arises because of these universal contracts is that universal contracts in the back-
translated context do not combine well with the given non-universal contracts in the components
s and s ′. The proofs ⊢ for the functions in s and s ′ assume non-universal contracts for the external
(imported) functions they outcall, disallowing a direct universal back-translation. The other way
around, the back-translated context functions expect s and s ′’s functions to follow their universal
contract calling convention. There is hence a mismatch between the minimal contracts in the
back-translated target context and the concrete contracts in s and s ′. To solve this problem, we use
a back-translated version of the verified component’s in- and outcall stubs to adapt from universal
to non-universal contracts and back.

Subsection 7.2 defines a couple new concepts and notations we will need to define the back-
translation⇝b. Subsection 7.3 will define the back-translation⇝b itself, which includes a discussion
of universal contracts and the role of stubs in the matching of universal to concrete contracts. This
subsection also proves that the back-translated context Cs indeed constructs a valid source program
⊢ Cs//@main = id . This entails proving that the different back-translated target statements
combine into a proper function proof and that the back-translated stubs perform proper matching
of universal to concrete contracts. With all definitions out of the way, subection 7.4 finally proves
the BTEqiTermination rule states above, in a fashion very similar to the proof in section 6.

7.2 Auxiliary concepts for the back-translation

7.2.1 Back-translating types and values. Linear capabilities l [a,b] in the target language incorporate
an interval [a,b] they can be dereferenced on (they contain no index because they always point to
the first interval index a). If we were to back-translate these linear capabilities to regular source-level
pointers (l ,a), then the information that b provides, in other words the interval length b − a + 1,
would be lost. We could never define a proper back-translation this way, since there would be
no way to back-translate the target statement length(n) with n a linear capability if the length
of a was not given in the separation logic contract, as there is no length function in the source
language. A first, naive, solution to this problem is to back-translate capabilities n to both a source
level pointer n and an integer nlen storing n’s length. However, this solution does not suffice for
nested pointers. Consider the following sample target-level program: int∗∗ n = . . . ; int∗ a = n[k].
If we were to introduce a len variable for each target-level variable, we would back-translate the
first line to int ∗ ∗ n = . . . ; int nlen = . . . ; and the second line to int ∗ a = n[k]; int alen = . . .,
but now there is no way for us to possibly know the value of alen, as only the length of n itself
was back-translated and not the length of the contents of n. For deeper nestings of arrays, we
need to store the lengths of all levels of arrays as well in the back-translation, in case we need
these. Taking the len for the top-level only just does not back-translate all information and can
hence never lead to an equi-terminating scheme. If we back-translate a k-dimensional array, we
need to back-translate lengths for all k dimensions as well. To be able to do this succinctly, we
introduced the notion of length-2 tuple types or pair types (we do not need tuples of general length),
written (τ1,τ2) , where τ1 and τ2 are any source/target-level type. This takes away the need to define
separate length-variables in the back-translation.

Much like the compilation rules in section 4 defined the compilation of source level types Com-
pileType, this section defines the back-translation of target level types InvCompileType. Three
of the four cases can just be derived from the inversion of the compilation of types CompileType.
The case for inversely compiling linear capabilities shows how lengths are incorporated into the
back-translated type, as mentioned in the previous paragraph.

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 69

(InvCompileInt)

int⇝InvCompileType int

τ ′ ⇝InvCompileType τ

(InvCompileSrcPtr)

τ ′∗0 ⇝InvCompileType τ∗

τ1 ⇝InvCompileType τ
′
1 . . . τk ⇝InvCompileType τ

′
k

(InvCompileTuple)

(τ1, . . . ,τk)⇝InvCompileType (τ
′
1, . . . ,τ

′
k)

τ ⇝InvCompileType τ
′

(InvertCapability)

τ∗⇝InvCompileType (τ
′∗, int)

Back-translated arrays are hence represented as tuples, where the first part is an array containing
all arrays of the level below and their lengths, and the second part contains the length of the array
on the current level itself. The expression operations .1 and .2 are respectively the left and right
projection of a pair and are present in source, target and separation logic expressions. Pointers of
type τ∗0 are back-translated to source types τ∗. The reason source-level pointers τ∗ are downcast
to τ∗0 and not to ints is that otherwise, no distinction could be made between integers and pointer
addresses anymore at the target level, and this would result in problems during back-translation.
It should be noted that adding the τ∗0-type to the target language is no real concession; it could
just be implemented by a 0-length capability on a capability machine like CHERI. Even though
we did not allow any pointer arithmetic on regular pointers in the target language (this would
make our fully abstract compilation slightly harder because we would need indexes for capabilities
but would not result in any added power), we do have to allow pointer arithmetic on τ∗0-type
pointers, because the compilation translates pointer arithmetic on the source-level variables to
pointer arithmetic on the corresponding target-level variables.

An important and useful property for types is the following:

InvCompileType ◦ CompileType = idf

.

7.2.2 Universal Contracts. A central part of the back-translation is the notion of universal contract,
mentioned above. This section is used to define this notion.

When pointer-type function arguments are back-translated, they correspond to separation logic
chunks of unknown length l in the back-translated function’s separation logic precondition. For
this reason, we introduced a logical list type, so that variables of this type can represent lists of
possibly unknown length. Notice that these list variables cannot appear in boundary contracts, as
these contracts allow only symbolic variables that have a program equivalent, and these variables
cannot have program-level equivalents, as they are a pure type of list variable. These variables do
not appear in boundary contracts in the back-translation, as they only appear in minimal contracts
of back-translated context functions, which will not be imported or exported by components.

A specific type of disjunction has to be allowed in order to be able to work with back-translated
linear capabilities in source language proofs. Back-translated linear capabilities either correspond to
a heap chunk and a regular pointer in the target language or equal the back-translated null pointer
and have no corresponding heap chunk. To represent these two possibilities, a separation logic
expression of the form a == (null0, 0) ? a_has_chunk is used in the definition of universal contracts
below. The disjunction expression is often used with a first disjunct of the form idprog == (null0, 0).
We define the shortened notation is_nullptr for this check as follows:

70 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

Definition (null pointer check).

is_nullptr(exp) = (exp == (null0, 0))

Disjunction can be made to work together with the original disjunction-less separation logic
syntax by including it in the Conseqence rule. The Conseqence rule can add or drop the
is_nullptr(exp)∨ condition depending on the need.

Having defined all the necessary concepts, we now define the concept of the universal con-
tract for a single back-translated separation logic expression exp for target type τt. The function
univ_contrτt (exp, [index], isOuter) returns a separation logic assertion representing the universal
contract of source expression exp of type τt, where [index] is a pre-existing index to be used in
any logical list appearing in the universal contract and isOuter denotes if a separation logic chunk
name has already been used for an outer chunk or not.

The index is initially [], and gets filled in with the proper variable names by traversing nested levels
of resources. In the same vein, isOuter is originally true, and only becomes false when the first
chunk name is introduced. We define univ_contrτt∗(exp) ≡ univ_contrτt∗(exp, [], true) to simplify
notation for the default universal contract. We also often just write univ_contrτ (exp) all the same
when the context is clear and assume that the correct index index and top-level naming (if necessary)
is used. We also write univ_contrnτ (exp), where n is the tuple of names appearing in the universal
contract.

Definition (univ_contrτt (·)).

univ_contrint(exp, _, isOuter) = true
univ_contrτs∗0 (exp, _, isOuter) = true
univ_contrτt∗(exp, [index], isOuter) =

! is_nullptr(exp) ?
n : [exp.1 + i 7→τs l[index][i] ∗

univ_contrτt (l[index][i], [index][i], false) | 0 ≤ i < length(l[index])]
∗ length(l[index]) == exp.2
given that τt ⇝InvCompileType

τs and l fresh

n only present if isOuter == true
univ_contr(τ1, ...,τk)(exp, [index], isOuter) =

univ_contrτ1 (exp.1, [index], isOuter) ∗
. . . ∗ univ_contrτk (exp.k, [index], isOuter)

Notice that the defined universal contracts are not linear, whereas we did require all boundary
function contracts to be linear in section 3. This is no problem, as the above universal contract
notation will never appear in import or export boundary function contracts and hence never show
up in stub guards, as all back-translated target functions will be non-boundary functions in the
back-translation. These types of contracts will hence never be compiled into stubs. The same holds

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 71

true for the fact that the universal contracts contain list variables and quantification: these will
never appear in stubs either and do not require program-level reified expressions.

The universal quantification used in the definition is a finite form of universal quantification, which
is hence decidable and poses no computational problems for the verification tool. The definition
can entirely be unrolled once the lengths are known.

Extending the above universal contract definition for a single variable to a set of variables result in
the following general definition of the universal contract of a piece of executing code:

Definition (Universal Contract).
Given that we want to back-translate target-level statement c, which mentions free target-level variables

(ie. variables not declared in c) FV(c). The universal precondition contract for c’s back-translation is the
following: univ_pre = ∗{univ_contrτ (γpre(id)) | id ∈ FV(c) ∧ TypeOfVar(id) = τ }. The universal
postcondition contract has the same form, but now the set of variables also includes the variables

declared in c. The set of all free and declared variables is denoted V(c) (variables only defined in one

branch of any If-statement in c are not in V(c)). The universal postcondition is: (note that no variables

can be erased entirely once they’re declared, so even nulled variables appear in the minimal contract)

univ_post = ∗{univ_contrτ (γpost(id)) | id ∈ V(c) ∧ TypeOfVar(id) = τ }.

The previous discussion only captures the symbolic heap part of a separation logic triple. To define the

environment, we also require the set of auxiliary variables AUX(c) generated in the back-translated

code cb . These auxiliary variables are one-use, hence being reset to the null-value for their type after
each back-translated block of code, never to be used again. Any auxiliary variables from previous pieces

of code are framed off using the Frame rule. For the environment, we have γpre = [FV(c) : vuniv] with
vuniv a set of symbolic variables for which UniqueId(vuniv) holds for the precondition environment, and

analogouslyγpost = [V(c) : v ′
univ][AUX(c) : _]withUniqueId(v

′
univ) for the postcondition environment.

The universal contract definition is used both to actually construct the universal contract of a back-

translated target function f (where care has to be taken with return statements, as will be discussed

later) and to construct extended separation logic triples of code c to prove the back-translated function
contracts. For code c for which c ⇝

b
cb, the proof triple is

{univ_pre}γpre cb {univ_post}γpost , with all four components as defined above. If all variables are

well-scoped, the different universal contract pieces will automatically link together (possibly requiring

extra applications of the Frame rule below) and form a sound source program proof of the enveloping

function’s universal contract.

7.2.3 Back-compiling expressions. This subsection describes how expressions are translated from
the source to the target language during compilation and how they are translated from the target
to the source language during back-compilation.

For compilation, target expressions have the length function as an extra function compared to
source expressions. Other than that, the basic structures of types match when compiling from
source to target. Any sexp could hence be kept identical when compiled to a corresponding texp.

Back-compiling texp cannot be done using the identity function. Difficulties arise because τ∗ type-
expressions produce pair type-expressions in the back-compilation, which fundamentally change
the structure of the expression and hence require some measures when back-compiling expressions
containing pointers. No pointer arithmetic is allowed on linear capabilities in the target language,
which makes the back-translation somewhat easier. A second type of difficulty is caused by the
fact that length-functions are not present in the source language and should be back-translated

72 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

somehow and neither are addr functions. For the mapping, we again have the identity for most
cases, except for the two difficulties previously mentioned. We get the following non-identity rules
because of the type and statement mismatch:

These first two rules below are the identity when null has a τ∗0 type (ie. null0), but not when null
has a pointer type.

null⇝b (null0, 0)
(BackCompNull)

null0 ⇝b null0
(BackCompNull)

sexp⇝b texp

addr(sexp)⇝b texp.1
(BackCompAddr)

sexp⇝b texp

length(sexp)⇝b texp.2
(BackCompLen)

We introduce the notation sexpb to denote the back-translated version of sexp, ie. texp in sexp⇝b
texp.

7.2.4 Erasure in the source language. For back-translated source language expressions, we will
need to erase source program variables to parallel the implicit effect of capability erasure in the
target language (parallel behavior in order to prove equi-termination between the target code and
its back-translation). Rigorously defining these source-level erasure rules once will make the back-
translation easier and more coherent. We emulate the erasure effect the linearity of the capabilities
in the target language causes, by explicitly creating assignments in the source language. The rules
for this are very similar to the target-level erasure rules presented earlier, with assignments instead
of stack alteration, and are presented below.

In order for the below rules to work, we need to be able to replace stack values in source-level
variables, while keeping them well-typed. If the sexp we want to emulate erasure on contains an
integer k , we do not know whether it is a length and part of a back-translated pointer pair, or it is a
regular integer. Erasure should hence be performed based on the original target expression’s type.

The judgment sexp,τs ⇝EraseIDProg sexp erases all linear components (corresponding to capabilities
in the target) present in a given source expression based on its target type, whereas the judgment
sexp,τs ⇝EmulateNulling stuckstm, sstm generates the actual assignments to perform the erasure in
the source language. The variable stuckstm adds a guard(false) on faulty input, to make sure the
back-translated code gets stuck before doing any assignments. On non-faulty input, stuckstm is
just skip. The variable sstm contains the assignments themselves.

The way we define the⇝EmulateNulling judgment is very analogous to the⇝StoreLinCap judgment,
using⇝EraseIDProg instead of⇝ValErase,⇝GatherNull instead of⇝GatherLinCap and finally⇝TupleToPAsgn
instead of⇝TupleToSAsgn.

All non-linear types stay the same, whereas all linear types are reset to their default value.

exp, int⇝EraseIDProg exp
(EraseRebuildInt)

exp,τ∗0 ⇝EraseIDProg exp
(EraseRebuildSrcPtr)

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 73

exp.1,τ1 ⇝EraseIDProg exp
′
1

. . .
exp.k,τk ⇝EraseIDProg exp

′
k

exp, (τ1, . . . ,τk)⇝EraseIDProg (exp
′
1, . . . , exp

′
k)

(EraseRebuildPair)

exp,τ∗⇝EraseIDProg (null0, 0)
(EraseRebuildPtr)

Now, the rules for GatherNull are exactly the ones given for GatherLinCap before, with a few
very minor differences (eg. no more stack frame as input). Only a few rules are notable (ie. do not
output •). We discuss these below.

The first one is IdProgStore. The new corresponding rule looks as follows:

idprog,TypeOfVart(idprog)⇝EraseIDProg erase

idprog ⇝GatherNull (idprog, erase)
(IDProgEmulate)

The second one is TupleStore.

exp1 ⇝GatherNull v1
. . .

expk ⇝GatherNull vk

(exp1, . . . , expk)⇝GatherNull v1 . . .vk
(TupleEmulate)

Finally, the 2 rules for projection.

exp = (exp1, . . . , expi , . . . , expk) expi , s ⇝GatherNull v

exp.i, s ⇝GatherNull v
(ProjectTupleEmulate)

exp = idprog idprog, s ⇝GatherNull (idprog, (erase1, . . . , erasek))

exp.i, s ⇝GatherNull (idprog.i, erasei)
(ProjectIDProgEmulate)

For the auxiliary function⇝TupleToPAsgn, we follow⇝TupleToPAsgn as follows (reusing⇝IDFilter):

ϵ ⇝TupleToPAsgn ϵ
(TupleToPAsgnEps)

vrest ⇝TupleToPAsgn asgn

(idprog,v) vrest ⇝TupleToPAsgn asgn; idprog = v
(TupleToPAsgnID)

74 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

v ′ ⇝TupleToPAsgn asgn

vrest ⇝IDFilter (idprog.i2,v2) . . . (idprog.ik ,vk),v
′

TypeOfVar(idprog) = (τ1, . . . ,τk) v = (v ′
1, . . .v

′
k)∀i j ∈ {i1, . . . ik }.v

′
i j = vj∀i < {i1, . . . ik }.v ′

i = idprog.i

(idprog.i1,v1) vrest ⇝TupleToPAsgn asgn; idprog = v
(TupleToPAsgnIDIndex)

We can reuse the predicate CheckStuck from before, but we cannot afford to create no rule for the
case where ¬CheckStuck. This is because we cannot have the creation of the back-translation get
stuck; we want the execution to get stuck. The solution is to add guard(false) if there is overlap
between variables, so that the source program gets stuck at the same time as the target program. We
hence redefine CheckStuck, but now as a function, that outputs skip where the predicate version
would have been true and guard(false) where it would have been false.

exp, s ⇝GatherNull tuple
tuple, s ⇝TupleToPAsgn asgn

CheckStuck(tuple) = stuckstm

exp, s ⇝EmulateNulling stuckstm, asgn
(EmulateNulling)

An important observation is that if a source-level pointer idprog (or a pair containing pointers) is
assigned an expression containing idprog and we null source-level variables, we will erase idprog
itself (including the newly assigned value) given the current source-level erasure rules. This was
no problem in the target, because erasure happens before assignment in the operational semantics,
which is no option now, as we would have no value to assign anymore. We could fix this problem
by disallowing -both in target and source- pointer program variables to be assigned expressions
causing themselves to be erased, which is only a very minor restriction, as there is no pointer
arithmetic in the target anyway, so this kind of assignment does not have any effect.

A more rigorous alternative solution is to check what variable name is being assigned to and to
not null the variable corresponding to this variable name. For this reason, we could define a new
judgment sexp, id ⇝EmulateNullingNotID stuckstm, sstm that works exactly like EmulateNulling, but
does not generate assignments for any variables id in its version of the TupleEmulateStuck and
TupleEmulateOK rules. The problem here, is that nulling would not correspond to how nulling in
the target language works during a function call (even though the end result is the same), hence
breaking the simulation relations we will try to build later on.

Our final solution is to use auxiliary, throw-away variables to store the expressions we want to
null in and perform the nulling on the original expressions before the function call, handing the
auxiliary variables to the function at call time. This ensures behavior parallel to the target language,
without jeopardizing the integrity of the id-values.

7.2.5 Converting between list and array resources. An important aspect of back-translating stubs
and some target statements is the fact that back-translated code assumes that all resources are range-
expressions, whereas some source code and statements such as Malloc in the source language do
not, ie. they operate on array resources, not on range resources. A conversion between the two
representations is hence often necessary, and defined here.

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 75

Array resource to range expression. We call the first procedure ArrayToRange(idpaddr, id
p
len) and it

converts the array chunk corresponding to these parameters into a range chunk in the following
way (where γ (idpaddr) = idaddr,γ (id

p
len) = idlen):

{n : idaddr 7→ idcont ∗ length(idcont) == idlen}γ

if idplen == 1 then
{∼ ∗ idlen == 1}γ 7→ l[i] is a shorthand for 7→ [l[i]]

{n : idaddr + 0 7→ idcont[0] ∗ length(idcont) == idlen ∗ idlen == 1}
//@collect n
{n′ : [idaddr + i 7→ idcont[i] | 0 ≤ i < idlen]}

else

76 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

{∼ ∗ idlen != 1}γ 0 < 1 < idlen

//@split n[1]
{n1 : idaddr + 0 7→ idcont[0] ∗ n2 : idaddr + 1 7→ take(idcont, 1, idlen)}
//@collect n1
{n2 : idaddr + 1 7→ take(idcont, 1, idlen)

∗ n′ : [idaddr + is 7→ idcont[is] | 0 ≤ i < 1]}
Inv[is] = n : idaddr + is 7→ take(idcont, is, idlen)

∗ n′ : [idaddr + i 7→ idcont[i] | 0 ≤ i < is]

γ [is] = γ [j : is]
{Inv[1]}γ
foreach(1 ≤ j < id

p
len − 1){

{1 ≤ is < idlen − 1 ∗ Inv[is]}
//@split n[1]
{n1 : idaddr + is 7→ idcont[is]

∗ n2 : idaddr + is + 1 7→ take(idcont, is + 1, idlen)
∗ n′ : [idaddr + i 7→ idcont[i] | 0 ≤ i < is]}

//@collect n1
{n′1 : [idaddr + i 7→ idcont[i] | is ≤ i < is + 1] ∗ . . .}
//@join n′ n′1

{n2 : idaddr + is + 1 7→ take(idcont, is + 1, idlen)
∗ n′′ : [idaddr + i 7→ idcont[i] | 0 ≤ i < is + 1]} (Conseq: rename)

{n : idaddr + is + 1 7→ take(idcont, is + 1, idlen)
∗ n′ : [idaddr + i 7→ idcont[i] | 0 ≤ i < is + 1]}

{Inv[is + 1]}
}

{Inv[idlen − 1]}γ [idlen−1]
//@collect n
{n′1 : [idaddr + i 7→ idcont[i] | idlen − 1 ≤ i < idlen]

∗ n′ : [idaddr + i 7→ idcont[i] | 0 ≤ i < idlen − 1]}
//@join n′ n′1

{n′ : [idaddr + i 7→ idcont[i] | 0 ≤ i < idlen]}

{n′ : [idaddr + i 7→ idcont[i] | 0 ≤ i < idlen]}

The variable j is an auxiliary variable and is never used again.

Range expression to array resource. A very analogous procedure RangeToArray(idpaddr, id
p
len) for the

opposite direction can be written out as well. It converts the range resource corresponding to

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 77

these parameters into an array chunk (again, γ (idpaddr) = idaddr,γ (id
p
len) = idlen). This procedure is

implemented in the following way:

{n′ : [idaddr + i 7→ idcont[i] | 0 ≤ i < idlen] ∗ length(idcont) == idlen}

if idplen == 1 then
//@flatten n′

else
{∼ ∗ idlen != 1}γ 0 < 1 < idlen

//@split n[1]
{n1 : [idaddr + is 7→ idcont[is] | 0 ≤ i < 1]
n2 : [idaddr + is 7→ idcont[is] | 1 ≤ i < idlen]}

//@flatten n1 ·

Inv[is] = n : idaddr + is 7→ take(idcont, 0, is)
∗ n′ : [idaddr + i 7→ idcont[i] | is ≤ i < idlen]

γ [is] = γ [j : is]
{Inv[1]}γ
foreach(1 ≤ j < id

p
len − 1){

{1 ≤ is < idlen − 1 ∗ Inv[is]}
//@split n′[1]
{n : idaddr + is 7→ take(idcont, 0, is)

∗ n′1 : [idaddr + i 7→ idcont[i] | is ≤ i < is + 1]
∗ n′2 : [idaddr + i 7→ idcont[i] | is + 1 ≤ i < idlen]}

//@flatten n′1 ·

{n1 : idaddr + i 7→ idcont[is] ∗ . . .}

//@join n n1

{n : idaddr + is 7→ take(idcont, 0, is + 1)
∗ n′ : [idaddr + i 7→ idcont[i] | is + 1 ≤ i < idlen]}

{Inv[is + 1]}
}

{Inv[idlen − 1]}γ [idlen−1]
//@flatten n ·

//@join n n1

{n : idaddr 7→ idcont}γ

{n : idaddr 7→ idcont}γ

The variable j is an auxiliary variable and is never used again.

78 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

This procedure differs from the procedure in the previous section, only where //@collect n has
been replaced by //@flatten n.

7.3 Back-translation rules

This section describes all the rules used in the back-translation⇝b to Hoare triples.

The guard statements that appear in all of the following back-translation rules are created to make
the universal contract at the start of the back-translated proof triple more concrete, so that the
preconditions of the separation logic axiom for the back-translated statement are met. After the
application of the concrete back-translated statement, the consequence rule is used to go back to
the universal contract in the postcondition of the back-translated triple. For each back-translation
rule that produces code cb, it has to be proven that the universal contract triple from the previous
section holds. Analogously, in the case of functions, components and programs, the existence of a
proof ⊢ has to be shown.

In order to be able to prove equi-termination in the security proof later on, the back-translated
code has to parallel the target-level erasure of linear capabilities. The correct erasure statements are
generated by the EmulateNulling compilation rule in the source language (and the EraseIDProg
rule if the erasure has to happen within an array).

We first define the back-translation rules while ignoring the back-translation of stubs and using
universal contracts for the original source functions as well, and then in a second set of rules define
the back-translation of stubs to convert to and from universal contracts.

Recall that, for every piece of code c we back-translate in the below rules, we have to prove the triple
{univ_pre}γpre cb {univ_post}γpost , as defined in the definition in section 7.2.2. The only exception
to this pattern is made by the Frame rule below, because it forms the glue between different levels
of back-translated code. For back-translated functions, components and entire programs, we have
to prove that the back-translation forms a proper proof ⊢.

We do not repeat the environment γ if it does not alter. We also do not explicitly mention auxiliary
variables in the environment once they have been used, as there is no universal contract for them
anyway and they can map to any symbolic expression in the environment γ . We often write γ as a
shorthand fork γpre when applying the environment to an expression, if the concrete environment
is clear from context, to avoid needless clutter.

In the back-translation, the back-translated core statement will often be preceded by a host of
guard() and variable declarations. This happens because the universal contract must be made
more precise in order for the separation logic axiom of the back-translated core statement to be
applicable. We will mention this explicitly a couple times, by eg. "Meeting Malloc precondition"
in the below Malloc statement, but will not repeat this statement each time. The same goes for
obvious applications of the Conseqence rule.

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 79

7.3.1 Basic statement rules.

skip⇝b
{univ_pre}γpre
skip
{univ_pre}γpre FV(c) == V(c) == ∅

{univ_post}γpost

(Skip)

Note that the expression exp == NULL(τ) that implicitly appears in the below proof can be made
into a valid univ_contr for any expressions exp of type τ by application of the Conseqence rule,
because the universal contract always allows for null values. This fact will henceforth be referred
to as ’NULL(τ) univ’.

τ ⇝InvCompileType τ
′ naux fresh

n = malloc(texp ∗ sizeof(τ))⇝b
{univ_pre}γpre
guard(texpb > 0);τ ′∗ naux; Meeting Malloc precondition
naux = malloc(texpb ∗ sizeof(τ

′));
{univ_pre ∗ nc : idlog 7→ repeat(texpb,γpre ,NULL(τ

′))}γpre[naux:idlog]

n = (naux, texpb)

{∼}γpre[n:(idlog, texpb,γ)]

{univ_pre ∗ nc : idlog 7→ repeat(texpb,γpre ,NULL(τ
′))

∗ idfresh = (idlog, texpb,γpre)}γpre[n:idfresh]

ArrayToRange(idpaddr, id
p
len) with n == (id

p
addr, id

p
len)

{univ_pre ∗ n′c : [idlog 7→ NULL(τ ′) | 0 ≤ i < texpb,γpre]

∗ idfresh = (idlog, texpb,γpre)}γpre[n:idfresh]

{univ_pre ∗ n′c : [idfresh.1 + i 7→ l[i]

∗ l[i] == NULL(τ ′) | 0 ≤ i < idfresh.2] (Conseq),NULL(τ ′) univ
∗ length(l) == idfresh.2}γpre[n:idfresh] FV(c) == V(c)

{univ_post}γpost

(Malloc)

As was the case for compilation, the back-translation might produce variable declarations that are
not present in the target code, breaking the restriction on If- and For-statements not containing
declarations. Hoisting of variable declarations will hence be required again for these two types
of statements. This never results in any problems with the proof of the back-translated code, as a
VarDecl statement does not alter any existing universal contracts, and just expands γ with the
declared variable identifier. Expediting variable declaration can never break a sound proof.

The fact that {P}γ sstm {Q}γ ′ in the below code, implies that {Q}γ ′ nondecl {Q}γ ′ ; since ’NULL(τ) univ’
and Q has the form of a universal contract. This separation logic state {Q}γ ′ is the one used to
proof the For statement using the For separation logic axiom.

80 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

tstm⇝b {P}γ sstm {Q}γ ′

sstm⇝ExtractDecl decl, nondecl

foreach(texp ≤ i < texp
′){tstm} ⇝b

{univ_pre}γpre
decl; NULL(τ) univ
{Q}γ ′\[i :_]

foreach(texpb ≤ i < texp
′
b){nondecl} V(c) == FV(c) ∪ i

{univ_post}γpost

(For)

We first introduce an auxiliary property we will be needing below. To prove the axiom for variable
assignment and some other axioms below, we need the following property of universal contracts:

Theorem 5 (Compositionality of universal contracts).
Assume {univ_pre}γpre holds, ie. the universal contract holds for any variable idprog in FV(c). Then
take a back-translated expression texpb where the type of the original texp is τ and that only uses

variables from FV(c). The separation logic statement univ_contrτ (texpb,γpre) can now be derived to

hold, IF texp does not store the same target pointer twice (ie. it would have stuckstm = skip in the

judgment texpb ⇝EmulateNulling
stuckstm, asgn), as is eg. the case in (a,a) if a is of type int∗ or in

((a,b).1,a) with a of the same type. On the other hand, eg. a == a and (a,a,b).3 are fine.

Proof.

Simple inductive case-based analysis on the target-type τ .

• If τ is int or τ ′s∗0 , then the universal contract is true, which automatically holds.

• If τ is τ ′t ∗, then texpb is either a back-translated pointer variable idprog (given that universal
contract holds), a back-translated null-pointer (null0, 0) (null-pointer case in universal contract
definition for pointers) or a projection of a tuple texp

′
b.i (take the ith case in the universal

contract of the tuple texp′b, which we know holds by induction).

• If τ is (τ1, . . . ,τk) then texpb is either a back-translated tuple variable idprog (given that universal
contract holds), a projection of a nested tuple texp′b.i (same as before) or a tuple (texp′b,1, . . . , texp

′
b,k)

(the universal contract holds for each texp
′
b,i by induction, and we combine these by using the

tuple case in the definition for universal contracts). This bullet is the reason why texp cannot
return the same target pointer twice in the final value, as we would have to use the same
non-duplicable universal contract multiple times here.

□

This compositionality propertywill be useful at any point where an arbitrary expression is associated
to a symbolic variable, ie. also when proving the axiom for the Return statement below.

Analogous to exp == NULL(τ) above, again note that the assignment created by n ⇝EmulateNulling
stuck, c below enforces the universal contract to hold for the source variable n, after executing the
assignment command c . This fact will henceforth be referred to as ’EmulateNulling univ’ and made
more concrete in the theorem 6. Intuitively, the reason this works is that EmulateNulling sets all
back-translated pointers that correspond to target-level capabilities and that are present in the
source-value n to (null0, 0), the null-pointer value required by their universal contract. Note that

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 81

we place the stuck statements at the start of the back-translated code, allowing the guard(false)
statement to prove any post-condition in the case of faulty target code. We will always show the
proof for the case where stuck ≡ skip, leaving this other, trivial, case implicit.

Theorem 6.

[EmulateNulling Univ] Given the contract {univ_pre}γpre , containing contracts for, among others, all

variables x present in an expression texpb (in the trivial variable erasure case, we have x = texpb =

idprog). By compositionality, we can now derive univ_contr(texpb,γpre), hereby reducing univ_contrpre
to univ_contr′pre by consuming non-duplicable resources corresponding to back-translated point-

ers. The property EmulateNulling Univ then states that applying the assignment asgn created by

texpb ⇝EmulateNulling
stuckstm, asgn (under the assumption that stuckstm = skip) will restore the

universal contract univ_contr′pre to univ_contrpre. It has been intuitively stated above why this works.

n ⇝EmulateNulling _, c TypeOfVart(n) = τ∗

{n′,n′′} = split(n, texp)⇝b
{univ_pre}γpre
{univ_pre′ ∗ univ_contrτ ∗(ns)} γpre(n) == ns

guard(! is_nullptr(n)); guard(0 < texpb < n.2);
{univ_pre′ ∗ nc : [ns.1 + i 7→ l[i] ∗ univ_contrτ (l[i]) |
0 ≤ i < length(l)] ∗ length(l) == ns.2 ∗ 0 < texpb,γ < ns.2}

//@split nc[texpb];
{univ_pre′ ∗ length(l) == ns.2 ∗ 0 < texpb,γ < ns.2

∗ n′c : [ns.1 + i 7→ l[i] ∗ univ_contrτ (l[i]) | 0 ≤ i < texpb,γ]

∗ n′′c : [ns.1 + i 7→ l[i] ∗ univ_contrτ (l[i]) | texpb,γ ≤ i < length(l)]}
n′ = (n.1, texpb);n

′′ = (n.1 + texpb,n.2 − texpb);
shift n′′c over texpb,γ , l

′ = take(l , 0, texpb,γ), l
′′ = take(l , texpb,γ ,ns.2)

{univ_pre′ ∗ length(l ′) == texpb,γ ∗ length(l ′′) == ns.2 − texpb,γ

∗ n′c : [ns.1 + i 7→ l ′[i] ∗ univ_contrτ (l ′[i]) | 0 ≤ i < length(l ′)]
∗ n′′c : [(ns.1 + texpb,γ) + i 7→ l ′′[i] ∗ univ_contrτ (l ′′[i]) |
0 ≤ i < length(l ′′)]}γpre[n′:(ns .1, texpb,γ)][n′′:(ns .1+texpb,γ ,ns .2−texpb,γ)]

{univ_pre′ ∗ univ_contrτ ∗(γ (n′)) ∗ univ_contrτ ∗(γ (n′′))}γ
c EmulateNulling univ,V(c) == FV(c)
{univ_post}γpost

(Split)

Note that in the above proof univ_pre′ must have also contained the original universal contracts
for n′ and n′′, because these variables were free in c . These original contracts become obsolete and
are leaked in the last step, when the contract univ_post is formed.

82 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

n′ ⇝EmulateNulling _, c
′ n′′ ⇝EmulateNulling _, c

′′

TypeOfVart(n′) = TypeOfVart(n′′) = τ∗

n = join(n′,n′′)⇝b
{univ_pre}γpre
guard(! is_nullptr(n′)); guard(! is_nullptr(n′′)); γpre(n

′) == n′s,γpre(n
′′) == n′′s

guard(n′′.1 == n′.1 + n′.2);
{univ_pre′ ∗ length(l ′) == n′s.2 ∗ length(l

′′) == n′′s .2
∗ n′c : [n

′
s.1 + i 7→ l ′[i] ∗ univ_contrτ (l ′[i]) | 0 ≤ i < length(l ′)]

∗ n′′c : [n′′s .1 + i 7→ l ′′[i] ∗ univ_contrτ (l ′′[i]) | 0 ≤ i < length(l ′′)]
∗ n′′s .1 == n

′
s.1 + n

′
s.2}

shift n′′c over length(l), l = append(l ′, l ′′), use n′′s .1 == n
′
s.1 + n

′
s.2

{univ_pre′ ∗ length(l) == n′s.2 + n
′′
s .2

∗ n′c : [n
′
s.1 + i 7→ l[i] ∗ univ_contrτ (l[i]) | 0 ≤ i < length(l ′)]

∗ n′′c : [n′s.1 + i 7→ l[i] ∗ univ_contrτ (l[i]) | length(l ′) ≤ i < length(l)]}
//@join n′c n

′′
c ;

n = (n′.1,n′.2 + n′′.2);
{univ_pre′ ∗ length(l) == n′s.2 + n

′′
s .2 ∗ nc : [n

′
s.1 + i 7→ l[i]

∗ univ_contrτ (l[i]) | 0 ≤ i < length(l ′)]}γpre[n:(n′
s .1,n′

s .2+n′′
s .2)]

{univ_pre′ ∗ univ_contrτ ∗(γ (n))}γ
c ′; c ′′ EmulateNulling univ,V(c) == FV(c)
{univ_post}γpost

(Join)

The Frame rule described below can be used to make the 2 back-translated statements in the below
rule match up.

p1 ⇝b {P}γ sstm1 {Q}γ ′

p2 ⇝b {Q}γ ′ sstm2 {R}γ ′′

p1;p2 ⇝b {P}γ sstm1; sstm2 {R}γ ′′

(Seq)

The If separation logic axiom requires an extra argument sexp or !sexp in the symbolic heap, but
this can be added in using the Conseq separation logic axiom while constructing the below proof.

The back-translations ofp1 andp2 in the below rulemight contain different variable declarations, and
might hence prove different universal contracts in their postconditions. As long as the environments
correspond on the variables they have in common, this is no problem, as we can eg extend the
proof of sstm1 by prepending it with the declarations decl \decl1, which is effectively what happens
during hoisting. The reason this works is again because ’NULL(τ) univ’.

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 83

p1 ⇝b {P}γ sstm1 {Q1}γ ′
1

p2 ⇝b {P}γ sstm2 {Q2}γ ′
2

D = dom(γ ′
1) ∩ dom(γ ′

2) γ ′
1(D) == γ

′
2(D)

sstm1 ⇝ExtractDecl decl1, nondecl1
sstm2 ⇝ExtractDecl decl2, nondecl2

decl = decl1 ∪ decl2

if sexp thenp1 elsep2
⇝b {P}γ decl; if sexpb then nondecl1 else nondecl2 {Q1 ∪Q2}γ ′

1∪γ
′
2

(If)

τ ⇝InvCompileType τ
′

γpost = γpre[idprog : idf] idf fresh
univ_pre ∗ idf == NULL(τ ′) ⇒ univ_post because

NULL(τ ′) univ

τ idprog ⇝b {univ_pre}γpre τ
′
idprog {univ_post}γpost

(VarDecl)

Note that the below two lines of code do indeed restore the universal contract, for the following
reason. Deriving univ_contr(texpb,γpre) requires ’using up’ the universal contracts of all the logical
variables appearing in texpb,γpre . The only non-duplicable part of a universal contract is the range
expression for τt-typed universal contracts. The assignments generated by EmulateNulling replace
exactly those non-duplicable parts that have been consumed to construct univ_contr(texpb,γpre) by
null pointer expressions, allowing the reconstruction of the consumed universal contracts.

In the case where texpb,γpre contains the same τt-typed logical variable twice, we will not be able
to construct a universal contract in the way outlined here. This forms no problem, however, as
the rules for EmulateNulling add guard(false) to the code in this faulty case, which allows us to
prove any contract using Conseq.

As outlined earlier, we use an auxiliary variable idaux to emulate nulling properly in the case of
recursive used of the variable idprog.

texpb, id ⇝EmulateNulling stuck, c

TypeOfVar(idprog) = τ τ ⇝InvCompileType τ
′

idprog = texp⇝b
{univ_pre}γpre
stuck;
τ ′arg idaux; idaux = texpb;
c EmulateNulling univ,V(c) == FV(c)
idprog = idaux; Compositionality: univ_contr(texpb,γpre) holds
{univ_post}γpost

(VarAsgn)

We cannot use our previously written procedures ArrayToRange and RangeToArray for the next
rule, as they do not work if nested range expressions are in play, which could be the case here. We
hence split off the size-1 range we need, and flatten this piece individually.

When assigning the expression texp2,b, we have to use resources from univ_pre′ to be able to apply
Compositionality, turning it into univ_pre′′ in the process. This is no problem, as the code c restores

84 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

the universal contracts of all variables that had their universal contracts consumed by applying
Compositionality in the first place.

Given that:

texp2,b ⇝EmulateNulling stuck, c

τ ⇝InvCompileType τ
′

The ArrayMut rule produces the following code:

n[texp1] = texp2 ⇝b
univ_pre
stuck;
{univ_pre′ ∗ univ_contrτ ∗(ns)} γpre(n) == ns

guard(! is_nullptr(n)); guard(0 ≤ texp1,b < n.2);
{univ_pre′ ∗ nc : [ns.1 + i 7→ l[i] ∗ univ_contrτ (l[i]) |
0 ≤ i < length(l)] ∗ length(l) == ns.2 ∗ 0 ≤ texp1,b,γ < ns.2}

if texp1,b == 0
then (. . .) Easier version of what follows
else

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 85

//@split nc[texp1,b];
if texp1,b == n.2 − 1
then (. . .) Easier version of what follows
else
{univ_pre′ ∗ length(l) == ns.2 ∗ 0 < texp1,b,γ < ns.2 − 1 ∗
n′c : [ns.1 + i 7→ l[i] ∗ univ_contrτ (l[i]) | 0 ≤ i < texp1,b,γ] ∗

n′′c : [ns.1 + i 7→ l[i] ∗ univ_contrτ (l[i]) | texp1,b,γ ≤ i < length(l)]}
//@split n′′c [1]; Conseq: shift n′′c over texp1,b and back after split
{nc,1 : [ns.1 + i 7→ l[i] ∗ univ_contrτ (l[i]) | texp1,b,γ ≤ i < texp1,b,γ + 1]
nc,2 : [ns.1 + i 7→ l[i] ∗ univ_contrτ (l[i]) | texp1,b,γ + 1 ≤ i < length(l)] ∗ . . .}

//@flatten nc,1;
univ_contrτ (l[texp1,b,γ])’s range chunks get named too, if applicable, with names nu

{nflat : ns.1 + texp1,b,γ 7→ l[texp1,b,γ] ∗ univ_contr
nu
τ (l[texp1,b,γ]) ∗ . . .}

τ ′∗ naux;naux = n.1 + texp1,b;
{∼}γpre[naux:ns .1+texp1,b,γ]

naux[0] = texp2,b; l ′ = update(l , texp1,b,γ , texp2,b,γ),Compositionality
//@collect nflat,nu; nu only needed if applicable
{univ_pre′′ ∗ length(l ′) == ns.2 ∗
nc,1 : [ns.1 + i 7→ l ′[i] ∗ univ_contrτ (l ′[i]) | texp1,b,γ ≤ i < texp1,b,γ + 1]
nc,2 : [ns.1 + i 7→ l ′[i] ∗ univ_contrτ (l ′[i]) | texp1,b,γ + 1 ≤ i < length(l ′)] ∗
n′c : [ns.1 + i 7→ l ′[i] ∗ univ_contrτ (l ′[i]) | 0 ≤ i < texp1,b,γ]}

//@join nc,1 nc,2;
//@join n′c n

′′
c ;

{univ_pre′′ ∗ length(l ′) == ns.2 ∗
nc : [ns.1 + i 7→ l ′[i] ∗ univ_contrτ (l ′[i]) | 0 ≤ i < length(l ′)]}

c EmulateNulling univ,V(c) == FV(c)

The back-translation for array lookup is almost identical to the one for array mutation, with as
only difference that a few lines at the core of the back-translation differ. The rest is boiler-plate,
and the proof is identical to the proof above. Names are kept the same as in the previous proof, to
allow for reuse and easier reading.

Again, some explaining with regards to the use of Compositionality in this proof is in order.
The reason the three terms on the line marked with (1) recombine to univ_post on the final
line is the following: the assignment taux[0] = v , created by EraseIdProg (which creates values
upholding universal contracts), restores the universal contract of any variables that gave up non-
duplicable resources during the creation of univ_contrτ ∗(texp1,b,γ) through compositionality. Only
the resources from univ_contrτ ∗(texp1,b,γ) at index texp2,b,γ (ie. index 0 in taux) have been consumed

86 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

in the construction of univ_contrτ (idfresh) and need to be replaced by a universal value created
through EraseIdProg.

Given that:

TypeOfVart(idprog) = τ
τ ⇝InvCompileType τ

′

texp1,b[texp2,b],τ ⇝EraseIDProg v

The ArrayLkup rule produces the following code:

idprog = texp1[texp2]⇝b

{univ_pre′ ∗ univ_contrτ ∗(texp1,b,γ)} by Compositionality
guard(! is_nullptr(texp1,b)); guard(0 ≤ texp2,b < texp1,b.2);
{univ_pre′ ∗ nc : [ns.1 + i 7→ l[i] ∗ univ_contrτ (l[i]) | Abbreviated texp1,b,γ to ns
0 ≤ i < length(l)] ∗ length(l) == ns.2 ∗ 0 ≤ texp2,b,γ < ns.2}

if texp2,b == 0
then (. . .) Easier version of what follows
else

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 87

//@split nc[texp2,b];
if texp2,b == texp1,b.2 − 1
then (. . .) Easier version of what follows
else
//@split n′′c [1];
//@flatten nc,1;

{nflat : ns.1 + texp2,b,γ 7→ l[texp2,b,γ] ∗ univ_contr
nu
τ (l[texp2,b,γ]) ∗ . . .}

τ ′∗ taux; taux = texp1,b.1 + texp2,b
{∼}γpre[taux:ns .1+texp2,b,γ]

idprog = taux[0];
{∼}γpre[taux:ns .1+texp2,b,γ][idprog:l [texp2,b,γ]]

taux[0] = v l ′ = update(l , texp2,b,γ ,vγ),EraseIDProg univ

{nflat : ns.1 + texp2,b,γ 7→ l ′[texp2,b,γ] ∗ univ_contr
n′
u

τ (l ′[texp2,b,γ]) ∗

univ_contrnu
τ (l[texp2,b,γ]) ∗ . . .}

//@collect nflat,nu; n′u only needed if applicable
//@join nc,1 nc,2;
//@join n′c n

′′
c ;

{univ_pre′ ∗ length(l ′) == ns.2 ∗
nc : [ns.1 + i 7→ l ′[i] ∗ univ_contrτ (l ′[i]) | 0 ≤ i < length(l ′)]
∗ univ_contrτ (idfresh)}γpre[idprog:idfresh]

{univ_pre′ ∗ univ_contrτ ∗(texp1,b,γ)
∗ univ_contrτ (idfresh)}γpre[idprog:idfresh] FV(c) == V(c), (1)

{univ_pre}γpre = {univ_post}γpost
guard(texp)⇝b {univ_pre}γpre guard(texpb) {univ_post}γpost

(Guard)

7.3.2 Function application back-translation rule. To show that the universal contract holds for the
below FApp rule, we use the original separation logic FApp rule and the fact that the contract of
this function fbt is described in the FDecl rule below.

We using the bt subscript here for function names, so we do not need any substitutions afterwards
when back-translating stubs: it can happen seamlessly because of the newly created names.

In the below rule, we consider EmulateNulling to be applied to the entire tuple texpb simultane-
ously, so that even if different arguments use the same back-translated linear capability, execution
still gets stuck because a guard(false) is inserted. This mirrors what happens in the target-level
operational semantics for the FApp rule.

88 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

The below rule uses auxiliary variables idaux, so that the nulling of linear capabilities can happen
before the call to fbt. This is necessary, because the linear capability erasure in the target language
also happens while the function f is turned into a hole • by the operational semantics rule FApp.

texpb, id ⇝EmulateNulling stuck, c

Σ(f) = {τret,τarg idarg} τarg ⇝CompileType τ
′
arg

{id} = f (texp)⇝b
{univ_pre}γpre
stuck;
{univ_pre′ ∗ univ_contrτarg (texpb,γ)}γpre Compositionality

τ ′arg idaux; idaux = texpb
c EmulateNulling univ : univ_pre restored
{univ_pre ∗ univ_contrτarg (texpb,γ)}γpre[idaux:texpb,γ]
{id} = fbt(idaux);

{univ_pre ∗ univ_contrτret (idfresh)}γpre[id :idfresh]
{univ_post}γpost

(FApp)

As in the compilation case, this rule includes back-translation of target-holes •
idarg=texp to source-level

holes •
idarg=sexp

POST
. This is the reason why holes in the target language need to record their arguments

as well, so that we can just set sexp = texpb. The variable POST then just follows straightforwardly
from the generation of the universal contract for the function with declaration TypeOfVar(id) • (_)
using the FDecl rule defined below, and equating POST to the postcondition.

To make the above application of FDecl work, we need the assumption that it will generate the
same logical variable names as the application of FDecl for the function f that was originally called,
as these are the names that the callee frame has used at the time when the hole was created. We can
assume this without loss of generality, as we might as well have kept the name f of the originally
called function with the hole, and used this name in the call to FDecl here, resulting in the same
contract (and hence logical variable names) as the actual back-translated f . Any names clashes of
symbolic variables resulting from this assumption and function calls in general (eg. when calling
the same f twice) can be safely ignored, as we could always introduce renaming countermeasures.
Another way around this would be to not require the strict condition POST == Q during frame
linking, but to allow a renaming function fRename to be applied to the logical variables of Q (and
then also in the application of the FApp rule). This would probably be slightly more elegant and
require less assumptions than the current approach.

7.3.3 Rules for return and frame. The postcondition after the return statement is univ_contr(result),
which is the universal contract of any function. This can be achieved using the Conseqence rule
(including chunk leaking). This rule is an exception to the general back-translation, as it does not
have univ_post as the separation logic postcondition, but rather univ_contr(result).

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 89

tstm⇝b {P}γ sstm {Q}γ ′

tstm; return {texp} ⇝b
{univ_pre}γpre univ_pre == P ∗ Pframe,γpre == γ ∗ γframe

sstm;
{Q ∗ Pframe}γ ′∪γframe

{univ_contr(texpb,γ ′)}γ ′ Compositionality
return {texpb}

{univ_contr(result)}γ ′

(Return)

No Conseqence is needed to glue together back-translated pieces of code, because all back-
translated pieces fit automatically. However, a separate form of Framing is needed, to re-add
any pieces we did not need for the proof we just constructed. We need to re-add variables to the
environment, as well as add the universal contracts for these variables to the heap. We also need
to be able to frame off auxiliary variables after they have served their purpose, since they do not
correspond to target variables (and hence do not need universal contracts) and will not be used
anymore anyway.

The below frame rule allows adding in variables and their universal contracts. Because this type
of framing is added in, it suffices to look at the current code to construct the environment γpre
for a piece of code. The Frame rule allows (temporarily) deviating from the universal contract we
defined above in 7.2.2, to allow for linking of different back-translated pieces of code, and to allow
describing the separation logic state during execution (which we will do later).

In the below ruleγframe contains all variables that are frame off that did appear in the target language,
whereas γAUX contains all auxiliary variables that are framed off (where we do not care what they
map to).

tstm⇝b {P}γ c {Q}γ ′

R = ∗{univ_contrτ (idprog) |
idprog ∈ γframe ∧ TypeOfVart(idprog) = τ }

γs = γ ⊎ γframe ⊎ γAUX γ ′
s = γ

′ ⊎ γframe ⊎ γAUX

tstm⇝b {P ∗ R}γs c {Q ∗ R}γ ′
s

(Frame)

7.3.4 Rules for functions. At first sight it seems like we cannot compile the back-translated function
contract from the function declaration itself, as we are lacking all variable names for the returned
values. Fortunately, we do not need the names of the return arguments, as their logical counterparts
are just called result in the contract postcondition. These universal contracts for the result logical
variables will automatically follow from the return statement and the Conseqence axiom. In
conclusion, function contexts Σi only need to contain the function declaration in the case of the
target language, as we use universal contracts and the function’s contract can be derived from its
declaration.

90 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

τarg ⇝InvCompileType τ
′
arg

τret ⇝InvCompileType τ
′
ret

τret f (τarg idarg)

⇝b
Decl τ

′
ret fbt(τ

′
arg idarg)

//@pre univ_contrτarg (idarg) //@post univ_contrτret (result)

(FDecl)

The reason for writing ⊢ (denoting a proof) in front of the back-translated functions, components
and programs in the following rules is that the result of the back-translation should be a separation-
logic proof of the source program, and not just the source program itself. Proving that the result is
indeed a proper separation logic proof of the source program proves the back-translation sound.

For the two rules below, the properness of the written ⊢ follows from the ImplFVerif and Con-
tFVerif separation logic axioms. In the case of the implemented function, the existence of the
triple {Seppre}[idarg:idarg] sstm; return sexp {Seppost}γ required by the ImplFVerif axiom follows di-
rectly from a combination of all previous axioms and the below Frame and Return rules, to glue
everything together and to back-translate return statements, respectively.

itfunc = τ f (τarg idarg)

itfunc ⇝b
Decl τ

′
ret fbt(τ

′
arg id

′
arg)//@pre Seppre //@post Seppost

tstm; return {texp} ⇝b {Seppre}[id′arg:id
′
arg]

sstm; return {sexp} {Seppost}γ

itfunc {tstm; return {texp}}

⇝b
⊢ τ ′ret fbt(τ

′
arg id

′
arg)//@pre Seppre //@post Seppost{sstm; return {sexp}}

(ImplFVerif)

csfunc = τ f (τarg idarg)

csfunc ⇝b
Decl τ

′
ret fbt(τ

′
arg id

′
arg)//@pre Seppre //@post Seppost

csfunc ⇝b ⊢ τ
′
ret fbt(τ

′
arg id

′
arg)//@pre Seppre //@post Seppost

(ContFVerif)

Rules for stubs. As discussed before, we need to back-translate the target-level incall and outcall stubs
that are created during the compilation of the verified component s , to form a bridging component
between the universal contracts of the back-translated context and the concrete boundary contracts
of the source component s . The below BackIncall and BackOutcall inference rules describe this
back-translation.

We need a set of bridging functions, created by performing a specific kind of back-translation on
the verified component’s target level stubs, to bridge the two previously described gaps. Not only
the contracts should be matched in the back-translated stubs, but the concrete representations of
program variables require rewriting as well, as a transition to/from a source-level representation
from/to a back-translation after compilation representation of the same variables is made before
and after wrapped function calls in the back-translated stubs.
As a simple example, we require a transition to and from the representation f (int ∗ a)//@pre n :
a′ 7→int [b, c,d] ∗ a

′ == a (the source representation) from and to f (int∗a, (int∗, int)n)//@pre (nchunk :
n.1 7→int l ∗ length(l) = n.2) ∨ n = null0 (back-translation after compilation of the same source

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 91

function). The first contract is the concrete contract and the second contract the universal contract.
In order to make this conversion between the arguments int ∗ a and int ∗ a, (int∗, int) n feasible in
both directions, we have to make the following assumption on the form of the contracts of boundary
functions (which are the ones that cause stubs). This assumption holds on the postcondition of the
function contract for export boundary functions (causing incall stubs) and on the precondition for
import boundary functions (causing outcall stubs). We assume that all logical variables denoting
addresses of the chunks in the contract of f are bound to a single expression in the pure heap,
where this single expression contains only logical variables corresponding to arguments and result
variables (in the case of the postcondition). Given this assumption, we know that we are able to
easily calculate the value of each chunk variable, as it has to be represented by a separation logic
expression exp, in which all variables are program variables. Eg. for the variable (int∗, int) n from
the above example, can hence just write n = (exp, 3) in the stub to get the correct value for n at
runtime, where exp is a.

The below rules extract the necessary data to perform the conversion between program variables.
The first rule is where our condition on boundary contracts comes into play; we know that the exp
in the below rule is also a valid sexp, because we enforced this restriction on contracts. No base
case is needed, as we enforced there to be precisely one condition per chunk address and length, so
we would never hit any base case.

id == exp ∧ cond, id ⇝FindInPath exp

(FindInPathT)

cond , (id == exp)

cond, id ⇝FindInPath res

cond ∧ cond, id ⇝FindInPath res

(FindInPathF)

ϵ, path⇝ExtractLenAddress ϵ
(ExtractLenAddressEmpty)

path,n ⇝FindInPath res

chunks, path⇝ExtractLenAddress res

(nchunk : n 7→ [v1, . . . ,vk]⇝ExtractLenAddress nchunk = (res,k); res
(ExtractLenAddress)

Note that we cannot reuse the regular back-translation rules we used for the target-level components,
as these rules use universal contracts and we are using the back-translated in- and outcall stubs
to transform from/to the minimal contract to/from a non-minimal source-level contract here. We
therefore need new back-translation rules for the few constructs that appear in target-level stubs.We
call these new rules the stub back-translation rules, denoted⇝stub

b . These rules just back-translate
input target-level code to source-level code without proof. We will be constructing the proof for the
back-translated stubs in a separate theorem below, after we present the back-translation rules for
incall and outcall stubs. The rules back-translate to simpler code than the vanilla back-translation
rules, because they will use different contracts (as will be clear from the theorem later); they do
not require all the checks the original back-translation rules used, and they do not make use of
Conseqence to minimize contract postconditions in-between. Since the compiled stubs only
contain variable declarations and assignments, array lookups, guard statements and sequencing

92 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

(and function application, but its back-translation is the identity in this case), we only need stub
back-translation rules for those target-level statements.

τ ⇝InvCompileType τ
′

τ idprog ⇝stub
b τ ′ idprog

(VarDeclStub)

In the below rule, no erasure or stuck checking needs to happen, unlike in the regular back-
translation, because all back-translated assignments are of the form idprog = addr(n).

idprog = texp⇝stub
b idprog = texpb

(VarAsgnStub)

In the below rule, again no erasure or stuck checking needs to happen, unlike in the regular
back-translation, because all back-translated assignments are of the form idprog = n[k].

TypeOfVart(idprog) = τ τ ⇝InvCompileType τ
′

idprog = texp1[texp2]⇝
stub
b τ ′∗ taux; taux = idprog.1; taux = texp1,b[texp2,b]

(ArrayLkupStub)

guard(texp)⇝stub
b guard(texpb)

(GuardStub)

p1 ⇝stub
b sstm1

p2 ⇝stub
b sstm2

p1;p2 ⇝stub
b sstm1; sstm2

(SeqStub)

ΣCs in the rule below is the environment of the source-level component s , where we use the
assumption that boundary functions’ contracts are separable into a path and a chunk part, both for
the pre-and postcondition. We just use the compiled stub notation from the compilation rules as
starting point for the back-translation, as this will make our life easier. All stub variables have the
same exact meaning as they did in the Incall and Outcall compilation rules. As usual, superscript
t signifies a target-related variable. Erasure emulation in the source is not required, as

In the below two rules, the sets of names n andm appear both as the names of the source level array
chunks, but also as the names of the back-translated reified chunks (ie. program variables). This
does not result in problems as long as we consider the two name-spaces (for chunks and program
variables) disjoint in the proofs. This would however result in problems during compilations, if the
source chunks were reified again. We ignore these issues during recompilation, as they are solely
name-related and can always be fixed by using different names and/ or renaming using the Conseq
rule.

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 93

fsdecl = {τret} f (τarg idarg)
//@pre PREs ∗ PREp

//@post POST s ∗ POSTp

ftdecl = {τ tret,τ
t
post} f (τ targ idarg,τ

t
pre m)

f btdecl = {τret,τpost} fbt(τarg idarg,τpre m)

//@pre univ_contrτ t
arg,τ t

pre
(idarg,m)

//@post univ_contrτ t
ret,τ

t
post

(result, resultn)

⊢ fsdecl ⇝Incall ftdecl, stubincall ftdecl ⇝b
Decl f

b
tdecl

cspre, dpre, apre, cppre ⇝
stub
b cs

b
pre, d

b
pre, a

b
pre, cp

b
pre

POST s, POSTp ⇝ExtractLenAddress ala
stubincall =

ftdecl{
cspre;

dpre;apre; cppre;
τ tret result;τ

t
post n;

{result,n} = fcomp(idarg,m);

return {result,n}}



stubincall,b =

f btdecl{

cs
b
pre;

RangeToArray(m.1,m.2)
dbpre;abpre; cpbpre;
τret result;τpost n;
{result} = f (idarg);
ala;
ArrayToRange(n.1,n.2)
return {result,n}}


fsdecl ⇝BackIncall ⊢ stubincall,b

(BackIncall)

94 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

fsdecl = {τret} f (τarg idarg)
//@pre PREs ∗ PREp

//@post POST s ∗ POSTp

ftdecl = {τ tret,τ
t
post} f (τ targ idarg,τ

t
pre m)

f btdecl = {τret,τpost} fbt(τarg idarg,τpre m)

//@pre univ_contrτ t
arg,τ t

pre
(idarg,m)

//@post univ_contrτ t
ret,τ

t
post

(result, resultn)

⊢ fsdecl ⇝Outcall ftdecl, stuboutcall ftdecl ⇝b
Decl f

b
tdecl

dpre, apre, cspost, dpost, apost, cppre ⇝
stub
b d

b
pre, a

b
pre, cs

b
post, d

b
post, a

b
post, cp

b
pre

PREs, PREp ⇝ExtractLenAddress ala
stuboutcall =

{τ tret,τ
t
post} fcomp(τ

t
arg idarg,τ

t
pre m){

dpre;apre;

τ tret result;τ
t
post n;

{result,n} = f (idarg,m);
cspost;

dpost;apost; cppost;
return {result,n}}



stuboutcall,b =

fsdecl{τpre m;
ala;
dbpre;abpre;
ArrayToRange(m.1,m.2)
τret result;τpost n;
{result,n} = fbt(idarg,m);
cs

b
post;

RangeToArray(n.1,n.2)
dbpost;a

b
post; cp

b
post;

return {result}}


fsdecl ⇝BackOutcall ⊢ stuboutcall,b

(BackOutcall)

In contrast to the case for regular function back-translation, it is not obvious that ⊢ stubincall,b and
⊢ stuboutcall,b hold in the previous two rules. In order to prove the back-translation of these two
rules sound, we will need to prove this explicitly in the following theorem:

Theorem 7 (BackIncall and BackOutcalll produce sound proofs).
The output proofs ⊢ stubincall,b and ⊢ stuboutcall,b appearing in BackIncall and BackOutcalll,

respectively, are sound separation logic proofs (using the ImplfVerif axiom) of the functions stubincall,b
and stuboutcall,b, respectively.

Proof.

We split up the proof into the two cases mentioned in the theorem. Both cases are very similar and
symmetrical; the pre-function call part for incall stubs is similar to the post-function call part for
outcall stubs and the other way around.
1. BackIncall

A proof of the stub stubincall,b’s contract is presented here. This proof allows application of the
ImplfVerif separation logic axiom.

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 95

(1): There are no nested universal contracts inside the range, since eachm’s type is that of a
reified array chunk τ∗ in the target language, where τ contains no further pointers types.

(2): Call the set of (necessarily fresh) logical variables that appear in PREs: V(PRE). Since
condarray(m) has the same number of array resources with the same lengths (due to csbpre)
as those in PREs, we can rename all logical variables in condarray(m) and all chunknames
(from mrange to m) to obtain the assertion PREs. Call the resource addresses appear-
ing in V(PRE): ADDR(PRE). Then [m : m] in the environment can be renamed to
[m : (ADDR(PRE),km)] after the renaming operation.

(3): V(PRE) is the set of program variables declared by dbpre and assigned by abpre. The expres-
sions assigned arem.1 and ∀0 ≤ i < km .m.1[i] for allm ∈ m (cfr. stub backtranslation
rules). Since [m : (ADDR(PRE),km)], the environment applied to those expressions again
results in V(PRE). We hence get [V(PRE) : V(PRE)] in the environment.

(4): The guard expressions in cppre are obtained by reifying all conditions in PREp. They
contain no pointer-typed variables or expressions (only variables from idarg and V(PRE))
and are hence identical to the expressions in cpbpre. Because [idarg : idarg][V(PRE) : V(PRE)]
in the environment, applying cpbpre will amount to adding exactly PREp to the separation
logic state.

(5): ala assigns n = (addrn,kn) for all (n, addrn) ∈ (n,ADDR(POST)). This is true because ala
gathers the chunk address expressions and the fixed lengths from POSTp. The address
expressions can only contain variables from result and idarg, as required before. In γ , idarg
maps to itself and result to x (but x is also substituted for result in POST), resulting in the
correct expressions for the addresses of the program variables n.

(6): univ_contrτ t
post

(n) almost trivially follows from condrange(n), given an observation about
n analogous to (1) and by adding in a conditional ? through Conseq

96 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

{univ_contrτ t
arg,τ t

pre
(idarg,m)}

[idarg:idarg][m:m]

cs
b
pre; Guardsm != (null, 0) andm.2 == km for allm ∈m

condrange(m) =mrange : [m.1 + i 7→ lm[i] | 0 ≤ i < length(lm)]
∗ length(lm) ==m.2 == km (1)

{univ_contrτ t
arg
(idarg) ∗ condrange(m)}

[idarg:idarg][m:m]

RangeToArray(m.1,m.2)
condarray(m) =marray :m.1 7→ lm ∗ length(lm) ==m.2 == km
univ_contrτ t

arg
(idarg) ≡ true, since the types τ targ do not contain pointers

{condarray(m)}
[idarg:idarg][m:m]

(2)
{PREs}[idarg:idarg][m:(ADDR(PRE),km)]

dbpre;a
b
pre; (3)

{PREs}[idarg:idarg][m:_][V(PRE):V(PRE)]

cp
b
pre; (4)

{PREs ∗ PREp}[idarg:idarg][V(PRE):V(PRE)]

τret result;τpost n;
{PREs ∗ PREp}[idarg:idarg][V(PRE):V(PRE)][result:_][n:_]

{result} = f (idarg); Apply FApp axiom

{POST s ∗ POSTp[result 7→ x]}
[idarg:idarg][result:x][n:_] x is fresh

Define V(POST) and ADDR(POST) for POST s, analogous to PREs before.
ala; (5)

{POST s ∗ POSTp[result 7→ x]}
[result:x][n:(ADDR(POST),kn)] Conseq on POST s, leak POSTp

{condarray(n)}[result:x][n:n]
ArrayToRange(n.1,n.2)
{condrange(n)}[result:x][n:n] (6)

return {result,n}

{univ_contrτ t
post

(resultn)}[result:result][n:r esultn]

univ_contrτ t
ret
(result) ≡ true, since the types τ tres do not contain target pointers

{univ_contrτ t
ret,τ

t
post

(result, resultn)}[result:result][n:r esultn]
(BackIncallProof)

2. BackOutcall

A proof of the stub stuboutcall,b’s contract is presented here. This proof allows application of the
ImplfVerif separation logic axiom. It is very analogous to the previous proof, and can hence be short-
ened in a couple places. We use the notation (n)In to refer to point (n) from the above Incall proof.

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 97

The definitions of condrange(m), condarray(m), V(PRE), ADDR(PRE), V(POST) and ADDR(POST) are
reused from the Incall proof.

(1): Cfr. (4)In with n, POST instead ofm, PRE. One difference is that cpbpost now also contains
variables from:
• V(POST) with [V(POST) : V(POST)]. This constitutes no problem.

• result with [result : x]. This is the only relevant non-identity-mapping present in the
current environment. The pure heap that will be created by the guard statements in
cp

b
post is hence not POSTp, but rather POSTp[result 7→ x].

98 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

{PREs ∗ PREp}[idarg:idarg]

τpre m;

ala; cfr. (5)In with PRE substituted for POST and without result
{PREs ∗ PREp}[idarg:idarg][m:(ADDR(PRE),km)]

dbpre;a
b
pre; cfr. (3)In

{PREs ∗ PREp}[idarg:idarg][m:(ADDR(PRE),km)][V(PRE):V(PRE)] Conseq on PREs, leak PREp

{condarray(m)}
[idarg:idarg][m:m][V(PRE):V(PRE)]

ArrayToRange(m.1,m.2)
{condrange(m)}

[idarg:idarg][m:m][V(PRE):V(PRE)] cfr. (6)In

τret result;τpost n;

univ_contrτ t
arg
(idarg) ≡ true, as before, so we just add it

{univ_contrτ t
arg,τ t

pre
(idarg,m)}

[idarg:idarg][m:m][V(PRE):V(PRE)][result:_][n:_]

{result,n} = fbt(idarg,m); Apply FApp axiom
{univ_contrτ t

ret,τ
t
post

(x ,n)}
[idarg:idarg][V(PRE):V(PRE)][result:x][n:n] x and n (logical) are fresh

univ_contrτ t
ret
(x) ≡ true, as before, so we just leak it

cs
b
post; Guards n != (null, 0) and n.2 == kn for all n ∈ n, cfr. (1)In

{condrange(n)}[idarg:idarg][V(PRE):V(PRE)][result:x][n:n]
RangeToArray(n.1,n.2)
{condarray(n)}[idarg:idarg][V(PRE):V(PRE)][result:x][n:n] cfr. (2)In with n, POST instead ofm, PRE
{POST s}[idarg:idarg][V(PRE):V(PRE)][result:x][n:(ADDR(POST),kn)]

dbpost;a
b
post; cfr. (3)In with n, POST instead ofm, PRE

{POST s}[idarg:idarg][V(PRE):V(PRE)][result:x][n:_][V(POST):V(POST)]

cp
b
post; (1)

{POST s ∗ POSTp[result 7→ x]}
[idarg:idarg][V(PRE):V(PRE)][result:x][V(POST):V(POST)]

return {result}

{POST s ∗ POSTp}[result:result]
(BackOutcallProof)

□

7.3.5 Rules for components and programs. Componentwell-formedness is identical towell-foundedness
in the source language (bar conditions on boundary contracts):

UniqueId(itfunc ctfunci) UniqueId(ctfunce)
Subset(ctfunce, itfunc)

⊢bWF itfunc //@import ctfunci //@export ctfunce
(CompWF)

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 99

No import or export statements are present in the result of this rule, as the result of the back-
translation of one component is not a full-fledged component: the different resulting component
back-translations will be merged into one single back-translated component when the full program
is back-translated below. The notation ⊢ pvx here denotes that each function in the set has had its
universal contract proven individually.

tcomp = itfunc //@import ctfunci //@export ctfunce ⊢bWF tcomp

∀x ∈ itfunc. x ⇝b ⊢ pvx

tcomp⇝b ⊢ pvx
(CompVerif)

Program well-formedness is identical to the target language:

C = C1 . . . Cj . . . Ck

Cj = itfuncj //@import ctfuncij //@export ctfuncej
∀j ∈ {1..k}. ∀l ∈ {1..k}. j , l ⇒ UniqueId(itfuncj itfuncl)

∀j ∈ {1..k}. Subset(ctfuncij , ctfunce1 . . . ctfuncek)
∃j ∈ {1..k}. Subset((τ id()), ctfuncej)

⊢bWF C //@main = id

(ProgWF)

Program back-translation is different from the case for compilation. One component (the verified
component) is now compiled as usual from source to target. On the other hand, the whole back-
translation is merged into the same component, together with the back-translated stubs, so that
all contracts containing lists and other hard-to-compile-to-stubs elements are only present on
contracts of internal functions, and not in the contracts of import or export boundary functions.

Another difference with the case for compilation, is how the main function id is handled. During
compilation, we were sure that id would still be an exported function in the target program, and
no countermeasures had to be taken. During back-translation, however, this is not the case, as all
components in C below are combined in the single source component Cb, losing their individual
import and export statements in the process. This combination is necessary, because we would
otherwise obtain boundary functions forCb in the back-translation that do not respect the conditions
on boundary function contracts. If id corresponds to an exported function ofCt, there is no issue, as
it is an exported function ofCs too. If id corresponds to an imported function ofCt, it will be exported
by some component in C , since ⊢bWF tprog, and hence also (as the back-translation of an outcall
stub) by Cb. Lastly, a problematic case arises when id corresponds to a function that is exported by
a component inC , but is not an imported function of Ct. Because of the component combination in
the back-translation, this function will no longer be exported by Cb, it will just be renamed to idbt,
causing problems calling the main function in the source language. The solution is to create an
artificial incall stub τ id() //@pre true //@post true {τ idprog; idprog = idbt(); return idprog} (with
τ the return type of the back-translated main function idbt) and to add id to the exported functions
of Cb. The proof of this incall stub with the ImplfVerif axiom is trivial, given one application of
the Conseq axiom to prove the contract.

Notice the stub mismatch in the cases where the target main function id is exported by a component
fromC but not imported byCs. In this case, an empty incall stub call occurs at the start of execution
in respectively the source and target language, but not in the -respectively- target and source
language. Given that any (possibly back-translated) main function has true as its precondition and

100 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

the incall stub will hence perform no checks, this extra call does not influence equi-termination
and hence forms no fundamental issue for the security proof.

The above discussion amounts to the following two rules (where the first rule embodies the
problematic case). The judgment id,Ct,C ⇝ShouldExportMain mainExport,mainStub checks if the
above conditions for the problematic case are met, and if so, generates a declaration to be exported
from Cb and a main function incall stub as described above.

C = C1 . . . Cj . . . Ck

Cj = _ //@import _ //@export ctfuncej
Ct = _ //@import ctfuncit //@export _

∃j . (τ id()) ∈ ctfuncej τ id() < ctfuncit
τ ⇝InvCompileType τ

′

mainExport = τ ′ id() //@pre true //@post true
mainStub = mainExport {τ ′ idprog; idprog = idbt(); return idprog}

id,Ct,C ⇝ShouldExportMain mainExport,mainStub

(ExportMain)

C = C1 . . . Cj . . . Ck

Cj = _ //@import _ //@export ctfuncej
Ct = _ //@import ctfuncit //@export _
∄j . (τ id()) ∈ ctfuncej ∨ τ id() ∈ ctfuncit

id,Ct,C ⇝ShouldExportMain ϵ, ϵ
(NoExportMain)

⊢ Cs ⇝ Ct tprog = Ct C //@main = id ⊢bWF tprog
Cs = v //@import ui //@export ue

∀X ∈ C .X ⇝b ⊢ f unX f unX = f

ue ⇝BackIncall ⊢ stubin,b

ui ⇝BackOutcall ⊢ stubout,b

id,Ct,C ⇝ShouldExportMain mainexp,mainst

Cb = funX stubin,b stubout,b mainst //@import ue //@export ui mainexp

⊢ Cs, (C, id)⇝b ⊢ Cs Cb //@main = id

(ProgVerif)

The last step in proving the back-translation sound, is the proof that the above ProgVerif rule
for the back-translation of a target program actually produces a sound separation logic proof of
the source program sprog = ⊢ Cs Cb //@main = id . This entails proving that all conditions of the
ProgVerif separation logic axiom are met for this output source program. The two conditions are:

• All components have a proof constructed using the CompVerif axiom, ie. (in this case) ⊢ Cs
and ⊢ Cb. The proof ⊢ Cs is given. The proof ⊢ Cb has to be constructed using the CompVerif
separation logic axiom. The proof of every individual function in ⊢ Cb follows immediately
from the back-translation, so only ⊢WF Cb (created using the CompWF axiom) remains.
The condition UniqueId(isfunc ue) holds true because UniqueId(isfunc) holds (for every compo-
nentCj inC it holds that ⊢bWF Cj , and mutual disjointness follows from ⊢bWF tprog), UniqueId(ue)

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 101

holds (because ⊢WF Cs holds and ⊢WF Cb reuses Cs’s exported functions as imported functions)
and because ue is disjoint from isfunc (the set of function names isfunc has bt-subcripts in the
function names, except for back-translated outcall stubs, which have the same names as ui, and
are hence disjoint from the names in ue because ⊢WF Cb).
The condition UniqueId(ui) holds true because because ⊢WF Cs holds and ⊢WF Cb reuses Cs’s
imported functions as exported functions.
The condition Subset(ui, isfunc) holds true because the function names in stubout,b are exactly
ui.
The two ⊢WFBD-conditions follow from the fact that CompWF is known to hold for Cs and the
fact that Cb uses Cs’s exported functions as imported functions and vice versa. This is exactly
the reason why restrictions on boundary contracts were required to be symmetrical before.

• ⊢WF sprog: reasonably simple from the ProgWF axiom because there are only 2 components.
The first condition, UniqueId, holds becauseCs only contains function names with bt-subscripts
in the function names, apart from the back-translated outcall stubs. The outcall stub names are
imported by Cs and hence not part of Cs’s function names (because Cs is well-formed).
The Subset condition on the imported function immediately holds for Cb and Cs , because they
import each other’s exported functions and vice versa, and both components are well-formed
(cfr. previous bullet).
Lastly, the back-translated main function id is either exported by Cs or by Cb, as explained
above the ProgVerif back-translation rule.

7.4 Simulation

A new security simulation relation S has to be defined to specify a simulation between a target
level component and its back-translation, just like we did for a source-level component and its
compilation in the correctness part of the proof. A major difference with the correctness proof,
however, is that the execution can now shift from the back-translated to the verified component or
vice versa. We still use the simulation relation Rcomp for the verified component and its compilation.
The proofs will hence need to include a proof that stubs (incall or outcall depending on the situation)
allow the shifting between the component-wise correctness relation Rcomp and the component-
wise security relation Scomp, while preserving simulation. This also means that we have to prove
that stubs and their back-translation either both get stuck during execution of some guard, or
they both continue running (we implicitly proved this for the correctness proof, but there were no
source-level stubs there and all we had to prove was that the target-level stubs would never get
stuck in the absence of a malicious attacker).

The security simulation relation S will now be defined, and its definition will be followed by the
proof that it is indeed a simulation relation, a fact that is used to construct an equi-termination
argument by simulation later on. The relation S is again indexed by the structures sprog and tprog,
that non-ambiguously define the source code in source and target, as we need this source code for
the FApp rule in the operational semantics. S is defined as follows: (again, like R, on components).

sprog,tprog ⊢ (⟨ss,hs⟩ | s) S (⟨st,ht⟩ | t) ⇔

tprog = Ct C //@main = id

sprog = Cs Cb //@main = id

⊢ Cs ⇝ Ct

102 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

⊢ Cs, (C, id)⇝b ⊢ sprog

Initial case
t = tprog, s = sprog

hs = ht = •, ss = st = ϵ

Executing case

s = si , t = ti , ss = ssi , st = sti⊎
hsi = hs,

⊎
hti = ht,

Loc(b, ssi ,hs, sti ,ht)
∀i ∈ {1, . . . ,k}. sprog, tprog ⊢

xi
b (⟨ssi ,hsi ⟩ | si) ∆i (⟨sti ,hti ⟩ | ti)

Frame Order

∆i = (ϵ | Incall) RFrames | (ϵ | Outcall) SFrames

RFrames =Rcomp
+ (ϵ | Outcall SFrames)

SFrames =Scomp
+ (ϵ | Incall RFrames)

Inverse environment
InverseMap(δi , Pi ,γi , ssi ,hsi) given si = ⊢ {Pi }γi sci {Qi }γ ′

i

(∆i =Rcomp) ? xi = δi : xi = ϵ

Separation logic linking
i > 0 ⇒ Link(si−1, si ,δi−1,δi)

The only difference between the separation logic linking conditions in S above compared to in R is
the generalization of δi to all kinds of stack frames. δi is defined in exactly the same way in all 4
types of relations as it was in Rcomp and allows for argument linking.

7.5 Assertion Semantics

The judgment hs ⊢srcδ P used for frame linking is reused from the correctness part of the proof
above.

7.6 Component simulation relations

We define another auxiliary function invvalmapb , to map target to source values, defined as follows
(with b again some bijection between locations, but now in the target-to-source direction):

invvalmapb : VALt → VALs
invvalmapb (k) = k
invvalmapb (null0) = null0
invvalmapb (l

i
0) = (b(l), i)

invvalmapb (null) = (null0, 0)

invvalmapb (l
[0,n]) = ((b(l), 0),n + 1)

invvalmapb ((v1, . . . ,vk)) = (invvalmapb (v1), . . . , invvalmapb (vk))

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 103

Just like for valmapb an important property of invvalmapb is its compositionality:

Theorem 8 (Compositionality).
The function invvalmapb is compositional. We define this as follows: if ss(ids) = invvalmapb (st(idt))
for some sets of source and target variables ids and idt , then for any parametrized target expression

texp[idt], it holds that Jtexpb[ids]Kss = invvalmapb (Jtexp[idt]Kst). In other words, applying the same

expression to variables related by valmap, keeps the results related.

Proof.

Almost trivial case-based analysis on the form of target expressions texp. However, back-compiled
expressions are not identical to their target counterpart, as we discussed earlier in section 7.2.3. We
therefore quickly check the compositionality cases for the length and addr functions (defined on
linear capabilities only) here:

• length is back-translated to the second component projection .2. Checking the linear capability
cases in the definition of the invvalmapb function (ie. the null and the non-null case), we can
immediately see that the capability’s length and the second coordinate of its back-translation
correspond, and are hence related by the integer case of invvalmapb .

• addr is back-translated to the projection .1. The argument is identical to the one made in the
previous bullet, but now we have correspondence through the zero-length-capability case in
the definition of invvalmapb (with index i = 0).

□

The reason for the use of invvalmapb instead of the earlier valmapb here is that invvalmapb ◦ valmapb =
idf , but valmapb ◦ invvalmapb , idf , because of τ∗-types in the target, which cannot be the result
of compilation and hence cannot be passed from Scomp to Rcomp frames. This left-inverse implies
that invvalmapb also holds for the R-frames, whereas, valmapb doe not hold for the S frames per
se.

The relation Scomp is noticeably simpler than Rcomp, because the back-translated code mimics the
target code as tightly as possible, whereas some semantics shifts do happen during compilation.

sprog, tprog ⊢b−1 (⟨ss,hs⟩ | s) Scomp (⟨st,ht⟩ | t) ⇔

Notice that we inverted the meaning of b for this relation: ⊢b−1 above!
This is possible because b is a bijection. This interpretation fits better with
the target-to-source theme of the back-translation.
t ⇝b s

s = Σax ⊢ {P}γ sstm; return sexp {Q}γ ′ ∧ Σax ∈ Σax
sprog

104 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

Relating target to source

hs ≈ ht

∀l .ht(l) = [v1, . . . ,vm]

⇔ hs(b(l)) = [invvalmapb (v1), . . . , invvalmapb (vm)]
ss ≈ st

dom(ss) = dom(st) ⊎ idaux

∀id ∈ dom(st). ss(id) = invvalmapb (st(id))

Universality

Notice that P , Q , γ and γ ′ are of the form described in the Universal
Contract definition in subsubsection 7.2.2, bar any (possibly auxiliary)
variables (and their universal contracts) that are framed off by an outer
Frame rule. This fact automatically follows from t ⇝b s above. P and γ
have the following form (including the framing):
γ = [dom(st) : iduniv][idaux : _] UniqueId(iduniv)
P = ∗{univ_contrτ (γ (idprog))|

idprog ∈ dom(st) ∧ TypeOfVart(idprog) = τ }

An important caveat is the following: since linear capabilities are the program-level embodiment
of resources, ie. heap permissions, we would expect any linear capability value l [a,b] to cause
indexes [a,b] to be present at location l in the heap of the current frame during the simulation.
This condition is not explicitly enforced above. However, it is enforced indirectly! The condition
hs ⊢

src
δ P used to define δ , that has to hold over every frame, forces the universal contracts of each

back-translated target variable to correspond with the source heap. Since both the source and
target heap and the source and target stack are related by invvalmap in the definition of Scomp,
the aforementioned condition on the correspondence of linear capabilities in the target-and the
target-level heap must hold as well.

We now define relations Incall for incall stubs and Outcall for outcall stubs. These are the missing
links that allow transitioning between simulation in Scomp and in Rcomp.

We define the Incall relation as follows:

Note that we do not constrain the set idarg to be the same set that the hole in the previous Rcomp
frame is annotated with. Having different sets of arguments is no problem, because frame linking
will enforce correspondence of concrete program values for us. The same happens for the set of
variables declared by dpre in outcall stubs: we do not have to force these variables to have concrete
values in the Outcall outcall relation, as frame linking will enforce any relevant values.

sprog, tprog ⊢b (⟨ss,hs⟩ | s) Incall (⟨st,ht⟩ | t) ⇔

fsdecl = {τret} f (τarg idarg)

//@pre PREs ∗ PREp //@post POST s ∗ POSTp

fsdecl is an exported function of the verified component Cs of sprog

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 105

Applying the BackInCall back-translation rule to fsdecl and reusing the
names from this rule with the same values, we can construct the following
two partially executed function bodies (they have the same form as a
partially executed incall stub and its back-translation, but we will not
enforce that relation, because it is needlessly complicated):

t =

{
{result,n} = •

id=(idarg,m);
return {result,n}

}

suvf =


{result} = •

id=(idarg)
POST s∗POSTp

;
ala;
ArrayToRange(n.1,n.2)
return {result,n}


∀id ∈ idarg. st(id) = valmapb (ss(id))

γ (idarg) = idarg

with γ the environment appearing in the precondition of the triple s . The
previous constraint is not strictly needed, but simplifies the coming proofs
somewhat, because the backtranslation soundness proof uses the fact that
all argument variables map to logical variables of the same name, and it
will allow more seamless reuse of facts from these proofs.
result ,n ∈ dom(ss), dom(st), dom(γ)

Reusing the BackIncall soundness proof from theorem 7 from the point
of the function call to f onwards; where we replace f by the above source-
level hole • (with its appropriate contract), we can (given the above con-
straints on γ and omitting any other non-interesting parts of γ) now
trivially prove the following triple:
s = {true}

[idarg:idarg][result:_][n:_] suvf

{univ_contrτ t
ret,τ

t
post

(result, resultn)}[result:result][n:r esultn]

Very analogously, although slightly more complicated because the values of some variables have
to be stored before the function outcall and remembered, we can define the Outcall relation as
follows:

sprog, tprog ⊢b (⟨ss,hs⟩ | s) Outcall (⟨st,ht⟩ | t) ⇔

fsdecl = {τret} f (τarg idarg)

//@pre PREs ∗ PREp //@post POST s ∗ POSTp

fsdecl is an imported function of the verified component Cs of sprog
Applying the BackOutCall back-translation rule to fsdecl and reusing the
names from this rule with the same values, we can construct the following
two partially executed function bodies (they have the same form as a
partially executed outcall stub and its back-translation, but we will not
enforce that relation, because it is needlessly complicated):

106 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

t =


{result,n} = •

(idarg,m);
cspost;
dpost;apost; cppost;
return {result,n}}


suvf =



{result,n} = •
(idarg,m)

POST(fbt)
;

cs
b
post;

RangeToArray(n.1,n.2)
dbpost;a

b
post; cp

b
post;

return {result}


We reuse the set of all variables introduced in the precondition PREs called
V(PRE), from the back-translation soundness proofs. This is actually an
overestimate, since we could be using the subset V(PREused) = (V(POSTp)\

V(POST s)) \ idarg, but it makes formalization slightly more uniform and
causes no other problems.
∀id ∈ idarg,V(PRE). st(id) = valmapb (ss(id))

γ (idarg) = idarg γ (V(PRE)) = V(PRE)
with γ the environment appearing in the precondition of the triple s . The
previous constraint is not strictly needed, but simplifies the coming proofs
somewhat, because the back-translation soundness proof uses the fact
that all argument and precondition variables map to logical variables of
the same name, and it will allow more seamless reuse of facts from these
proofs.
result ,n ∈ dom(ss), dom(st), dom(γ)

Reusing the BackOutcall soundness proof from theorem 7 from the
point of the function call to f onwards; where we replace f by the above
source-level hole • (with its appropriate contract), we can (given the above
constraints on γ and omitting any other non-interesting parts of γ) now
trivially prove the following triple:
s = {true}

[idarg:idarg][V(PRE):V(PRE)][result:_][n:_] suvf

{POST s ∗ POSTp}[result:result]

7.7 Simulation proofs

Analogous to the case for correctness, this section proves the BTEqiTermination rule through
the properties of the different simulation relations we previously described. We first dedicate a
subsection to proving the building blocks needed for the proof of BTEqiTermination and only
then proof this rule in the next subsection.

7.7.1 Auxiliary simulation proofs. Just as we did for the proof of the SimToEqiTermin inference
rule during the correctness proof, we will -in this section and further on- again assume that the
back-translation and the back-translated incall and outcall stubs produce code where program-
integrity errors (ie. dynamic typing errors, scoping issues, array index out of bounds errors, etc.)
appear simultaneously in both source- and target language or do not appear at all. This means that

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 107

if we know that either the source or target program terminates, we know that the other one can
never get stuck on these types of program errors (it cán get stuck on regular guard statements!).
We do not explicitly prove this assumption, but think it is a reasonable one to make, given how the
back-translation combines with the source-semantics to mimic the target semantics (this is the
central idea of the back-translation), including eg. emulating linearity of capabilities, keeping array
lengths the same as in the target, adding all necessary guard to make the back-translated code get
stuck when the target code does, etc. For any non-trivial ways to get stuck, the proofs below will
of course still contain proofs of equi-failure.

Simulation for Scomp. Just like we did for the R-relation in the previous section (a proof that we will
adapt to our current setting in the next paragraph), we now prove that S where ∀i . ∆i ==Scomp is a
simulation relation. We denote this specific restriction of S as Scomp and define the equivalent for
Rcomp frames only, ie. Rcomp. We look at the setting where we only have back-translated components
and no verified components, so Scomp frames only, because we want to prove that both Rcomp and
Scomp allow simulation between source and target before we look at transitions between them
through stubs. The theorem below is analogous to how we analyzed R being a simulation relation
in the absence of stubs in the previous section.

Theorem 9 (Scomp is a simulation relation).
The following 2 properties of Scomp hold:

(1) If (⟨ss,hs⟩ | s) Scomp (⟨st,ht⟩ | return), then s = {P} return {Q}. This rule is used to garantee

equi-termination in the proof, when we know that the target program terminates

(2) Whenever s2 Scomp s1 and s1 ↪→ s ′1 (using the shorthand state notation), there exists a s
′
2 such that

s2 ↪→
+ s ′2 and s

′
2 Scomp s ′1. We again need a semantics to operationally manipulate separation

logic triples instead of regular source expressions. This requires a kind of combined semantics, in

nature just like the lifted correctness semantics, but different, as detailed below.

For the lifted operational semantics in the previous theorem, we should use the same style of
semantics as in the preservation theorem 4 in the correctness section, but now perform multiple
steps at a time in ↪→ (because the intermediate steps do not have minimal contracts). This means
that we could actually write s2 ↪→ s ′2 in the above theorem, since all steps will be combined into
one anyway.

We still need to prove that any intermediate states are valid separation logic proofs, but this is
trivial. The definition of these operational semantics is trivial, as each step just corresponds to the
reduction of one back-translated block (so we know the postcondition Q is also a minimal contract)
to ’skip’ and transforms the minimal contract in the precondition to the one in the postcondition
of the executed block the next one according to this block. Let us illustrate with the Malloc lifted
semantics rule as an example:

γ = [dom(ss) : dom(ss)]
c = (guard(texpb > 0);

τ ′∗ naux;naux = malloc(texpb ∗ sizeof(τ ′));n = (naux, texpb))

{univ_contr _pre}γ c {univ_contr _post}γ
(Malloc)

↪→(Malloc)
{univ_contr _post}γ skip {univ_contr _post}γ

(Skip)

108 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

The exact code c comes from the Malloc back-translation rule, and the fact that the universal
contract proof exists is proven there as well. The same schema can be followed to define every rule
of our lifted operational semantics. Note that we will never need a lifted operational semantics rule
to execute a single malloc statement on its own, as the back-translation will never produce such a
statement.

The only exceptions to the above schema are If-statements, For-statements, sequencing with skip
and the ProgExec rule (but all are simple rules). These cases are handled similarly to the lifted
operational semantics in the correctness proof. Just as in the correctness case, we disregard the
issues of hoisting for the If and For rule. For the If rule, we just ignore the fact that different
branches can now have different environments, since this clearly does not influence execution. In
the For rule, we again employ the alternative (but clearly equivalent) operational semantics where
fresh resource names are created in the source proof during a loop unroll, and fresh variable names
are created in the target, so that there is no need for hoisting.

In conclusion, we actually made a security version of theorem 4, that introduced the operational
semantics for the compilation, and proved an analogous result, ie. that the proof tree of a back-
translated program can soundly be manipulated along with the back-translated program itself.

Given this definition of the lifted semantics, we can now prove that Scomp is indeed a valid simulation
relation, ie. the equivalent of the proof of theorem 2, but now for theorem 9 above.

Proof of theorem 9 property 1.

The first case is again trivial and just follows from the definition of the back-translation and of
Scomp. □

Proof of theorem 9 property 2.

For the second case, the proof is again structured in a case-based fashion, in the same way as the
proof of theorem 2 in the correctness section. The proof will contain a lot of similarities to the
latter proof. Applications of the Frame rule are again left implicit in the proof; they are stripped
from the back-translated code when encountered. Unlike for correctness, applications of Conseq
need not be erased, since the back-translation did not require applications of Conseq outside of
back-translated code blocks.

The proof is again structured in a case-based fashion, in the sameway as the proof of the preservation
theorem. The trees for s ′pi from the preservation theorem are reused here, as is the notation.

Every case of the proof consists of three consecutive proof steps:

(1) First, the lifted operational semantics rule that can be applied on s is derived from the fact that
t ⇝b s and inversion. This step is kept implicit, because the rule in source and target language
will always match.

(2) The fact that the lifted operational semantics code is applicable (the preconditions of each
back-translated statement are upheld in the current program state) to s is proven. This entails
that for each rule, we will have to investigate the applicable back-translation rule, check what
code is generated, and make sure this code is executable (ie. the lifted operational semantics
step can be taken) in the current state given that (⟨ss,hs⟩ | s) Scomp (⟨st,ht⟩ | t) holds. We can

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 109

safely ignore the introduced stuck code in some of the back-translation rules, since the target
could not take a step if the same linear capability were used multiple times in a single statement.

(3) Given the source and target level operational semantics steps that are taken, namely ⟨ss,hs⟩ |

s ↪→ ⟨s ′s,h
′
s⟩ | s

′ and ⟨st,ht⟩ | t ↪→ ⟨s ′t ,h
′
t⟩ | t

′, it is proven that if (⟨ss,hs⟩ | s) Scomp (⟨st,ht⟩ | t),
then also (⟨s ′s,h

′
s⟩ | s

′) Scomp (⟨s
′
t ,h

′
t⟩ | t

′).

Skip
Prove that the rules are applicable:

Trivially true, since there are no conditions for applying the Skip rule.

Prove that Scomp still holds after the step:

Given that t ⇝b s holds, where t = skip; t ′ and s = skip; s ′, implies that t ′ ⇝b s
′ will still hold after

executing Skip in the target language. Since the heap and the stack are unaltered in both target and
source language, Scomp obviously still holds.

Malloc
Prove that the rules are applicable:

We examine the code generated by the Malloc back-translation rule. The check guard(texpb > 0)
will not fail, since texp > 0 must hold in the source (otherwise, it could not have executed Malloc),
given that ss and st are related by invvalmap and given compositionality of invvalmap. The fact
that these checks will not fail often just derives from the fact that the target code s can execute, and
some precondition in the target-level operational semantics. The other statement’s preconditions
are then easily met.

Prove that Scomp still holds after the step:

The new malloced location ls is set to map to the target-malloced location lt in b. The assigned
variable n then clearly relates with itself through invvalmap in the source and target stack (given
compositionality). The heaps are still related through invvalmap, since default values are generated
in the malloced location, and these are related through invvalmap.

Ghost Commands Only Split and Join exist in the target-language operational semantics. Flatten
and Collect can hence be disregarded.

Prove that the rules are applicable:

Again, all guard statements in the back-translation must hold, given that the target language can
take a step (ie. the precondition of the ghost statement holds) and that source and target stack and
heap are related by invvalmap.

Prove that Scomp still holds after the step:

It is easy to see that the back-translated assignments parallel the behavior of the target-level built-in
functions join and split.⇝EmulateNulling makes sure that the old values still correspond between the
source and target language as well.

IfTrue
Prove that the rules are applicable:

Prove that if JtexpKs = true in the target, then the same holds in the target because of composition-
ality, so the IfTrue rule is the only one that can be applied there.

Prove that Scomp still holds after the step:

Nothing significant changes. A Frame rule might be discarded, but this cannot make δ invalid.

110 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

IfFalse
Analogous to IfTrue.

VarDecl
Prove that Scomp still holds after the step:

This step is trivial, because the variables will receive default values, related by invvalmap, given
how⇝InvCompileTypes maps target types to source types and the definition of⇝def. The appropriate
new associates have to be added to b and δ .

VarAsgn
Prove that Scomp still holds after the step:

We have to show that JsexpKs and JsexpbKs have invvalmap-corresponding values in the target and
source language. This follows directly from compositionality.⇝EmulateNulling makes sure that the
rest of the stack is still related by invvalmap.

FApp
During an FApp call, a new frame is created in the target language. We have to prove that the same
happens in the source language, that both the last already existing frame and the newly created
frame are related by Scomp and that frame linking holds between them, so that the entire execution
is still valid under Scomp.

Prove that the rules are applicable:

Trivial, since there are no real requirements to call a function in the source (except for the function
existing, which is obviously true given that the source code is back-translated from the target code).

Prove that Scomp still holds after the step:

First of all, we prove that Scomp holds in the new frame. The expressions texp and texpb provided
to f and fbt in respectively the target and source languages are related by invvalmap, since both
stack frames are and compositionality holds. Additionally, we provide the next frame with the part
of the minimal heap that satisfies hs ⊢srcδ univ_pre. This heap must exist, since Scomp holds in the
caller frame. We hand the corresponding heap ht over in the target language, so that both heaps
are related by invvalmap. The δ for the new frame is derived from the stack-values of the provided
source expressions texpb, and retains the values of the previous frame for any other logical variables
that were transferred. The mapping b remains unaltered, since no new locations are created.

Now we prove that Scomp still holds in the old frame. Related stack and heap values migrated to the
new frame, so these two correspondences still hold (given that the source language also emulates
linear capability erasure). The precondition and heap that were consumed cannot cause problems
for the condition hs ⊢srcδ univ_pre, since they corresponded to each other. No new logical variables
were declared, so δ did not change.

Frame linking is immediately satisfied from the fact that the new frame derived its δ from the
previous one.

Return
During execution of a Return statement, the last frame is destroyed in the target language. We
have to prove that the same happens in the source language and that the new last frames in the
source and target languages are related by Scomp, so that the entire execution is still valid under
Scomp.

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 111

Prove that the rules are applicable:

Trivial, since there are no real requirements to return from a function in the source.

Prove that Scomp still holds after the step:

The expressions that are returned in source and target correspond through invvalmap, and hence so
will the newly assigned return values in the previous stack frame after the function call. Since hs ⊢srcδ
P holds in the next frame, before the return statement, and universal contracts are compositional
(as proven during the back-translation), this same condition will also hold over the postcondition
univ_post, ie. hs ⊢srcδ univ_post. The full source and target heaps from the next frame, are then just
transferred to the previous one along with this produced postcondition univ_post, meaning that
hs ⊢

src
δ univ_pre will still hold for the resulting heaps and produced postcondition and that the

resulting heaps will still correspond through invvalmap in the previous frame. The function δ is
adapted for the new returned values, but this does not influence frame linking, and b again remains
identical.

ArrayMut
We can ignore most of the back-translated code, as this is just related to the separation-logic proof
(and some guard statements that obviously holds, similarly to the Malloc case) Again uses the
correspondence, caused by compositionality, between the source and target values of evaluated
expressions to prove that the resulting heaps will still be related.

ArrayLkup
We can ignore most of the back-translated code, as this is just related to the separation-logic
proof (and some guard statements that obviously holds, similarly to the Malloc case) Uses the
correspondence between the source and target heaps to prove that the new stack frames will
correspond as well.

ForUnroll
The operational semantics rule ForUnroll consists of nothing more than unrolling the for loop, in
both the source and target languages.

As was the case for the correctness proof, we again use the alternative schema (as mentioned above)
which ignores hoisting.

Prove that the rules are applicable:

Since the expressions texp and texp′ in the target ForUnroll rule are equal to sexp and sexp′ in the
source, since invvalmap holds over the source and target stack frames due to Scomp and given the
compositionality of invvalmap, it holds that both for loops will either be unrolled to corresponding
bodies or neither one will be.

Prove that Scomp still holds after the step:

This is trivial, since simply unrolling the for loop does not change any state.

GuardTrue
Trivial through compositionality.

ProgExec
Trivial, because stack and heap are empty in the produced source and target code, and so are the
symbolic heap and the arguments, since main functions are without arguments.

□

112 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

The previous proof makes the following inference rule almost trivial to prove (in the pure back-
translation setting):

(⟨ss,hs⟩ | s) Scomp (⟨st,ht⟩ | t)

s ⇓ ⇔ t ⇓
(SCompToEqiTermin)

The proof makes use of the fact that Scomp is a simulation relation and is very similar to the proof
of SimToEqiTermin we made in the correctness section.

Proof.

Right to left direction

A case-based analysis on the compilation rules shows that the source code’s lifted semantics,
described above, takes a single lifted operational semantics step for each step the target code takes.
If the target code terminates, it ends in a return statement, and so does the source code in that case
(by the first result of Theorem 9 and assuming it does not get stuck during execution). The source
program hence terminates as well.

Left to right direction

Starting from the current (terminating) source program s , either the corresponding target program
t

• is stuck. We have to prove that this case cannot occur. We have to prove that if the source
program does not get stuck during its execution, then neither does the target program that it
was back-translated from, or, by contraposition, that if the target program gets stuck during
execution, then so does the source program. This intuitively follows from the fact that all
target-language checks are either reified during compilation or present in the source-language
operational semantics.

• has terminated in a single return statement (the only statement a non-stuck program can
naturally terminate in).

• can take a step, and hence (by the second result of Theorem 9) there is some number n (in fact,
1) of steps that s can take to s ′, which correspond to one step taken from t to t ′. The target
program takes at most as many steps as the terminating source program. Using determinacy of
source language semantics and the second result of Theorem 9, the resulting programs s ′ and t ′
are still related by Scomp.

This case-based analysis is repeated until termination (which will happen, since we know that t
terminates). □

It is implicit in the proof of the previous rule, but again important for the sanity of our back-
translation, that stuck code is back-translated to stuck code, and never to diverging code, as stated
in the assumptions at the start of this section.

Simulation for Rcomp. As mentioned above, we can define a relation Rcomp, similar to Scomp, that is a
restriction on the relation S , where only Rcomp frames occur. Notice that this relation Rcomp in fact
exactly corresponds to the relation R we defined during the correctness proof (since we also used a
no-stubs version of compilation⇝NoStubs there). The following result is hence immediate from the
correctness proof:

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 113

(⟨ss,hs⟩ | s) Rcomp (⟨st,ht⟩ | t)

s ⇓ ⇔ t ⇓
(RCompToEqiTermin)

Where it is again implicit that there is equi-stuckness between code and its compilation, ie. the
compiler will not relate stuck code to diverging code or vice versa.

Incall and Outcall are sound. Now we prove that the transformation between Scomp and Rcomp
frames in the back-translated in- and outcall stubs works, ie. they perform their bridging function
properly. More concretely, we prove theorems 11 and 12 below. Theorem 12 is very similar to
theorem 11, but with the roles of Rcomp and Scomp swapped, and each mention of Incall swapped
with Outcall. Their proofs are similar as well and hence not entirely repeated.

In the proofs, we will make use of the following property, derived from the compositionality of
valmapb:

Theorem 10 (Guard equi-failing).
Given a target-level guard statement guard(texp) containing no variables of pointer type (ie. lin-

ear capabilities). If, for all variables V(texp), it holds in the current frame that ss(V(texp)) ==
invvalmapb−1 (st(V(texp)) (or, equivalently using valmapb , since they are each other’s inverse in the

absence of target-level pointers), then the guard statements guard(texp) and guard(texpb) equi-fail,
ie. either both succeed or both fail.

Proof. Straightforward from the compositionality property of invvalmapb−1 , which gives us that
JtexpKss == invvalmapb−1 (JtexpbKst). Both expressions must be of int type to be well-typed, and
hence equal to the same integer k , as seen from the integer case in the definition of valmapb. Given
the same integers in source and target, both guard statements will obviously equi-fail. □

Theorem 11 (Incall stub bridging).
Bridging pre function call: Given a program execution such that

sprog, tprog ⊢ (⟨ss,hs⟩ | s) S (⟨st,ht⟩ | t)

consisting of n frames, and where the nth frame is an Scomp frame

sprog, tprog ⊢b−1 (⟨ssn ,hsn⟩ | sn) Scomp (⟨stn ,htn⟩ | tn)

where tn ≡ (id = f (texp); c) with f an exported function of the verified component Cs of sprog (ie. an

incall stub is about to be called). Applying the (lifted) operational semantics to both the target and

source code then causes one of two scenarios to occur:

(1) Both the source code s and the target code t get stuck during the execution of the incall stub.

(2) Both s and t take a number of steps, ie. s ↪→+ s ′ and t ↪→+ t ′, and afterwards it holds that

(⟨s ′s,h
′
s⟩ | s

′) Scomp (⟨s
′
t ,h

′
t⟩ | t

′)

consisting of n + 2 frames, where an Incall frame and an Rcomp frame have been added compared

to before.

Bridging post function call: Given a program execution such that

sprog, tprog ⊢ (⟨ss,hs⟩ | s) S (⟨st,ht⟩ | t)

114 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

consisting of n frames, and where the n − 1st and nth frames are respectively an Incall and an Rcomp
frame

sprog, tprog ⊢b (⟨ss(n−1),hs(n−1)⟩ | sn−1) Incall (⟨st(n−1),ht(n−1)⟩ | tn−1)

sprog, tprog ⊢b (⟨ssn ,hsn⟩ | sn) Rcomp (⟨stn ,htn⟩ | tn)

where tn ≡ return texp (ie. a return to an incall stub is about to happen). Applying the (lifted)

operational semantics to both the target and source code then causes the following scenario to occur:

Both s and t take a number of steps, ie. s ↪→+ s ′ and t ↪→+ t ′, and afterwards it holds that

(⟨s ′s,h
′
s⟩ | s

′) S (⟨s ′t ,h
′
t⟩ | t

′)

consisting of n − 2 frames, where the Incall frame and an Rcomp frame have been removed compared

to before. If n − 2 ≤ 0, however, execution successfully terminates in a return statement (the return

statement of the incall stub) for both s and t .

Proof.

Bridging pre function call: It is clear that the next 2 newly created frames will be an Incall
frame, when the function f is called, and an Rcomp frame, when the incall stub calls the function f .
We now have to prove that, following the operational semantics, the relations we expect to hold
actually hold for the 2 new frames, and that the relation Scomp still holds for the original callee
frame.

We first make some more general observations that will contain most of the proof’s complexity:

(1) The location association mapping b stays the same before and after the two new frames are
created, since no locations are created during this incall.

(2) Given the function call relationship between the different frames, we have the following links
between their δ functions:

[texpb]δn = δn+1(idarg,m)

,
δn(V(PRE(fbt)) \ idarg) = δn+1(V(PRE(fbt)) \ idarg)

and
δn+2 = δn+1 |V(PREc∗PREp)∪idarg

. This means (as usual swiping some logical variable renaming-related issues under the rug)
that frame linking, using the Link predicate, for the new frames is immediately satisfied.

(3) By the compositionality of invvalmapb−1 in the nth frame, combined with the fact that argument
values are passed from frame n to n + 1, it holds that ss(n+1)(idarg,m) ==

invvalmapb−1 (st(n+1)(idarg,m)) and hence, for the arguments, also that valmapb (ss(n+1)(idarg)) ==
st(n+1)(idarg), because none of the idarg are reified resources, and without the cases for target
linear capabilities, invvalmap and valmap are each other’s inverse. Due to frame n + 1 ↔ n + 2
argument passing with the same arguments idarg, valmapb (ss(n+2)(idarg)) == st(n+2)(idarg) will
hold as well. Frame linking trivially holds over the argument variables idarg in both frame
transitions.

(4) After the call to f in the target (and to fbt in the source) in frame n, a hole •
idarg=texp (•idarg=texpbPOST(fbt)

in the source) remains. The universal precondition PRE(fbt) is consumed in the source, and
part of the nth frame heap hsn = hs,PRE ⊎ h′

s,n is transfered to frame n + 1: the heap hs,PRE, the

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 115

smallest heap such that hs,PRE ⊢srcδn
PRE(fbt) holds (it must exist, since Scomp holds for frame n), is

transfered. In the target, we transfer the smallest heap ht,PRE, subheap of htn = ht,PRE⊎h′
s,n , such

that ∀l .hs,PRE(l) = [v0, . . . ,vk] ⇔ ht,PRE(b(l)) = [valmapb (v0), . . . , valmapb (vk)] holds. This
target heap must exist, because Scomp contains a linking condition ∀l .htn(l) = [v1, . . . ,vm] ⇔
hsn(b

−1(l)) = [invvalmapb−1 (v1), . . . , invvalmapb−1 (vm)], and reified resources for boundary
functions such as f never contain nested resources (ie. nested pointers) (boundary function
contracts cannot contain range expressions), hence invvalmapb−1 and valmapb are eachother’s
proper inverse in this scenario.

(5) The declared and assigned sets of variables dpre and dbpre will be related by valmapb , since the
variablesm (and hence also their addresses) are related by invvalmapb−1 and so are the passed-in
heaps hs,PRE and ht,PRE, as mentioned above. The assignments apre and abpre consist solely of
taking addresses of the variablesm and accessing these heaps.

(6) Given the relations between the variablesm in both target and source, and between the variables
dpre and dbpre (points 3 and 5), Guard equi-failing gives us that the checks cspre and cppre equi-fail
with their respective back-translations, which is precisely what we want.

(7) After the Incall frame has performed its call to f (fcomp in the target), the remaining code in
the Incall frame is exactly equal to the code for t and s presented in the Incall relation.

(8) We need the following auxiliary result: hs,PRE ⊢srcδn+1
PREc ∗ PREp holds, if hs,PRE ⊢srcδn+1

PRE(fbt)
holds and execution does not get stuck (which is the case, given point 4 and the correspondence
between δn and δn+1 highlighted in point 2 above). Assume this first judgment does not hold
but the second one does, ie. δn+1 applied to either PREc or PREp is inconsistent or inconsistent
with hs,PRE. Since the checks csbpre and cp

b
pre check exactly the information present in PREc and

PREp (cfr. theorem 7), the execution would have gotten stuck in this case. The auxiliary result
hence holds for the case of non-equi-stuck execution.

(9) The n + 1st frame will just pass the acquired heaps hs,PRE and ht,PRE to the n + 2nd frame. We
now have to prove (in order to prove the Rcomp relation) that hs,PRE ⊢srcδn+2

PREc ∗ PREp. Since
δn+2 = δn+1 |V(PREc∗PREp)∪idarg , this is immediate from the previous point.

(10) Perhaps the most technical part of the proof is proving the condition st(n+2),ht(n+2),reify ⊢
tgt
δ,b

PREs ∗ PREp (ht(n+2),reify is irrelevant, since there are no range resources in boundary contracts).
Range assertions cannot be used in boundary contracts, and we hence only need to check the
correct reification of array resources. The case LogTgtCorrArrName for this judgment is
indeed satisfied for every chunkm in PREs. This setm is the same set that appears in the incall
stub, which is related with itself through invvalmapb−1 , as shown in point 3. Name sexpm the
expressions passed from frame n as arguments for the variablesm. The fact that γn+1(m) =m
then gives us that δn+1(m) = JmKss(n+1) = (maddr,mlen). We know that each logical m in m
corresponds to a universal contract of pointer type in the precondition PRE(fbt) of the source
incall stub, wherem.1 is the address andm.2 the length (cfr. definition universal contract). Since
the chunks in PREs are simply derived from the chunks in PRE(fbt) by applying cspre,maddr and
mlen are the correct addresses for all chunksm in PREs as well, ie. for each chunkm : exp 7→ exp ′;
it must hold that expδn+1 ==maddr and exp ′δn+1 == [v0, . . . ,vk] ⇒ k + 1 ==mlen. Combining
this with the invvalmapb−1 relation with the targetm from above, we get exactly the result from
LogTgtCorrArrName.

116 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

Given these observations, we can now summarize why the relation S still holds over the new frames.
Point 6 handles the equi-failing case, so we can assume success for the rest of this proof.

Frame linking is immediate from point 2. For al 3 frames n,n + 1 and n + 2, the condition
InverseMap(δi , Pi ,γi , ssi ,hsi) holds for the δ ’s described in point 2. For frame n, this is trivial, as
we keep the same δ as before the call, with exceptions for the erased variables, but their universal
conditions have been consumed anyway, and the non-consumed separation logic state P ′ clearly still
correspondswith the remaining heaph′

sn through this δ . Framen+1 simply transferred its separation
logic state and heap to the next frame and hence trivially satisfies the InverseMap predicate (given
that all variables map to themselves in γ). Point 9 proves the heap-logic correspondence for frame
n + 2 and the ss ↔ δ -correspondence follow easily, since ss(n+2) consists of argument values idarg
only, right after the function call.

The Scomp relation in frame n still holds, because capability nulling in the source language is
emulated wrt. the target (cfr. the FApp back-translation rule) and we hence retain the required
invvalmapb−1 relation between the stack frames ssn and stn , because the transfered heaps hs,PRE
and ht,PRE were minimal and corresponded with each other (ie. the remaining heaps will too) and
because universality of the contract is trivially retained.

For frame n + 1, the Incall relation holds because of the matching code, as mentioned in point 6
and because of the valmapb -correspondence for idarg, as mentioned in point 3.

For frame n + 2, the Rcomp relation holds because of the valmapb relation between the stack frames
ssn+2 and stn+2 mentioned in point 2 and the source and target heap correspondence mentioned in
point 4. The condition st(n+2),ht(n+2),reify ⊢

tgt
δ,b PREs ∗ PREp is proven in point 10 above.

Bridging post function call: Now we have to prove that once execution returns from the nth
Rcomp and n − 1st Incall frames, that the Scomp relation will still hold over the n − 2nd frame (if it
exists). This is noticeably easier, since frames are discarded and not created.

We first make some more general observations that will contain most of the proof’s complexity:

(11) The location association mapping b stays the same before and after the two new frames are
discarded, since no locations are created during execution.

(12) The result variables in target and source in the Incall frame are related by valmapb , since
valmapb hold over ssn and stn in the Rcomp frame and given the compositionality of valmapb .
Since none of these result variables are of pointer type in the target, the target and source are
also inversely related by invvalmapb−1

(13) Conditions on boundary functions dictate that the postcondition pure heap POSTp of each
boundary function f has to contain expressions expn , using only arguments from result and
idarg and defining the address addrn of each chunk n (with fixed length kn). From the Rcomp

relation, we know that stn ,htn,reify ⊢
tgt
δ,b PREs ∗ PREp must hold, and hence, due to the case

LogTgtCorrArrName, that, for each n, stn(n) = b(l)i,i+k , with k the fixed chunk length and
δn+1(expn) = (l , i). Frame linking between frames n − 1 and n for idarg, and the fact that the
expressions for the variables result are returned from frame n to frame n − 1, gives us that both
sets of variables will have the same δ -value in frames n − 1 and n, ie. δn−1(idarg) = δn(idarg) and
δn−1(x) = δn(result) (the logical variables result only exists in frame n after the return has been
executed and we use x for γn−1(return), like in theorem 7). The source stack values for n and

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 117

return in frame n − 1 will be equal to these δ -values, because γ has identity maps for all these
variables and given the definition of δ . The assignment ala in the source uses variables from the
sets result and idarg only (cfr. the earlier made restrictions on boundary contracts) and assigns
expressions (corresponding to resource lengths and addresses) over them to the back-translated
resources n. Given the correspondence in the values of these variables between frames n − 1
and n, it now holds for each n that ssn(n) = ((l , i),k), which corresponds with the target value
stn(n) = b(l)

i,i+k above through invvalmapb−1 , as expected.

(14) There is no case for equi-failing programs in the theorem, since neither the target nor the source
code can fail in a non-trivial way after returning (and we ignore simple errors, as these will
cause equi-failure in target and source).

(15) At the end of execution in framen, it holds (from the definition of δ) thathsn ⊢srcδn
POSTc ∗ POSTp.

The returned heapshsn andhtn (at least the ’real’ parthtn,real) also relate through valmapb . In the
incall stub proof, dropping all concrete restrictions allows deriving POST(fbt) from PREc ∗ PREp.
Since this first assertion is less concrete and we have frame linking, δn−1 can be chosen such
that it is still satisfied in the previous frame, ie hsn ⊢srcδn−1

POST(fbt). An analogous argument
allows concluding that hsn ⊢srcδn−2

POST(fbt) after the return from Incall.

Given these observations, we can now summarize why the relation S still holds after the destruction
of the last two frames. If n ≤ 2, then execution will just terminate on the Incall frame’s return
statement, as mentioned in the theorem statement.

All we need to prove, is that the Scomp relation still holds with the assignment of the returned
values result and n, with the added postcondition POST(fbt) and the returned heaps hsn and htn .
As mentioned earlier in points 12 and 13, respectively , both sets of variables result and n are
related through invvalmapb−1 , which will ensure that the stack frames ss(n−2) and st(n−2) are still
related through invvalmapb−1 as required. The heaps hsn and htn are related through valmapb , since
they originated from an Rcomp frame. They are (after throwing away any auxiliary heap locations
that the Rcomp relation might have used) hence also related by invvalmapb−1 , since POST s contains
no range resources and its reification will hence not store any pointer-typed values in the target
heap either, making valmapb and invvalmapb−1 each other’s proper inverse. Since POST(fbt) has a
universal contract form over all returned values, the result will remain universal in form. Point
15 proves that we can extend δn−2 with new symbolic variable mappings for all new variables in
POST(fbt) so that hsn ⊢srcδn−2

POST(fbt) remains satisfied, completing this proof. □

Theorem 12 (Outcall stub bridging).
Bridging pre function call: Given a program execution such that

sprog, tprog ⊢ (⟨ss,hs⟩ | s) S (⟨st,ht⟩ | t)

consisting of n frames, and where the nth frame is an Rcomp frame

sprog, tprog ⊢b (⟨ssn ,hsn⟩ | sn) Rcomp (⟨stn ,htn⟩ | tn)

where sn ≡ {P}γ (id = f (texp); c) {Q}γ ′ with f an imported function of the verified component Cs of

sprog (ie. an outcall stub is about to be called). Applying the (lifted) operational semantics to both the

target and source code then causes the following scenario to occur:

Both s and t take a number of steps, ie. s ↪→+ s ′ and t ↪→+ t ′, and afterwards it holds that

(⟨s ′s,h
′
s⟩ | s

′) S (⟨s ′t ,h
′
t⟩ | t

′)

118 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

consisting of n + 2 frames, where an Outcall frame and an Scomp frame have been added compared

to before.

Bridging post function call: Given a program execution such that

sprog, tprog ⊢ (⟨ss,hs⟩ | s) S (⟨st,ht⟩ | t)

consisting of n frames, and where the n − 1st and nth frames are respectively an Outcall and an Scomp
frame

sprog, tprog ⊢b (⟨ss(n−1),hs(n−1)⟩ | sn−1) Outcall (⟨st(n−1),ht(n−1)⟩ | tn−1)

sprog, tprog ⊢b−1 (⟨ssn ,hsn⟩ | sn) Scomp (⟨stn ,htn⟩ | tn)

where tn ≡ return texp (ie. a return to an outcall stub is about to happen). Applying the (lifted)

operational semantics to both the target and source code then causes one of two scenarios to occur:

(1) Both the source code s and the target code t get stuck during the execution of the outcall stub.

(2) Both s and t take a number of steps, ie. s ↪→+ s ′ and t ↪→+ t ′, and afterwards it holds that

(⟨s ′s,h
′
s⟩ | s

′) S (⟨s ′t ,h
′
t⟩ | t

′)

consisting of n − 2 frames, where the Outcall frame and an Scomp frame have been removed

compared to before. If n − 2 ≤ 0, however, execution successfully terminates in a return statement

(the return statement of the outcall stub) for both s and t .

Proof.

The proof for outcall stubs is very similar to that for incall stubs, with the difference that the
techniques used for the pre and the post function call part are largely reversed with respect to the
incall proof. Of course, both pre and both post parts will still have some commonalities, because
in the pre-part two extra frames are created, whereas in the post part, they are destroyed again.
Given the similarities with and the length of the previous proof, we highlight the high-level pieces
of the proof and how they can be mapped to proofs we have already given in the previous bridging
proof for incall stubs.

Bridging pre function call: It is clear that the next 2 newly created frames will be an Outcall
frame, when the function f is called, and an Scomp frame, when the incall stub calls the function f .
We now have to prove that, following the operational semantics, the relations we expect to hold
actually hold for the 2 new frames, and that the relation Rcomp still holds for the original callee
frame.

We first make some more general observations that will contain most of the proof’s complexity:

(1) The location association mapping b stays the same before and after the two new frames are
created, since no locations are created during this incall.

(2) There is no case for equi-failing programs in the theorem, since neither the target nor the source
code can fail in a non-trivial way after returning (and we ignore simple errors, as these will
cause equi-failure in target and source).

(3) Frame linking and the proper values for the different δ -mappings again immediately follow
from the fact that the new frames are created through function calls.

(4) We can prove that the assignment ala creates values m that relate with their target- level
counterparts through invvalmapb−1 . The proof is analogous to point 13 in the previous proof.

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 119

(5) Similarly to point 4 in the previous proof, minimal (invvalmapb−1-related) parts of the source
and target heap of frame n are split off and passed all the way to frame n + 2. The fact that the
heaps still satisfy the universal contract (this is the inverse of point 10 in the previous proof) is
derived analogously to point 15 in the previous proof.

(6) The variables dpre assigned in the assignments apre are related in target and source, cfr. point 4
in the previous proof and using point 4 from this proof.

(7) Because of compositionality, the arguments idarg passed to frames n + 1 and n + 2 will again be
related by invvalmapb−1 .

(8) We can recycle point 10 from the previous proof, to prove that the heaps returned from frame n
are related and will satisfy the Rcomp relation in frame n − 2 (if this frame exists).

Combining all the previous points with the definitions of Rcomp-, Outcall- and Scomp-frames gives
us the desired result. The argument is very similar to the pre function call part of the previous proof.

Bridging post function call: Now we have to prove that once execution returns from the nth
Scomp and n − 1st Outcall frames, that the Rcomp relation will still hold over the n − 2nd frame (if
it exists). This is noticeably easier, since frames are discarded and not created.

We first make some more general observations that will contain most of the proof’s complexity:

(8) The location association mapping b stays the same before and after the two new frames are
created, since no locations are created during this incall.

(9) We use an argument similar to the one made in point 12 of the previous proof to derive that the
returned result and n values are related through invvalmapb−1 .

(10) The variables dpost assigned in the assignments apost are related in target and source, cfr. point
4 in the previous proof and using point 9 from this proof.

(11) Given the previously proven and given (by the definition of Outcall) relations between the sets
idarg,n, result,dpost anddpre, we can repeat the reasoning from point 6 to again prove equi-failure
of the source and target code.

Combining all the previous points with the definition of Rcomp gives us the desired result. The
argument is very similar to the post function call part of the previous proof.

□

7.7.2 Proving simulation for S . A central inference rule we need to prove in this section is the
following:

(⟨•, ϵ⟩ |⊢ sprog) S (⟨•, ϵ⟩ | tprog)

sprog ⇓ ⇔ tprog ⇓
(SecToEqiTermin)

Proof.

The proof of this inference rule will transpire inductively and will need to discuss the relations
between the different types of stack frames and the properties they have themselves. After the
application of the ProgExec rule in both source and target language executing the given statement,
we can be in one of the four types of frames.

120 Thomas Van Strydonck, Frank Piessens, and Dominique Devriese

For each type of frame, we have to formulate a simulation argument that states that the following
cases can occur, given that either sprog (left to right) or tprog (right to left) terminates;

(1) Either source or target code gets stuck (should be proven impossible)

(2) Either source or target code diverge (should be proven impossible)

(3) Both source and target code terminate (in a return when there are no previous frames left)

(4) Both source and target code run until they reach a function call statement, that would create a
frame of a different type when executed. Alternatively, they both run until a return statement
that transfers control flow to a frame of a different type. It has to be proven that after the switch
of frame type, the appropriate frame relation indeed holds.

(The difference between the first and second bullet is not strictly requires by the formulation of full
abstraction, but is required for a sane comilation and back-translation, as was mentioned before on
multiple occasions)

If we can prove that the previous itemization holds for each type of frame and we know that either
the source or target program sprog or tprog terminates, then we can inductively combine the proofs
for all four types of frames and prove the theorem. Given the properties we have proven in the
previous section, it is now reasonable easy to prove this result. We consider each of the four frame
types in a separate case:

(1) Scomp
An Scomp frame will only create a frame-switching call to an Incall frame or return to an
Outcall frame. As long as no such transition happens, our relation is effectively of the Scomp
type.

We can then use the SCompToEqiTermin-rule and its proof from the previous subsection.
This rule and its proof discussion then immediately prove case 3 and exclude cases 1 and 2.
However, if a call that creates an Incall frame or a return to an Outcall frame is encountered
before termination, then SCompToEqiTermin will obviously not hold. We do know that right
before the call or return scomp still holds, since Scomp was proven to be a simulation relation.
The proof that this transition to the Incall or Outcall frame is proper (ie. the aforementioned
relations actually hold after transition) is handled in the discussion of the Incall and Outcall
frames below, respectively. This handles case 4.

(2) Rcomp

This discussion is dual to the discussion for Scomp

An Rcomp frame will only create a frame-switching call to an Outcall frame or return to an
Incall frame. As long as no such transition happens, our relation is effectively of the Rcomp
type.

We can then use the RCompToEqiTermin-rule and its proof from the previous subsection.
This rule and its proof discussion then immediately prove case 3 and exclude cases 1 and 2.
However, if a call that creates an Outcall frame or a return to an Incall frame is encountered
before termination, then RCompToEqiTermin will obviously not hold. We do know that right
before the call or return Rcomp still holds, since Rcomp was proven to be a simulation relation.
The proof that this transition to the Outcall or Incall frame is proper (ie. the aforementioned

Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code 121

relations actually hold after transition) is handled in the discussion of the Incall and Outcall
frames below, respectively. This handles case 4.

(3) Incall
Theorem 11, which we proved in the previous section, immediately proves all necessary condi-
tions (which includes proving the Incall-related case 4 for both Rcomp and scomp.

(4) Outcall
Theorem 12, which we proved in the previous section, immediately proves all necessary condi-
tions (which includes proving the Outcall-related case 4 for both Rcomp and scomp.

Now, the fact that we have shown that for each type of frame there is equi-termination within the
frame and that each type of frame either terminates or spawns a new frame after a finite number
of steps, indeed implies equi-termination of the entire source and target programs. □

The following inference rule proves that if one program is the back-translation of the other, then
both are related through the relation S . Its proof is trivial from the definition of S .

⊢ s ⇝ t
⊢ s, (Ct, id)⇝b ⊢ Cs[s]//@main = id

(⟨•, ϵ⟩ |⊢ Cs[s]//@main = id) S (⟨•, ϵ⟩ | Ct[t]//@main = id)
(CompilIsSec)

As was the case for correctness, the same Coherence result from before is used to finish the step
in the proof where we need to go from a source program with proof to and from a source program
without proof, while preserving (non-)termination.

The BTEqiTermination rule now follows immediately from the sequential combination of the
CompilIsSec, SecToEqiTermin and Coherence rules.

REFERENCES

Martín Abadi. 1999. Protection in programming-language translations. In Secure Internet programming. Springer-Verlag,
19–34.

Pieter Agten, Bart Jacobs, and Frank Piessens. 2015. Sound Modular Verification of C Code Executing in an Unverified
Context. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’15). ACM, New York, NY,
USA, 581–594. https://doi.org/10.1145/2676726.2676972

Adam Chlipala. 2017. Formal Reasoning About Programs.
DominiqueDevriese, Marco Patrignani, and Frank Piessens. 2016. Fully-abstract compilation by approximate back-translation.

In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016,

St. Petersburg, FL, USA, January 20 - 22, 2016. 164–177. https://doi.org/10.1145/2837614.2837618
John C. Reynolds. 2002. Separation logic: A logic for shared mutable data structures. In Logic in Computer Science, 2002.

Proceedings. 17th Annual IEEE Symposium on. IEEE, 55–74.
Thomas Van Strydonck, Frank Piessens, and Dominique Devriese. 2019. Linear Capabilities for Fully Abstract Compilation

of Separation-Logic-Verified Code. Proc. ACM Program. Lang. 3, ICFP, Article 84 (Aug. 2019), 29 pages. https://doi.org/10.
1145/3341688

https://doi.org/10.1145/2676726.2676972
https://doi.org/10.1145/2837614.2837618
https://doi.org/10.1145/3341688
https://doi.org/10.1145/3341688

	Contents
	1 Grammar
	2 Operational Semantics
	2.1 Expression evaluation
	2.2 Source Language
	2.3 Target Language

	3 Axioms
	3.1 Separation-logic proofs and contracts
	3.2 Some additional notation
	3.3 Separation logic axioms

	4 Compilation Rules
	4.1 Basic statement rules
	4.2 Function application compilation rule
	4.3 Rules for return, consequence and frame
	4.4 Rules for functions
	4.5 Rules for components and programs

	5 Full Abstraction Result
	5.1 Definition
	5.2 Proof Decomposition

	6 Compiler Correctness
	6.1 Definitions
	6.2 Simulation
	6.3 Assertion semantics
	6.4 Component simulation relation
	6.5 Simulation proofs

	7 Compiler Security
	7.1 Definitions
	7.2 Auxiliary concepts for the back-translation
	7.3 Back-translation rules
	7.4 Simulation
	7.5 Assertion Semantics
	7.6 Component simulation relations
	7.7 Simulation proofs

	References

