
Static analysis for path correctness of XML queries 1

Appendix: Complete proofs

Lemma 4.6 (Termination of Type Filtering) For any well-formed type environment
E, and types T and U, the backward application of the type rules to E � T ::
NodeTest⇒ U terminates.

Proof
l-guardedness of E avoids infinite applications of rule (VarFilt), the only one that
could make rules diverge. �

Lemma 4.7 (Type Filtering Checking) For any well-formed type environment E and
type T well-formed in E:

E � T :: NodeTest⇒ U ⇔ �U�E = {f :: NodeTest | f ∈ �T �E}

Proof
By induction on the proof of E � T :: NodeTest⇒ U. �

Lemma 4.9 For any E well-formed and T such that E � T Def and for each tree t:

(∃f ∈ �T �E. t ∈st f) ⇔ (∃U. T →E
e U ∧ t ∈ �U�E ∧ (U ≡ l[T ′] ∨U ≡ B))

Proof
(⇒) follows by induction on the structure of t. (⇐) follows by induction on the
length of e. �

Lemma 4.10 For any E well-formed and T such that E � T Def, and for any U:

T →E
e U ∧ (U ≡ l[T ′] ∨U ≡ B) ⇔ U ∈ SubTreesE(T)

Proof
(⇒) follows by induction on the length of e, while (⇐) follows by induction on
|SubTreesE(T)|. �

Lemma 4.11 For any well-formed E and T such that E � T Def, for each tree t:

(∃f ∈ �T �E. t ∈st f) ⇔ (∃U. U ∈ SubTreesE(T) ∧ t ∈ �U�E)

Proof
By Lemma 4.9 and Lemma 4.10. �

Lemma 4.12 (Soundness of DOS Type) For any well-formed E and T such that
E � T Def and

SubTreesE(T) = {U1, . . . , Un}
U ≡ (U1 | . . . | Un)∗

then:

∀f ∈ �T �E. dos(f) ∈ �U�E

Proof
Consider f ∈ �T �E with dos(f) = t1, . . . , tm. We have tj ∈st f for each j = 1 . . . m
(Definition 4.8). Hence, we can apply Lemma 4.11, obtaining that there exists
{Ui1 , . . . , Uim} ⊆ SubTreesE(T) such that tj ∈ �Uij �E for j = 1 . . . m. Now, since

SubTreesE(T) = {U1, . . . , Un}
U ≡ (U1 | . . . | Un)∗

2 D. Colazzo et al.

we have that �U�E contains all the forests obtained by combinations and repetitions
of trees belonging to Ui ∈ SubTreesE(T), and in particular it contains the forest
dos(f) = t1, . . . , tm, as tj ∈ �Uij �E with Uij ∈ SubTreesE(T), for j = 1 . . . m.

�

Theorem 4.14 (Upper Bound) For any well-formed environment E, Γ well-formed in
E, and query Q:

E; Γ �β Q : (U;) ∧ ρ∈R(E,Γ) ⇒ �Q�ρ ∈ �U�E

Proof

We prove the statements:

• ∀ρ ∈ R(E,Γ).

E; Γ �β Q : (U;) ⇒ �Q�ρ ∈ �U�E
• ∀ρ ∈ R(E,Γ). ∀f ∈ �T �E.

E; Γ �β x in T →Q : (U;) ⇒
∏

t∈trees(f)�Q�ρ,x�→t ∈ �U�E

We proceed by induction on the proof tree and by cases on the last applied rule.
We only consider the main cases; the others are easier.

(TypeForest) In this case, we have E; Γ �β Q1, Q2 : (U1, U2;) and the following
hypothesis:

E; Γ �β.0 Q1 : (U1;) (1)

E; Γ �β.1 Q2 : (U2;) (2)

∀ρ ∈ R(E,Γ). �Q1�ρ ∈ �U1�E (3)

∀ρ ∈ R(E,Γ). �Q2�ρ ∈ �U2�E (4)

We want to prove:

∀ρ ∈ R(E,Γ).�Q1, Q2�ρ ∈ �U1, U2�E

Observe that ∀ρ ∈ R (E,Γ):

�Q1, Q2�ρ = �Q1�ρ, �Q2�ρ

Therefore the thesis follows from (3) and (4).

(TypeLetSplitting) Recall that we are assuming SplitE(T) = {T }. We have E; Γ �β
let x := Q1 return Q2 : (U;) and, by induction:

E; Γ �β.0 Q1 : (T1;) (1)

E; Γ, x : T1 �β.1 Q2 : (U;) (2)

∀ρ ∈ R(E,Γ). �Q1�ρ ∈ �T1�E (3)

∀ρ ∈ R(E, (Γ, x : T1)). �Q2�ρ ∈ �U�E (4)

We want to prove that

∀ρ ∈ R(E,Γ). �let x := Q1 return Q2�ρ ∈ �U�E

To this aim, we recall that:

∀ρ ∈ R(E,Γ). �let x := Q1 return Q2�ρ = �Q2�ρ,x �→�Q1�ρ (∗)

where, by (3), �Q1�ρ ∈ �T1�E . Hence ρ, x �→ �Q1�ρ ∈ R(E, (Γ, x : T1)), from which,

Static analysis for path correctness of XML queries 3

by (4) and induction,

�Q2�ρ,x �→�Q1�ρ = �let x := Q1 return Q2�ρ ∈ �U�E

(TypeFor) In this case we have E; Γ �β for x in Q1 return Q2 : (U;) and the
following hypothesis:

E; Γ �β.0 Q1 : (U1;) (1)

∀ρ ∈ R(E,Γ).�Q1�ρ ∈ �U1�E (2)

E; Γ �β.1 x in U1→Q2 : (U;) (3)

∀ρ ∈ R(E,Γ). ∀f ∈ �U1�E.
∏

t∈trees(f)

�Q2�ρ,x�→t ∈ �U�E (4)

We want to prove:

∀ρ ∈ R(E,Γ). �for x in Q1 return Q2�ρ ∈ �U�E

Recall that ∀ρ ∈ R(E,Γ):

�for x in Q1 return Q2�ρ =
∏

t∈trees(f)

�Q2�ρ,x�→t

with

f = �Q1�ρ

By (2) we have f ∈ �U1�E , hence the case follows by (4).

(TypeInConc) In this case we have E; Γ �β x in T1, T2→Q : (T ′1, T
′
2;) and the

following hypothesis:

E; Γ �β x in T1→Q : (T ′1;) (1)

E; Γ �β x in T2→Q : (T ′2;) (2)

∀ρ ∈ R(E,Γ). ∀f ∈ �T1�E.
∏

t∈trees(f)�Q�ρ,x �→t ∈ �T ′1�E (3)

∀ρ ∈ R(E,Γ). ∀f ∈ �T2�E.
∏

t∈trees(f)�Q�ρ,x �→t ∈ �T ′2�E (4)

We want to prove:

∀ρ ∈ R(E,Γ). ∀f ∈ �T1, T2�E.
∏

t∈trees(f)

�Q�ρ,x�→t ∈ �T ′1, T
′
2�E

For any ρ ∈ R (E,Γ) and f = (f1, f2) ∈ �T1, T2�E with fi ∈ �Ti�E:
∏

t∈trees(f1 ,f2)

�Q�ρ,x�→t =
∏

t∈trees(f1)

�Q�ρ,x�→t ,
∏

t∈trees(f2)

�Q�ρ,x�→t

By (3) and (4) we have ∏
t∈trees(fi)

�Q�ρ,x�→t ∈ �T ′i �E

and this proves the case since

�T ′1, T
′
2�E = {f1, f2 | fi ∈ �T ′i �E}

(TypeInElSplitting) Similar to (TypeLetSplitting) .

(TypeChild) It follows from Lemma 4.7.

4 D. Colazzo et al.

(TypeDos) We have J ≡ E; Γ �β x dos :: NodeTest : (U ′; S) and the following
hypothesis:

WF(J) (1)

x : T ∈ Γ ∧ (T ≡ m[T ′] ∨ T ≡ B) (2)

{U1, . . . , Un} = SubTreesE(T) (3)

U ≡ (U1 | . . . | Un)∗ (4)

E � U :: NodeTest⇒ U ′ (5)

By (1) we can apply Lemma 4.12, from which

∀f ∈ �T �E. dos(f) ∈ �U�E

and by Lemma 4.7

∀f ∈ �U�E. dos(f) :: NodeTest ∈ �U ′�E

Hence, the case is proved since

∀ρ ∈ R(E,Γ). �x dos :: NodeTest�ρ = dos(ρ(x)) :: NodeTest

with ρ(x) ∈ �T �E .

�

Theorem 4.15 (Soundness of Existential Error-Checking) For any well-formed envir-
onment E, Γ well-formed in E, and query Q:

E; Γ �β Q : (U; S) ∧ β.α ∈ S ⇒ Q has an error at α w.r.t. R(E,Γ)

Proof
We prove the following statements:

• E; Γ �β Q : (U; S) ⇒
γ ∈ S ⇒ (γ ≡ β.α ∧ α ∈ CriticalLocs(Q) ∧ Q has an error at α)

• E; Γ �β x in T →Q : (U; S)⇒
γ ∈ S ⇒ (γ ≡ β.α ∧ α ∈ CriticalLocs(Q)∧

(∀f ∈ �T �E. for x in f return Q has an error at 1.α))
8

We proceed by induction on the proof tree and by case distinction on the last rule
applied. We prove only some of the main cases (see the Appendix for more cases).

(TypeForest) We have E; Γ �β Q1, Q2 : (T1, T2; S1 ∪ S2) and the following
hypothesis

E; Γ �β.0 Q1 : (T1; S1) (1)

E; Γ �β.1 Q2 : (T2; S2) (2)

γ ∈ S1 ⇒ (γ ≡ β.0.α ∧ α ∈ CriticalLocs(Q1) ∧ Q1 has an error at α) (3)

γ ∈ S2 ⇒ (γ ≡ β.1.α ∧ α ∈ CriticalLocs(Q2) ∧ Q2 has an error at α) (4)

We want to prove that

γ ∈ S1 ∪S2 ⇒ (γ ≡ β.α ∧ α ∈ CriticalLocs(Q1, Q2) ∧ Q1, Q2 has an error at α)

8 To be formally precise f should be defined as a term of a subgrammar () | b | l[f] | f, f′. Although
inelegant, for the sake of simplicity, we allow here a notation that mixes up syntax and semantics.

Static analysis for path correctness of XML queries 5

By γ ∈ S1 ∪S2, (3) and (4):

γ ≡ β.α ∧ α ∈ CriticalLocs(Q1, Q2)

It remains to prove that Q1, Q2 has an error at α. To this end, observe that by
γ ≡ β.α ∈ S1 ∪S2, we have that either α ≡ 0.α′ ∧ α′ ∈ S1 or α ≡ 1.α′ ∧ α′ ∈ S2.
Suppose we are in the first case (the second one is similar). In this case, by (3),
Q1 has an error at α′, and this means that Q1, Q2 has an error at α ≡ 0.α′.

(TypeFor) We have E; Γ �β for x in Q1 return Q2 : (T2; S1 ∪S2 ∪S) and the
following hypothesis:

E; Γ �β.0 Q1 : (T1; S1) (1)

E; Γ �β.1 x in T1→Q2 : (T2; S2) (2)

S = if T1 ∼E () then {β.0} else ∅ (3)

γ ∈ S1 ⇒ (γ ≡ β.0.α ∧ α ∈ CriticalLocs(Q1) ∧ Q1 has an error at α) (4)

γ ∈ S2 ⇒ (γ ≡ β.1.α ∧ α ∈ CriticalLocs(Q2) ∧ (∀f ∈ �T1�E. (5)

for x in f return Q2 has an error at 1.α))

We want to prove that ∀ γ

γ ∈ (S∪S1 ∪S2) ⇒ (γ ≡ β.α′ ∧ α′ ∈ CriticalLocs(for x in Q1 return Q2)
∧ for x in Q1 return Q2 has an error at α′

For any

γ ∈ (S∪S1 ∪S2)

γ ≡ β.α ∧ α ∈ CriticalLocs(for x in Q1 return Q2) follows from (3), (4) and (5).
To prove that for x in Q1 return Q2 has an error at α we distinguish three
possible cases: (i) α ≡ 0, (ii) and α ≡ 0.α′ and α′ ∈ CriticalLocs(Q1), and (iii)
α ≡ 1.α′ and α′ ∈ CriticalLocs(Q2). Case (ii) does not pose particular problems
(proceed as for case (TypeForest)). In case (i) we have T1 ∼E (), hence, by
Lemma 4.5 and Theorem 4.14, we have �Q1�ρ = () for each ρ ∈ R(E,Γ), which
proves the case. It remains case (iii). We want to prove that

∀ρ ∈ R(E,Γ). ∀ρ′ ∈

⎛
⎝ ⋃

t∈trees(�Q1�ρ)

Ext((ρ, x �→ t), Q2, α
′)

⎞
⎠ . �(Q2)|α′�ρ′ = ()

To prove it we exploit hypothesis (5), and expand it as follows

∀ρ ∈ R(E,Γ). ∀f ∈ �T1�E.

∀ρ′ ∈
⋃

t∈trees(f) Ext((ρ, x �→ t), Q2, α
′). �(Q2)|α′�ρ′ = ()

This, together with �Q1�ρ ∈ �T �E (Theorem 4.14), proves the case.

(TypeDos) We have E; Γ �β x dos :: NodeTest : (U; S) and the following
hypothesis:

WF(E; Γ �β x dos :: NodeTest : (U; S)) (1)

x : T ∈ Γ ∧ (T ≡ m[T] ∨ T ≡ B) (2)

{U1, . . . , Un} = SubTreesE(T) (3)

U ′ ≡ (U1 | . . . | Un)∗ (4)

E � U ′ :: NodeTest⇒ U (5)

S = if U ∼E () then {β} else ∅ (6)

6 D. Colazzo et al.

We want to prove that

γ ∈ S ⇒ (γ ≡ β.α ∧ α ∈ CriticalLocs(x dos :: NodeTest)∧
(x dos :: NodeTest has an error at α))

We first observe that it may beS = {β} orS = ∅. Moreover, CriticalLocs(x dos ::
NodeTest) = {ε}, which proves

γ ∈ S ⇒ (γ ≡ β.α ∧ α ∈ CriticalLocs(x dos :: NodeTest))

It remains to prove that S = {β} entails that x dos :: NodeTest has an error at ε.
x dos :: NodeTest has an error at ε if and only if

∀ρ ∈ R(E,Γ).∀ρ′ ∈ Ext(ε, x dos :: NodeTest, ρ). �x dos :: NodeTest�ρ′ = ()

Since Ext(ε, x dos :: NodeTest, ρ) = {ρ}, we have that x dos :: NodeTest has an
error at ε if and only if

∀ρ ∈ R(E,Γ). �x dos :: NodeTest�ρ = ()

Hence, we have to prove that

S = {β} ⇒ ∀ρ ∈ R(E,Γ). �x dos :: NodeTest�ρ = ()

We have S = {β} if and only if U ∼E (), which, by Lemma 4.5, implies that

�U�E = {()}

Therefore, by Theorem 4.14, we have proved the case.

�

Lemma 5.3 For each ∗-guarded environment E and type T defined in E:

�T �E =
⋃

A∈SplitE (T)�A�E

Proof

By induction on the cardinality of SplitE(T) and by case distinction on the shape of
T . �

Lemma 5.6 (Monotonicity of Filtering, Childr and DOS)

1. ∀f, f′. f � f′ ⇒ f :: NodeTest � f′ :: NodeTest
dos(f) � dos(f′)

2. ∀t, t′. t � t′ ⇒ childr(t) � childr(t′)

Proof

Property 1. follows by induction on the structure of f, while 2. easily follows by
definition of childr(t). �

Lemma 5.7 (Query Monotonicity)

∀Q, ρ, ρ′. ρ � ρ′ ⇒ �Q�ρ � �Q�ρ′

Proof

By case distinction and induction on the structure of Q. We consider only the main
cases.

Static analysis for path correctness of XML queries 7

Q ≡ for x in Q1 return Q2. For substitutions ρ and ρ′ such that ρ � ρ′, we want
to prove

�for x in Q1 return Q2�ρ � �for x in Q1 return Q2�ρ′

By induction, we assume

�Q1�ρ � �Q1�ρ′ (∗)
This means

∀t ∈ trees(�Q1�ρ).∃t′ ∈ trees(�Q1�ρ′). t � t′

By definition of query semantics, the property to prove can be rewritten as:
∏

t∈trees(�Q1�ρ)

�Q2�ρ,x�→t �
∏

t∈trees(�Q1�ρ′)

�Q2�ρ′ ,x �→t

that is

∀t ∈ trees(
∏

t∈trees(�Q1�ρ)

�Q2�ρ,x�→t). ∃t′ ∈ trees(
∏

t∈trees(�Q1�ρ′)

�Q2�ρ′ ,x�→t). t � t
′

Consider

t ∈ trees(
∏

t∈trees(�Q1�ρ)

�Q2�ρ,x�→t).

For such a t we have that ∃ t′ ∈ trees(�Q1�ρ) such that t ∈ trees(�Q2�ρ,x�→t′). By (*),
for such a t′ there exists t′′ ∈ trees(�Q1�ρ′) with t′ � t′′. This entails (ρ, x �→ t′) �
(ρ′, x �→ t′′), hence by induction we can assume

�Q2�ρ,x�→t′ � �Q2�ρ′ ,x�→t′′

which, since t ∈ trees(�Q2�ρ,x�→t′), gives us

∃t′ ∈ trees(�Q2�ρ′ ,x�→t′′). t � t
′

Hence the case is proved by observing that t′′ ∈ trees(�Q1�ρ′) and that

t
′ ∈ trees(�Q2�ρ′ ,x�→t′′) ⇒ t

′ ∈ trees(
∏

t∈trees(�Q1�ρ′)

�Q2�ρ′ ,x �→t)

Q ≡ x child :: NodeTest. Directly follows from Lemma 5.6.
Q ≡ x dos :: NodeTest. Directly follows from Lemma 5.6.

�

Corollary 5.8 Given a well formed query Q and a substitution ρ such that FV (Q) ⊆
dom(ρ) ∪ {χ}:

f1 � f2 ⇒
∏

t∈trees(f1)

�Q�ρ,χ�→t �
∏

t∈trees(f2)

�Q�ρ,χ�→t

Proof

By Lemma 5.7. �

Lemma 5.9 (Extension Monotonicity) For any Q and pair of substitutions ρ1 and ρ2

such that FV (Q) ⊆ dom(ρ1) = dom(ρ2) and ρ1 � ρ2, ∀β ∈ Locs(Q).

∀ρ′ ∈ Ext(ρ1, Q, β). ∃ρ′′ ∈ Ext(ρ2, Q, β). ρ′ � ρ′′

8 D. Colazzo et al.

Proof

By induction on the structure of Q, Lemma 5.7, and Corollary 5.8. �

Lemma 5.10 (Closure of Split Types) For any ∗-guarded environment E and type T

well-formed in E, for any A ∈ SplitE(T):

∀f1, f2 ∈ �A�E. ∃f ∈ �A�E. fi � f i = 1, 2

Proof

We first observe that for each A ∈ SplitE(T)

SplitE(A) = {A}

This entails that we can define a measure d*(A), over types obtained by splitting, as
follows:

d*(()) = 0
d*(B) = 0
d*(T ′∗) = 0
d*(l[T ′]) = 1 + d*(T ′)
d*(T ′, U ′) = 1 + d*(T ′) + d*(U ′)

Observe that d*(A) is not defined over union types, since A can not be a union type.
We then proceed by induction on d*(A).

If d*(A) = 0, the case A ≡ B is obvious, as, by definition of �, ∀b1, b2, b3 ∈ �B�E
we have b1 � b3 and b2 � b3. Here, the only interesting case is A ≡ T ′∗. For this
case, given f1 and f2 in �A�E , observe that their composition f1, f2 still is in �A�E
and that f1 � f1, f2 and f2 � f1, f2.

If d*(A) > 0 the only interesting case is A ≡ T ′, U ′. Consider f1 and f2 in
�T ′, U ′�E . We have

f1 = f1
1 , f

2
1 ∧ f1

1 ∈ �T ′�E ∧ f2
1 ∈ �U ′�E

f2 = f1
2 , f

2
2 ∧ f1

2 ∈ �T ′�E ∧ f2
2 ∈ �U ′�E

By induction we have that there exists f′ ∈ �T ′�E and f′′ ∈ �U ′�E such that

f1
1 , f

1
2 � f′

f2
1 , f

2
2 � f′′

hence f1
1 , f

1
2 , f

2
1 , f

2
2 � f′, f′′. Since f1, f2 � f1

1 , f
1
2 , f

2
1 , f

2
2 by transitivity of � we have

that f1, f2 � f′, f′′. �

Lemma 5.11 For any type A defined in a ∗-guarded environment E, if SplitE(A) = {A}
then,

∀f1, . . . , fn ∈ �A�E. ∃f ∈ �A�E. fi � f i = 1 . . . n

Proof

By induction on n, Lemma 5.10, and transitivity of �. �

Lemma 5.14 (Query Variables Environment Splitting) For each ∗-guarded type envir-
onment E and Γ well-formed in E:

⋃
Γ′∈SplitVEnv(Γ,E)

R(E,Γ′) = R(E,Γ)

Static analysis for path correctness of XML queries 9

Proof
By induction on the length of Γ and by Lemma 5.3. �

Lemma 5.15 For any strongly-∗-guarded and well-formed Γ in a ∗-guarded type
environment E, and ρ1, . . . , ρn ∈ R(E,Γ), there exists ρ ∈ R(E,Γ) such that ρi � ρ

for i = 1 . . . n.

Proof
By induction on the length of Γ and by Lemma 5.11. �

Lemma 5.17 (Invariance of Well-Formation) For any well-formed judgement E; Γ �β
Q : (U; S) with Γ strongly-∗-guarded, the backward application of the rules
produces judgements that are well-formed as well, and containing strongly-∗-guarded
environments.

Proof
It directly follows by the way rules (TypeInElSplitting) and (TypeLetSplitting)
are defined. �

Lemma 5.18 (Soundness and Completeness of DOS Type) For any E well-formed and
T such that E � T Def and

SubTreesE(T) = {U1, . . . , Un}
U ≡ (U1 | . . . | Un)∗

then:

(1) ∀f ∈ �T �E. dos(f) ∈ �U�E

(2) ∀f ∈ �U�E. ∃{f′1, . . . , f′m} ⊆ �T �E. f � dos(f′1, . . . , f
′
m)

(3) SplitE(T) = T ⇒ ∀f ∈ �U�E. ∃f′ ∈ �T �E. f � dos(f′)

Proof
(1) Similar to Lemma 4.12.
(2) Consider f ∈ �U�E with f = t1, . . . , tm. This implies that for each i = 1 . . . m there

exists Ui ∈ SubTreesE(T) such that ti ∈ �Ui�E . By Lemma 4.11 we have ti ∈st f
′
i

with f′i ∈ �T �E for each i = 1 . . . m. Therefore, by observing that

dos(f′1, . . . , f
′
m) = dos(f′1), . . . , dos(f′m),

and by ti ∈st f′i , we have that each dos(f′i) can be decomposed in f1
i , ti, f

2
i

(Definition 4.8). Hence, each ti is at the top level of dos(f′1, . . . , f
′
n) and this implies

f = t1, . . . , tm � dos(f′1, . . . , f
′
n)

(3) By (2) we know that for f ∈ �U�E there exist f′1, . . . , f
′
m ∈ �T �E such that

f � dos(f′1, . . . , f
′
m)

Since SplitE(T) = T , by Lemma 5.11 there exists f′ ∈ �T �E such that f′i � f′ for
i = 1 . . . m. From this it easily follows that

f′1, . . . , f
′
m � f′

Therefore, by Lemma 5.6, we have

f � dos(f′1, . . . , f
′
m) � dos(f′)

then by transitivity of � we conclude f � dos(f′).
�

10 D. Colazzo et al.

Lemma 5.19 (Upper Bound) In the type splitting system, for each Q, ∗-guarded E,
and Γ strongly-∗-guarded and well-formed in E:

E; Γ �β Q : (U;) ∧ ρ ∈ R(E,Γ) ⇒ �Q�ρ ∈ �U�E

Proof
We prove the statements:

• ∀ρ ∈ R(E,Γ).

E; Γ �β Q : (U ′;) ⇒ �Q�ρ ∈ �U ′�E
• ∀ρ ∈ R(E,Γ). ∀f ∈ �T �E.

E; Γ �β x in T →Q : (U ′;) ⇒
∏

t∈trees(f)�Q�ρ,x�→t ∈ �U ′�E

We proceed by induction on the proof tree and by cases on the last applied rule. We
only consider the case (TypeLetSplitting). Case (TypeInElSplitting) is similar to
(TypeLetSplitting), while the other cases are essentially the same as in the proof
of Theorem 4.14.

(TypeLetSplitting) We have E; Γ �β let x := Q1 return Q2 : (U ′;) and, by
induction:

E; Γ �β.0 Q1 : (T1;) (1)

SplitE(T1) = {A1, . . . , An} (2)

E; Γ, x : Ai �β.1 Q2 : (Ui; i) i = 1 . . . n (3)

U ′ ≡ U1 | . . . | Un (4)

∀ρ ∈ R(E,Γ). �Q1�ρ ∈ �T1�E (5)

∀ρ ∈ R(E, (Γ, x : Ai)). �Q2�ρ ∈ �Ui�E i : 1, . . . , n (6)

We prove that

∀ρ ∈ R(E,Γ). �let x := Q1 return Q2�ρ ∈ �U ′�E

To this aim we recall that

∀ρ ∈ R(E,Γ). �let x := Q1 return Q2�ρ = �Q2�ρ,x �→�Q1�ρ (∗)

where, by (5), �Q1�ρ ∈ �T1�E . Since (Lemma 5.3)

�T1�E =
⋃

i=1...n

�Ai�E

we have that �Q1�ρ ∈ �Aj�E for some j = 1 . . . n. Hence (ρ, x �→ �Q1�ρ) ∈
R(E, (Γ, x : Aj)), from which, by (6), (4) and induction,

�Q2�ρ,x �→�Q1�ρ ∈ �Uj�E ⇒ �Q2�ρ,x �→�Q1�ρ ∈ �U ′�E

�

Theorem 5.20 (Upper Bound for the Type-Splitting System) For each Q, ∗-guarded
and well-formed E, and Γ well-formed in E:

E; Γ �β Q : (U;) ∧ ρ ∈ R(E,Γ) ⇒ �Q�ρ ∈ �U�E

Proof
We first observe that, by Lemma 5.14, ρ ∈ R(E,Γ) implies

ρ ∈ R(E,Γ′)

Static analysis for path correctness of XML queries 11

with Γ′ ∈ SplitVEnv(Γ, E), and also observe that, by Definition 5.16, U ≡ U ′ | U ′′
with E; Γ′ �β Q : (U ′;). Hence, by Lemma 5.19 we have that �Q�ρ ∈ �U ′�E which
entails �Q�ρ ∈ �U�E , as �U ′�E ⊆ �U�E .

�

Lemma 5.21 (Lower Bound) In the type-splitting system, for each Q, ∗-guarded E,
and Γ strongly-∗-guarded and well-formed in E:

E; Γ �β Q : (U;) ⇒ ∀f ∈ �U�E. ∃ρ ∈ R(E,Γ). f � �Q�ρ

Proof

We prove the following statements:

• ∀f ∈ �U�E. ∃ρ ∈ R(E,Γ).

E; Γ �β Q : (U;) ⇒ f � �Q�ρ
• ∀f ∈ �U�E. ∃ρ ∈ R(E,Γ). ∃f ∈ �T �E.

E; Γ �β x in T →Q : (U;) ⇒ f �
∏

t∈trees(f)�Q�ρ,x �→t

We proceed by induction on the proof tree of the proved judgement and by cases
on the last rule applied. We only prove main cases.

(TypeLetSplitting) We have E; Γ �β let x := Q1 return Q2 : (U;) and

E; Γ �β.0 Q1 : (T1;) (1)

SplitE(T1) = {A1, . . . , An} (2)

E; Γ, x : Ai �β.1 Q2 : (Ui;) i = 1 . . . n (3)

U ≡ U1 | . . . | Un (4)

∀f ∈ �T1�E. ∃ρ ∈ R(E,Γ). f � �Q1�ρ (5)

∀f ∈ �Ui�E. ∃ρ ∈ R(E, (Γ, x : Ai)). f � �Q2�ρ i = 1 . . . n (6)

We want to prove

∀f ∈ �U�E. ∃ρ ∈ R(E,Γ). f � �let x ::= Q1 return Q2�ρ

For any f ∈ �U�E , by (4) we have that f ∈ �Ui�E for some i = 1 . . . n. Moreover,
by (6):

(∃ρ2 ∈ R(E, (Γ, x : Ai)). f � �Q2�ρ2) (7)

Since ρ2 ∈ R(E, (Γ, x : Ai)), we have

ρ2 = ρ2, x �→ f′ (8)

with f′ ∈ �Ai�E and ρ2 ∈ R(E,Γ).
Now, since f′ ∈ �Ai�E ⇒ f′ ∈ �T �E (Lemma 5.3), and by (5) we have that:

∃ρ1 ∈ R(E,Γ). f′ � �Q1�ρ1 (9)

Hence, (7) and (8) imply that

f � �Q2�ρ2 = �Q2�ρ2 ,x �→f′ (10)

while (9) and (10) and Lemma 5.7 imply that

f � �Q2�ρ2 ,x �→�Q1�ρ1

12 D. Colazzo et al.

Now, by Lemma 5.15 there exists ρ ∈ R(E,Γ) such that ρ1 � ρ and ρ2 � ρ, hence,
by Lemma 5.7, we have:

f � �Q2�ρ2 ,x �→�Q1�ρ1
� �Q2�ρ2 ,x �→�Q1�ρ

� �Q2�ρ,x �→�Q1�ρ

By �let x ::= Q1 return Q2�ρ = �Q2�ρ,x �→�Q1�ρ the case is proved.

(TypeFor) We have E; Γ �β for x in Q1 return Q2 : (T2;) and the following
hypothesis:

E; Γ �β.0 Q1 : (T1;) (1)

E; Γ �β.1 x in T1→Q2 : (T2;) (2)

∀f ∈ �T1�E.∃ρ ∈ R(E,Γ). f � �Q1�ρ (3)

∀f ∈ �T2�E. ∃ρ ∈ R(E,Γ). ∃f′ ∈ �T1�E. f �
∏

t∈trees(f′)�Q2�ρ,x�→t (4)

We want to prove that

∀f ∈ �T2�E. ∃ρ ∈ R(E,Γ).

f � �for x in Q1 return Q2�ρ

For any f ∈ �T2�E , by (4) we have

∃ρ2 ∈ R(E,Γ). ∃f′ ∈ �T1�E. f �
∏

t∈trees(f′)�Q2�ρ2 ,x �→t (5)

Since f′ ∈ �T1�E , by (3) we have:

(∃ρ1 ∈ R(E,Γ).f′ � �Q1�ρ1) (6)

From (5) and (6) and Corollary 5.8 it follows

f �
∏

t∈trees(f′)
�Q2�ρ2 ,x �→t �

∏
t∈trees(�Q1�ρ1)

�Q2�ρ2 ,x�→t

As in the previous case, by Lemma 5.15 there exists ρ ∈ R(E,Γ) such that ρ1 � ρ,
ρ2 � ρ. Therefore, by Lemma 5.7 and Corollary 5.8, we have:

f �
∏

t∈trees(�Q1�ρ1)�Q2�ρ2 ,x�→t �
∏

t∈trees(�Q1�ρ)
�Q2�ρ2 ,x �→t �∏

t∈trees(�Q1�ρ)
�Q2�ρ,x�→t

By �for x in Q1 return Q2�ρ =
∏

t∈trees(�Q1�ρ)
�Q2�ρ,x�→t the case is proved.

(TypeInStar) We have E; Γ �β x in T∗→Q : (U∗;) and the following hypothesis:

E; Γ �β x in T →Q : (U;)

We want to prove that:

(∀f ∈ �U∗�E. ∃ρ ∈ R(E,Γ). ∃f′ ∈ �T∗�E. f �
∏

t∈trees(f′)
�Q�ρ,x�→t)

Consider f ∈ �U∗�E; this entails that f = f1, . . . , fn with fi ∈ �U�E , for i = 1 . . . n.
For each fi, by induction on E; Γ �β x in T →Q : (U;), we have

∃ρi ∈ R(E,Γ). ∃f′i ∈ �T �E. fi �
∏

t∈trees(f′i)

�Q�ρi,x�→t

Static analysis for path correctness of XML queries 13

By Lemma 5.15, there exists ρ ∈ R(E,Γ) such that ρi � ρ, for i = 1 . . . n. Hence,
by Lemma 5.7:

fi �
∏

t∈trees(f′i)

�Q�ρi,x�→t �
∏

t∈trees(f′i)

�Q�ρ,x�→t

Therefore we have:

f = f1, . . . , fn �
∏

t∈trees(f′1)

�Q�ρ,x�→t, . . . ,
∏

t∈trees(f′n)
�Q�ρ,x�→t

and the case is proved by observing that f′1, . . . , f
′
n ∈ �T∗�E and that

∏
t∈trees(f′1)

�Q�ρ,x�→t, . . . ,
∏

t∈trees(f′n)
�Q�ρ,x�→t =

∏
t∈trees(f′1 ,...,f′n)

�Q�ρ,x�→t

(TypeChild) It follows by Lemma 4.7.

(TypeDos) We have J ≡ E; Γ �β x dos :: NodeTest : (U ′;) and the following
hypothesis:

WF(J) (1)

x : T ∈ Γ ∧ (T ≡ m[T ′] ∨ T ≡ B) (2)

{U1, . . . , Un} = SubTreesE(T) (3)

U ≡ (U1 | . . . | Un)∗ (4)

E � U :: NodeTest⇒ U ′ (5)

We prove that ∀f ∈ �U ′�E there exists ρ such that

f � �x dos :: NodeTest�ρ

Since x : T ∈ Γ and Γ is strongly-∗-guarded (Lemma 5.17) we have SplitE(T) =
{T }. Consider f ∈ �U ′�E; since E � U :: NodeTest⇒ U ′, by Lemma 4.7 we have

∃f′ ∈ �U�E. f
′ :: NodeTest = f

For such f′, since SplitE(T) = {T }, by Lemma 5.18(3) we have that there exists
f′′ ∈ �T �E such that f′ � dos(f′′). Now we apply filtering and Lemma 5.6 to
obtain

f = f′ :: NodeTest � dos(f′′) :: NodeTest

hence it remains to observe that f′′ ∈ �T �E and, since Γ is not empty, there
exists a ρ ∈ R(E,Γ) such that ρ(x) = f′′ and that �x dos :: NodeTest�ρ =
dos(f′′) :: NodeTest, which gives

f � �x dos :: NodeTest�ρ.

�

Theorem 5.22 (Lower Bound for the Type-Splitting System) For each Q, ∗-guarded
E, and Γ well-formed in E:

E; Γ �β Q : (U;) ⇒ ∀f ∈ �U�E. ∃ρ ∈ R(E,Γ). f � �Q�ρ

14 D. Colazzo et al.

Proof

By hypothesis we have E; Γ �β Q : (U;), that is

(1) SplitVEnv(Γ, E) = {Γ1, . . . ,Γn}
(2) E; Γi �β Q : (Ui;) i = 1 . . . n

(3) U ≡ U1 | . . . | Un

Therefore, for each f ∈ �U�E , there exists Ui and Γi strongly-∗-guarded such that
f ∈ �Ui�E and E; Γi �β Q : (Ui;). Hence, by Lemma 5.21 we have

∃ρ ∈ R(E,Γi). f � �Q�ρ

Now, the thesis follows from R(E,Γi) ⊆ R(E,Γ) (Lemma 5.14). �

Corollary 5.23 (()-precision) In the type splitting system, for each Q, ∗-guarded E,
and Γ strongly-∗-guarded and well-formed in E, if E; Γ �β Q : (U;) then:

�U�E = {()} ⇔ ∀ρ ∈ R(E,Γ). �Q�ρ = ()

Proof

⇒ follows from Lemma 5.19. To prove ⇐ we observe that by E; Γ �β Q : (U;)
and Lemma 5.21

∀f ∈ �U�E. ∃ρ ∈ R(E,Γ). f � �Q�ρ

That is, by the hypothesis ∀ρ ∈ R(E,Γ). �Q�ρ = ():

∀f ∈ �U�E. f � ()

and this means �U�E = {()}, since f � () if and only if f = (). �

Lemma 5.24 In the type-splitting system, for each query Q, ∗-guarded E, Γ strongly-
∗-guarded and well-formed in E:

E; Γ �β Q : (; S) ⇒ (β.α ∈ S ⇒ Q has an error at α w.r.t. R(E,Γ))

Proof

We prove the following statement:

• E; Γ �β Q : (U; S) ⇒
γ ∈ S ⇒ (γ ≡ β.α ∧ α ∈ CriticalLocs(Q) ∧ Q has an error at α)

• E; Γ �β x in T →Q : (U; S)⇒
γ ∈ S ⇒ (γ ≡ β.α ∧ α ∈ CriticalLocs(Q)∧

(∀f ∈ �T �E. for x in f return Q has an error at 1.α))

We proceed by induction on the proof tree and by case distinction on the last rule
applied. The proof differs from Theorem 4.15 only for cases (TypeLetSplitting)
and (TypeInElSplitting), which we prove below.

(TypeLetSplitting) We have

E; Γ �β let x := Q1 return Q2 : (U; S∪
⋂

i=1...n

Si)

Static analysis for path correctness of XML queries 15

and

E; Γ �β.0 Q1 : (T1; S) (1)

SplitE(T1) = {A1, . . . , An} (2)

E; Γ, x : Ai �β.1 Q2 : (Ui; Si) i = 1 . . . n (3)

U ≡ U1 | . . . | Un (4)

With respect to E and Γ: (5)

γ ∈ S ⇒ (γ ≡ β.0.α ∧ α ∈ CriticalLocs(Q1) ∧ Q1 has an error at α)

For i = 1 . . . n with respect to E and Γ, x : Ai: (6)

γ ∈ Si ⇒ (γ ≡ β.1.α ∧ α ∈ CriticalLocs(Q2) ∧ Q2 has an error at α)

We want to prove that ∀ γ

γ ∈ S ∪
⋂

i=1...nSi ⇒ (γ ≡ β.α ∧ α ∈ CriticalLocs(let x ::= Q1 return Q2)
∧ let x ::= Q1 return Q2 has an error at α)

For any

γ ∈ S ∪
⋂

i=1...n

Si

γ ≡ β.α ∧ α ∈ CriticalLocs(let x ::= Q1 return Q2) follows from (5) and (6).
To prove that let x ::= Q1 return Q2 has an error at α, we distinguish two
possible cases: (i) α ≡ 0.α′ and α′ ∈ CriticalLocs(Q1), and (ii) α ≡ 1.α′ and
α′ ∈ CriticalLocs(Q2). Case (i) is easy. We prove case (ii). To this end we use
hypothesis (6) and expand it as follows, for i = 1 . . . n:

∀ρ ∈ R(E,Γ, x : Ai). ∀ρ′ ∈ Ext(ρ, Q2, α
′). �(Q2)|α′�ρ′ = () (7)

moreover, we have β.1.α′ ∈ Si.
We want to prove that let x ::= Q1 return Q2 has an error at α ≡ 1.α′:

∀ρ ∈ R(E,Γ). ∀ρ′ ∈ Ext((ρ, x �→ �Q1�ρ), Q2, α
′). �(Q2)|α′�ρ′ = ()

By (7) we have just to prove that,

ρ ∈ R(E,Γ), ρ′ ∈ Ext((ρ, x �→ �Q1�ρ), Q2, α
′) ⇒

∃i. ∃ρ ∈ R(E,Γ, x : Ai). ρ
′ ∈ Ext(ρ, Q2, α

′)

This reduces to prove that,

ρ ∈ R(E,Γ) ⇒ ∃i. ρ, x �→ �Q1�ρ ∈ R(E,Γ, x : Ai).

Such statement follows from Lemma 5.19:

∀ρ ∈ R(E,Γ). �Q1�ρ ∈ �T1�E

and by Lemma 5.3

�T1�E =
⋃

i=1...n

�Ai�E

16 D. Colazzo et al.

(TypeInElSplitting) We have E; Γ �β x in m[T]→Q : (U;
⋂

i=1...nSi) and the
following hypothesis

SplitE(m[T]) = {A1, . . . , An} (1)

E; Γ, x : Ai �β Q : (Ui; Si) (2)

U ≡ U1 | . . . | Un (3)

γ ∈ Si ⇒ (4)

γ ≡ β.α ∧
α ∈ CriticalLocs(Q) ∧
∀f ∈ �Ai�E. for x in f return Q has an error at 1.α

We want to prove that

γ ∈
⋂

i=1...nSi ⇒ (γ ≡ β.α ∧ α ∈ CriticalLocs(Q) ∧ (∀f ∈ �m[T]�E.

for x in f return Q has an error at 1.α))

By Lemma 5.3,

f ∈ �m[T]�E ⇒ ∃i. f ∈ �Ai�E

Thus, for such i it holds that,

γ ∈
⋂

j=1...nSj ⇒ γ ∈ Si

and the thesis follows by (4).

�

Theorem 5.25 (Soundness of Error-Checking for the Type-Splitting System) For each
Q, ∗-guarded E, and Γ well-formed in E:

E; Γ �β Q : (U; S) ∧ β.α ∈ S ⇒ Q has an error at α w.r.t. R(E,Γ)

Proof
By hypothesis we have

(1) SplitVEnv(Γ, E) = {Γ1, . . . ,Γn}
(2) E; Γi �β Q : (Ui; Si) i = 1 . . . n

(3) S =
⋂

i=1...nSi

and β.α ∈ S, hence β.α ∈ Si for i = 1 . . . n. Thus, by Lemma 5.24 we have that, for
i = 1 . . . n

Q has an error at α w.r.t. R(E,Γi))

that is

∃α ∈ CriticalLocs(Q). ∀ρ ∈ R(E,Γi). ∀ρ′ ∈ Ext(ρ, Q, β). �(Q)|α�ρ′ = ()

Therefore, the thesis follows by Lemma 5.14:
⋃

Γ′∈SplitVEnv(Γ,E)

R(E,Γ′) = R(E,Γ)

�

Lemma 5.26 In the type-splitting system, for each Q, ∗-guarded E, and Γ strongly-
∗-guarded and well-formed in E:

E; Γ �β Q : (; S) ⇒ (Q has an error at α w.r.t. R(E,Γ) ⇒ β.α ∈ S)

Static analysis for path correctness of XML queries 17

Proof
We prove the statements:

• E; Γ �β Q : (U; S) ⇒

(γ ≡ β.α ∧ α ∈ CriticalLocs(Q) ∧ Q has an error at α) ⇒ γ ∈ S

• E; Γ �β x in T →Q : (U; S)⇒

(γ ≡ β.α ∧ α ∈ CriticalLocs(Q) ∧
(∀f ∈ �T �E. for x in f return Q has an error at 1.α)) ⇒ γ ∈ S

We proceed by induction on the proof tree and by cases on the last rule applied. We
prove only some of the main cases (more cases can be found in the Appendix).

(TypeForest) We have E; Γ �β Q1, Q2 : (T1, T2; S1 ∪ S2) and the following
hypothesis

E; Γ �β.0 Q1 : (T1; S1) (1)

E; Γ �β.1 Q2 : (T2; S2) (2)

(γ ≡ β.0.α ∧ α ∈ CriticalLocs(Q1) ∧ Q1 has an error at α) ⇒ γ ∈ S1 (3)

(γ ≡ β.1.α ∧ α ∈ CriticalLocs(Q2) ∧ Q2 has an error at α) ⇒ γ ∈ S2 (4)

We want to prove that

(γ ≡ β.α ∧ α ∈ CriticalLocs(Q1, Q2) ∧ Q1, Q2 has an error at α) (5)

implies

γ ∈ S1 ∪S2

We proceed by contradiction. Suppose that

(∗) γ ≡ β.α �∈ S1 ∪S2

By α ∈ CriticalLocs(Q1, Q2), we have two possible cases

(a) α ≡ 0.α′ ∧ α′ ∈ CriticalLocs(Q1)

(b) α ≡ 1.α′ ∧ α′ ∈ CriticalLocs(Q2)

We only consider case (a), the other one is similar. By (*) we have

β.0.α′ �∈ S1

and this by γ ≡ β.0.α′ ∧ α′ ∈ CriticalLocs(Q1) and the inductive hypothesis (3),
entails

(∗∗) Q1 has no error at α′

This entails that

Q1, Q2 has no error at α

by contradicting (5). Indeed, (**) means that ∃ρ ∈ R(E,Γ) and ∃ρ′ ∈ Ext(ρ, Q1, α
′)

such that

�(Q1)|α′�ρ′ �= ()

and since,

Ext(ρ, Q1, α
′) = Ext(ρ, (Q1, Q2), 0.α′)

�(Q1)|α′�ρ′ = �(Q1, Q2)|0.α′�ρ′

18 D. Colazzo et al.

we have that

Q1, Q2 has no error at 0.α′.

(TypeLetSplitting) We have E; Γ �β let x := Q1 return Q2 : (U; S∪
⋂

i=1...nSi)
and

E; Γ �β.0 Q1 : (T1; S) (1)

SplitE(T1) = {A1, . . . , An} (2)

E; Γ, x : Ai �β.1 Q2 : (Ui; Si) i = 1 . . . n (3)

U ≡ U1 | . . . | Un (4)

With respect to E and Γ: (5)

(α ∈ CriticalLocs(Q1) ∧ Q1 has an error at α) ⇒ β.0.α ∈ S
For i = 1 . . . n with respect to E and Γ, x : Ai: (6)

(α ∈ CriticalLocs(Q2) ∧ Q2 has an error at α) ⇒ β.1.α ∈ Si

We want to prove that ∀ γ

(γ ≡ β.α′ ∧ α′ ∈ CriticalLocs(let x ::= Q1 return Q2)
∧ let x ::= Q1 return Q2 has an error at α′) ⇒ γ ∈ (S∪

⋂
i=1...nSi)

We proceed by contradiction. Assume that

γ ≡ β.α′ ∧ α′ ∈ CriticalLocs(let x ::= Q1 return Q2)

∧ let x ::= Q1 return Q2 has an error at α′

and that:

γ ≡ β.α′ �∈ (S∪
⋂

i=1...n

Si) (7)

Since α′ ∈ CriticalLocs(let x ::= Q1 return Q2), we can distinguish the following
two cases

(a) α′ = 0.α′′ ∧ α′′ ∈ CriticalLocs(Q1)
(b) α′ = 1.α′′ ∧ α′′ ∈ CriticalLocs(Q2)

In what follows, we consider each case separately and prove that in each one we
have a contradiction.

(a) We have α′ = 0.α′′ ∧ α′′ ∈ CriticalLocs(Q1). Moreover, we have assumed
that let x ::= Q1 return Q2 has an error at location 0.α′′. This means that
∀ρ ∈ R(E,Γ).∀ρ′ ∈ Ext(ρ, let x ::= Q1 return Q2, 0.α′′).

�(let x ::= Q1 return Q2)|0.α′′�ρ′ = ()

Since

Ext(ρ, let x ::= Q1 return Q2, 0.α′′) = Ext(ρ, Q1, α
′′)

and

(let x ::= Q1 return Q2)|0.α′′ = (Q1)|α′′

we have that Q1 has an error at α′′. This, by the inductive hypothesis (5) entails
that

β.0.α′′ ∈ S
which in turn entails

β.0.α′′ ∈ (S∪
⋂

i=1...n

Si)

which contradicts the assumption (7).

Static analysis for path correctness of XML queries 19

(b) We have α′ = 1.α′′ ∧ α′′ ∈ CriticalLocs(Q2). Moreover, (7) entails

1.α′′ �∈
⋂

i=1...n

Si

This means that there exists j ∈ {1, . . . , n} such that

1.α′′ �∈ Sj

With respect to this j, by the inductive hypothesis (6) and with respect to
environments E and Γ, x : Aj , it follows that

Q2 has no error at α′′

This is equivalent to saying that there exists ρ ∈ R(E, (Γ, x : Aj)) and ρ′ ∈
Ext(ρ, Q2, α

′′) such that

�(Q2)|α′′�ρ′ �= ()

Since ρ ∈ R(E, (Γ, x : Aj)) and �Aj�E ⊆ �T1�E(Lemma 5.3) we have

ρ = ρ, x �→ f ∧ f ∈ �T1�E

By hypothesis (1) and lower bound Lemma 5.21, we have

∃ρ′ ∈ R(E,Γ). f � �Q1�ρ′

Since Γ is strongly-∗-guarded (Lemma 5.17), by Lemma 5.15 there exists ρ ∈
R(E,Γ) such that ρ � ρ and ρ′ � ρ.
Now, if we consider the substitution

ρ1 = ρ, x �→ �Q1�ρ

we have

ρ � ρ1

since �Q1�ρ′ � �Q1�ρ, which follows by ρ′ � ρ and Lemma 5.7. Since ρ′ ∈
Ext(ρ, Q2, α

′′) by assumption, by Lemma 5.9 there exists ρ′′ ∈ Ext(ρ1, Q2, α
′′)

such that ρ′ � ρ′′. Therefore by Lemma 5.7, we have

�(Q2)|α′′�(ρ′) � �(Q2)|α′′�(ρ′′)

Hence, �(Q2)|α′′�ρ′ �= (), and Lemma 5.5 imply that

�(Q2)|α′′�ρ′′ �= ()

Now we observe that ρ′′ ∈ Ext(ρ1, Q2, α
′′) and ρ1 = ρ, x �→ �Q1�ρ entail

ρ′′ ∈ Ext(ρ, let x ::= Q1 return Q2, 1.α′′)

hence

Ext(ρ1, Q2, α
′′) = Ext(ρ, let x ::= Q1 return Q2, 1.α′′) (8)

Hence, the hypothesis that

for α′ = 1.α′′, let x ::= Q1 return Q2 has an error at α′

is contradicted by (8) and by

�(Q2)|α′′�ρ′′ = �(let x ::= Q1 return Q2)|1.α′′�ρ′′ �= ()

with ρ′′ ∈ Ext(ρ, let x ::= Q1 return Q2, 1.α′′).

20 D. Colazzo et al.

(TypeFor) We have E; Γ �β for x in Q1 return Q2 : (T2; S1 ∪S2 ∪S) and the
following hypothesis:

E; Γ �β.0 Q1 : (T1; S1) (1)

E; Γ �β.1 x in T1→Q2 : (T2; S2) (2)

S = if T1 ∼E () then {β.0} else ∅ (3)

(γ ≡ β.0.α ∧ α ∈ CriticalLocs(Q1) ∧ Q1 has an error at α) ⇒ γ ∈ S1 (4)

(γ ≡ β.1.α ∧ α ∈ CriticalLocs(Q2) ∧ (5)

∧ (∀f ∈ �T1�E.for x in f return Q2 has an error at 1.α)) ⇒ γ ∈ S2

We want to prove that ∀ γ

(γ ≡ β.α′ ∧ α′ ∈ CriticalLocs(for x in Q1 return Q2) ∧
∧ for x in Q1 return Q2 has an error at α′ ⇒ γ ∈ (S∪S1 ∪S2)

We proceed by contradiction. Suppose that for a γ it holds:

γ ≡ β.α′ ∧ γ′′ ∈ CriticalLocs(for x in Q1 return Q2)

∧ for x in Q1 return Q2 has an error at α′

and that,

γ ≡ β.α′ �∈ S ∪S1 ∪S2 (6)

Since α′ ∈ CriticalLocs(for x in Q1 return Q2), we can distinguish three cases

(a) α′ = 0
(b) α′ = 0.α′′ ∧ α′′ ∈ CriticalLocs(Q1)
(c) α′ = 1.α′′ ∧ α′′ ∈ CriticalLocs(Q2)

We now consider each case separately and prove that in each one we have a
contradiction.

(a) In this case, we have that for x in Q1 return Q2 has an error at location 0.
This means that ∀ρ ∈ R(E,Γ)

∀ρ′ ∈ Ext(ρ, for x in Q1 return Q2, 0).

�(for x in Q1 return Q2)|0�ρ′ = ()

Since

Ext(ρ, for x in Q1 return Q2, 0) = {ρ}
and

(for x in Q1 return Q2)|0 = Q1

by Corollary 5.23 we have that ∀ρ ∈ R(E,Γ)

�Q1�ρ = ()

and this, by lower bound Lemma 5.21, entails �T1�E = {()}. This, by Lemma
4.5, entails

S = if T1 ∼E () then {β.0} else ∅ = {β.0}
which in turn entails

β.0 ∈ S1 ∪S2 ∪S
which contradicts the assumption (6).

Static analysis for path correctness of XML queries 21

(b) We have α′ = 0.α′′ ∧ α′′ ∈ CriticalLocs(Q1). Moreover, we have assumed
that for x in Q1 return Q2 has an error at location 0.α′′. This means that
∀ρ ∈ R(E,Γ)

∀ρ′ ∈ Ext(ρ, for x in Q1 return Q2, 0.α′′).

�(for x in Q1 return Q2)|0.α′′�ρ′ = ()

Since

Ext(ρ, for x in Q1 return Q2, 0.α′′) = Ext(ρ, Q1, α
′′)

and

(for x in Q1 return Q2)|0.α′′ = (Q1)|α′′

we have that Q1 has an error at α′′. This, by the inductive hypothesis (4) entails
that

β.0.α′′ ∈ S1

which in turn entails

β.0.α′′ ∈ S1 ∪S2 ∪S
which contradicts the assumption (6).

(c) We have α′ = 1.α′′ ∧ α′′ ∈ CriticalLocs(Q2). Moreover, (*) entails

1.α′′ �∈ S2

From this, by the inductive hypothesis (5), it follows

(∃f ∈ �T1�E. for x in f return Q2 has no error at α)

Hence there exists an f ∈ �T1�E such that

∃ρ ∈ R(E,Γ). ∃ρ′ ∈ Ext(ρ, for x in f return Q2, 1.α′′).
�(for x in f return Q2)|1.α′′�ρ′ �= ()

By f ∈ �T1�E , hypothesis (1), and lower bound Lemma 5.21, we obtain

∃ρ′′ ∈ R(E,Γ). f � �Q1�ρ′′

By Lemma 5.15 there exists ρ ∈ R(E,Γ) such that ρ � ρ, ρ′′ � ρ, hence, by
Lemma 5.7, we have:

f � �Q1�ρ′′ � �Q1�ρ

We consider the following two sets of substitutions obtained by extension as
follows:

Ext(ρ, for x in f return Q2, 1.α′′) =
⋃

t∈trees(f) Ext((ρ, x �→ t), Q2, α
′′)

Ext(ρ, for x in Q1 return Q2, 1.α′′) =
⋃

t∈trees(�Q1�ρ)
Ext((ρ, x �→ t), Q2, α

′′)

Since f � �Q1�ρ, we have that for each t ∈ trees(f) there exists t′ ∈ trees(�Q1�ρ)
such that

t � t′ (7).

Now, we recall that for ρ′ ∈ Ext(ρ, for x in f return Q2, 1.α′′) we have

�(for x in f return Q2)|1.α′′�ρ′ �= ()

that is equivalent to say that there exists t1 ∈ trees(f) such that

ρ′ ∈ Ext((ρ, x �→ t1), Q2, α
′′) (8)

22 D. Colazzo et al.

and

�(Q2)|α′′�ρ′ �= ()

Given t2 ∈ trees(�Q1�ρ) such that t1 � t2, by ρ � ρ, (7), (8), and Lemma 5.9,
there exists ρ′ ∈ Ext((ρ, x �→ t2), Q2, α

′′) such that ρ′ � ρ′. Therefore by
Lemma 5.7,

�(Q2)|α′′�ρ′ � �(Q2)|α′′�ρ′

From this inclusion, �(Q2)|α′′�ρ′ �= (), and Lemma 5.5, it follows that

�(Q2)|α′′�(ρ′) �= ()

and this contradicts the hypothesis stating that for α′ = 1.α′′ it holds

for x in Q1 return Q2 has an error at α′

since t2 ∈ trees(�Q1�ρ) implies that

ρ′ ∈ Ext((ρ, x �→ t2), Q2, α
′′) ⊆ Ext(ρ, for x in Q1 return Q2, 1.α′′) =

=
⋃

t∈trees(�Q1�ρ)
Ext((ρ, x �→ t2), Q2, α

′′)

(TypeInConc) We have E; Γ �β x in T ,U→Q : (T ,U; S1 ∩S2) and

E; Γ �β x in T →Q : (T ; S1) (1)

E; Γ �β x in U→Q : (U; S2) (2)

(γ ≡ β.α ∧ α ∈ CriticalLocs(Q) ∧ (3)

∧ (∀f ∈ �T �E. for x in f return Q has an error at 1.α)) ⇒ γ ∈ S1

(γ ≡ β.α ∧ α ∈ CriticalLocs(Q) ∧ (4)

∧ (∀f ∈ �U�E. for x in f return Q has an error at 1.α)) ⇒ γ ∈ S2

We want to prove that

(γ ≡ β.α ∧ α ∈ CriticalLocs(Q) ∧
∧ (∀f ∈ �T ,U�E.for x in f return Q has an error at 1.α)) ⇒ γ ∈ S1 ∩S2

We proceed by contradiction. We assume that

(γ ≡ β.α ∧ α ∈ CriticalLocs(Q) ∧ (∀f ∈ �T ,U�E. (∗)
for x in f return Q has an error at 1.α))

and a contradiction that:

γ ≡ β.α �∈ S1 ∩S2

This last assumption means that β.α �∈ S1 ∨ β.α �∈ S2 and this by (3) and (4)
implies that

(∃f1 ∈ �T �E. for x in f1 return Q has no error at 1.α) ∨
(∃f2 ∈ �U�E. for x in f2 return Q has no error at 1.α)

Suppose that the first statement is true. Consider any f′ ∈ �U�E;9 we have
f1, f

′ ∈ �T ,U�E and

for x in f1, f
′ return Q has no error at 1.α

9 Such f′ exists as our type system does not feature types U such that �U�E = ∅.

Static analysis for path correctness of XML queries 23

which contradicts (*). The other case is similar.

(TypeDos) We have E; Γ �β x dos :: NodeTest : (U ′; S) and the following
hypothesis:

(1) WF(E; Γ �β x dos :: NodeTest : (U ′; S))

(2) x : T ∈ Γ ∧ (T ≡ m[T ′] ∨ T ≡ B)

(3) {U1, . . . , Un} = SubTreesE(T)

(4) U ≡ (U1 | . . . | Un)∗
(5) E � U :: NodeTest⇒ U ′

(6) S = if U ′ ∼E () then {β} else ∅

We want to prove that

(γ ≡ β.α ∧ α ∈ CriticalLocs(x dos :: NodeTest) ∧
(x dos :: NodeTest has an error at α)⇒ γ ∈ S

We first observe that it may beS = {β} orS = ∅. Moreover, CriticalLocs(x dos ::
NodeTest) = {ε} and x dos :: NodeTest has an error at ε if and only if

∀ρ ∈ R(E,Γ). ∀ρ′ ∈ Ext(ε, x dos :: NodeTest, ρ). �x dos :: NodeTest�ρ′ = ()

Since Ext(ε, x dos :: NodeTest, ρ) = {ρ}, x dos :: NodeTest has an error at ε if
and only if

∀ρ ∈ R(E,Γ). �x dos :: NodeTest�ρ = ()

Hence, what we have to prove is

∀ρ ∈ R(E,Γ). �x dos :: NodeTest�ρ = () ⇒ S = {β}

We proceed by contradiction and assume

∀ρ ∈ R(E,Γ). �x dos :: NodeTest�ρ = () (∗)

and

S = ∅
This last assumption means that U ′ ∼E () = false. By Lemma 4.5, �U ′�E �= {()}.
Let f be a non empty forest in �U ′�E . By lower bound Lemma 5.21, we have

∃ρ′ ∈ R(E,Γ). f � �x dos :: NodeTest�ρ′

and this by Lemma 5.5 implies

�x dos :: NodeTest�ρ′ �= ()

which contradicts (*).

�

Theorem 5.27 (Completeness of Error-Checking for the Type-Splitting System) For
each Q, ∗-guarded E, and Γ well-formed in E:

E; Γ �β Q : (U; S) ∧ Q has an error at α w.r.t. R(E,Γ) ⇒ β.α ∈ S

24 D. Colazzo et al.

Proof
By hypothesis we have

∃α ∈ CriticalLocs(Q). ∀ρ ∈ R(E,Γ). ∀ρ′ ∈ Ext(ρ, Q, α). �(Q)|α�ρ′ = ()

and

(1) SplitVEnv(Γ, E) = {Γ1, . . . ,Γn}
(2) E; Γi �β Q : (Ui; Si) i = 1 . . . n

(3) S =
⋂

i=1...nSi

We want to prove that β.α ∈ S. To this aim, we prove that β.α ∈ Si for i = 1 . . . n.
This follows by observing that the hypothesis implies, for i = 1 . . . n:

∀ρ ∈ R(E,Γi). ∀ρ′ ∈ Ext(ρ, Q, β). �(Q)|β�ρ′ = ()

as R(E,Γi) ⊆ R(E,Γ) (Lemma 5.14). This means that Q has an error at α with
respect to R(E,Γi) for i = 1 . . . n. Therefore, by Lemma 5.26 we have β.α ∈ Si for
i = 1 . . . n. �

Lemma 6.5 Assume E; Γ �β Q : (T ;), (E, Γ) is label-deterministic and

Q = χ Step1 Step2 . . . Stepn

where Stepi is either /li or //li. Then T is label-deterministic. Moreover,

UpperTreesE(T) ⊆ {ln[T ′]}

for some T ′, where ln is the label of Stepn.

Proof
By induction on n. �

Lemma 6.6 If E is ∗-guarded and T is well-defined and label-deterministic with
respect to E, then each A ∈ SplitE(T) is label-deterministic with respect to E.

Proof
Assume, toward a contradiction, that

A→E
e m[U] ∧ A→E

e m[U ′] ∧ U ′ �= U

and then, by exploiting A ∈ SplitE(T), conclude that T is not label-deterministic
with respect to E, which contradicts the hypothesis. �

Lemma 6.7 If E; Γ �β Q : (T ;) , (E, Γ) is label-deterministic and Q is left-path,
then for each judgement of shape

E ′; Γ′ �β Q′ : (T ′′; S)

or

E ′; Γ′ �β x in T1→Q′ : (T ′′; S)

in the proof tree of E; Γ �β Q : (T ;), the pair (E ′,Γ′) is label-deterministic and
Q′ is left-path. Moreover, in the second case, T1 is label-deterministic.

Proof
It is sufficient to prove that the above properties are preserved by backward
application of type rules. The main cases are (TypeLetSplitting), (TypeFor) and
(TypeInElSplitting), which we prove below.

Static analysis for path correctness of XML queries 25

(TypeLetSplitting) We have E; Γ �β let x ::= Q1 return Q2 : (T ;) which
reduces to

E; Γ �β.0 Q1 : (T1;)
SplitE(T1) = {A1, . . . , An}
E; Γ, x : Ai �β.1 Q2 : (Ui;)
T ≡ U1 | . . . | Un

with (E,Γ) label-deterministic. Queries Q1 and Q2 are left-path since the query
let x ::= Q1 return Q2 is. Moreover, we have

Q1 ≡ χ Step1 Step2 . . . Stepn (∗)

where Stepi is either /l or //l.
Therefore, we only have to prove that (E, (Γ, x : Ai)) is label-deterministic, for
each i = 1 . . . n. Since (E,Γ) is label-deterministic, by (*) and by Lemma 6.5, we
have that T1 is label-deterministic. Then it suffices to apply Lemma 6.6 to prove
that (E, (Γ, x : Ai)) is label-deterministic as well.

(TypeFor) We have E; Γ �β for x in Q1 return Q2 : (T ;) which reduces to

E; Γ �β.0 Q1 : (T1;) (∗)
E; Γ �β.1 x in T1→Q2 : (T ;)

with (E,Γ) label-deterministic. Moreover, we have

Q1 ≡ χ Step1 Step2 . . . Stepn (∗∗)

where Stepi is either /l or //l.
Queries Q1 and Q2 are left-path since for x in Q1 return Q2 is. Finally, by this,
(*), (**) and Lemma 6.5, we have that T1 is label-deterministic with respect to E.

(TypeInElSplitting) We have E; Γ �β x in l[T1]→Q2 : (T ;) which reduces to

SplitE(l[T1]) = {A1, . . . , An}
E; Γ, x : Ai �β.1 Q2 : (Ui;)
T ≡ U1 | . . . | Un

Moreover, by hypothesis, we have that Q2 is left-path and that l[T1] is label-
deterministic with respect to E (*). Hence we only have to prove that (E, (Γ, x : Ai))
is label-deterministic. This follows by the fact that (E, (Γ)) is label-deterministic,
l[T1] is label-deterministic with respect to E, Ai ∈ SplitE(l[T1]), and Lemma 6.6.

�

Lemma 6.8 (Label-Deterministic Analysis) If E; Γ �β Q : (T ;), (Γ, E) is label-
deterministic and Q is left-path, then for each judgement

E ′; Γ′ �β for x in Q1 return Q2 : (T ′; S)

in the proof tree of E; Γ �β Q : (T ; S), we have

E ′; Γ′ �β Q1 : (T1;) ∧ UpperTreesE ′(T1) ⊆ {m[U]} for some m,U

26 D. Colazzo et al.

Proof
By Lemma 6.7 we have that (E ′,Γ′) is label-deterministic and that the query
for x in Q1 return Q2 is left-path. Hence

Q1 ≡ χ Step1 Step2 . . . Stepn (∗)

Moreover, since E; Γ �β Q : (T ;) holds, we have that E ′; Γ′ �β Q1 : (T1; S)
holds as well. It remains to prove that UpperTreesE ′(T1) ⊆ {m[U]}. This follows by
the fact that (E ′,Γ′) is label-deterministic, by (*) and Lemma 6.5. �

