
Under consideration for publication in J. Functional Programming 1

Appendix of “Safety of Nöcker’s Strictness
Analysis”

Manfred Schmidt-Schauß, David Sabel
Institut für Informatik,

Johann Wolfgang Goethe-Universität,
Postfach 11 19 32,

D-60054 Frankfurt, Germany,
(e-mail: schauss@ki.informatik.uni-frankfurt.de)

Marko Schütz
Dept. of Mathematics and Computing Science,

University of the South Pacific,
Suva, Fiji Islands

Abstract

This document contains full proofs of (Schmidt-Schauß et al., n.d.).

Contents

A Proof of the Context Lemma 2
B Correctness of Reductions 4

B.1 The Reductions (case-c), (seq-c), (lbeta), (lapp), (lcase), (lseq) 4
B.2 Complete Sets of Commuting and Forking Diagrams 4
B.3 Correctness of (llet) and (cp) 7
B.4 Correctness of (gc), (cpx), (cpax), (abs), (xch) and (cpcx) 10
B.5 Correctness of (cpx), (cpax), (cpcx), (xch), and (abs) 16
B.6 Correctness of (case) and (seq) 17
B.7 Correctness of (ucp), (abse) and (lwas) 18
B.8 Correctness of the Variants of (case)-Reductions 21
B.9 Proofs of Theorem 2.4 and 2.9 22

C Properties of Bot 22
C.1 Reduction Rules for Bot-Terms 23

D Strict Subexpressions 24
E Reduction Lengths for Different Reductions 26

E.1 Reduction Lengths for (lll) and (gc) 27
E.2 Reduction Length for (cpx)-, (cpax)- and (xch)-Transformations 30
E.3 Reduction Length for (cpcx) 30
E.4 Reduction Length for (abs) 32

2 M. Schmidt-Schauß, M. Schütz, D. Sabel

E.5 Reduction Length for ucp-Transformations 33
E.6 Reduction Length for (lwas)-Transformations 33
E.7 Using Diagrams for Internal Base Reductions 33
E.8 Base Reductions in Surface Contexts 35
E.9 Length of Normal Order Reduction Using Strictness Optimization 37
E.10 Local Evaluation and Deep Subterms 38

F Confluence and Termination of Simplification 39
G Another Definition of Contextual Equivalence 40
H Correctness of Copying in Surface Contexts 41
References 45

A Proof of the Context Lemma

In this section we prove the context lemma (Lemma 2.3). We will show the claim:

Lemma A.1
Let s, t be terms. If for all reduction contexts R: (R[s]⇓ ⇒ R[t]⇓), then ∀C :
(C[s]⇓ ⇒ C[t]⇓); i.e. s ≤c t.

Proof
Multicontexts are like contexts, but have several holes ·i, and every hole occurs
exactly once in the term. We write a multicontext as C[·1, . . . , ·n], and if the terms
si for i = 1, . . . , n are plugged into the holes ·i, then we denote the resulting term
as C[s1, . . . , sn]. Note that variable capture is allowed for multicontexts.

We prove the more general claim:
For i = 1, . . . , n, let si, ti be expressions. Let the following hold:
∀i : ∀ reduction contexts R: (R[si]⇓ ⇒ R[ti]⇓).

Then ∀C : C[s1, . . . , sn]⇓ ⇒ C[t1, . . . , tn]⇓.
Assume the claim is false. Then there is a counterexample. I.e., there is a mul-

ticontext C, a number n ≥ 1 and terms si, ti for i = 1, . . . , n, such that ∀i : ∀
reduction contexts R: (R[si]⇓ ⇒ R[ti]⇓), and C[s1, . . . , sn]⇓, but C[t1, . . . , tn]⇑.
We select the counterexample minimal w.r.t. the following lexicographic ordering:

1. the number of normal order reduction steps of a shortest evaluation of
C[s1, . . . , sn].

2. the number of holes of C.

Either some hole of C[·1, . . . , ·n] is in a reduction context or no hole is in a
reduction context. The definition of reduction contexts and some easy reasoning
shows that the unwind applied to C[·1, . . . , ·n] either arrives at some hole, or does
not arrive at a hole, and moreover, that this is not affected by the terms plugged
into the holes.

If one hole of C[·1, . . . , ·n] is in a reduction context, then we assume wlog that it
is the first one.

Then C[·, t2 . . . , tn] is a reduction context. Let C ′ := C[s1, ·2, . . . , ·n]. Since

Appendix of “Safety of Nöcker’s Strictness Analysis” 3

C ′[s2, . . . , sn] ≡ C[s1, . . . , sn], these expressions have the same normal order reduc-
tion. Since the number of holes is smaller, we obtain C ′[t2, . . . , tn]⇓, which means
C[s1, t2, . . . , tn]⇓. Since C[·, t2, . . . , tn] is a reduction context, the preconditions of
the lemma applied to s1, t1 imply C[t1, t2, . . . , tn]⇓, a contradiction.

If no hole of C[·1, . . . , ·n] is in a reduction context, then the first normal order
reduction step C[s1, . . . , sn] n−→ C ′[s′1, . . . , s

′
m] can also be used for C[t1, . . . , tn]

giving C ′[t′1, . . . , t
′
m], where for every i : ρi,j(sj , tj) = (s′i, t

′
i) for some variable

renaming ρi,j and some j. To verify this, we have to check that for a normal order
redex, the parts that are modified are also in a reduction context.

• in a (cp) normal order reduction, every superterm of the to-variable position
is in a reduction context.

• For normal order reductions (llet), (lapp), (lcase), (lseq), the inner letrec is
in a reduction context.

• The constructor application used in a (case) is in a reduction context.

The following may happen to the terms si, ti in the holes in one reduction step:

• If the hole is in an alternative of a (case)-expression that is discarded by
the reduction, then the hole, and hence si as well as ti, is eliminated after
reduction.

• If the hole is not eliminated, and if the reduction is not a (cp), then the terms
si, ti in the holes are unchanged and also not copied, but both may appear at
a different position in the resulting expression.

• If the reduction is a (cp), and the hole is not in the copied expression, then
again the terms si, ti in the holes are unchanged and also not copied.
• If the reduction is a (cp), and the hole is within the copied expression, then

the terms si, ti in the holes may be duplicated giving s′i, t
′
i. Since the reduction

is a normal order reduction, and since we have assumed the “distinct bound
variable convention”, the renaming concerns the free variables in si, ti which
are bound in C. For a fixed i, we can use the same renaming ρi for the
variables in si and ti, so we have ρi(si) = s′i, ρi(ti) = t′i. This means that the
assumption holds also for the new pair of terms:

∀i : ∀ reduction contexts R : (R[s′i]⇓ ⇒ R[t′i]⇓).

Now we can use induction on the number of n−→-reductions.
Since the length of an evaluation of C[s′1, . . . , s

′
m] is strictly smaller, we also

have C ′[t′1, . . . , t
′
m]⇓. But then we have also C[t1, . . . , tn]⇓, which contradicts the

assumption that we have chosen a counterexample.
Now we look at the base case. If C has no holes, then a counterexample is

impossible.
If the length of an evaluation is 0, then C[s1, . . . , sn] is already a WHNF. Since we
can assume that no hole is in a reduction context, the context is a WHNF, and
thus this holds for C[t1, . . . , tn] as well, which is impossible.

Concluding, we have proved that there is no counterexample to the general claim,
hence the lemma holds, since it is a specialization of this claim.

4 M. Schmidt-Schauß, M. Schütz, D. Sabel

B Correctness of Reductions

In this section we prove that the reduction rules of the calculus LR (see Definition
1.3) and the extra transformation rules defined in Definition 2.8 are correct program
transformations, i.e. maintain contextual equivalence.

Non-normal order reduction steps for the language LR are called internal and
denoted by a label i. An internal reduction in a reduction context is marked by iR,
and an internal reduction in a surface context by iS.

B.1 The Reductions (case-c), (seq-c), (lbeta), (lapp), (lcase), (lseq)

Lemma B.1
Every a-reduction in a reduction context where a ∈
{(case-c), (seq-c), (lbeta), (lapp), (lcase), (lseq)} is a normal order reduction.

Proof
This follows by checking the possible term structures in a reduction context.

Proposition B.2
Contextual equivalence remains unchanged under the reductions
(case-c), (seq-c), (lbeta), (lapp), (lcase), (lseq). I.e. s

a−→ t with a ∈
{(case-c), (seq-c), (lbeta), (lapp), (lcase), (lseq)} implies s ∼c t.

Proof
This follows from the context lemma A.1. It is sufficient to consider R[s] and R[t].
From s

a−→ t and Lemma B.1 it follows that R[s] n−→ R[t].
Since normal order reduction is unique, it follows R[s]⇓ iff R[t]⇓. Now we apply

the context lemma.

The reductions (lll), (cp), (case-e), (case-in), (seq-e), (seq-in) may be non-normal
order in a reduction context, so other arguments are required.

B.2 Complete Sets of Commuting and Forking Diagrams

For proving correctness of further program transformations, we require the notions
of complete sets of commuting diagrams and of complete sets of forking diagrams.

A reduction sequence is of the form t1 → . . . → tn, where ti are terms and
ti → ti+1 is a reduction as defined in definition 1.3. In the following definition we
describe transformations on reduction sequences. Therefore we use the notation

iX,red−−−−→ .
n,a1−−−→ . . .

n,ak−−−→ ;
n,b1−−→ . . .

n,bm−−−→ .
iX,red1−−−−−→ . . .

iX,redh−−−−−→

for transformations on reduction sequences. Here the notation
iX,red−−−−→ means a

reduction with iX ∈ {iC, iR, iS}, and red is a reduction from LR.
In order for the above transformation rule to be applied to the prefix of the

reduction sequence RED, the prefix has to be s
iX,red−−−−→ t1

n,a1−−−→ . . . tk
n,ak−−−→ t.

Since we will use sets of transformation rules, it may be the case that there is a
transformation rule in the set, where the pattern matches a prefix, but it is not
applicable, since the right hand side cannot be constructed.

Appendix of “Safety of Nöcker’s Strictness Analysis” 5

We will say the transformation rule

iX,red−−−−→ .
n,a1−−−→ . . .

n,ak−−−→ ;
n,b1−−→ . . .

n,bm−−−→ .
iX,red1−−−−−→ . . .

iX,redh−−−−−→

is applicable to the prefix s
iX,red−−−−→ x1

n,a1−−−→ . . . xk
n,ak,−−−→ t of the reduction sequence

RED iff the following holds:

∃y1, . . . , ym, z1, . . . , zh−1 :

s
n,b1−−→ y1 . . .

n,bm−−−→ ym
iX,red1−−−−−→ z1 . . . zh−1

iX,redh−−−−−→ t

The transformation consists in replacing this prefix with the result:

s
n,b1−−→ t′1 . . . t′m−1

n,bm−−−→ t′m
iX,red1−−−−−→ t′′1 . . . t′′h−1

iX,redh−−−−−→ t

where the terms in between are appropriately constructed.

Example B.3

An example of a single commuting diagram is
iS,cp−−−→ .

n,seq−−−→ ;
n,seq−−−→ .

n,cp−−−→.
Consider the reduction before and after an application of the diagram rule.

(seq (λu.u) (letrec x = λy.c in (x d)))
iS,cp−−−→ (seq (λu.u) (letrec x = λy.c in ((λy.c) d)))
n,seq−−−→ (letrec x = λy.c in ((λy′.c) d))
n,lbeta−−−−→ (letrec x = λy.c in (letrec y′ = d in c))
.

Can be transferred using the diagram to

(seq (λu.u) (letrec x = λy.c in (x d)))
n,seq−−−→ (letrec x = λy.c in (x d))
n,cp−−−→ (letrec x = λy.c in ((λy′.c) d))
n,lbeta−−−−→ (letrec x = λy.c in (letrec y′ = d in c))
.

One can view the operation as shifting the
iS,cp−−−→ to the right. In this special case

the transformation has turned the internal into a normal order reduction.

Definition B.4

• A complete set of commuting diagrams for the reduction
iX,red−−−−→ is a set of trans-

formation rules on reduction sequences of the form

iX,red−−−−→ .
n,a1−−−→ . . .

n,ak−−−→ ;
n,b1−−→ . . .

n,bm−−−→ .
iX,red1−−−−−→ . . .

iX,redk′−−−−−→,

where k, k′ ≥ 0,m ≥ 1, h > 1, such that for every reduction sequence t0
iX,red−−−−→

t1
n−→ . . .

n−→ th, where th is a WHNF, at least one of the transformation rules is
applicable to a prefix of the sequence.
In the proofs below using the complete sets of commuting diagrams, the case h = 1
must be treated separately in the induction base.

6 M. Schmidt-Schauß, M. Schütz, D. Sabel

• A complete set of forking diagrams for the reduction
iX,red−−−−→ is a set of trans-

formation rules on reduction sequences of the form

n,a1←−−− . . .
n,ak←−−− .

iX,red−−−−→ ;
iX,red1−−−−−→ . . .

iX,redk′−−−−−→ .
n,b1←−− . . .

n,bm←−−−,

where k, k′ ≥ 0,m ≥ 1, h > 1, such that for every reduction sequence th
n←− . . . t2

n←−
t1

iX,red−−−−→ t0, where th is a WHNF, at least one of the transformation rules from the
set is applicable to a suffix of the sequence. In the proofs below using the complete
sets of forking diagrams, the case h = 1 must be treated separately in the induction
base.

The two different kinds of diagrams are required for two different parts of the
proof of the contextual equivalence of two terms.

Note that there may be different complete sets of, say, commuting diagrams for a
single transformation. It depends on the needs of further proofs, which one is most
appropriate.

As a notation, we also use the * and +-notation of regular expressions for the
diagrams. The interpretation is obvious and is intended to stand for an infinite set
accordingly constructed.

In most of the cases, the same diagrams can be drawn for a complete set of
commuting and a complete set of forking diagrams, though the interpretation is
different for the two kinds of diagrams. We will exploit this to keep the presentation
simple and give in general only the drawing in the form of diagrams. The starting
term is in the northwestern corner, and the normal order reduction sequences are
always downwards. where the deviating reduction is pointing to the east. There are
rare exceptions for degenerate diagrams, which are self explaining.

For example, the forking diagram
n,a←−− · iS,llet−−−−→ ;

iS,llet−−−−→ · n,a←−− is represented
as

· iS,llet //

n,a

��

·
n,a

���
�
�

· iS,llet //___ ·

The commuting diagram
iS,llet−−−−→ · n,a−−→ ;

n,a−−→ · iS,llet−−−−→ is represented as

· iS,llet //

n,a

���
�
� ·

n,a

��
· iS,llet //___ ·

The solid arrows represent given reductions and dashed arrows represent exis-
tential reductions. A common representation is without the dashed arrows, where
the interpretation depends on whether the diagrams is interpreted as a forking or
a commuting diagram.

Note that the selection of the reduction label is considered to occur outside the
transformation rule, i.e. if

n,a−−→ occurs on both sides of the transformation rule the
label a is considered to be the same on both sides.

Appendix of “Safety of Nöcker’s Strictness Analysis” 7

· iS,llet //

n,a

��

·
n,a

��
· iS,llet // ·

B.3 Correctness of (llet) and (cp)

We prove correctness of the reductions (llet) and (cp) by computing the required
forking and commuting diagrams, and then give a sketch of an inductive proof for
constructing normal order reductions.

Correctness of (llet)

For the reduction (llet), we use the reductions in S-contexts instead of reduction
contexts, since they are more general and cover all reduction contexts.

Lemma B.5
A complete set of forking diagrams and a complete set of commuting diagrams for
(iS, llet) can be read off of the following graphical diagrams:

· iS,llet //

n,a

��

·
n,a

��

· iS,llet //

n,a

��

·

n,a
����

��
��

�
· iS,llet //

(n,lll)+

��

·

(n,lll)+����
��

��
�

· iS,llet //

(n,lll)+

��

·

(n,lll)+

��
· iS,llet // · · · · iS,llet // ·

· iS,llet //

n,a

��

·

n,a

����
��
��
��
��
��
�

·
n,llet

��
·

The corresponding complete set of commuting diagrams is:

iS,llet−−−−→ · n,a−−→ ;
n,a−−→ · iS,llet−−−−→

iS,llet−−−−→ · n,a−−→ ;
n,a−−→

iS,llet−−−−→ · (n,lll)+−−−−−→ ;
(n,lll)+−−−−−→

iS,llet−−−−→ · (n,lll)+−−−−−→ ;
(n,lll)+−−−−−→ · iS,llet−−−−→

iS,llet−−−−→ · n,a−−→ ;
n,a−−→ · n,llet−−−→

The corresponding complete set of forking diagrams is:

8 M. Schmidt-Schauß, M. Schütz, D. Sabel

n,a←−− · iS,llet−−−−→ ;
iS,llet−−−−→ · n,a←−−

n,a←−− · iS,llet−−−−→ ;
n,a←−−

(n,lll)+←−−−−− · iS,llet−−−−→ ;
(n,lll)+←−−−−−

(n,lll)+←−−−−− · iS,llet−−−−→ ;
iS,llet−−−−→ · (n,lll)+←−−−−−

n,llet←−−− · n,a←−− · iS,llet−−−−→ ;
n,a←−−

Proof
Diagram 1 covers the cases where the (iS, llet) and (n,a)-reductions commute.
Diagram 2 covers the case of removed expressions in a (case)-reduction or a (seq)-
reduction. Lemma 2.5 describes the same cases as necessary for diagrams 3 and 4.
Diagram 5 is the case where in diagram 1 the closing (llet) is turned into a normal
order reduction. The typical case is (letrec x = (letrec Env in s) in seq True x).

Lemma B.6
If s

i,lll−−→ t, then s is a WHNF iff t is a WHNF.

Proposition B.7
If s

llet−−→ t, then s ∼c t.

Proof
By the context lemma A.1, it is sufficient to prove R[s]⇓ ⇔ R[t]⇓ for all reduction

contexts R. If R[s]
n,llet−−−→ R[t], then this is trivial. In the case R[s]

iS,llet−−−−→ R[t], we
use the complete sets of diagrams in Lemma B.5 to show that from an evaluation
of R[s], we can construct an evaluation of R[t], and vice versa.

1. If R[s]⇓, then by induction on the length of the normal order reduction se-
quence Red of R[s], there is also an evaluation of R[t]: We use the fact that if

s
iS,llet−−−−→ t, then also R[s]

iS,llet−−−−→ R[t], since reduction contexts are also sur-
face contexts and the combination of surface contexts again gives a surface
context.
In the base case we use Lemma B.6. If Red is not trivial, then the complete
set of forking diagrams in Lemma B.5 provides all cases. Let Red = R[s] n−→
s′ · Red ′. Diagrams 2,3,5 directly construct a terminating normal order reduc-
tion for R[t]. For diagrams 1 and 4, the induction hypothesis can be applied

to s′
iS,llet−−−−→ t′ with R[t]

n,+−−→ t′, and we obtain a terminating normal order
reduction for R[t].

2. If R[t]⇓, then we use similar methods. We apply induction on the number of
normal order reduction steps of R[t] to a WHNF using the complete set of
commuting diagrams in Lemma B.5. In the base case we use Lemma B.6.

Correctness of (cp)

To show that the (cp)-reduction is correct as a program transformation, we have to
split the reduction into two different reductions, depending on the position of the
target variable.

Appendix of “Safety of Nöcker’s Strictness Analysis” 9

(cpS) = (cp) where the position of the replaced variable is in a surface
context.

(cpd) = (cp) where the position of the replaced variable is not in a surface
context.

Lemma B.8
A complete set of forking diagrams and a complete set of commuting diagrams for
iS,cpS−−−−→ can be read off of the following graphical diagrams:

· iS,cpS //

n,a

��

·
n,a

��

· iS,cpS //

n,a

��

·

n,a

����
��
��
��
��
��
�

· iS,cpS //

n,a

��

·

n,a
����

��
��

�

· iS,cpS // · ·
n,cp

��

·

·

Proof
By case analysis.

Lemma B.9
A complete set of forking diagrams and a complete set of commuting diagrams for
iS,cpd−−−−→ can be read off of the following graphical diagrams:

· iS,cpd //

n,a

��

·
n,a

��

· iS,cpd //

n,cp

��

·
n,cp

��

· iS,cpd //

n,a

��

·

n,a
����

��
��

�
· iS,cpd //

n,lbeta

��

·
n,lbeta

��
· iS,cpd // · ·

iS,cpd
// ·

iS,cpd
// · · · iS,cpS // ·

Proof
By case analysis.

Lemma B.10
If s

iS,cp−−−→ t, then s is a WHNF iff t is a WHNF.

Proposition B.11
If s

cp−→ t, then s ∼c t.

Proof
It is sufficient to prove R[s]⇓ ⇔ R[t]⇓ for all reduction contexts. If R[s]

n,cp−−−→ R[t],

then this is trivial. In the case R[s]
iS,cp−−−→ R[t], we use the diagrams for (cp), i.e.,

for (cpd) and (cpS).

1. Assume R[t]⇓. The method is to transform the reduction

R[s]
iS,cp−−−→ R[t] ·RED, where RED is an evaluation, into an evaluation

of R[s] using transformations that correspond to the complete sets of
commuting diagrams in Lemmas B.9 and B.8.

10 M. Schmidt-Schauß, M. Schütz, D. Sabel

We have to show that the transformation terminates with an evaluation,
where the local effect of the transformation is to shift (iS, cpd) and (iS, cpS)
to the right. We define a well-founded measure for reduction sequences Red

where
(iS,cpd)−−−−−→,

(iS,cpS)−−−−−→ and normal order reductions are mixed.
A single (iS, cpd) or (iS, cpS) in Red has as measure the pair consisting of

(a) the number of (n,lbeta)-reductions to the right of it;
(b) the number of all normal-order and (iS, cpS)-reductions to the right of it

before the next (n,lbeta)-reduction;

The pairs are ordered lexicographically. The measure µ of Red is the multiset
of the pairs for all iS-reductions, ordered by the derived multiset-ordering.
Every transformation rule of the commuting diagrams for (iS, cpd) and
(iS, cpS) strictly decreases the measure µ. That the measure is decreased
must also be checked for (iS, cpd) and (iS, cpS)- reductions that are to the
left of the modification of the reduction sequence, i.e., that are not directly
involved in the transformation.

(a) Diagram cpS-1: If a = (lbeta), then it strictly decreases the first compo-
nent for the shifted (iS, cpS)-reduction, and it does not increase the pairs
for other (iS, cpd) or (iS, cpS)-reductions. If a 6= (lbeta), then the the
second component of the shifted (iS, cpS)-reduction is strictly decreased.

(b) Diagram cpS-2: One pair is removed from the multiset, and the other pairs
remain unchanged.

(c) Diagram cpS-3: One pair is removed, and the other pairs are not increased.
(d) Diagram cpd-1: Similar to diagram cpS-1.
(e) Diagram cpd-2: One pair is replaced by two pairs that have a strictly

smaller second component, hence the measure is strictly decreased.
(f) Diagram cpd-3: See cpS-3.
(g) Diagram cpd-4: A pair is replaced by a pair with a strictly smaller first

component.

Since a diagram is applicable whenever there is a (cpd) or (cpS) reduction
for a non-WHNF term, the transformation terminates with a normal order
reduction sequence followed by a last (iS, cp)-reduction.
For the base case use Lemma B.10.

2. If R[s]⇓, then we have to show that R[t]⇓. We prove by induction on the
length of an evaluation of R[s] that R[t] also has an evaluation of an equal or
shorter length. This is easy, checking the complete set of forking diagrams in
Lemmas B.9 and B.8. For the base case use Lemma B.10.

Now we can conclude by applying the context lemma for the two directions that
s ∼c t.

B.4 Correctness of (gc), (cpx), (cpax), (abs), (xch) and (cpcx)

We show in this subsection that the extra transformations (gc), (cpx), (cpax), (abs),
(xch) and (cpcx) are correct program transformations in the calculus LR. This

Appendix of “Safety of Nöcker’s Strictness Analysis” 11

will lead to a proof that (case) is a correct program transformation in the next
subsection.

In this subsection we extend the notion of complete sets of commuting and com-
plete sets of forking diagrams slightly by allowing the extra transformations in the
place of the internal transformations.

Correctness of (gc)

Lemma B.12
A complete set of commuting and a complete set of forking diagrams for (S, gc)
can be read off the following set of graphical diagrams:

t1
gc //

n,a

��

s1

n,a

��

t1
gc //

n,a

��

s1

n,a
��~~

~~
~~

~~
t1

gc2 //

n,lll

��

s1??

gc2~~
~~

~~
~~

t2
gc // s2 t2 t2

Proof
This follows by a case analysis. Diagram 2 occurs if the (gc)-redex is in an alternative
removed by a case or in the term removed by a (seq). Diagram 3 occurs, e.g. in
the case (seq (letrec Env in t1) t2) if (gc2) removes the environment Env , and
in similar cases. A further example for the third case is

R[((letrec Env1 in t1) x)]
n,lapp−−−−→ R[(letrec Env1 in (t1 x))]

gc−→ R[(t1 x)]
The following nontrivial overlapping results in a diagram of type 1.

(letrec Env1 in ((letrec Env2 in s) t))
gc−→ ((letrec Env2 in s) t)
n,lapp−−−−→ (letrec Env2 in (s t))

n,lapp−−−−→ (letrec Env1 in (letrec Env2 in (s t)))
gc−→ (letrec Env2 in s t)

Lemma B.13
Let t, t′ be expressions and t

gc−→ t′. Then

• If t is a WHNF, then t′ is a WHNF.

• If t′ is a WHNF and t is not a WHNF, then t
n,llet−−−→ t′; or t

[],n,llet−−−−−→ t′′
gc2−−→ t′,

and t′′ is a WHNF.

Proposition B.14
Let t be an expression. If t

gc−→ t′, then t ∼c t′.

Proof

12 M. Schmidt-Schauß, M. Schütz, D. Sabel

Using the context lemma and the same technique as in the proof of Proposition B.11,
we have only to ensure that transforming an evaluation of R[t] using the diagrams in
Lemma B.12 to an evaluation of R[t′], and vice versa, always successfully terminates.

The measure for both directions is the length of an evaluation, where the base
case requires Lemma B.13. In constructing an evaluation of R[t′] from a reduction
R[t]

gc−→ R[t′]
n,∗−−→ t0, Proposition 2.7 shows that there are only finitely many

repeated applications of diagram 3.

Diagrams and Properties of (cpx) and (cpax)

We first give diagrams of several transformations and then prove their correctness
in one proof.

Note that the transformation
R,cpx−−−−→ may not terminate:

letrec x = y, y = x in C[x]
R,cpx−−−−→ letrec x = y, y = x in C[y]

R,cpx−−−−→
letrec x = y, y = x in C[x].

A further example for non-termination is: letrec x = y, y = x, z = x in t
R,cpx−−−−→

letrec x = y, y = x, z = y in t
R,cpx−−−−→ letrec x = y, y = x, z = x in t.

Lemma B.15
A complete set of forking and a complete set of commuting diagrams for

S,cpx−−−→ can
be read off the following graphical diagrams:

· S,cpx //

n,a

��

·
n,a

��

· S,cpx //

n,cp

��

·
n,cp

��

· S,cpx //

n,a

��

·

n,a
����

��
��

�

· S,cpx // · ·
S,cpx

// ·
S,cpx

// · ·

Proof
The second case happens if the target of the (cpx)-transformation is in the copied
abstraction of the (cp). The third case may happen if the transformation is a (case),
(cp) or (seq). An example for the last case is

letrec x = s, y = x in C[y]
S,cpx−−−→ letrec x = s, y = x in C[x]
n,cp−−−→ letrec x = s, y = x in C[s]

n,cp−−−→ letrec x = s, y = x in C[s]

Lemma B.16
If s

S,cpx−−−→ t, then s is a WHNF iff t is a WHNF.

Proposition B.17
The transformation (cpax) is terminating.

Proof
Every (cpax) transformation strictly decreases the number of let-bound variables
that have occurrences in the expression.

Appendix of “Safety of Nöcker’s Strictness Analysis” 13

Diagrams for (xch)

Lemma B.18

A complete set of forking and a complete set of commuting diagrams for
S,xch−−−−→ can

be read off the following graphical diagrams:

· S,xch //

n,a

��

·
n,a

��

· S,xch //

n,a

��

·

n,a
����

��
��

�

· S,xch // · ·

Proof

It is easy to verify that this holds for the different kinds of reductions. Only for
(case) and a specific type of interference we show the concrete transformation:

(letrec x = c t, y = x in caseT x ((c u)→ r))
xch−−→ (letrec y = c t, x = y in caseT x ((c u)→ r))
n,case−−−−→ (letrec y = c z, z = t, x = y in (letrec u = z in r))

n,case−−−−→ (letrec x = c z, z = t, y = x in (letrec u = z in r))
xch−−→ (letrec y = c z, z = t, x = y in (letrec u = z in r))

Lemma B.19

If s
S,xch−−−−→ t, then s is a WHNF iff t is a WHNF.

Diagrams for (abs)

Lemma B.20

A complete set of commuting and a complete set of forking diagrams for
S,abs−−−→ can

be read off the following diagrams:

· S,abs //

n,a

��

·
n,a

��

· S,abs //

n,a

��

·

n,a
����

��
��

�
· S,abs //

n,case

��

·
n,case

��
· S,abs // · · ·

S,abs
// ·
S,cpx,∗

// ·
S,xch,∗

// ·

Proof

Instead of a complete proof, we only show the typical hard case:

14 M. Schmidt-Schauß, M. Schütz, D. Sabel

(letrec x = c t in caseT x (c y → s))
abs−−→ (letrec x = c z, z = t in caseT x ((c y)→ s))
n,case−−−−→ (letrec x = c u, u = z, z = t in (letrec y = u in s))

n,case−−−−→ (letrec x = c u, u = t in (letrec y = u in s))
abs−−→ (letrec x = c z, z = u, u = t in (letrec y = u in s))
cpx,∗−−−→ (letrec x = c u, z = u, u = t in (letrec y = u in s))
xch,∗−−−→ (letrec x = c u, u = z, z = t in (letrec y = u in s))

The second diagram covers the case where the (abs)-redex is removed by a (case),
or (seq).

Lemma B.21
If s

S,abs−−−→ t, then s is a WHNF iff t is a WHNF.

Diagrams for (cpcx)

Note that there are infinite transformation sequences using only (cpcx):
(letrec x = c x in x)

cpcx−−−→ (letrec x = c x1, x1 = x in c x1)
cpcx−−−→ (letrec x =

c x2, x2 = x1, x1 = x in c (c x2)) . . .

Lemma B.22
A complete set of commuting and a complete set of forking diagrams for

S,cpcx−−−−→
can be read off the following diagrams:

· S,cpcx //

n,a

��

·
n,a

��

· S,cpcx //

n,cp

��

·
n,cp

��
· S,cpx // · ·

S,cpcx
// ·
S,cpcx

// ·
S,cpx,∗

// ·
S,gc1,∗

// ·

· S,cpcx //

n,a

��

·

n,a
����

��
��

�
· S,cpcx //

n,case

��

·
n,case

��

· S,cpcx //

n,a

��

·
n,a

��
· ·

S,cpcx
// ·
S,cpx,∗

// ·
S,xch,∗

// · · S,abs // ·

· S,cpcx //

n,case

��

·
n,case

��
·
S,abs

// ·
S,cpx,∗

// ·
S,xch,∗

// ·

where a in the 5th diagram may be (case) or (seq).

Proof

Appendix of “Safety of Nöcker’s Strictness Analysis” 15

Instead of a complete proof, we only show the typical cases:

(letrec x = c t, y = λu.C[x] in y)
S,cpcx−−−−→ (letrec x = c z, z = t, y = λu.C[c z] in y)
n,cp−−−→ (letrec x = c z, z = t, y = λu.C[c z] in λu′.C ′[c z])

n,cp−−−→ (letrec x = c t, y = λu.C[x] in λu′.C ′[x])
cpcx−−−→ (letrec x = c z, z = t, y = λu.C[c z] in λu′.C ′[x])
cpcx−−−→ (letrec x = c z′, z′ = z, z = t, y = λu.C[c z] in λu′.C ′[c z′])
cpx−−→ (letrec x = c z′, z′ = z, z = t, y = λu.C[c z] in λu.C[c z])
cpx−−→ (letrec x = c z, z′ = z, z = t, y = λu.C[c z] in λu.C[c z])
gc−→ (letrec x = c z, z = t, y = λu.C[c z] in λu.C[c z])

(letrec x = c t in caseT x (c y → s))
cpcx−−−→ (letrec x = c z, z = t in caseT (c z) ((c y)→ s))
n,case−−−−→ (letrec x = c z, z = t in (letrec y = z in s))

n,case−−−−→ (letrec x = c z, z = t in (letrec y = z in s))

In the following example we use a multicontext C[., .] that may have different
holes, every hole is mentioned as an argument.

(letrec x = c t in C[caseT x (c y → s), x])
cpcx−−−→ (letrec x = c z, z = t in C[caseT x (c y → s), c z])
n,case−−−−→ (letrec x = c z′, z′ = z, z = t in C[(letrec y = z′ in s), c z])

n,case−−−−→ (letrec x = c z′, z′ = t in C[(letrec y = z′ in s), x])
cpcx−−−→ (letrec x = c z, z = z′, z′ = t in C[(letrec y = z′ in s), c z])
cpx−−→ (letrec x = c z′, z = z′, z′ = t in C[(letrec y = z′ in s), c z])
xch−−→ (letrec x = c z′, z′ = z, z = t in C[(letrec y = z′ in s), c z])

(letrec x = c t in seq x r)
cpcx−−−→ (letrec x = c z, z = t in seq (c z) r)
n,seq−−−→ (letrec x = c z, z = t in r)

n,seq−−−→ (letrec x = c t in r)
abs−−→ (letrec x = c z, z = t in r)

16 M. Schmidt-Schauß, M. Schütz, D. Sabel

(letrec x = c t in C[caseT x (c y → s) (c′ . . .→ x)])
cpcx−−−→ (letrec x = c z, z = t in C[caseT x (c y → s) (c′ . . .→ (cz))])
n,case−−−−→ (letrec x = c z′, z′ = z, z = t in C[(letrec y = z′ in s)])

n,case−−−−→ (letrec x = c z′, z′ = t in C[(letrec y = z′ in s)])
abs−−→ (letrec x = c z, z = z′, z′ = t in C[(letrec y = z′ in s)])
cpx−−→ (letrec x = c z′, z = z′, z′ = t in C[(letrec y = z′ in s)])
xch−−→ (letrec x = c z′, z′ = z, z = t in C[(letrec y = z′ in s)])

Lemma B.23
If s

S,cpcx−−−−→ t, then s is a WHNF iff t is a WHNF.

B.5 Correctness of (cpx), (cpax), (cpcx), (xch), and (abs)

Theorem B.24
The transformations (cpcx), (cpx), (cpax), (abs), (xch) and (gc) maintain contex-
tual equivalence. I.e. whenever s

a−→ t, with a ∈ {cpcx, cpx, cpax, abs, xch, gc}, then
s ∼c t.

Proof
For (gc) this follows from B.14, and the correctness of (cpax) will follow from
correctness of (cpx), proved below.

We will show the correctness of the reductions in M := {cpcx, cpx, abs, xch, gc1}
using an induction argument. Using the context lemma it is sufficient to show that
for every reduction context R, and terms s, t, a ∈ M : with s

a−→ t, the relation
R[s] ∼c R[t] holds.
We show by induction on the length of an evaluation that if R[s] has an evaluation
of length m, then R[t] has an evaluation of length at most m, and if R[t] has an
evaluation of length m, then R[s] has an evaluation of length at most m. The base
case is shown in Lemmas B.23, B.16, B.21, B.19, and B.13.

In the following induction argument, we have to take into account all diagrams
in Lemmas B.22, B.15, B.20, B.18, and B.12, where in the latter lemma for (gc)
only the first two are relevant here.

Let R[s] have an evaluation of length m, let R[s] a−→ R[t] with a ∈ M , and

R[s] n−→ s′. Using the forking diagrams, we see that R[t] n−→ t′, and s′
∗,M−−−→ t′.

The induction hypothesis can be applied to s′, since the length of its evaluation is
≤ m − 1, and hence to all terms in the sequence s′

∗,M−−−→ t′, which shows that an
evaluation of t′ is of length at most m − 1. We obtain that R[t] has an evaluation
of length at most m.

For the other direction, let R[s] have an evaluation of length m, let R[s] a−→ R[t]
with a ∈M , and R[s] n−→ s′. Using the commuting diagrams, we see that R[t] n−→ t′,

and s′
∗,M−−−→ t′. Since the evaluation of t′ is of length at most m− 1, hence we can

apply the induction hypothesis, to show that s′ has an evaluation of length at most

Appendix of “Safety of Nöcker’s Strictness Analysis” 17

m−1. The reduction R[s] n−→ s′ shows that R[s] has an evaluation of length at most
m.

Now we can apply the context lemma and conclude that s ∼c t.

B.6 Correctness of (case) and (seq)

Proposition B.25
The reductions (case-in) and (case-e) are correct program transformations.

Proof
Proposition B.2 shows that (case-c) is a correct program transformation. From
Theorem B.24 we obtain that (cpcx) and (cpx) are correct program transformations.
We show by induction that a (case-e) and (case-in)-reduction is correct by using the
correctness of the transformations (cpcx), (case-c) and (cpx). The induction is on
the length of the variable chain in the reduction (case-in) (or (case-e), respectively).
We give the proof only for (case-in), the other is a copy of this proof.
For the base case the (case-in) reduction can also be performed by the sequence of
reductions:

cpcx−−−→ · case−c−−−−→
(letrec x = c t,Env in C[caset x (c z → s) alts])

cpcx−−−→ (letrec x = c y, y = t,Env in C[caseT (c y) (c z → s) alts])
case−c−−−−→ (letrec x = c y, y = t,Env in C[(letrec z = y in s)])

For the induction we replace a (case-in) reduction operating on a chain

{xi = xi−1}mi=2 with the sequence
cpcx−−−→ · case−in−−−−−→ · cpxn

−−−→ · cpxn

←−−− · cpcx←−−−, where
n is the arity of the constructor and the (case-in) reduction operates on the chain
{xi = xi−1}mi=3:

(letrec x1 = c
−→
t , {xi = xi−1}mi=2,Env in C[caseT xm (c −→z → s) alts])

cpcx−−−→ letrec x1 = c −→y , {yi = ti}ni=1, x2 = c −→y , {xi = xi−1}mi=3,Env
in C[caseT x1 (c −→z → s) alts]

case−in−−−−−→ letrec x1 = c −→y , {yi = ti}ni=1, x2 = c
−→
y′ , {y′i = yi}ni=1, {xi = xi−1}mi=3,Env

in C[(letrec {zi = y′i}ni=1 in s)]
cpxn

−−−→ letrec x1 = c −→y , {yi = ti}ni=1, x2 = c
−→
y′ , {y′i = yi}ni=1, {xi = xi−1}mi=3,Env

in C[(letrec {zi = yi}ni=1 in s)]
cpxn

←−−− letrec x1 = c
−→
y′ , {yi = ti}ni=1, x2 = c

−→
y′ , {y′i = yi}ni=1, {xi = xi−1}mi=3,Env

in C[(letrec {zi = yi}ni=1 in s)]
cpcx←−−− letrec x1 = c −→y , {yi = ti}ni=1, {xi = xi−1}mi=2,Env

in C[(letrec {zi = yi}ni=1 in s)]

Proposition B.26
If s

seq−−→ t, then s ∼c t.

Proof
Let s, t be expressions with s

C,seq−−−→ t. If the (seq)-reduction is a (seq-c) reduction,
then the claim follows from Proposition B.2. Otherwise, we can transform s into t

as follows: if the value of (seq)-reduction is an abstraction then s
C,cp−−−→ C,seq−c−−−−−→ t. If

18 M. Schmidt-Schauß, M. Schütz, D. Sabel

the value is an constructor application then s
C,cpcx−−−−→ C,seq−−−→ C,abs←−−− t. Now the claim

follows from Proposition B.2, B.11 and Theorem B.24.

Proposition B.27
The reduction (case) is a correct program transformation.

Proof
Follows from Proposition B.25 and B.2.

B.7 Correctness of (ucp), (abse) and (lwas)

Correctness of (ucp)

A difference between (ucp) and (cp) is that (ucp) can be applied even if the expres-
sion bound to a variable is not an abstraction.

Lemma B.28
The complete sets of forking and of commuting diagrams for

S,ucp−−−→ can be read off
of the following graphical diagrams:

t1
S,ucp //

n,a

��

s1

n,a

��

t1
S,ucp //

n,a

��

s1

n,a
��~~

~~
~~

~~
t1

S,ucp //

n,lll+

��

s1

n,lll∗

��

t1
S,ucp //

n,cp

��

s1??

S,gc~~
~~

~~
~~

t2
S,ucp // s2 t2 t2

S,ucp // s2 t2

t1
S,ucp //

n,a

��

s1

n,a

��

t1
S,ucp //

n,case

��

s1

n,case

��
t2

S,gc // s2 t2
S,gc // · S,cpx∗

// · S,gc∗ // s2

Where a ∈ {seq,case} in the fifth diagram.

Proof
We show the typical overlappings.

(letrec x = (letrec y = t in s),Env in (x z))
ucp−−→ (letrec Env in ((letrec y = t in s) z))
n,lapp−−−−→ (letrec Env in (letrec y = t in (s z)))
n,llet−−−→ (letrec Env , y = t in (s z))

n,llet−−−→ (letrec x = s, y = t,Env in (x z))
ucp−−→ (letrec y = t,Env in (s z))

Appendix of “Safety of Nöcker’s Strictness Analysis” 19

(letrec x = (letrec y = ty in tx), z = R′[x],Env in R[z])
ucp−−→ (letrec z = R′[(letrec y = ty in tx)],Env in R[z])
n,llet,+−−−−−→ (letrec z = R′[tx], y = ty,Env in R[z])

n,llet,+−−−−−→ (letrec x = tx, y = ty, z = R′[x],Env in R[z])
ucp−−→ (letrec y = ty, z = R′[tx],Env in R[z])

(letrec x = (letrec Env in v) in x)
ucp−−→ (letrec Env in v)

n,llet−−−→ (letrec x = v,Env in x)
ucp−−→ (letrec Env in v)

(letrec x = s,Env in (x y))
ucp−−→ (letrec Env in (s y))

n,cp−−−→ (letrec x = s,Env in (s y))
gc−→ (letrec Env in (s y))

(letrec x = cs in (seq x r))
ucp−−→ (seq (c s) r)
n,seq−−−→ r

n,seq−−−→ (letrec x = cs in r)
gc−→ r

(letrec x = c si in (caseT x (c zi → r)))
ucp−−→ (caseT (c si) (c zi → r))
n,case−−−−→ (letrec zi = si in r)

n,case−−−−→ (letrec x = c yi, yi = si in (letrec zi = yi in r))
gc−→ (letrec yi = s in (letrec zi = yi in r))
cpx,∗−−−→ (letrec yi = s in (letrec zi = yi in r[yi/zi]))
gc,∗−−→ (letrec yi = s in r[yi/zi])

Lemma B.29
Let t, t′ be expressions and t

ucp−−→ t′. Then

• If t is a WHNF, then t′ is a WHNF.
• If t′ is a WHNF, then there are the following cases:

— t is a WHNF

20 M. Schmidt-Schauß, M. Schütz, D. Sabel

— t
n,(lll∪ cp),∗−−−−−−−−→ t′′, where t′′ is a WHNF

Proof
The first case is obvious.
In the second case there are the following possibilities:

• t = (letrec x = λv.r,Env in x)
ucp−−→ (letrec Env in λv.r). In this case an

(n,cp)-reduction is sufficient to transform t into WHNF.
• t = (letrec x = t0 in x)

ucp−−→ t0, where t0 is a WHNF. Then either an
(n,cp)-reduction, or an (n,llet)-reduction, or an (n, llet) followed by an (n,cp)-
reduction transform t into WHNF.

• t = (letrec x = v in (letrec Env in x))
ucp−−→ (letrec Env in v), where

v is a value. Then an (n,cp)-reduction or an (n,llet)-reduction or an (n,llet)-
reduction followed by an (n,cp)-reduction transform t into WHNF.

• t = (letrec Env in (letrec x = v in x))
ucp−−→ (letrec Env in v). Again

an (n, llet)-reduction or an (n, llet)-reduction followed by an (n,cp)-reduction
transforms t into WHNF.

Proposition B.30
Let t be an expression. If t

ucp−−→ t′, then t ∼c t′

Proof
Using the context lemma and the same technique as in the proof of Proposition B.11,
we have only to ensure that transforming an evaluation of R[t] to an evaluation of
R[t′], and vice versa, really terminates.

• Let R[t]⇓. We show that R[t′]⇓ by using the forking diagrams in Lemma B.28

to transform Red · S,ucp−−−→into an evaluation of R[t′], where Red is an evaluation
of R[t]. Here Red means an evaluation denoted as a right-to-left reduction. The

rearrangements have only two possibilities: either the
S,ucp−−−→-transformation

is shifted to the left, perhaps over several normal-order reductions, or the
S,ucp−−−→-transformation is first shifted to the left, and then eliminated, and
replaced by a sequence

S,gc,∗−−−−→ · S,cpx,∗−−−−−→ · S,gc,∗−−−−→; a normal-order reduction
may also be eliminated.
If

S,ucp−−−→ is the left most reduction, then it transforms a WHNF into a WHNF
by Lemma B.29, and an evaluation is already constructed. In the elimination
case, the reduction sequence is of the form t′′

n,∗←−− t′′′
S,gc−−−→ · S,cpx,∗−−−−−→ · S,gc,∗−−−−→

t′′′
n,∗←−− R[t′]. In this case Theorem B.24 shows that there is an evaluation of

t′′′, and hence also of R[t′].

• Let R[t′]⇓. We show that R[t]⇓ by transforming a terminating reduction
S,ucp−−−→

·Red into an evaluation of R[t], where Red is an evaluation of R[t′]. We shift

the single
S,ucp−−−→-transformation to the right using the diagrams in Lemma

B.28. This terminates, since the number of normal order reductions to the
right of the reduction

S,ucp−−−→ strictly decreases. The reduction
S,ucp−−−→ may be

eliminated during this shifting, or if it reaches the WHNF, then we apply

Appendix of “Safety of Nöcker’s Strictness Analysis” 21

Lemma B.29 and replace the final reduction by
n,(lll∪ cp),∗−−−−−−−−→ t′′, where t′′ is

a WHNF. This leaves a reduction sequence starting with R[t′], ending in a

WHNF which is a mixture of normal order reductions and
S,gc−−−→and

S,cpx−−−→-
transformations. Now we can apply Proposition B.14 and Theorem B.24 to
transform this mixed sequence into an evaluation.

Correctness of (abse)

Proposition B.31
The transformation (abse) is a correct program transformation.

Proof
This follows from Proposition B.30 and Theorem B.24, since (abse) can be undone
by several (ucp)-and (gc)-transformations.

Correctness of (lwas)

In this subsection we show the correctness of the transformation (lwas), which lifts
letrec bindings over an W−

(1) context.

Proposition B.32
The (lwas)-transformation is correct. I.e., if s

lwas−−−→ t, then s ∼c t.

Proof
The reduction sequence

W−
(1)[(letrec Env in t)]

ucp←−− (letrec x = (letrec Env in t) in W−
(1)[x])

llet−−→ (letrec x = t,Env in W−
(1)[x])

ucp−−→ (letrec Env in W−
(1)[t])

and the correctness of (lll) and (ucp), which are proved in Proposition B.7 and
Proposition B.30 show that the proposition holds.

B.8 Correctness of the Variants of (case)-Reductions

Lemma B.33
The following holds:

1. The transformation rule (cpcxnoa) is a correct program transformation. It
can be simulated by (cpcx) with a subsequent

cpx,∗−−−→ · gc,∗−−→ transformation.
2. A (case-cx) transformation can be simulated by (case) and subsequent

cpx,∗−−−→
· gc,∗−−→ transformation.

3. Every (case-e) and (case-in)-reduction can be simulated by an (abs)-
transformation followed by a (case-cx)-transformation.

4. The transformation rule (case-cx) is a correct program transformation.

Proof
Follows from the correctness of (case) (Proposition B.27), (cpx), (gc) and (abs) by
Theorem B.24.

22 M. Schmidt-Schauß, M. Schütz, D. Sabel

B.9 Proofs of Theorem 2.4 and 2.9

We prove Theorem 2.4, here repeated as a theorem in the appendix:

Theorem B.34
All the reductions in the base calculus are correct as transformations. I.e. whenever
t

a−→ t′, with a ∈ {cp, lll, case, seq, lbeta}, then t ∼c t′.

It follows from Propositions B.7, B.26, B.11, B.27 and B.2.

We prove Theorem 2.9, here repeated as a theorem in the appendix:

Theorem B.35
The transformations (ucp), (cpx), (cpax), (gc), (lwas), (cpcx), (abs), (abse) (xch),
(cpcxnoa) and (case-cx) are correct as transformations. I.e. whenever t

a−→ t′, with
a ∈ {ucp, cpx, cpax, gc, lwas, cpcx, abs, abse, xch, cpcxnoa, case-cx}, then t ∼c t′.

It follows from Theorem B.24, Propositions B.30, B.32, and Lemma B.33.

C Properties of Bot

In this section we show that all bot-terms, i.e., all terms t with t⇑⇑ are equivalent
to Ω, and that Ω is the least element w.r.t. ≤c.

Proposition C.1
Let t be an expression such that t⇑⇑ and let s be an arbitrary expression.
Then t ≤c s.

Proof
Let t be a bot-term with t⇑⇑. The context lemma shows that it is sufficient to
prove for all reduction contexts R and all terms s: R[t]⇓ ⇒ R[s]⇓. We simply prove
that R[t]⇓ does not hold. Assume that there is an evaluation of R[t]. We prove by
induction that this implies that t has an evaluation.
Let t

n,∗−−→ t1, such that t1 is the first letrec-expression in the sequence. If t 6= t1, we
can use induction, since the normal order reductions of R[t]

n,∗−−→ R[t1] are precisely
the same reductions. This holds, since inserting the maximal weak reduction context
of t into the reduction context R also yields a reduction context.

In the rest of the proof we assume that t is a letrec-expression.
By Lemma 2.5, if t = (letrec Et in t′), the normal order reduction reduces R[t] =
R[(letrec Et in t′)] to (letrec Et, ER in R′[t′]) in several steps, where R′ is a weak
reduction context, Et the environment that belongs to t, and ER the environment
part that is at the top level of R. If R is not a letrec-expression, then ER is empty.

The correspondence between normal order reduction sequences of t and of
(letrec Et, ER in R′[t′]) is as follows:

• If there is a (n,llet-in)-reduction t = (letrec Et in (letrec E1 in t′′)) n−→
(letrec Et, E1 in t′′), then the corresponding normal order reduction
of (letrec Et, ER in R′[(letrec E1 in t′′)]) is a normal order (lll,*)-
reduction, shifting te environment to the top (see Lemma 2.5) resulting in
(letrec Et, E1, ER in R′[t′′]). With E′

t = Et ∪E1, the correspondence holds.

Appendix of “Safety of Nöcker’s Strictness Analysis” 23

• If there is another reduction of t, then this is of the form (letrec Et in t′) n−→
(letrec E′

t in t′′). It is easy to see that (letrec Et, ER in R′[t′]) n−→
(letrec E′

t, ER in R′[t′′]). The environment ER is never involved, since we
have assumed that t⇑⇑.

Summarizing, the number of normal order reduction steps of R[t] correspond to
the number of normal order reductions of t. The number of (lll)-reductions may vary,
but the non-(lll)-reductions are the same. Hence, if R[t] has an evaluation, then we
also obtain an evaluation of t by the translation above. This is a contradiction.
We conclude that the term R[t] cannot have a terminating normal order reduction.

Corollary C.2
1. If t1, t2 are expressions with t1⇑⇑ and t2⇑⇑, then Ω ∼c t1 ∼c t2.
2. For all expressions s: Ω ≤c s.
3. R[Ω] ∼c Ω.
4. If t = R[s] is an expression and R a reduction context, then s is a strict

subexpression of t.

Proof
The first two claims follow from Proposition C.1. Claim 3 and 4 follow using the
arguments in the proof of Proposition C.1.

C.1 Reduction Rules for Bot-Terms

Definition C.3
The reduction rules that treat the bot-term Ω are defined in figure C 1. Note that
these reductions are permitted in all contexts. Let (case-bot-all) be the union of
(case-bot-c), (case-bot-in) and (case-bot-e). Further, let (app-bot-all) be the union
of (app-bot-c),(app-bot-in) and (app-bot-e).

Proposition C.4
If t→ t′ by a bot-reduction as defined in Figure C 1, then

• t ∼c t′.
• If t is a closed concrete term with t⇓, then t′⇓ and rl]](t) = rl]](t′).

Proof
Contextual equivalence follows from Corollary C.2 for (beta-bot), (case-bot-all),
(app-bot-all), (case-bot), (seq-bot) and (strict-bot). For the rules (cp-in-bot), (cp-e-
bot), and (hole) other arguments are required. The context lemma shows the claim:
If t→ t′, and we check the evaluations of R[t] and R[t′], then they are synchronous,
as long as neither Ω nor x is required. The values of x or Ω are required in t iff they
are required in t′. In this case this term is in a reduction context. We already know
that then the expression is contextually equivalent to Ω by Corollary C.2. Thus the
context lemma A.1 shows contextual equivalence.

The claim on the lengths of reductions can be seen as follows. In an evaluation,
the subterm Ω, the subterm x, or the untyped expressions cannot be “required” by
any reduction, local evaluation, hence the lengths of the evaluations are the same.

24 M. Schmidt-Schauß, M. Schütz, D. Sabel

(beta-bot) (Ω y)→ Ω
(cp-in-bot) (letrec x = Ω,Env in C[x])

→ (letrec x = Ω,Env in C[Ω])
(cp-e-bot) (letrec x = Ω, y = C[x],Env in r)

→ (letrec x = Ω, y = C[Ω],Env in r)
(hole) (letrec x = x,Env in r)

→ (letrec x = Ω,Env in r)
(case-bot) (caseT Ω . . . ((ci y1 . . . yn) -> t) . . .)→ Ω

(app-bot-c) ((c
−→
t) r) → Ω

(app-bot-in) (letrec y = (c
−→
t),Env in C[(y t)]) → (letrec y = (c

−→
t),Env in C[Ω])

(app-bot-e) (letrec y = (c
−→
t), x = C[(y t)],Env in t)

→ (letrec y = (c
−→
t), x = C[Ω],Env in t)

(case-bot-c) (caseT v alts)→ Ω
if v is an abstraction or its
top-constructor does not belong to the type T

(case-bot-in) (letrec x = v,Env in C[caseT x alts])→ (letrec x = v,Env in C[Ω])
if v is an abstraction or its
top-constructor does not belong to the type T

(case-bot-e) (letrec x = v, y = C[caseT x alts],Env in t)
→ (letrec x = v, y = C[Ω],Env in t)
if v is an abstraction or its
top-constructor does not belong to the type T

(seq-bot) (seq Ω t)→ Ω
(strict-bot) (f t1 . . . ti−1 Ω ti+1 . . . tn)→ Ω

if f is strict in its ith argument for arity n

Fig. C 1. Reduction rules for bot-terms

D Strict Subexpressions

In this section we show that the strictness optimization is correct. I.e., if a function
f is strict in its ith argument for arity n, then in every expression f t1 . . . tn, that is
itself strict in the top-term, it is permitted to first locally evaluate the argument ti.
More generally, we prove that a strict subexpression s of t in a surface context can
be reduced eagerly to WHNF. There are also some other lemmas on properties of
strict subexpressions needed to prove correctness of copying parts of environments
later.

In the following, when we speak of a strict subterm s of t, we always mean the
subterm together with its position in t. We assume also that we can use labeled
reduction freely in order to identify a subterm before and after a reduction. There-
fore, we assume that a subterm s is implicitly labeled, that the reduction respects
these labels and that labels can be identified in the reduct, unless the reduction is
an (llet)-reduction that destroys the top level letrec of s, or unless s is eliminated.

Lemma D.1
Let s be a strict subterm of the expression t, where t = S[s] and S is a surface
context. Then for every evaluation of t

n,∗−−→ t0, there is an intermediate term R[s],

Appendix of “Safety of Nöcker’s Strictness Analysis” 25

such that t
n,∗−−→ R[s]

n,∗−−→ t0, R is a reduction context, and R[s] is the first term in
this sequence where the subexpression s is in a reduction context.

Proof
Since S is a surface context, if the reduction is independent of s, then the term
s is either removed by a normal order reduction step or it remains in a surface
context, and in particular, the successor subterm of s is unique. Suppose there is an
evaluation t

n,∗−−→ t0, where s is never in a reduction context. Then we can replace
s by Ω and get a corresponding evaluation. This contradicts the assumption that s

is a strict subterm of t. Hence we will find an intermediate term R[s], as required.

Lemma D.2
Let s be a strict subterm of the expression t, where t = S[s] and S is a surface
context. Then the following holds:

1. If s is of one of the following forms:
(letrec E in s′), (s′ s′′), (seq s′ s′′), or (caseT s′ alts),
then s′ is a strict subterm of t.

2. Every superterm of s in t is a strict subterm of t.
3. If t = C[(letrec x = s′, E in C ′[x])], and x is a strict subterm of t in a

surface context, then s′ is also a strict subterm of t.

Proof
The first claim follows from Corollary C.2, since (letrec E in Ω) ∼c (Ω s′′) ∼c

(seq Ω s′′) ∼c (caseT Ω alts) ∼c Ω, since in each of the expressions Ω is in a
reduction context of s.
The second claim follows from the properties of a precongruence: If t = C[D[s]]
we have C[D[Ω]] ∼c Ω. Since Ω ≤c D[Ω], we obtain C[Ω] ≤c C[D[Ω]] ∼c Ω, hence
C[Ω] ∼c Ω.
The third claim can be proved using Lemma D.1 which shows that every evaluation
of t has an intermediate term R[x]. Hence s′ will occur under a reduction context
in every evaluation. Thus s′ is a strict subterm of t.

Lemma D.3
Let t be a term with t⇓, let s be a strict subterm of the expression t with s 6= t,
t = S[s] where S is a surface context. Let t

a−→ t′ by a reduction a from the base
calculus.
If s is not a value and not a letrec-expression, then s or its con-
tractum is also a strict subterm of t′. If s is a letrec-expression
(letrec Env1 in (letrec Env2 in . . . (letrec Envn in s0) . . .)) and s0 is not
a letrec-expression and not a value, then s0 or its contractum is also a strict
subterm of t′.

Proof
(1) First assume that s is not a letrec-expression and not a value. If the reduction
is within s, i.e. s→ s′ and t′ = t[s′/s], then the lemma holds, since t[Ω/s] ∼c Ω, and
so also t[Ω/s′] ∼c Ω. This also holds, if a (cp) or (seq) has its inner redex in s, but

26 M. Schmidt-Schauß, M. Schütz, D. Sabel

the redex is not in s. If a (case)-reduction is such that the case-expression is within
s, and the constructor application is not in s, then we have t[Ω/s] abs−−→ t′[Ω/s′],
hence by Theorem B.35, we obtain t′[Ω/s′] ∼c Ω,

If the reduction does not change s, then also t[Ω/s] → t′[Ω/s] by a reduction
from the base calculus. In this case Theorem B.34 shows that t′[Ω/s] ∼c Ω.

The other case is that s is not changed, but eliminated by (seq) or (case). In this
case we have t[Ω/s] → t′[Ω/s] = t′ and we reach the contradiction t′ ∼c Ω using
Theorem B.34.

It is not possible by assumption that s is copied by a (cp), or that the top level
of s is destroyed by a (lll)-reduction, or that s is the constructor application used
in a (case)-reduction, or that s is the head of a (lbeta)-reduction.

(2) Now assume that s = (letrec Env1 in (letrec Env2 in . . . (letrec Envn in s0) . . .)).
Lemma D.2 shows that s0 is a strict subexpression of t. Since s0 is is not a letrec-
expression and not a value, we can apply the first part of the proof.

E Reduction Lengths for Different Reductions

We prove the properties of the length of evaluations.
For the purposes of the proofs in this appendix, we generalize the definition of

the length measures to reduction sequences, consistently with Definition 2.13.

Definition E.1
Let Red be a normal order reduction sequence. Then

1. If ∅ 6= M ⊆ {case,lbeta,seq,cp,lll}, then rlM (Red) is defined to be the number
of normal-order reductions a−→ in Red .

2. rl]](Red) := rl{case,lbeta,seq}(Red).
3. rl](Red := rl{case,lbeta,seq,cp}(Red).
4. rl[(Red) := rl{lll}(Red).
5. rl(Red) := rl{case,lbeta,seq,cp,lll}(Red).

For claims about lengths of reductions, only complete sets of forking diagrams
are required. On the other hand, we cannot use the context lemma, and thus also
have to treat overlappings where the reduction is within the body of a lambda
abstraction.

In the following section we prove Theorem 2.14, here repeated in this appendix:

Theorem E.2
Let t1, s1 be closed and terminating concrete expressions with t1⇓ and t1 −→ s1 by
a base reduction or an extra transformation. Then s1⇓ and the following holds:

1. If t1
a−→ s1 with a ∈ {case, seq, lbeta, cp}, then rl(t1) ≥ rl(s1), rl](t1) ≥ rl](s1)

and rl]](t1) ≥ rl]](s1).
2. If t1

S,a−−→ s1 with a ∈ {caseS, seqS, lbeta, cpS}, then rl](t1) ≥ rl](s1) ≥
rl](t1) − 1 and rl]](t1) ≥ rl]](s1) ≥ rl]](t1) − 1. For a = cpS, the equation
rl]](t1) = rl]](s1) holds.

3. If t1
a−→ s1 with a ∈ {lll, gc}, then rl(t1) ≥ rl(s1), rl](t1) = rl](s1) and

rl]](t1) = rl]](s1). For a = gc1 in addition rl(t1) = rl(s1) holds.

Appendix of “Safety of Nöcker’s Strictness Analysis” 27

4. If t1
a−→ s1 with a ∈ {cpx, cpax, xch, cpcx, abs}, then rl(t1) = rl(s1), rl](t1) =

rl](s1) and rl]](t1) = rl]](s1).
5. If t1

ucp−−→ s1, then rl(t1) ≥ rl(s1), rl](t1) ≥ rl](s1) and rl]](t1) = rl]](s1).

6. If t1
lwas−−−→ s1, then rl]](t1) = rl]](s1).

Proof
(1) follows from Proposition E.18. (2) follows from Proposition E.20. (3) follows
from Proposition E.5. (4) follows from Propositions E.7, E.8, E.12 and E.10. (5)
follows from Proposition E.14. (6) follows from Proposition E.15.

E.1 Reduction Lengths for (lll) and (gc)

For the purposes of this subsection we denote the union of the reductions (lapp),
(lseq), (lcase) as (llasc).

Lemma E.3
A complete set of forking and commuting diagrams for (i, lll), where a is an arbi-
trary reduction type, is as follows:

t1
i,lll //

n,a
��

s1

n,a
��

t1
i,lll //

n,a
��

s1

n,a

����
��

��
��

��
��

t1
i,lll //

n,a
��

s1

n,a||xxx
xx

xx

t2
i,lll // s2 t3

n,lll
��

t2

t2

t1
i,lll //

n,cp
��

s1

n,cp
��

t1
i,llet //

n,llasc
��

s1

n,llasc
��

t1
i,llet //

n,llasc
��

s1

n,llasc

����
��

��
��

��
��

��
��

��
��

t2
i,lll // t3

i,lll // s2 t2
i,llasc // t3

i,llet // s2 ·
n,llasc

��
·

n,llet
��

t2

Proof
We make the case analyses for the forking diagrams. There are a number of standard
cases:

• the reductions commute, or
• the reductions commute, and the (i,lll)-reduction is turned into a (n,lll)-

reduction, or
• the (i,lll)-reduction is in a term that is removed by the reduction, i.e., a lost

case-alternative.
• the (i,lll)-reduction is within a copied abstraction.

28 M. Schmidt-Schauß, M. Schütz, D. Sabel

This leads to cases 1 to 4.
All overlappings of an (i,b)-reduction, where b ∈ {(lseq), (lcase), (lapp), (llet-e)}

lead to one of the diagrams 1-4. The non-standard cases are overlappings of a

reduction
i,llet-in−−−−−→ with a normal order redex: we demonstrate the reductions by

representative examples.

• (((letrec Env1 in (letrec Env2 in t1)) t2) t3)
n,lapp−−−−→ ((letrec Env1 in ((letrec Env2 in t1) t2)) t3)
i,lapp−−−−→ ((letrec Env1 in (letrec Env2 in (t1 t2))) t3)
i,llet−−−→ ((letrec Env1,Env2 in (t1 t2)) t3)

• (((letrec Env1 in (letrec Env2 in t1)) t2) t3)
i,llet−−−→ (((letrec Env1,Env2 in t1) t2) t3)
n,lapp−−−−→ ((letrec Env1,Env2 in (t1 t2)) t3)

This is covered in the diagram number 5.
A slight variation is the case:

• ((letrec Env1 in (letrec Env2 in t1)) t2)
n,lapp−−−−→ (letrec Env1 in ((letrec Env2 in t1) t2))
n,lapp−−−−→ (letrec Env1 in (letrec Env2 in (t1 t2)))
n,llet−−−→ (letrec Env1,Env2 in (t1 t2))

• ((letrec Env1 in (letrec Env2 in t1)) t2)
i,llet−−−→ ((letrec Env1,Env2 in t1) t2)
n,lapp−−−−→ (letrec Env1,Env2 in (t1 t2))

This corresponds to the diagram 6.
The same holds if (lapp) is replaced by (lseq), or (lcase).

Checking all cases shows that no further diagrams are required.

Lemma E.4
A complete set of forking diagrams for (gc), where a is arbitrary, is as follows:

t1
gc //

n,a

��

s1

n,a

���
�
� t1

gc //

n,a

��

s1

n,a
��~

~
~

~

t2
gc //___ s2 t2

t1
gc //

n,cp

��

s1

n,cp

���
�
� t1

gc2 //

n,lll

��

s1??

gc2~
~

~
~

t2
gc //___ t3

gc //___ s2 t2

Proof
We omit the arguments for the cases 1,2,3.

Checking all possibilities for an overlap, it is clear that a (gc)-transformation can
only overlap with a normal order reduction that requires a letrec. A non-trivial
overlap is only possible, if (gc) removes the complete environment, i.e. only with

Appendix of “Safety of Nöcker’s Strictness Analysis” 29

(gc2). It is easy to check that all cases are covered by the diagrams (see also Lemma
B.12).

Now we can prove claim 3 of Theorem E.2.

Proposition E.5
Let t1, s1 be closed expressions with t1⇓, Red1 := nor(t1) and t1

a−→ s1 where
a ∈ {lll, gc}. Then s1⇓ and with Red2 := nor(s1): rl(Red1) ≥ rl(Red2), rl](Red1) =
rl](Red2) and rl]](Red1) = rl]](Red2). If a = (gc1), then in addition rl(Red1) =
rl(Red2).

Proof
The proof constructs a reduction Red2 using induction on rl(Red1).
If t1 is a WHNF, then s1 is also a WHNF by Lemmas B.6 and B.13.

First we treat the case that the reduction is an (i,lll):
Let t1 be the starting term. Let Red1 = t1

n,a−−→ t2·Red1r. In the triangular diagrams,
it is easy to see that the reduction Red2 satisfies the length properties. For diagrams
1,4,5, the induction hypothesis has to be used.

The diagrams in Lemma E.3 fix the notation of the terms ti, si. So we associate
a reduction Red2r to s2.

t1
i,b //

n,a

��

s1

n,a

���
�
�

t2
i,b //______

Red1r

��

s2

Red2r

��
· ·

In any case, we have rl(Red1) > rl(Red1r), and so we can apply the induction
hypothesis to Red1r, perhaps two times, and obtain a reduction Red2r starting from
s2.
It is easy to see inspecting the diagrams, that rl[(Red1) ≥ rl[(Red2). The additional
contribution of the (n,a)-reduction, or the (n,cp)-reduction to rl](Red1) or rl](Red2)
is the same in all diagrams, hence rl](Red1) = rl](Red2) holds using induction.

Now we consider the case that the internal reduction is a (gc). The diagrams in
Lemma E.4 are used.

In any case, we have rl(Red1) > rl(Red1r), and so we can apply the induction
hypothesis to Red1r.
The equality rl](Red1) = rl](Red2) holds in the diagram cases 1,2 since the (n,a)-
reductions contribute the same number of reductions. The same for diagram 3, but
we have to apply the induction hypothesis twice. In diagram 4, the (n,a)-reduction
is a (n,lll), hence rl](Red1) = rl](Red2r), and rl](Red2r) = rl](Red1) by induction.
Exactly the same arguments show the claim of the theorem for rl]](·) for (gc) and
(lll)-reductions.

The easy induction proof for the property of (gc1) is done by the length rl(·),
omitting diagram 4.

30 M. Schmidt-Schauß, M. Schütz, D. Sabel

E.2 Reduction Length for (cpx)-, (cpax)- and (xch)-Transformations

We compute the effect of (cpx)- and (xch)-transformations on the length of eval-
uations. Note that the diagrams from Lemma B.15 have to be reconsidered, since
now all positions in a term have to be covered.

Lemma E.6
A complete set of forking diagrams for b ∈ {cpx, xch} in all contexts is as follows:

t1
b //

n,a

��

s1

n,a

���
�
� t1

b //

n,a

��

s1

n,a
��~

~
~

~
t1

b //

n,cp

��

s1

n,cp

���
�
�

t2
b //___ s2 t2 t2

b //___ t3
b //___ s2

Proof
There are only the standard overlappings.

Concerning the length of evaluations, the following holds:

Proposition E.7
Let t1 be a closed expression with t1⇓, Red1 := nor(t1), and t1

b−→ s1 where b ∈
{cpx, xch}. Then s1⇓ and with Red2 := nor(s1) we have rl]](Red1) = rl]](Red2),
rl](Red1) = rl](Red2) and rl(Red1) = rl(Red2).

Proof
This follows by induction on rl(Red1) from Lemma E.6, Lemma B.16 and B.19.

We have to treat the length-modifications by (cpax)-transformations:

Proposition E.8
Let t1 be a closed expression with t1⇓, Red1 := nor(t1), and t1

cpax−−−→ s1. Then s1⇓
and with Red2 := nor(s1) we have rl]](Red1) = rl]](Red2), rl](Red1) = rl](Red2)
and rl(Red1) = rl(Red2).

Proof
This follows by induction on the number of variables occurrences that are re-
placed by the (cpax)-transformation, and from Proposition E.7, since the (cpax)-
transformation can be simulated by several (cpx) transformations.

E.3 Reduction Length for (cpcx)

For the definition of the transformation (cpcx) see Definition 2.8.

Lemma E.9
A complete set of forking diagrams for (cpcx) in arbitrary contexts is as follows.

t1
cpcx //

n,a

��

s1

n,a

���
�
� t1

cpcx //

n,a

��

s1

n,a
��~

~
~

~
t1

cpcx //

n,cp

��

s1

n,cp

���
�
�

t2
cpcx //___ s2 t2 t2

cpcx //___ t3
cpcx //___ s2

Appendix of “Safety of Nöcker’s Strictness Analysis” 31

t1
cpcx //

n,cp

��

s1

n,cp

���
�
� t1

cpcx //

n,a

��

s1

n,a

���
�
�

t2
cpcx,+

//___ t3 cpx,∗
//___ t4

gc1,∗
//___ s2 t2

abs //___ s2

· cpcx //

n,case

��

·
n,case

���
�
� · cpcx //

n,case

��

·
n,case

���
�
�

·
cpcx

//___ ·
cpx,∗

//___ ·
xch,∗

//___ · ·
abs

//___ ·
cpx,∗

//___ ·
xch,∗

//___ ·

Proof
The first three cases cover the standard cases, prototypical examples for the other
diagrams are already in the proof of Lemma B.22. We give a further prototypical
example for diagram 6:

(letrec x = c t1 t2, y = x in caseT y (c y1 y2)→ s)
cpcx−−−→ (letrec x = c x1 x2, x1 = t1, x2 = t2, y = c x1 x2 in caseT y (c y1 y2)→ s)
n,case−−−−→ letrec x = c x1 x2, x1 = t1, x2 = t2, y = c z1 z2, z1 = x1, z2 = x2

in (letrec y1 = z1, y2 = z2 in s)

n,case−−−−→ (letrec x = c x1 x2, x1 = t1, x2 = t2, y = x in (letrec y1 = x1, y2 = x2 in s))
cpcx−−−→ letrec x = c z1 z2, z1 = x1, z2 = x2, x1 = t1, x2 = t2, y = c z1 z2

in (letrec y1 = x1, y2 = x2 in s)
cpx,∗−−−→ letrec x = c x1 x2, z1 = x1, z2 = x2, x1 = t1, x2 = t2, y = c z1 z2

in (letrec y1 = z1, y2 = z2 in s)

The following case is covered by diagram 5:

(letrec x = c t1 t2 in caseT x (c y1 y2)→ s)
cpcx−−−→ (letrec x = c x1 x2, x1 = t1, x2 = t2 in caseT (c x1 x2) (c y1 y2)→ s)
n,case−−−−→ letrec x = c z1 z2, z1 = x1, z2 = x2, x1 = t1, x2 = t2

in (letrec y1 = z1, y2 = z2 in s)

n,case−−−−→ letrec x = c x1 x2, x1 = t1, x2 = t2
in (letrec y1 = x1, y2 = x2 in s)

n,abs−−−→ letrec x = c z1 z2, z1 = x1, z2 = x2, x1 = t1, x2 = t2
in (letrec y1 = x1, y2 = x2 in s)

Proposition E.10
Let s1, t1 be closed expressions with t1⇓, Red1 := nor(t1) and t1

cpcx−−−→ s1. Then
s1⇓ and with Red2 := nor(s1) we have rl(Red1) = rl(Red2), rl](Red1) = rl](Red2)
and rl]](Red1) = rl]](Red2).

Proof

32 M. Schmidt-Schauß, M. Schütz, D. Sabel

The proof is by induction on rl(Red1), where Lemma B.23 is used for the base case,
and the diagrams in the following Lemmas are used: E.9, E.4, E.11, and E.6.

E.4 Reduction Length for (abs)

For the definition of the (abs)-transformation see figure 3.

Lemma E.11
The forking diagrams for (abs) in arbitrary contexts are as follows.

t1
abs //

n,a

��

s1

n,a

���
�
� t1

abs //

n,a

��

s1

n,a
��~

~
~

~

t2
abs //___ s2 t2

t1
abs //

n,cp

��

s1

n,cp

���
�
� t1

abs //

n,case

��

s1

n,case

���
�
�

t2
abs //___ t3

abs //___ s2 t2
abs //___ · cpx,∗ //___ · xch,∗ //___ s2

Proof
The cases are standard, only the last diagram requires an explicit justification:

(letrec x = c t1 t2 in C[caseT x (c y1 y2)→ s])
abs−−→ (letrec x = c x1 x2, x1 = t1, x2 = t2 in C[caseT x (c y1 y2)→ s])
n,case−−−−→ (letrec x = c z1 z2, z1 = x1, z2 = x2, x1 = t1, x2 = t2 in

C[(letrec y1 = z1, y2 = z2 in s)])

n,case−−−−→ (letrec x = c z1 z2, z1 = t1, z2 = t2 in C[(letrec y1 = z1, y2 = z2 in s)])
abs−−→ (letrec x = c x1 x2, x1 = z1, x2 = z2, z1 = t1, z2 = t2 in

C[(letrec y1 = z1, y2 = z2 in s)])
cpx,∗−−−→ (letrec x = c z1 z2, x1 = z1, x2 = z2, z1 = t1, z2 = t2 in

C[(letrec y1 = z1, y2 = z2 in s)])
xch,∗−−−→ (letrec x = c z1 z2, z1 = x1, z2 = x2, x1 = t1, x2 = t2 in

C[(letrec y1 = z1, y2 = z2 in s)])

Proposition E.12
Let t1, s1 be closed expressions with t1⇓, Red1 := nor(t1) and t1

abs−−→ s1. Then s1⇓
and with Red2 := nor(s1) we have rl(Red1) = rl(Red2), rl](Red1) = rl](Red2) and
rl]](Red1) = rl]](Red2).

Proof
The proof is by induction on rl(Red1), where the diagrams in Lemma E.11 are used,
and part 4 in Theorem E.2, and since (abs) transforms WHNFs into WHNFs and
vice versa.

Appendix of “Safety of Nöcker’s Strictness Analysis” 33

E.5 Reduction Length for ucp-Transformations

Lemma E.13
A complete sets of forking diagrams for

ucp−−→ in arbitrary contexts is as follows:

t1
ucp //

n,a

��

s1

n,a

���
�
� t1

ucp //

n,a

��

s1

n,a
��~

~
~

~
t1

ucp //

n,lll+

��

s1

n,lll∗

���
�
� t1

ucp //

n,cp

��

s1??

gc
~

~
~

~

t2
ucp //___ s2 t2 t2

ucp //___ s2 t2

t1
ucp //

n,a

��

s1

n,a

���
�
� t1

ucp //

n,b

��

s1

n,b

���
�
�

t2
gc //___ s2 t2

ucp //___ · ucp,∗ //___ s2

where a ∈ {(seq), (case)} in the 5th diagram, and b ∈ {(cp), (case)} in the 6th

diagram.

Proof
The first five diagrams are as in Lemma B.28, the 6th diagram covers in addition
the case that the (ucp) takes place in the body of an abstraction.

Proposition E.14
Let t1 be a closed expression with t1⇓, Red1 := nor(t1) and t1

ucp−−→ s1. Then s1⇓ and
with Red2 := nor(s1) we have rl]](Red1) = rl]](Red2) and rl](Red1) ≥ rl](Red2).

Proof
This follows by induction on rl](Red1) and then on rl(Red1) from Lemma B.29,
Lemma E.13 and Proposition E.5.

E.6 Reduction Length for (lwas)-Transformations

Proposition E.15
Let t1 be a closed expression with t1⇓, Red1 := nor(t1) and t1

lwas−−−→ s1. Then s1⇓
and with Red2 := nor(s1) we have rl]](Red1) = rl]](Red2).

Proof
Since (lwas) can be simulated using (ucp) and (llet)-reductions in both directions
(see proof of Lemma B.32), Propositions E.14, and E.5 show the claim.

It would also be possible to sharpen this proposition, however, this is not neces-
sary for the further development.

E.7 Using Diagrams for Internal Base Reductions

Now we analyze the length-change of evaluations due to internal base reductions.

Lemma E.16

34 M. Schmidt-Schauß, M. Schütz, D. Sabel

A complete set of forking diagrams for internal reductions with b ∈
{case, seq, lbeta, cp}, where a is the kind of the normal order reduction, and all
contexts are permitted, is as follows

t1
i,b //

n,a

��

s1

n,a

���
�
� t1

i,b //

n,a

��

s1

n,a

���
�
�
�
�
�
�

t1
i,b //

n,cp

��

s1

n,cp

���
�
� t1

i,b //

n,a

��

s1

n,a
��~

~
~

~

t2
i,b //___ s2 t3

n,b

��

t2
i,b //___ t3

i,b //___ s2 t2

t2

t1
i,case //

n,case

��

s1

n,case

���
�
�

t2
i,case //___ · cpx,∗ //___ · xch,∗ //___ s2

Proof
The conflicts are only between (i,b) and the rule (cp), in which case the b-reduction
may be within the copied expression, or in a removed alternative of a case, or in a
subterm removed by (seq).
The exceptional diagram is a (case)-(case)-overlapping:

(letrec x = c t1 t2 in C[caseT x (c z1,1 z1,2)→ s1, caseT x (c z2,1 z2,2)→ s2])
i,case−−−−→ (letrec x = c y1 y2, y1 = t1, y2 = t2 in

C[caseT x (c z1,1 z1,2)→ s1, (letrec z2,1 = y1, z2,2 = y2 in s2)])
n,case−−−−→ (letrec x = c y′1 y′2, y1 = t1, y2 = t2, y

′
1 = y1, y

′
2 = y2 in

C[(letrec y′1 = z1,1, y
′
2 = z1,2 in s1), (letrec z2,1 = y1, z2,2 = y2 in s2)])

n,case−−−−→ (letrec x = c y′1 y′2, y
′
1 = t1, y

′
2 = t2 in

C[(letrec z1,1 = y′1, z1,2 = y′2 in s1), caseT x (c z2,1 z2,2)→ s2])
i,case−−−−→ (letrec x = c y1 y2, y

′
1 = t1, y

′
2 = t2, y1 = y′1, y2 = y′2 in

C[(letrec z1,1 = y′1, z1,2 = y′2 in s1), (letrec z2,1 = y1, z2,2 = y2 in s2)])
i,cpx,∗−−−−→ (letrec x = c y′1 y′2, y

′
1 = t1, y

′
2 = t2, y1 = y′1, y2 = y′2 in

C[(letrec z1,1 = y′1, z1,2 = y′2 in s1), (letrec z2,1 = y1, z2,2 = y2 in s2)])
i,xch,∗−−−−→ (letrec x = c y′1 y′2, y1 = t1, y2 = t2, y

′
1 = y1, y

′
2 = y2 in

C[(letrec z1,1 = y′1, z1,2 = y′2 in s1), (letrec z2,1 = y1, z2,2 = y2 in s2)])

Lemma E.17
If t is a closed WHNF, and t

i,b−→ t′ for b ∈ {case, seq, cp, lbeta}, then t′ is a (closed)
WHNF.

Proof
This follows by checking the possible positions of the reduction in a WHNF.

Appendix of “Safety of Nöcker’s Strictness Analysis” 35

Now we can prove claim 1 of Theorem E.2

Proposition E.18
Let t1, s1 be closed expressions with t1⇓, Red1 := nor(t1) and t1

a−→ s1 where
a ∈ {case, seq, lbeta, cp}. Then s1⇓ and with Red2 := nor(s1) we have rl(Red1) ≥
rl(Red2), rl](Red1) ≥ rl](Red2) and rl]](Red1) ≥ rl]](Red2).

Proof
The proof will be done by induction on the length rl(Red1).
The induction base is that t1 is in WHNF, in which case we apply Lemma E.17 to
show that t1

i,b−→ s1 and rl(Red1) = 0 imply rl(Red2) = 0, rl](Red1) = rl](Red2) = 0,
and rl]](Red1) = rl]](Red2) = 0.

For the induction step assume that Red1 = t1
n−→ t2 ·Red1r and t1

i,b−→ s1. Lemma
E.16 shows that there are 5 possible cases.

In any case, we have rl(Red1) > rl(Red1r), and so we can apply the induction
hypothesis to Red1r.
In case 2 the relations rl](Red1) > rl](Red2), and rl(Red1) > rl(Red2), and
rl]](Red1) ≥ rl]](Red2) can be directly derived from the diagrams, and in case 4,
we obtain rl](Red1) ≥ rl](Red2), rl(Red1) ≥ rl(Red2), and rl]](Red1) ≥ rl]](Red2).
We use the following notational conventions in this proof for the rectangle-cases
1,3,5:

t1
i,b //

n,a

��

s1

n,a

���
�
�

t2
i,b //______

Red1r

��

s2

Red2r

��
· ·

In case 1, we obtain by induction that there exists a reduction Red2r of t2 with
rl](Red1r) ≥ rl](Red2r), rl(Red1r) ≥ rl(Red2r), and rl]](Red1r) ≥ rl]](Red2r). In
case 3, we have to apply the induction hypothesis twice and obtain that there is a
reduction Red3 with rl(Red1r) ≥ rl(Red3), hence also a reduction Red2r of s2 with
rl](Red1r) ≥ rl](Red2r), and rl(Red1r) ≥ rl(Red2r), and rl]](Red1r) ≥ rl]](Red2r).
In cases 1 and 3, we obtain rl(Red1) ≥ rl(Red2). Since the first normal order
reduction steps starting from t1 and from s1 are of the same kind, we obtain also
rl](Red1) ≥ rl](Red2) and rl]](Red1) ≥ rl]](Red2).

In the fifth case, we apply induction using the existence of evaluations and the
preservation of their lengths by the (xch)- and (cpx)-transformations proved in
Proposition E.7.

E.8 Base Reductions in Surface Contexts

Now we treat the case of S-restricted internal base reductions in surface contexts,
which is necessary to obtain sharper bounds in this case.

36 M. Schmidt-Schauß, M. Schütz, D. Sabel

Lemma E.19
A complete set of forking diagrams for b ∈ {caseS, seqS, lbeta, cpS}, where a is the
kind of the normal order reduction, and the b-reduction is in a surface context, is
as follows:

t1
iS,b //

n,a

��

s1

n,a

���
�
� t1

iS,b //

n,a

��

s1

n,a

���
�
�
�
�
�
�

t1
iS,b //

n,a

��

s1

n,a
��~

~
~

~
t1

iS,caseS //

n,case

��

s1

n,caseS
���
�
�

t2
iS,b //___ s2 t3

n,b

��

t2 t2
iS,caseS//___ · cpx //___ · xch //___ s2

t2

Proof
The same arguments as in the proof of Lemma E.16 can be used. See also Lemma
B.8. Note that the duplicating (n,cp)-diagram does not occur, since the reductions
are in surface contexts and the context C in their definition is also restricted to a
surface context.

Now we can prove claim 2 of Theorem E.2

Proposition E.20
Let t1, s1 be a closed expression with t1⇓, Red1 := nor(t1) and t1

S,a−−→ s1 where a ∈
{caseS, seqS, lbeta, cpS}. Then s1⇓ and with Red2 := nor(s1) we have rl](Red1) ≥
rl](Red2) ≥ rl](Red1)−1 and rl]](Red1) ≥ rl]](Red2) ≥ rl]](Red1)−1. For a = cpS,
in addition rl]](Red1) = rl]](Red2) holds.

Proof
Proposition E.18 already shows that there exists Red2 = nor(s1) with rl(Red1) ≥
rl(Red2), rl](Red1) ≥ rl](Red2) and rl]](Red1) ≥ rl]](Red2). So it remains to prove
that rl](Red2) ≥ rl](Red1) − 1 and rl]](Red2) ≥ rl]](Red1) − 1 for the same con-
structed reduction Red2.

The proof will be done by induction on the length rl(Red1). The induction base

is that t1 is in WHNF, in which case we apply Lemma E.17 to show that t1
i,a−−→ s1

and rl(Red1) = 0 imply rl(Red2) = 0, rl](Red1) = rl](Red2) = 0, and rl]](Red1) =
rl]](Red2) = 0.

For the induction step assume that t1
n−→ t2 and t1

iS,b−−→ s1. Lemma E.19 shows
that there are four possible cases.

We use the following notational conventions for the rectangle-case 1 :

t1
i,b //

n,a

��

s1

n,a

���
�
�

t2
i,b //______

Red1r

��

s2

Red2r

��
· ·

Appendix of “Safety of Nöcker’s Strictness Analysis” 37

In case 1 we have rl(Red1) > rl(Red2r), and so we can apply the induction
hypothesis to Red1r.
Furthermore, there is a reduction Red2r of s2 with rl](Red2r) ≥ rl](Red1r)− 1 and
rl]](Red2r) ≥ rl]](Red1r) − 1 by induction hypothesis. This implies the claim, by
adding a δ to either side of the two inequations, where δ may be 0 or 1 depending
on the kind of reduction a.

In case 2, the measures depend on the kind of reductions a, b: The equation
rl](Red1)−1 = rl](Red2) holds, and either the equation rl]](Red1)−1 = rl]](Red2)
or rl]](Red1) = rl]](Red2) holds.

In case 3, the equations rl](Red1) = rl](Red2) and rl]](Red1) = rl]](Red2) hold.
In case 4, the equations rl](Red1) = rl](Red2) and rl]](Red1) = rl]](Red2) hold

by induction similar to diagram 1 using Proposition E.7.
In the case that a = cpS, the equation rl]](Red1) = rl]](Red2) follows by induc-

tion using the diagrams 1,2,3.

E.9 Length of Normal Order Reduction Using Strictness Optimization

In this subsection we give a proof of Proposition 2.15, here repeated in this ap-
pendix:

Proposition E.21
Let t1, s1 be closed concrete LR-expressions with t1⇓ and t1

S,b−−→ s1, where b ∈
{(caseS), (seqS), (lbeta), (cpS)}, such that the inner redex t0 of the reduction is a
strict subterm of t1, and t1 = S[t0] for a surface context S.
Then rl](t1) = 1+rl](s1). If b ∈ {(caseS), (seqS), (lbeta)}, then rl]](t1) = 1+rl]](s1)
and if b = (cpS), then rl]](t1) = rl]](s1).

Proof
We apply induction on rl(t1).
It is not possible that t1 is a WHNF, since then the condition that there is a b-redex
on a surface position for b ∈ {(caseS), (seqS), (lbeta), (cpS)} and that t1[Ω/t0] ∼c Ω
cannot hold simultaneously.
Let t1

n−→ t2. If this is the same reduction as t1
S,b−−→ s1, then the claim of the

proposition holds. Hence we can assume that t1
S,b−−→ s1 is not a normal order

reduction. Since t0 is neither a value nor a letrec-expression, Lemma D.3 shows
that the successor of t0 is also a strict subterm of t2. The diagrams are as follows,
where the iS-reduction reduces the redex t0 or its descendent (see also Lemma
E.19).

t1
iS,b //

n,a

��

s1

n,a

���
�
� t1

iS,b //

n,a

��

s1

n,a

���
�
�
�
�
�
�

t1
iS,caseS //

n,case

��

s1

n,case

���
�
�

t2
iS,b //___ s2 t3

n,b

��

t2
iS,caseS//___ · cpx,∗ //___ · xch,∗ //___ s2

t2

38 M. Schmidt-Schauß, M. Schütz, D. Sabel

The short triangle-diagram from Lemma E.19 does not occur, since t0 remains a
strict subterm.

We use induction on rl(t1), where the diagrams above are the cases that have
to be considered in the induction step, and use the already known results on the
lengths of evaluations (see Theorem E.2) for (xch) and (cpx)-transformations. We
obtain that the claim of the proposition holds.

E.10 Local Evaluation and Deep Subterms

In this section we will prove the Propositions 2.17 and 2.19.

Definition E.22
In the closed concrete term (letrec x = t, y = s,Env in r), we say x requires y,
iff the local evaluation of x in (letrec x = t, y = Ω,Env in r) does not result in a
WHNF for x.

Lemma E.23
Let t = (letrec x = sx, y = sy,Env in r) be a closed term, where x requires y, and
let t −→ t′ by a base-reduction or an extra transformation, such that the bindings
x = sx, y = sy are not erased. Then in t′ the variable x also requires y.

Proof
First assume that the reduction is not an (llet)-reduction.
If t −→ t′ modifies only r, then the Lemma holds, since there is no difference
in the local evaluations of x w.r.t. t and t′. If the reduction modifies a case-
expression in r, where the constructor application is in the top environment,
then t′ = (letrec x = s′x, y = s′y,Env ′ in r′) and one of the two relations
(letrec x = sx, y = Ω,Env in x) = (letrec x = s′x, y = Ω,Env ′ in x) or
(letrec x = sx, y = Ω,Env in x) abs−−→ (letrec x = s′x, y = Ω,Env ′ in x) is valid.
Theorem B.35 implies that the Lemma holds.

If t −→ t′ modifies the top environment, then Theorems B.34 and B.35 show the
claim of Lemma.

Now assume that the reduction is an (llet)-reduction. If the (llet)-reduction does
not change the top level structure of t, then again Theorem B.35 shows that the
Lemma holds.

The only non-standard case is that sy = (letrec Envy in s′y) and that it is
modified by a (n,llet-in)-reduction: t′ = (letrec x = sx,Envy, y = s′y,Env in r).
Now the Lemma follows from Lemma D.2.

Lemma E.24
Let the closed concrete term t = (letrec x1 = t1, . . . , xn = tn,Env in r) have a
cyclic dependency, i.e., xi requires xi+1 for i = 1, . . . , n− 1 and xn requires x1.

Then for all i, the local evaluation of xi does not produce a WHNF for xi.

Proof
W.l.o.g. we can assume the first reduction step of the local evaluation of x1 to be a
non-(lll) reduction step. Moreover assume, that this is the rl](·)-shortest such local
evaluation for all xi.

Appendix of “Safety of Nöcker’s Strictness Analysis” 39

If some xi is bound to a term that is a value, then this contradicts the assumption
that there is a cyclic dependency. Hence every xi is bound to a term that is not a
value. It is sufficient to treat the non- (lll)-reductions. Let the first reduction step
of the local evaluation of x1 be a non-(lll) reduction step. The cyclic dependency
remains as before the reduction (see Lemma E.23). The term t′ is a counterexample
with a shorter rl](·)-number of a successful local evaluation of an xi, hence we have
a contradiction. This means there is no finite successful local evaluation for xi for
any i = 1, . . . , n.

We prove Proposition 2.17. The claim is:

Let t1 = (letrec Env in t′1) be a closed concrete LR-expression with t1⇓. Let x ∈
LV (Env) where the binding is x = tx, and tx is a strict subexpression in t1.

Then rl](t1) ≥ rl]loc(letrec Env in x) and rl]](t1) ≥ rl]](letrec Env in x).

Proof
If x = t′1 there is nothing to show. Hence in the following we assume x 6= t′1.
The proof is by induction on rl]loc(letrec Env in x). If tx is in WHNF, then
rl]loc(letrec Env in x) = 0, and the claim holds. Now let tx be a non-WHNF.
Let t1 −→ t2 be the reduction corresponding to the first local evaluation step of x.
If the reduction is an (lll)-reduction, then we can use induction and Theorem E.2.
It is easy to see that the inner redex of the reduction is a strict subterm of t1. The
other local reduction types are (cpS), (lbeta), (caseS), (seqS), hence Proposition
E.21 and induction on the number of local evaluations shows the claim.

Finally, we prove Proposition 2.19:

Let t1 = (letrec Env , x = tx, x1 = t′1 in x1) be a closed concrete LR-expression with
t1⇓, such that tx is a strict and deep subterm in t1.

Then rl]](t1) > rl]](letrec Env , x = tx in x).

Proof
We show by induction on the number of local evaluation steps of x that after a
local evaluation of x, tx remains a strict and deep subterm in t1.
If tx is already a WHNF, then it is a value. Due to the syntactic form of t1, the
normal order reduction of t1 must include at least one (case), (seq), or (lbeta)-
reduction to reach a normal form, hence the proposition holds.

If tx is not a value, then consider a single local evaluation step of x in t1, i.e.
t1 → t2. Then tx or its descendant term (after an (llet-e)) remains a strict subterm
in t2 by Lemma D.3.
The reduction step t1 → t2 does not modify t′1, since x1 requires x due to strictness,
and so x cannot require x1 by Lemma E.24. Hence tx remains a deep subterm due
to the definition.

Concluding, the induction shows that rl]](t1) > rl]](letrec Env , x = tx in x).

F Confluence and Termination of Simplification

Proof of Theorem 2.12 claiming confluence and termination of the simplification.

40 M. Schmidt-Schauß, M. Schütz, D. Sabel

Proof
We have to compute the forking diagrams (critical pairs) between (lwas)-, (llet)-,
(cpax)-, and (gc)-reductions and -transformations in order to show local confluence
of the reductions. We omit the cases of commutation of the reductions.

The forking diagrams are:

For (lwas) with (lwas): For (lwas) with (llet):

· lwas //

lwas

��

·
lwas

���
�

·
llet

���
�

·
lwas

//___ ·
llet

//___ ·

· llet //

lwas

��

·

lwas

���
�
�

· lwas //___ · llet //___ ·

For (cpax) with (cpax): For (gc) with other reductions:

· cpax //

cpax

��

·
gc

���
�
�

· gc //___ ·

· a //

gc

��

·
gc

���
�

�
�

·

For termination we only need a well-founded measure of terms that is strictly
decreased in every reduction step. This measure µ is a tuple (µ1(t), µ2(t), µ3(t)),
ordered lexicographically. The measure µ1(t) is µlll(t) as defined in Definition 2.6
and used in the proof of Proposition 2.7, µ2(t) is the number of all bindings in
letrec-subexpressions in t, and µ3(t) is the number of let-bound variables that
have occurrences in the expression.

This measure of t is strictly decreased by every transformation (lwas), (cpax),
(gc), (llet): The reductions (llet) and (lwas) strictly decrease µ1, the transformation
(gc) strictly decreases µ1 or leaves µ1 unchanged and strictly decreases µ2, and the
transformation (cpax) leaves µ1, µ2 unchanged, and strictly decreases µ3.

Finally, we apply the well-known Newman’s Lemma which states confluence for
terminating and locally confluent reduction systems (see e.g. (Baader & Nipkow,
1998)).

G Another Definition of Contextual Equivalence

Proposition G.1
s ≤c t is equivalent to:

∀C[·] : C[s], C[t] are closed⇒
(
C[s]⇓ ⇒ C[t]⇓

)
and to

∀R[·] : R is a reduction context and R[s], R[t] are closed⇒
(
R[s]⇓ ⇒ R[t]⇓

)
Proof
One direction is trivial.

Appendix of “Safety of Nöcker’s Strictness Analysis” 41

Assume that the following holds

∀C[·] : C[s], C[t] are closed⇒
(
C[s]⇓ ⇒ C[t]⇓

)
Let D be an arbitrary context such that D[s]⇓. Let {x1, . . . , xn} be the variables

in FV (D[s], D[t]). Let D′ := (letrec {xi = Ω}ni=1 in D). Then D′[s]⇓ follows from
D[s]⇓, and D′[t]⇓ follows from the assumption. The evaluation of D′[t] never puts
any xi in a reduction context, since this would contradict Corollary C.2. Hence the
same method as in the proof of Proposition C.1 shows that we can use the same
evaluation to show that D[t]⇓.

The second equivalence follows from the context lemma and the same reasoning
using a closing letrec: (letrec {xi = Ω}ni=1 in [·]).

H Correctness of Copying in Surface Contexts

Proposition H.1
Let t = (letrec x1 = t0,Env in r) and t′ = (letrec x1 = t′0, y1 =
t′′0 ,Env ′ in r′), where the terms r, t0 are not letrec-expressions, and Env ′[x1/y1] =
Env , r′[x1/y1] = r, t′0[x1/y1] = t′′0 [x1/y1] = t0.
Then t ∼c t′.

Proof
We use the context lemma A.1 to show contextual equivalence. For every reduction
context R we have to show that R[t]⇓ ⇔ R[t′]⇓. It is obvious from the definition
of normal order reduction that the first normal order reduction steps of R[t] as
well as of R[t′] are to shift the top environment of t (of t′, respectively) to the top
environment of R[t] (of R[t′], respectively).

Then the part {x1 = t0,Env}, and {x1 = t′0, y1 = t′′0 ,Env ′}, in the reduct of
R[t] or R[t′], respectively, are the respective parts of the top environments. The
rest of the top environment is denoted in the following as Env rest. We can write
the intermediate term for R[t] as (letrec x1 = t0,Env ,Env rest in R1[r]), and the
intermediate term for R[t′] as (letrec x1 = t′0, y1 = t′′0 ,Env ′,Env rest in R1[r′]).
Now we prove the equivalence.

Let Red be the evaluation of (letrec x1 = t0,Env ,Env rest in R1[r]). The reduc-
tion sequence Red is modified by replacing every (case)-reduction by abs−−→ · case−cx−−−−−→,
or by case−cx−−−−−→, such that the replacements have the same effect as the original
(case). The constructed reduction sequence is denoted as Red1 = (q1 → q2 . . .),
where q1 = R[t], and it consists of base reductions, but not (case)-reductions, and
(case-cx) and (abs)-reductions. From this sequence we construct a reduction se-
quence (q′1

∗−→ q′2
∗−→ . . .) for R[t′], where q′1 = R[t′]. We will keep a correspondence

between the reduction sequences, in particular between qi and q′i for all i. The
term qi is of the form (letrec Envx,Envrest in qin). The environment Envx in
qi deriving from x1 = t0 will be denoted as Envx := {x1 = s1, . . . , xn = sn}.
The term q′i is of the form (letrec Env ′x,Env ′y,Env ′rest in q′in). The environ-
ments Env ′x,Env ′y are derived from x1 = t′0, and y1 = t′′0 , respectively, and
are Env ′x := {x1 = s′1, . . . , xn = s′n}, and Env ′y := {y1 = t′1, . . . , yn = t′n}.

42 M. Schmidt-Schauß, M. Schütz, D. Sabel

Let ρ := {y1 7→ x1, . . . , yn 7→ xn}; then we have si = ρ(s′i) = ρ(t′i), and
ρ(q′in) = qin, ρ(Env ′rest) = Envrest.

Now we define the reduction for q′i reaching q′i+1 from the reduction of qi → qi+1

and argue that the correspondence also holds for i+1. We distinguish the reduction
steps in Red1 as follows:

• Envx-related reductions: reductions that make changes in Envx.
• Envx-independent reductions: reductions that do not make changes in Envx.

If the reduction is Envx-independent, then it is also performed on q′i at the same
position. Note that the involved terms are only equal up to ρ. If it is a (cp)-reduction
and the abstraction comes from Envx, then the to-place is at the corresponding
position, but the abstraction may be from Envx or Envy, depending on the variable
at the to-place. This is exactly one reduction q′i → q′i+1. An Envx-related reduction
in Red1 results in 2 reductions in Red ′: The reduction is duplicated and done on
Envx and Envy. Again the abstraction in a (cp) may come from Envx or Envy,
depending on the to-variable.

It is easy to see that the mentioned invariant holds, i.e. that after applying
ρi+1, we obtain that the Envx or Envy environments become equal and that after
applying ρ and after removal of one environment, we obtain qi.

In summary, we have constructed a reduction sequence of R[t′] to a WHNF using
reductions of the calculus and external reductions. From Lemma B.33 and Theorem
2.10 we obtain R[t′]⇓.

In order to prove the other direction, let R[t′]⇓. As mentioned above, the first
normal order reduction steps shift the top environment of t′ to the top envi-
ronment. Thus there exists an evaluation of the term (letrec x1 = t′0, y1 =
t′′0 ,Env ′,Env rest in R1[r′]). The final goal is to show that there is an evaluation of
(letrec x1 = t0,Env ,Env rest in R1[r]), where Env ′[x1/y1] = Env , t′0[x1/y1] = t0
and r′[x1/y1] = r.

We consider synchronized terms of the form (letrec Envx,Envy,Envrest in qin),
where Envx = {x1 = s1, . . . , xn = sn}, and Envy = {y1 = t1, . . . , yn =
tn}, and for ρ = {x1 7→ y1, . . . , xn 7→ yn}, we have ρ(si) = ρ(ti) for all
i. We will show in the following that given a synchronized term of the form
(letrec Envx,Envy,Envrest in qin), if there is an evaluation, then there is also a
synchronized reduction to a WHNF, consisting of (lll),(lbeta), (cp),(seq), (case-cx),
and (abs)-reductions, where intermediate terms after 1 or 2 reductions are also syn-
chronized. To ease argumentation, we will say corresponding positions, if we mean
the same position in Envx and Envy, where we assume a fixed ordering of bindings.

We show by induction on the pair (rl](q), µlll(q)), ordered lexicographically, that
a normal order reduction sequence starting with the synchronized term q can be
transformed into a synchronized reduction to WHNF satisfying the correspondence
property.
We go through the different possibilities of the first reduction step q

n−→ q′:
If the reduction step q

n−→ q′ does not modify the environments Envx,Envy, then
we use this reduction step and apply induction on q. The resulting term is a syn-

Appendix of “Safety of Nöcker’s Strictness Analysis” 43

chronized term.
Consider the case that the reduction step q

n−→ q′ modifies a part of Envx or Envy.
W.l.o.g we only treat the case that the modification is in Envx; the other case is
treated in a symmetric way.

1. If the reduction is an (lll)-reduction, then apply the corresponding reduction
in the other environment giving a synchronized term q′′. Note that bindings
may be added to Envx,Envy, however, this is only possible by an (llet)-
reduction within Envx,Envy. Proposition 2.7 and Theorem E.2 show that we
can use the induction hypothesis for q′′.
Now we assume that the reduction is not an (lll)-reduction.

2. If the reduction is a (seq) or (lbeta) within Envx, make the same reduction for
Envy giving q′′. Theorem E.2 shows that we can use the induction hypothesis
for q′′. Moreover, q′′ is synchronized.

3. If there is a (cp) into Envx, then the abstraction may be in Envrest, in which
case we add the corresponding (cp) to copy the same abstraction into Envy.
If the abstraction is in Envx, or Envy, then we also add a (cp) copying the
uniquely determined abstraction to the corresponding position giving q′′. The
abstraction may come from Envx, or Envy, and the term q′′ is synchronized.
Theorem E.2 shows that we can use the induction hypothesis for q′′.

4. If the reduction is a (case), then we replace the (case)-reduction as follows: if
it is a (case-e) or (case-in)-reduction, then we replace it by an (abs) followed
by a (case-cx)-reduction. If it is a (case-c), then it is also a (case-cx)-reduction.
First we treat the (abs)-reduction: If the (abs)-reduction is within Envx, then
we make a corresponding (abs)-reduction in Envy, otherwise, i.e. if it is neither
in Envx nor in Envy, we only make the (abs)-reduction. The following (case-
cx)-reduction is then used to construct the further reduction as follows: If
it is neither in Envx nor in Envy, then the next reduction is the (case-cx)-
reduction. If it is in Envx, then we make the corresponding (case-cx)-reduction
also in Envy. The resulting q′′ is a synchronized term. Theorem E.2 shows
that we can use the induction hypothesis for q′′.

Finally, we obtain a reduction sequence from q0 to a WHNF, using reductions
from the base calculus and extra transformations and (case-cx), applied only in
surface contexts, where the reduction is a synchronized one.

Now it is easy to construct a terminating reduction sequence of R[t]: We only use
the reductions for Envx, after applying the renaming ρ (in every step).

We finally have a reduction sequence of R[t] ending in a WHNF, where the steps
may be from the base calculus, (abs)- reductions and (case-cx)-reductions. Now
Lemma B.33 and Theorem 2.10 show that R[t]⇓.

Lemma H.2
The claim of Proposition H.1 that (letrec x1 = t0,Env in r) ∼c (letrec x1 =
t′0, y1 = t′′0 ,Env ′ in r′) with Env ′[x1/y1] = Env , t′0[x1/y1] = t′′0 [x1/y1] =
t0, r

′[x1/y1] = r also holds if t0, r are letrec-expressions.

Proof

44 M. Schmidt-Schauß, M. Schütz, D. Sabel

If r is a letrec-expression, then we apply Proposition H.1 after several (llet)-
reductions, and then use (llet) backwards several times.
If t0 is a letrec-expression, then we can assume that t0 = (letrec z1 =
s1, . . . , zn = sn in sn+1), where si are not letrec-expressions. Applying (llet)-
reductions, we obtain
t ∼c (letrec x1 = sn+1, z1 = s1, . . . , zn = sn,Env in r). An application of Propo-
sition H.1 shows

t ∼c (letrec x1 = s′n+1, y1 = tn+1, z1 = s′1, . . . , zn = s′n,Env ′ in r′)

where s′n+1[y1/x1] = tn+1[y1/x1] = sn+1, s′i[y1/x1] = si for i = 1, . . . , n,
Env ′[y1/x1] = Env and r′[y1/x1] = r. Multiple applications of Proposition H.1
show that we can proceed as follows:

t ∼c letrec x1 = s′n+1, y1 = t′n+1, z1 = s′1, . . . , zn = s′n
z′1 = t′1, . . . , z

′
n = t′n Env ′ in r′

where t′i = s′i[z
′
1/z1, . . . , z

′
n/zn] for i = 1, . . . , n and t′n+1 =

tn+1[z′1/z1, . . . , z
′
n/zn]. Now we can use (llet) backwards and obtain

t ∼c letrec x1 = (letrec z1 = s′1, . . . , zn = s′n in s′n+1),
y1 = (letrec z′1 = t′1, . . . , z

′
n = t′n in t′n+1),

Env ′ in r′

It is easy to verify that (letrec z1 = s′1, . . . , zn = s′n in s′n+1)[y1/x1] =α

(letrec z′1 = t′1, . . . , z
′
n = t′n in tn+1)[y1/x1], and that every possibility of replacing

x1 by y1 is covered.

Now we can show that copying into surface contexts can be done without restric-
tions:

Corollary H.3
Let t = (letrec x = t0,Env in S[x]) and t′ = (letrec x = t0,Env in S[t0]),
or let t = (letrec x = t0, y = S[x],Env in r) and t′ = (letrec x = t0, y =
S[t0],Env in r). Then t ∼c t′.

Proof
The equivalences t = (letrec x = t0,Env in S[x]) ∼c (letrec x = t0, y =
x,Env in S[y]) ∼c (letrec x = t0, y = t0,Env in S[y])

ucp−−→ (letrec x =
t0,Env in S[t0]) show the claim, using Proposition H.1. The other case is proved
in the same way.

The following corollary shows that terms in weak application surface contexts
can be locally closed by surrounding them with a renamed copy of the global envi-
ronment. Note that the bindings may be recursive, e.g. there may be an occurrence
of x in W .

Corollary H.4

Appendix of “Safety of Nöcker’s Strictness Analysis” 45

Let t = (letrec Env , x = W [s] in r) be a closed term, where W is a weak ap-
plication surface context, and let t′ = (letrec Env , x = W [(letrec Env ′, x′ =
W ′[s′] in s′)] in r), where {Env ′, x′ = W ′[s′]} is a copy of the environment
{Env , x = W [s]} renamed by ρ := {x1 7→ x′1, . . . , xn 7→ x′n, x 7→ x′} for
LV (Env) = {x1, . . . , xn}, such that (letrec Env ′, x′ = W ′[s′] in s′) is closed.
Then t ∼c t′.

Proof
The following equivalences hold: (letrec Env , x = W [s] in r) ∼c (letrec Env , x =
W [y], y = s in r) ∼c (letrec Env , x = W [y],Env ′, x′ = W ′[y], y = s′ in r),
where Env = {x1 = s1, . . . , xn = sn}, Env ′ = {x′1 = s′1, . . . , x

′
n = s′n}, and for

ρ := {x1 7→ x′1, . . . , xn 7→ x′n} it is s′i = siρ, s′ = sρ and W ′[y]ρ = W [y]. The
latter equivalences hold by multiple application of Proposition H.1 (see also the
proof of Lemma H.2). We apply corollary H.3 twice and then use (gc) to obtain:
t ∼c (letrec Env , x = W [s′],Env ′, x′ = W ′[s′] in r). Now a reverse (llet) shows
t ∼c (letrec Env , x = (letrec Env ′, x′ = W ′[s′] in W [s′]) in r).

Corollary H.5
Let t = (letrec Env in W [s]) be a closed term, where W is a weak application
surface context, and let t′ = (letrec Env in W [(letrec Env ′ in s′)]), where Env ′

is a renamed copy of the environment Env by ρ = {x1 7→ x′1, . . . , xn 7→ x′n} and
s′ = sρ, where LV (Env) = {x1, . . . , xn}, such that (letrec Env ′ in s′) is closed.
Then t ∼c t′.

Proof
Follows from Corollary H.4 using the equivalence (letrec Env in W [s]) ∼c

(letrec Env , x = W [s] in x) and the fact that x does not occur in W [s].

Now the proof of Proposition 2.20 is easy. The claim is:

Let t = (letrec Env , x = W [t′] in r) be a closed expression, where W is a
weak application surface context. Then there exists a closed expression t′′, such that
t ∼c (letrec Env , x = W [t′′] in r).
The term t′′ can be constructed as follows: Let Env = {yi = si}ni=1, and let t′′ :=
(letrec Env ′, x′ = W ′[(t′′′)] in t′′′) where Env ′ and t′′′ is Env and t′, respectively, re-
named by ρ := {x 7→ x′, yi 7→ y′i | i = 1, . . . , n} and y′i are fresh variables.

Proof of Proposition 2.20
This follows from Corollary H.4.

References

Baader, Franz, & Nipkow, Tobias. (1998). Term rewriting and all that. Cambridge Uni-
versity Press.

Schmidt-Schauß, Manfred, Schütz, Marko, & Sabel, David. Safety of Nöcker’s strictness
analysis. Journal of functional programming.

	Proof of the Context Lemma
	Correctness of Reductions
	The Reductions (case-c), (seq-c), (lbeta), (lapp), (lcase), (lseq)
	Complete Sets of Commuting and Forking Diagrams
	Correctness of (llet) and (cp)
	Correctness of (gc), (cpx), (cpax), (abs), (xch) and (cpcx)
	Correctness of (cpx), (cpax), (cpcx), (xch), and (abs)
	Correctness of (case) and (seq)
	Correctness of (ucp), (abse) and (lwas)
	Correctness of the Variants of (case)-Reductions
	Proofs of Theorem 2.4 and 2.9

	Properties of Bot
	Reduction Rules for Bot-Terms

	Strict Subexpressions
	Reduction Lengths for Different Reductions
	Reduction Lengths for (lll) and (gc)
	Reduction Length for (cpx)-, (cpax)- and (xch)-Transformations
	Reduction Length for (cpcx)
	Reduction Length for (abs)
	Reduction Length for ucp-Transformations
	Reduction Length for (lwas)-Transformations
	Using Diagrams for Internal Base Reductions
	Base Reductions in Surface Contexts
	Length of Normal Order Reduction Using Strictness Optimization
	Local Evaluation and Deep Subterms

	Confluence and Termination of Simplification
	Another Definition of Contextual Equivalence
	Correctness of Copying in Surface Contexts
	References

