Static analysis for path correctness of XML queries 1

Appendix: Complete proofs

Lemma 4.6 (Termination of Type Filtering) For any well-formed type environment
E, and types T and U, the backward application of the type rules to E - T ::
NodeTest = U terminates.

Proof
[-guardedness of E avoids infinite applications of rule (VARFILT), the only one that
could make rules diverge. O

Lemma 4.7 (Type Filtering Checking) For any well-formed type environment E and
type T well-formed in E:

EF T ::NodeTest = U <> [U]g ={f :: NodeTest | f € [T]k}

Proof
By induction on the proof of E - T :: NodeTest = U. O

Lemma 4.9 For any E well-formed and T such that E - T Def and for each tree ¢:
Af €[T]e. t€x f) = QU.T -EU A te[U]g A (U=I[T']VU=B))

Proof
(=) follows by induction on the structure of t. (<) follows by induction on the
length of e. O

Lemma 4.10 For any E well-formed and T such that E - T Def, and for any U:
T-EU AN (U=I[TVU=B) < U e SubTreesg(T)

Proof
(=) follows by induction on the length of e, while (<) follows by induction on
|SubTreesg(T)|. O

Lemma 4.11 For any well-formed E and T such that E - T Def, for each tree ¢:
Af €[T]g-t €x f) = (QU. U € SubTreesg(T) Nt € [U]g)

Proof
By Lemma 4.9 and Lemma 4.10. O

Lemma 4.12 (Soundness of DOS Type) For any well-formed E and T such that
E + T Def and

SubTreesg(T) = {Uy,...,U,}
U = (Up]...|Up=
then:
Vf € [T]k. dos(f) € [Ule
Proof

Consider f € [T]g with dos(f) = ti,...,t,m. We have t; €, f for each j =1...m
(Definition 4.8). Hence, we can apply Lemma 4.11, obtaining that there exists
{Ui,...,U;,} < SubTrees(T) such that t; € [U;] for j =1...m. Now, since
SubTreesg(T) = {Uy,..., Uy}
U= U |...| Uy*

2 D. Colazzo et al.

we have that [U]g contains all the forests obtained by combinations and repetitions
of trees belonging to U; € SubTreesg(T), and in particular it contains the forest
dos(f) = t1,...,tm, as tj € [U;] with U;, € SubTreesg(T), for j=1...m.

O

Theorem 4.14 (Upper Bound) For any well-formed environment E, I" well-formed in
E, and query Q:
E:Thy Q:(U:.) A peR(ET) = [0], € [Ule

Proof
We prove the statements:

o Vpe Z(E,T).
E; Tk Q:(U;) = [Q], € [Ule
o VYpe RE,).Vfe[T]k.
E’ r l_/} X in T_)Q (U’ *) = Hrerrees(f)[[Q]]ﬂ:%l € [UHE
We proceed by induction on the proof tree and by cases on the last applied rule.
We only consider the main cases; the others are easier.

(TypeForest) In this case, we have E; I' g 01,0, : (Uy, Us; -) and the following
hypothesis:

E; Tkgo Q1 :(Us;) (1)

E; Thgy Q2 :(Uz; o) (2)

Vp e R(E,T). [Q1], € [Ui]e (3)

Vp € R(E,T). [Q2], € [U]e (4)
We want to prove:

Vp e R(E,T).[01,0:], € [U1, Us]k

Observe that Vp € Z (E,T):
[01,02], = [Q:1],. [Q:]s
Therefore the thesis follows from (3) and (4).

(TypeLetSplitting) Recall that we are assuming Splity(T) = {T}. We have E; T by
let x := Q; return Q, : (U; _) and, by induction:

E; Tkpo Q1 :(Th;) (1)
E; L, x:Tikpr Q:(U;))
Vp e RE,T). [Qi], € [Ti]e (3)
Vp € A(E,(L,x : T1)). [Q2], € [Ule (4)

We want to prove that
Vp € Z(E,I). [1let x := Q; return Qs], € [U]e
To this aim, we recall that:
Vp € R(E,T). [let x := Q; return Q1], = [Qa]pxsp0], (*)
where, by (3), [Q1], € [Ti]&. Hence p,x — [0Q1], € Z(E, (I',x : T1)), from which,

Static analysis for path correctness of XML queries 3
by (4) and induction,
[[Q2]]p,xr—>|IQ1]]/) = [let x = Q; return Q»], € [UlE

(TypeFor) In this case we have E; I' Fg for X in Q; return Q, : (U; _) and the
following hypothesis:

E; Tkpgo Q1 :(Us;) (1)
Vp € Z(E,I").[Q1], € [Ui]e (2)
E;Thkp; Xin Ui — Qs :(U;) (3)
Vpe A(ET).Vf € [Ule. I [Qlpxs €U (4

tetrees(f)
We want to prove:
Vp € A(E,T). [for X in Q; return Q»], € [U]
Recall that Yp € Z(E,T):

[for X in Q; return Q,], = H [02] p 5t

tetrees(f)
with
=12l
By (2) we have f € [Ui]g, hence the case follows by (4).

(TypeInConc) In this case we have E; I' -y X in Ty, T>— Q : (T}, T;; -) and the
following hypothesis:
E;Thrp Xin Ty = Q : (Ty; -) (1)
E;Thkp Xin Th—>Q : (Ty; 2) (2)
Vp € %(Eor) Vf € [[Tl]]E~ Htetrees(f)[[Q]]p,M—»z € [[TI/HE (3)
Vp € %(Eor) Vf € [[T2]]E~ Htetrees(f)[[Q]]p,m—»z € [[Tz/ﬂE (4)

We want to prove:

Vp € RE.D).Vf € [T, Tale. [[[Qps—r € [T T3]

retrees(f)
For any p € Z(E,T') and f = (f1,f2) € [T, T2]g with f; € [Ti]g:
T Qsi= I @se: [[[Qhs
tetrees(f1.f2) tetrees(f1) tetrees(f2)
By (3) and (4) we have
H [0]y5- € [T]E

tetrees(f;)

and this proves the case since
[T, T5le = {f1.f2 | fi € [T]e}
(TypelnEISplitting) Similar to (TYPELETSPLITTING) .
(TypeChild) It follows from Lemma 4.7.

4 D. Colazzo et al.

(TypeDos) We have J = E; I' by X dos :: NodeTest : (U'; &) and the following
hypothesis:
WEF(J)
X:Tell AN(T=m[T']VvT=B)
{Uy,...,U,} = SubTreesg(T)
U= Uy |...| Uy=
E+ U :: NodeTest = U’
By (1) we can apply Lemma 4.12, from which

Vf € [T]e. dos(f) € [U]e

—~ o~~~
E OS]
Do

9]

and by Lemma 4.7
Vf € [U]g. dos(f) :: NodeTest € [U']g
Hence, the case is proved since
Vp € Z(E,T). [X dos :: NodeTest], = dos(p(X)) :: NodeTest
with p(X) € [T]E.
O

Theorem 4.15 (Soundness of Existential Error-Checking) For any well-formed envir-
onment E, I" well-formed in E, and query Q:

E;Tkp Q:(U; &) N paed = Q has an error at o w.r.t. A(E,I)

Proof
We prove the following statements:
e E;I't4 Q:(U; &) =
y€Y = (y=paNac CriticalLocs(Q) A\ Q has an error at)
e E;I'ty XxinT—-Q :(U; ¥) =
y€e€S = (y=p.aNac CriticalLocs(Q)N
(Vf € [T]g. for X in f return Q has an error at 1.x))

8

We proceed by induction on the proof tree and by case distinction on the last rule
applied. We prove only some of the main cases (see the Appendix for more cases).

(TypeForest) We have E; I' g Q1,05 : (T1,T>; &1 U%>) and the following
hypothesis
E; Tkgo Q1 :(T1; 1) (1
E; T kg1 Q2 : (T %) (2
y €1 = (y=p.0.aAa€ Critical Locs(Q1) N Qq has an error at o) (3
y € P = (y=p.la Ao € Critical Locs(Q2) N Q» has an error at o) (4
We want to prove that

Yy €L 1US = (y = B.aNae CriticalLocs(Q1,02) N\ Q1,02 has an error at)

8 To be formally precise f should be defined as a term of a subgrammar () | b | I[f] | f,f’. Although
inelegant, for the sake of simplicity, we allow here a notation that mixes up syntax and semantics.

Static analysis for path correctness of XML queries 5

By y € %1 U9, (3) and (4):
y = B.ou Ao € CriticalLocs(Q1, Q7)

It remains to prove that Q1,Q, has an error at o. To this end, observe that by
y = f.o € S US,, we have that either a = 0.0/ Ao € S ora= 1.0/ Nd/ € F5.
Suppose we are in the first case (the second one is similar). In this case, by (3),
Q; has an error at o, and this means that Q;,Q, has an error at o = 0.0/'.

(TypeFor) We have E; I' g for X in Q; return Q) : (T»; &1 US> U %) and the
following hypothesis:

E; Tkgo Q1 :(T1; 1) (1
E;Thgy Xin T1 = Qs : (Tr;) (2
& = if Ty ~g () then {B.0} else 0 3
y €S = (y=p.0.aNa € Critical Locs(Q1) A Q1 has an error at o) (4
y € Sy = (y=p.laAa € CriticalLocs(Q2) A (Vf € [Ti]k. (

for X in f return Q, has an error at 1.x))

— O — — —

9]

We want to prove that V y
Yy E(F UL LIUS,) = (y=p.d Nd € Critical Locs(for X in Q) return Q,)
A for X in Qg return Q; has an error at o
For any
Y E(FL UL 1US)

y = p.a Ao € CriticalLocs(for X in Q1 return Q;) follows from (3), (4) and (5).
To prove that for X in Q; return @, has an error at o« we distinguish three
possible cases: (i) & = 0, (ii) and o = 0./ and o' € CriticalLocs(Q;), and (iii)
o = 1.0/ and o € CriticalLocs(Q;). Case (ii) does not pose particular problems
(proceed as for case (TYPEFOREST)). In case (i) we have Ty ~g (), hence, by
Lemma 4.5 and Theorem 4.14, we have [Q:], = () for each p € #(E,T'), which
proves the case. It remains case (iii). We want to prove that

Vp € A(E,T). Vp' € U Ext((p.x— 1), 05 ¢) |- [(Q)i]y = 0
tetrees([Q1],)

To prove it we exploit hypothesis (5), and expand it as follows
Vp € RA(E,T). Vf € [T1]E.
Vo' € Urerreesr) Ext((p, X — 1), @2, o). [(Q2)i]y = ()
This, together with [Q;], € [T]r (Theorem 4.14), proves the case.

(TypeDos) We have E; I' kg X dos :: NodeTest : (U; &) and the following
hypothesis:

WEF(E; I' -3 X dos :: NodeTest : (U; &)) (1)
X:Tell' N(T=m[T]VT =B) (2)
{Uy,..., Uy} = SubTreesg(T) (3)
U'=(U]...] Up* 4)
EF U’ ::NodeTest = U (5)
& = if U ~g () then {B} else 0 (6)

6 D. Colazzo et al.

We want to prove that

y €Y = (y=p.anace Critical Locs(X dos :: NodeTest)N\
(X dos :: NodeTest has an error at o))

We first observe that it may be ¥ = {$} or & = 0. Moreover, Critical Locs(X dos ::
NodeTest) = {e}, which proves

y €Y = (y=p.aAac CriticalLocs(X dos :: NodeTest))

It remains to prove that ¥ = {f} entails that X dos :: NodeTest has an error at e.
X dos :: NodeTest has an error at € if and only if

Vp € R(E,T")Np' € Ext(e, X dos :: NodeTest, p). [X dos :: NodeTest],, = ()

Since Ext(e, X dos :: NodeTest, p) = {p}, we have that X dos :: NodeTest has an
error at e if and only if

Vp € A(E,T). [x dos :: NodeTest], = ()
Hence, we have to prove that
S ={B} = Vpe RE,T). [xdos :: NodeTest], = ()
We have & = {f} if and only if U ~g (), which, by Lemma 4.5, implies that
[Ule = {0}

Therefore, by Theorem 4.14, we have proved the case.

O

Lemma 5.3 For each *-guarded environment E and type T defined in E:

[[T]]E = UAesme(T) [[A]]E

Proof
By induction on the cardinality of Split;(T) and by case distinction on the shape of
T. O

Lemma 5.6 (Monotonicity of Filtering, Childr and DOS))

1. Vf,f'.fCf = [f::NodeTest C f':: NodeTest
dos(f) € dos(f")

2. YVt tCt = childr(t) E childr(t')

Proof
Property 1. follows by induction on the structure of f, while 2. easily follows by
definition of childr(t). O

Lemma 5.7 (Query Monotonicity)

V0.p.p. pEp = [0], E[Q]y

Proof
By case distinction and induction on the structure of Q. We consider only the main
cases.

Static analysis for path correctness of XML queries 7

Q = for X in Q) return Q,. For substitutions p and p’ such that p C p/, we want
to prove

[for X in Q; return Q,], C [for X in Q; return Q)],
By induction, we assume
[01], E [Q1]y (%)
This means
Vi € trees([Q1],).3t" € trees([Q1]y). t Tt

By definition of query semantics, the property to prove can be rewritten as:

[T [2hsCT J[[l

tetrees([Q1],) t€trees([01] 1)
that is
Vt € trees(H [02] p51)- It € trees(H [0:2]p50)- tE 7
tetrees([01],) tetrees([Q1])
Consider

t € trees(H [02] p5t)-

tetrees([01],)

For such a t we have that 3 ' € trees([Q1],) such that t € trees([Q2],x-¢)- By (¥),
for such a t' there exists ¢” € trees([Q1],y) with ¢ T ¢". This entails (p,X — ') C
(p',x+— t"), hence by induction we can assume

[0:2]p50 E [Q2]py 5
which, since ¢ € trees([Q2],x-r), gives us
i e trees([Qa] yxoer). t E 7
Hence the case is proved by observing that t” € trees([Q1],/) and that
t € trees([Qx]yxor) = T € trees(H [02]p 5t)
tetrees([Q1],)

child :: NodeTest. Directly follows from Lemma 5.6.
dos :: NodeTest. Directly follows from Lemma 5.6.
]

Corollary 5.8 Given a well formed query Q and a substitution p such that FV(Q) <
dom(p) U {y}:
fiEf = I @l T [Qs

tetrees(f1) tetrees(f)

Proof
By Lemma 5.7. O

Lemma 5.9 (Extension Monotonicity) For any Q and pair of substitutions p; and p,
such that FV(Q) < dom(py) = dom(p;y) and p; C pj, VS € Locs(Q).

Vp' € Ext(p1, Q, B). 3p" € Ext(p2, Q. B). p' C p”

8 D. Colazzo et al.

Proof
By induction on the structure of Q, Lemma 5.7, and Corollary 5.8.]

Lemma 5.10 (Closure of Split Types) For any *-guarded environment E and type T
well-formed in E, for any 4 € Splity(T):

Vi, fr€[A]e. 3f €[Ale. iEfi=12

Proof
We first observe that for each A € Split(T)

Splity(A) = {A}

This entails that we can define a measure d*(A), over types obtained by splitting, as
follows:

d*(()) = 0

d*(B) = 0

d*(T'*) = 0

d*1[T]) = 1+d*T")

5T, U") = 1+d*(T')+d*U)

Observe that d*(A) is not defined over union types, since 4 can not be a union type.
We then proceed by induction on d*(A).

If d*(A) = 0, the case A = B is obvious, as, by definition of C, Vby,b,, b3 € [B]g
we have by C b3 and b, C bs. Here, the only interesting case is A = T’+. For this
case, given fi and f, in [A]g, observe that their composition fy, f, still is in [A]g
and that f1 C fi,f2 and f> C fy, fa.

If d*(A) > 0 the only interesting case is A = T',U’. Consider f; and f; in
[T',U']g. We have
fi=fi.ft A fLelT]e AfTelUTe
fr=00 AL elT']e Af5€U]e
By induction we have that there exists f € [T']g and f” € [U']g such that
fLheys
s
hence f1,f1,f3,f3 C f,.f". Since f1,f2 C fl,f1,f7,f3 by transitivity of C we have
that f1, 2 C f,f" O

Lemma 5.11 For any type 4 defined in a *-guarded environment E, if Split;(A) = {A}
then,

Vit,..osfn€Ale. If €Al fiCfi=1...n
Proof

By induction on n, Lemma 5.10, and transitivity of C. O

Lemma 5.14 (Query Variables Environment Splitting) For each *-guarded type envir-
onment E and I" well-formed in E:

U A(E,T") = R(E,T)
I"eSplitVEnv(I',E)

Static analysis for path correctness of XML queries 9

Proof
By induction on the length of I" and by Lemma 5.3. O

Lemma 5.15 For any strongly-*-guarded and well-formed I in a *-guarded type
environment E, and py,...,p, € #Z(E,T'), there exists p € Z(E,I') such that p; C p
fori=1...n

Proof
By induction on the length of I' and by Lemma 5.11. O

Lemma 5.17 (Invariance of Well-Formation) For any well-formed judgement E; I'
Q : (U; &) with T' strongly-*-guarded, the backward application of the rules
produces judgements that are well-formed as well, and containing strongly-*-guarded
environments.

Proof
It directly follows by the way rules (TYPEINELSPLITTING) and (TYPELETSPLITTING)
are defined. O

Lemma 5.18 (Soundness and Completeness of DOS Type) For any E well-formed and
T such that E - T Def and

SubTreesg(T) = {Uy,...,U,}
U = (U|...|Uy=*
then:
(1) Vf €[T]g. dos(f) € [Ule
(2 VfeUle. 3Hfl-- . fut = [T]e- f Edos(fi,.... f)
(3) Splity(T) =T = Vf € [Uls. 3f € [T]e. f C dos(f)
Proof

(1) Similar to Lemma 4.12.

(2) Consider f € [U]g with f =ty,...,t,. This implies that for each i = 1...m there
exists U' € SubTreesp(T) such that t; € [U']g. By Lemma 4.11 we have t; €, f!
with f/ € [T]g for each i = 1...m. Therefore, by observing that

dos(ft,.... fn) = dos(f1),...,dos(f},),

and by t; €, f, we have that each dos(f) can be decomposed in f},t;,f?
(Definition 4.8). Hence, each t; is at the top level of dos(f], ..., f;) and this implies

f=t1e..,tm Sdos(fi,...,[7)
(3) By (2) we know that for f € [U]g there exist fi,...,f), € [T]g such that

fCdos(fi,.. . fi)
Since Splity(T) = T, by Lemma 5.11 there exists f* € [T]g such that f; C f’ for
i=1...m. From this it easily follows that
fioe s fm Cf

Therefore, by Lemma 5.6, we have

f Edos(f1,.... f,) E dos(f")

then by transitivity of C we conclude f T dos(f’).
O

10 D. Colazzo et al.

Lemma 5.19 (Upper Bound) In the type splitting system, for each Q, *-guarded E,
and I strongly-*-guarded and well-formed in E:

E;:Tky Q:(U:) A peRET) = [0], € [U]e

Proof
We prove the statements:

e Vpe AE.T).
E;:Tkp (U) = [Q], € [U]Ee
o Ype RE,).Vfe[T]k.
E; T l_ﬁ X in T_>Q :(U/; 7) = Htetrees(f)[[Q]]p,Fz € [[U/]]E

We proceed by induction on the proof tree and by cases on the last applied rule. We
only consider the case (TYPELETSPLITTING). Case (TYPEINELSPLITTING) is similar to
(TyPELETSPLITTING), while the other cases are essentially the same as in the proof
of Theorem 4.14.

(TypeLetSplitting) We have E; T' k3 1let x := Q| return Q, : (U’; _) and, by
B
induction:

E; Tkpo Q1 :(Ty; 2) (1)
Splitg(T1) = {A1,..., An} (2)
E;T, x:Aikpg1 Q2 :(Ui; 5) i=1...n (3)
U=U|...|U,)
Vp € A(E,T). [Q1], € [T1]e (5)
Vpe RE,T.,x :A4;)). [02], € [Uile i:1,....n (6)

We prove that
Vp € Z(E,T). [let x := Q; return Q>], € [U']k
To this aim we recall that
Vp € A(E,T). [let x := Q; return Qs]], = [Q2],o[0,], (*)
where, by (5), [Q1], € [T1]k. Since (Lemma 5.3)
[Ti]e = | [4ie

i=l.n

we have that [Qi], € [A4;]g for some j = 1...n. Hence (p,x — [0Qi],) €
A(E,(I',x : Aj)), from which, by (6), (4) and induction,

[0:2]p-1011, € [Ujle = [Q2]psmion, € [U']E
O

Theorem 5.20 (Upper Bound for the Type-Splitting System) For each Q, *-guarded
and well-formed E, and I well-formed in E:

E;TlFg Q:(U;) N pe RET) = [0], € [U]e

Proof
We first observe that, by Lemma 5.14, p € Z(E,I') implies

p € RE,T

Static analysis for path correctness of XML queries 11

with T" € SplitVEnv(I', E), and also observe that, by Definition 5.16, U = U’ | U”
with E; T" Fg Q : (U’;). Hence, by Lemma 5.19 we have that [Q], € [U']g which
entails [Q], € [U]g, as [U']e = [U]e.

O

Lemma 5.21 (Lower Bound) In the type-splitting system, for each Q, *-guarded E,
and T strongly-#-guarded and well-formed in E:

E:Thks Q:(U;) = Vfel[Ule3pecRET). fCI[0],

Proof
We prove the following statements:

e Vfe[U]g. Ip € Z(E,T).
E;ThHg Q:(U;) = fC[Q],
e Vfe[U]g. 3p€ RE,T).If € [T]g.
E;Thky XinT—>Q:(U;) = fLC H[arees(f)[[Q]]m_,t

We proceed by induction on the proof tree of the proved judgement and by cases
on the last rule applied. We only prove main cases.

(TypeLetSplitting) We have E; I' g let x := Qi return Q, : (U; _) and

E; Tkpgo Q1 :(Ty; 2) (
SpliIE(T1)={A1,.,,,An} (
E;T, x:Aibgy Qr:(Ui;) i=1...n (
Uu=u|...|U, (4)
vf € [Tile 3p € R(ED). f C[01], (
Ve [Ule. 3pe RE,(I',x 1 A). fE[Q2], i=1...n (

We want to prove
Vf e [Ulg. 3p € A(E,T). f C [let x == Q) return Q>],

For any f € [U]g, by (4) we have that f € [U;]g for some i = 1...n. Moreover,
by (6):

(3p* € R(E,(T,x : A). f E[Q2],2) (7)
Since p? € #(E, (T, x : A;)), we have
p*=p5x— [(8)

with f’ S [[Ai]]E and pZ S OZ’(E,F)
Now, since [’ € [Ai]Jg = f' € [T]e (Lemma 5.3), and by (5) we have that:

' € AE.T). f'E[i],)
Hence, (7) and (8) imply that
FE02]p: = [Q2] 7y (10)
while (9) and (10) and Lemma 5.7 imply that
fE Q2] g0,

12 D. Colazzo et al.

Now, by Lemma 5.15 there exists p € Z(E,T’) such that p' C p and p? C p, hence,
by Lemma 5.7, we have:

fE2]p 00, E [Q2lp o, E [Q2)hx101,

By [let x ::= Q; return Q1], = [Q2],.-[0,], the case is proved.
(TypeFor) We have E; I' g for X in Q; return Q, : (7>; -) and the following

hypothesis:
E; Thpo Q1 :(T1; 2) (
E;Thpy Xin Ty — Qs :(T; 1) (2
Vf € [Ti]e3p € Z(E.T). f T [Q1], A3
Vf e [[TZHE« dp € A(E,T). Hf/ € [[Tl]]E- fC Htarees(f/)[[Qﬂ]p,ﬁ—»z 4

We want to prove that

Vi e [T2]e. Ip € Z(E,T).
f E [for X in Q; return Q>],

)
)
)
)

For any f € [T»]k, by (4) we have
3> € RE,T). If € [Ti]e. f C [Lictrees[Q2] 25t (5)
Since f’ € [T1]g, by (3) we have:
(3p' € 2(E,T).f' T [Q1],1) (6)
From (5) and (6) and Corollary 5.8 it follows

fo I [@deseC JI [Qlps

tetrees(f') tetrees([Q)]]pI)

As in the previous case, by Lemma 5.15 there exists p € Z(E,T') such that p' T p,
p?> C p. Therefore, by Lemma 5.7 and Corollary 5.8, we have:

f C Hzezrees([0:1,1) [[Qﬂ]pz,ﬂ—»t C
Htezrees([[@ 1) [[Qzﬂpz,ﬁ—vl C
Hzezrees([[Q] 1») [[QZHp,To—»t

By [for X in Qi return Qs], = [Licireesfo,],) [Q2]p5—: the case is proved.
(TypelnStar) We have E; I' -y Xin T* — Q : (U*; _) and the following hypothesis:

E;T'Fp Xxin T —-Q :(U;)
We want to prove that:

(Vf € [U*]g. 3p € #(E,T). 3f € [T*]e. fE [] [Qlos-0)

tetrees(f’)

Consider f € [U*]g; this entails that f = f1,...,f, with f; € [U]g, fori=1...n.
For each f;, by induction on E; I' g X in T — Q : (U; _), we have

' e AET). I €Tl fiT [[[0]pmo

tetrees(f})

Static analysis for path correctness of XML queries 13

By Lemma 5.15, there exists p € #(E,T’) such that p' C p, for i = 1...n. Hence,
by Lemma 5.7:

fie I Qs E] [Q0m
tetrees(f7) tetrees(f;)
Therefore we have:

fzfls“-sfn cC H [[Q]]p,?»—»ta---a H [[Q]]p,?»—»l

tetrees(f}) tetrees(f},)

and the case is proved by observing that f1,...,f, € [T*]g and that

H [[Q]] pX—ts e s H [[Q]] px—t = H [[Q]]p,ﬁ—n
tetrees(f1) tetrees(f},) tetrees(f1,....f)
(TypeChild) It follows by Lemma 4.7.

(TypeDos) We have J = E; I' kg X dos :: NodeTest : (U'; _) and the following
hypothesis:

WF(J) (1)
X:Tel A(T=m[T|VT=B) (2
{Uy,..., Uy} = SubTreesg(T) (3)
U= (U |...| Uy* 4)
Et U :: NodeTest = U’ (5)

We prove that Vf € [U']g there exists p such that
f € [X dos :: NodeTest],

Since X : T € I' and T is strongly-#-guarded (Lemma 5.17) we have Split;(T) =
{T}. Consider f € [U']g; since E + U :: NodeTest = U’, by Lemma 4.7 we have

3f" € [U]g. f" :: NodeTest = f

For such f’, since Splitz(T) = {T}, by Lemma 5.18(3) we have that there exists
f" € [T]g such that ' C dos(f"”). Now we apply filtering and Lemma 5.6 to
obtain

f =1{"::NodeTest C dos(f") :: NodeTest

hence it remains to observe that f” € [T]g and, since I' is not empty, there
exists a p € Z(E,I') such that p(X) = f” and that [X dos :: NodeTest], =
dos(f") :: NodeTest, which gives

f € [X dos :: NodeTest],.
O
Theorem 5.22 (Lower Bound for the Type-Splitting System) For each Q, *-guarded
E, and T" well-formed in E:

E:Tlky Q:(U;) = Vfel[Ule 3pec2ET). fC[0],

14 D. Colazzo et al.

Proof

By hypothesis we have E; I'l-g Q : (U;), that is
(1) SplitVEno(I',E) = {I'y,..., I}
2) E;Tikp Q:(U;) i=1...n
3 UuU=U|...|U,

Therefore, for each f € [U]g, there exists U; and T'; strongly-*-guarded such that
f€Ulg and E; T kg Q : (U;;). Hence, by Lemma 5.21 we have

dp € A(E,Ty). f C[0],
Now, the thesis follows from Z(E,T';) < Z(E,TI") (Lemma 5.14). O

Corollary 5.23 (()-precision) In the type splitting system, for each Q, *-guarded E,
and I' strongly-#*-guarded and well-formed in E, if E; I't-5 Q : (U;) then:

[Ule ={0} < Vo e 2(E.D).[Q], =0

Proof

= follows from Lemma 5.19. To prove <= we observe that by E; I' g Q : (U;)
and Lemma 5.21

Vf e [U]g. 3p € 2(E,T). f E[Q],
That is, by the hypothesis Vp € Z(E,I'). [Q], = ():
Vi€[Ule- fEO
and this means [UJg = {()}, since f C () if and only if f = (). O

Lemma 5.24 In the type-splitting system, for each query Q, *-guarded E, I" strongly-
*-guarded and well-formed in E:

E;Tkg Q:(5 &) = (Boed = Q has an error at o w.r.t. Z(E,T"))

Proof
We prove the following statement:

e E;TH Q:(U; &) =
y€Y = (y=p.anac CriticalLocs(Q) A Q has an error at o)
e E;ThHy XxinT—Q:(U; &)=
ye€Y¥ = (y=p.aNnac CriticalLocs(Q)N\
(Vf € [T]g. for X in f return Q has an error at 1.x))

We proceed by induction on the proof tree and by case distinction on the last rule
applied. The proof differs from Theorem 4.15 only for cases (TYPELETSPLITTING)
and (TYPEINELSPLITTING), which we prove below.

(TypeLetSplitting) We have

E;Thp let x := Qy return 0, : (U; S U (| &)

i=l.n

Static analysis for path correctness of XML queries 15

and
E; Ukpo Q1 : (T &) (1)
SplitE(Tl) = {A],...,An} (2)
E;T,x:Aikp1 Q2:(Ui; &) i=1...n 3)
uU=U|...|U, 4)
With respect to E and I': (5)

y € = (y=p.0aANac CriticalLocs(Q1) A Q1 has an error at o)
For i =1...n with respect to E and I',x : A4;: (6)
y €Y= (y=p.la Ao € Critical Locs(Q3) A Q, has an error at o)

We want to prove that V vy

Y€ S UNiey L1 = (y = paNae Critical Locs(let x ::= Q; return Q,)
A let x ::= Qy return Q, has an error at o)
For any
yesu) &
i=l..n

y = B.ou A o € CriticalLocs(let x ::= Q return Q;) follows from (5) and (6).
To prove that let x ::= Qq return Q, has an error at o, we distinguish two
possible cases: (i) « = 0.0/ and o € CriticalLocs(Q,), and (ii) « = 1./ and
o/ € CriticalLocs(Q;). Case (i) is easy. We prove case (ii). To this end we use
hypothesis (6) and expand it as follows, for i =1...n:

Vp € A(E.T.x : A)). Vp' € Ext(p, 02, o). [(Q2)e]y =) (7)

moreover, we have f.1.0/ € &;.
We want to prove that let x ::= Q; return Q; has an error at « = 1.o/’:

Vp € R(E,T). Vp' € Ext((p,x— [Q1],), 02, &). [(Q2)], = ()

By (7) we have just to prove that,

p € A(E,T),p" € Ext((p,x = [Q1]y), Q2. o) =
Jdi.dp € Z(E, T, x : A;). p' € Ext(p, Q,, &)

This reduces to prove that,
pE€RET) = Ji.px—[01], € RE.T,x : 4).
Such statement follows from Lemma 5.19:
Vp e R(E.T). [01], € [Ti]E

and by Lemma 5.3

[Ti]e = U [Ai]E

i=1..n

16 D. Colazzo et al.

(TypeInElSplitting) We have E; I' Fg X in m[T]—Q : (U; (., ,<) and the
following hypothesis

E;T,x:A4iFp O :(Us; &) (2)

U=U|...|U, (3)

yESL = (4)
y=poaA

o € CriticalLocs(Q) A
Vf € [Ai]g. for X in f return Q has an error at 1.

We want to prove that
Y€y 2 Si = (y=panoe CriticalLocs(Q) A (Vf € [m[T]]E.
for X in f return Q has an error at 1.%))

By Lemma 5.3,
femlTlle = 3i fe[A]e
Thus, for such i it holds that,

V€ mj=1“.n ey] = 7€ yi
and the thesis follows by (4).

O

Theorem 5.25 (Soundness of Error-Checking for the Type-Splitting System) For each
Q, *-guarded E, and I" well-formed in E:

E;Tlg Q:(U; &) N pae = Q has an error at o w.r.t. Z(E,T)

Proof
By hypothesis we have
(1) SplitVEnu(T',E) = {T'1,...,I';}
(2) E;Titp Q:(Ui; &) i=1...n

3) &= ﬂi:l...n i

and f.o € &, hence f.o € &; for i = 1...n. Thus, by Lemma 5.24 we have that, for
i=1...n

Q has an error at o w.r.t. A(E,T;))
that is
Joe € CriticalLocs(Q). Vp € R(E,T;). Vp' € Ext(p, Q, B). [(Q)], = ()
Therefore, the thesis follows by Lemma 5.14:
U AE,T') = A(E,T)
" eSplitVEnu(T,E)
]

Lemma 5.26 In the type-splitting system, for each Q, #-guarded E, and I" strongly-
#-guarded and well-formed in E:

E;Tkg Q:(; &) = (Q has an error at o wrt. A E,I') = B.oecS)

Static analysis for path correctness of XML queries 17

Proof
We prove the statements:

e E;THs Q:(U; &) =
(y = p.a Ao € CriticalLocs(Q) A Q has an error at o) = y€ &
e E;THy XxinT—Q :(U; &) =
(y = p.a A a € Critical Locs(Q) N
(Vf € [T]g. for X in f return Q has an error at l.0)) = €5

We proceed by induction on the proof tree and by cases on the last rule applied. We
prove only some of the main cases (more cases can be found in the Appendix).

(TypeForest) We have E; I' Fg Q1,0> : (T1,T2; &1 U &>) and the following
hypothesis
E; Tkpo Q1 :(Tis S1) (1)
E; Tkp1 Qr:(Ty; S2) (2)
(y = B.0.0 Ao € CriticalLocs(Q1) N Q1 has an error at o) = y€ %1 (3)
(y = B.l.a Ao € CriticalLocs(Q2) N Qy has an error at o) = 7y € S, (4)
We want to prove that
(y = p.a Ao € Critical Locs(Q1,02) A Q1, Q5 has an error at o) (5)
implies
y €L 1US
We proceed by contradiction. Suppose that

#)y=pag¢g F1US
By o € Critical Locs(Q1, Q»), we have two possible cases

(a) a=0.0 A o € CriticalLocs(Q1)

(b) a=1.0 AN o € CriticalLocs(Q)
We only consider case (a), the other one is similar. By (*) we have

ﬁ.0.0C/ ¢ S
and this by y = .0.0/ Ao € CriticalLocs(Q1) and the inductive hypothesis (3),
entails
(**) Q1 has no error at o

This entails that

01,0, has no error at «
by contradicting (5). Indeed, (**) means that 3p € Z(E,I') and 3p’ € Ext(p, Q1, &)
such that
[(Q)w]y # 0
and since,
Ext(p, Q1, o) = Ext(p, (Q1,02), 0.¢)
Q)] = [(Q1,02) 0.1y

18 D. Colazzo et al.

we have that
Q1,05 has no error at 0.o/.
(TypeLetSplitting) We have E; I' kg let x = Q; return Q> : (U; S U\, , <)
and
E; Thpo Q1 :(T1; &)
Spli[E(Tl) = {Al, .. ,An}
E;T, x:Aibg1 O :(Ui; &) i=1...n
U= Ul ‘ ‘ Un
With respect to E and T':
(x € CriticalLocs(Q1) A Q1 has an error at o) = .00 € &
For i =1...n with respect to E and T',x : A;: (6)
(e € CriticalLocs(Q2) A Q> has an error at o) = f.la € Y

\S]

E O]
Do

9]

We want to prove that V y

(y = p.o/ Ao € CriticalLocs(Let x ::= Q1 return Q;)
A let x ::= Qp return Q, has an error at o) = ye(LUNisy T

We proceed by contradiction. Assume that

y = B.o/ Ao’ € CriticalLocs(let x ::= Q1 return Q)

A let x ::= Qi return Q> has an error at o
and that:
y=pod ¢ (U [) 7)) (D)
i=1..n
Since o' € CriticalLocs(let x ::= Qy return Q,), we can distinguish the following
two cases

(a) o« =00" N o € CriticalLocs(Q1)
() o =1.0" N o € CriticalLocs(Q3)

In what follows, we consider each case separately and prove that in each one we
have a contradiction.

(a) We have o« = 0.0/ Ao € CriticalLocs(Q1). Moreover, we have assumed
that let x ::= Q; return Q, has an error at location 0.¢”. This means that
Vo € A(E,I').NYp € Ext(p, let x ::= Q) return Q,, 0.).

[(let x ::= Q; return Q1)]y = ()
Since
Ext(p, let x ::= Q; return Q,, 0.¢") = Ext(p, 0y, o"
and
(let x ::= Q; return Q)0 = (Q1)w

we have that Q; has an error at «”. This, by the inductive hypothesis (5) entails
that

B0 €S
which in turn entails
pod e (U () 7

i=l..n

which contradicts the assumption (7).

Static analysis for path correctness of XML queries 19

(b) We have o/ = 1.0 A o” € CriticalLocs(Q). Moreover, (7) entails

Lo ¢ () i

i=1..n

This means that there exists j € {1,...,n} such that
1.0(” §é yj

With respect to this j, by the inductive hypothesis (6) and with respect to
environments E and I',x : 4;, it follows that

Q» has no error at o

This is equivalent to saying that there exists p € Z(E,(I',x : 4;)) and p’ €
Ext(p, Oy, o) such that

[(Q2)] # O
Since p € Z(E,(I',x : A;)) and [A;]r < [T1]e(Lemma 5.3) we have
p=px—f N fel[T]e
By hypothesis (1) and lower bound Lemma 5.21, we have
Ip' € #(E.T). f C [01]5

Since T is strongly-*-guarded (Lemma 5.17), by Lemma 5.15 there exists p €
A(E,T) such that p C p and o' C p.
Now, if we consider the substitution

p1=p,x— [Qi]5
we have

pE pm
since [Q1]; E [Q1]5, which follows by p' C p and Lemma 5.7. Since p’ €
Ext(p, Oy, &) by assumption, by Lemma 5.9 there exists p” € Ext(p1, Qa, &)
such that p’ C p”. Therefore by Lemma 5.7, we have

[(Q2) () E [(Q2) 1] (o)
Hence, [(Q2)], # (), and Lemma 5.5 imply that
[(Q2)r] #)
Now we observe that p” € Ext(p1, Q2, «") and p; = p,x +— [Q;]5 entail
p" € Ext(p, let x ::= Qq return Q,, 1.a")

hence

Ext(p1, 05, o) = Ext(p, let x ::= Q; return 05, 1.o/') (8)
Hence, the hypothesis that

for o/ = 1.0, let x ::= Q| return Q, has an error at o
is contradicted by (8) and by

[[(QZ)W/HP” = [[(let X = Q1 return Qz)“‘“//]]pv # ()
with p” € Ext(p, 1let x ::= Q1 return Q,, 1.o).

20 D. Colazzo et al.

(TypeFor) We have E; I' by for X in Q1 return Q; : (T2; &1 US> U .Y) and the
following hypothesis:

E; T'Fgo Q1 :(T1; 1) (1)
E;Tkpy Xin Ty — Qs : (Tr;) (2)
& = if Ty ~g () then {B.0} else 0 (3)
(y = .0.0 ANa € CriticalLocs(Q1) A Q1 has an error at o) = 7y € & 4)
(y = p.1.a A o € CriticalLocs(Q2) N (5)
A (Vf € [Ty]g-for X in f return Q, has an error at l.o)) = 7y € >

We want to prove that V y

(y = p.o/ Ao/ € Critical Locs(for X in Q; return Qy) A
A for X in Q) return Q, has an error at o = 7 E€(X UL 1US)

We proceed by contradiction. Suppose that for a y it holds:
vy = .o/ Ny" € Critical Locs(for X in Qq return Q,)
A for X in Q return Q, has an error at o
and that,
y=pod ¢ UL LUS, (6)
Since o’ € CriticalLocs(for X in Q; return Q,), we can distinguish three cases
(a) =0

() o =0.0" N o € CriticalLocs(Q1)
(¢) o =14" N o € CriticalLocs(Q3)

We now consider each case separately and prove that in each one we have a
contradiction.
(a) In this case, we have that for X in Q; return Q; has an error at location 0.
This means that Vp € Z(E,T)
Vp' € Ext(p, for X in Q) return Q,, 0).
[(for X in Q; return Q)] = ()
Since
Ext(p, for X in Q; return Q,, 0) = {p}
and
(for X in Q; return Qs)o = O
by Corollary 5.23 we have that Vp € Z(E,I')

[[Ql]]p = ()

and this, by lower bound Lemma 5.21, entails [T1]g = {()}. This, by Lemma
4.5, entails
& = if Ty ~g () then {B.0} else O = {B.0}
which in turn entails
p0e S1USF UY

which contradicts the assumption (6).

Static analysis for path correctness of XML queries 21

(b) We have o/ = 0.0” Ad” € CriticalLocs(Q1). Moreover, we have assumed
that for X in Q) return Q, has an error at location 0.¢”. This means that
Vp € R(E,T)

Vo' € Ext(p, for X in Q1 return Q,, 0.o").
[(for X in Q; return Q)], = ()
Since
Ext(p, for X in Q; return Q», 0.o) = Ext(p, Qy, o)
and

(for X in Q return Q7)o = (Q1)w
we have that Q; has an error at «”. This, by the inductive hypothesis (4) entails
that

ﬁ.O.OCN € Y
which in turn entails
B.0.0C// eSS 11U U

which contradicts the assumption (6).
(c) We have o/ = 1.0 A o € CriticalLocs(Q,). Moreover, (*) entails

10" ¢ >
From this, by the inductive hypothesis (5), it follows
(3f € [T1]g. for X in f return Q, has no error at o)
Hence there exists an f € [T1]g such that
dp € Z(E,T). Ap’ € Ext(p, for X in f return Q,, 1.&").
[(for X in f return Q)i]y # 0
By f € [T1]g, hypothesis (1), and lower bound Lemma 5.21, we obtain
3p" € A(E,T). f C[01],

By Lemma 5.15 there exists p € #(E,T") such that p C p,p” C p, hence, by
Lemma 5.7, we have:

fE[O], E Q17

We consider the following two sets of substitutions obtained by extension as
follows:

Ext(p, for X in f return Q,, 1.d") = Utareesm Ext((p,x+— 1), 0z, &)
Ext(ﬁ, for X in Ql return Q2s 1.0!”) = Uxetrees([[Ql]],—,) Ext((ﬁ,x — t), Q2a O‘”)

Since f T [Q1]7 we have that for each t € trees(f) there exists ' € trees([Q1]7)
such that

tCt (7).
Now, we recall that for p’ € Ext(p, for X in f return Q;, 1.«") we have
[(for X in f return Q1)1]y # ()
that is equivalent to say that there exists t; € trees(f) such that

p' € Ext((p,x+— t1), Q2, o) (8)

22 D. Colazzo et al.

and

[(Q2)p]y #)
Given t; € trees([Q1]5) such that t; T t5, by p T p, (7), (8), and Lemma 5.9,
there exists p' € Ext((p,x — t»), Q», &) such that p’ C p’. Therefore by
Lemma 5.7,

[[(QZ)\x”]]p’ cC [[(QZ)\&”HF

From this inclusion, [(Q2),], # (), and Lemma 5.5, it follows that
[(Q2)i 1) # 0
and this contradicts the hypothesis stating that for o/ = 1. it holds
for X in Q; return Q, has an error at o
since t, € trees([Q1],) implies that
0 € Ext((p,x— t3), Q2, &) = Ext(p, for X in Q1 return Q,, 1.0") =

= Uterrees([[Qlﬂ,,) EXI((ﬁ,X = t2)a Q27 OCN)

(TypeInConc) We have E; 'ty X in T, U —Q : (T, U; 1 N¥>) and

E;Thy Xin T—>Q :(T; 1) (1)
E;Tkg Xin U—-Q :(U;) (2)
(y=pB.a A a € CriticalLocs(Q) N 3)
A (Vf € [T]g. for X in f return Q has an error at l.o)) = 7 € ¥

(y = p.a A a € Critical Locs(Q) N 4)

A (Vf € [U]g. for X in f return Q has an error at l.a)) = y € %>
We want to prove that

(y = .o N o € CriticalLocs(Q) N
A (Vf € [T,U]g.for X in f return Q has an error at l.o)) = y€ S NS>

We proceed by contradiction. We assume that

(y = p.a Ao € CriticalLocs(Q) A (Vf € [T,U]g. (*)

for X in f return Q has an error at 1.0))

and a contradiction that:
y=pfoad 1N
This last assumption means that f.o ¢ &1 V f.o & &, and this by (3) and (4)
implies that
(3f1 € [T]g. for X in fi return Q has no error at l.a) V
(3f2 € [U]E. for X in f, return Q has no error at 1.a)

Suppose that the first statement is true. Consider any f' € [U]g;’ we have
fi.f €[T,U]g and

for X in [y, f return Q has no error at 1l.o

% Such f’ exists as our type system does not feature types U such that [U]g = 0.

Static analysis for path correctness of XML queries 23

which contradicts (*). The other case is similar.

(TypeDos) We have E; T' -y X dos :: NodeTest : (U'; &) and the following
hypothesis:

(1) WEF(E; T g X dos :: NodeTest : (U'; &)
2) x:Tel' AN(T=m[T']VT =B)
(3) {Ui,...,U,} = SubTreesg(T)
4 U=(Ui|...|Uy*
(5) EF U ::NodeTest = U’
)

& = if U ~ () then {B} else 0
We want to prove that

(y = p.a Aa € Critical Locs(X dos :: NodeTest) N\
(X dos :: NodeTest has an error at o) =7y € S

We first observe that it may be ¥ = {f} or & = 0. Moreover, Critical Locs(X dos ::
NodeTest) = {€} and X dos :: NodeTest has an error at € if and only if

Vp € Z(E,T). Vp' € Ext(e, X dos :: NodeTest, p). [X dos :: NodeTest],, = ()

Since Ext(e, X dos :: NodeTest, p) = {p}, X dos :: NodeTest has an error at e if
and only if

Vp € Z(E,T). [X dos :: NodeTest], = ()

Hence, what we have to prove is
Vp € Z(E,T). [x dos :: NodeTest], = () = & ={f}
We proceed by contradiction and assume
Vp € Z(E,T). [X dos :: NodeTest], = () (*)
and

S =0

This last assumption means that U’ ~g () = false. By Lemma 4.5, [U']g # {()}
Let f be a non empty forest in [U']g. By lower bound Lemma 5.21, we have

3p" € A(E,T). f C [x dos :: NodeTest] y
and this by Lemma 5.5 implies
[X dos :: NodeTest],y # ()
which contradicts (*).

O

Theorem 5.27 (Completeness of Error-Checking for the Type-Splitting System) For
each Q, *-guarded E, and I" well-formed in E:

E;T'lFg Q:(U; &) ANQ has an error at o wr.t. Z(E,I') = poac

24 D. Colazzo et al.

Proof
By hypothesis we have

Jo € CriticalLocs(Q). Vp € Z(E,T'). ¥p' € Ext(p, Q, «). [(Q)], = ()

and

(1) SplitVEno(T,E) = {T'y,..., I}

(2) E; T; I—ﬁ Q Z(Ul‘; y,) i=1...n

(3) S = ﬂi:l..ﬁ yi
We want to prove that f.o € &. To this aim, we prove that f.o € & fori=1...n.
This follows by observing that the hypothesis implies, for i =1...n:

Vp € A(E,T). Vp' € Ext(p, Q, B). [(Q)p]y = ()

as A(E,T;) < #(E,T') (Lemma 5.14). This means that Q has an error at o« with
respect to Z(E,I';) for i = 1...n. Therefore, by Lemma 5.26 we have .o € .&; for
i=1...n O

Lemma 6.5 Assume E; I'tg Q : (T; .), (E, I') is label-deterministic and
Q = x Step, Step, ... Step,

where Step; is either /I; or //I;. Then T is label-deterministic. Moreover,
UpperTreesy(T) < {I,[T']}

for some T’, where I, is the label of Step,.

Proof
By induction on n. [

Lemma 6.6 If E is *-guarded and T is well-defined and label-deterministic with
respect to E, then each A € Split;(T) is label-deterministic with respect to E.

Proof
Assume, toward a contradiction, that
A—-EmUl AN A-Em[UT AU #£U
and then, by exploiting 4 € Splitg(T), conclude that T is not label-deterministic
with respect to E, which contradicts the hypothesis. O

Lemma 6.7 If E; I' 3 Q :(T;), (E, I) is label-deterministic and Q is left-path,
then for each judgement of shape
E; T Q (T";)
or
E;T'Hp xin T1 > Q' :(T"; &)
in the proof tree of E; I' g Q : (T; _), the pair (E’,I") is label-deterministic and

Q' is left-path. Moreover, in the second case, T is label-deterministic.

Proof

It is sufficient to prove that the above properties are preserved by backward
application of type rules. The main cases are (TYPELETSPLITTING), (TYPEFOR) and
(TypEINELSPLITTING), which we prove below.

Static analysis for path correctness of XML queries 25

(TypeLetSplitting) We have E; I' kg let x :i= Q; return @, : (T; _) which

reduces to

E; Tkpo Q1 :(Ty; 0)

SplitE(Tl) = {Al,...,A”}

E; ,x :AiFg1 Q2 :(Uss)

T=Ui|...| U,
with (E,T") label-deterministic. Queries Q; and Q, are left-path since the query
let x ::= Q1 return Q, is. Moreover, we have

Ql = Stepl S[ep2"'St€pn (*)

where Step; is either /I or //I.

Therefore, we only have to prove that (E,(I',x : 4;)) is label-deterministic, for
each i = 1...n. Since (E,I') is label-deterministic, by (*) and by Lemma 6.5, we
have that T is label-deterministic. Then it suffices to apply Lemma 6.6 to prove
that (E, (T, x : 4;)) is label-deterministic as well.

(TypeFor) We have E; I' g for X in Q; return Q; : (T; -) which reduces to

E; Tlpo Q1 :(T1;) (%)
E;Thkpy Xin Ty — Q> (T;)

with (E,I) label-deterministic. Moreover, we have

Q1 = y Step, Step, ...Step, (**)

where Step; is either /I or //I.
Queries Q; and Q, are left-path since for X in Q1 return Q, is. Finally, by this,
(*), (**) and Lemma 6.5, we have that T; is label-deterministic with respect to E.

(TypeInElSplitting) We have E; I' =g X in [[T1] — Q> : (T'; -) which reduces to

Splitg(I[T1]) = {A1,..., An}
E;,x :AiFg1 Q2 1 (Uis)
T=U|..|U,

Moreover, by hypothesis, we have that Q, is left-path and that I[T;] is label-
deterministic with respect to E (*). Hence we only have to prove that (E, (I',X : 4;))
is label-deterministic. This follows by the fact that (E,(I')) is label-deterministic,
I[Ty] is label-deterministic with respect to E, A; € Splitg(I[T]), and Lemma 6.6.

O

Lemma 6.8 (Label-Deterministic Analysis) If E; I' Fg Q : (T; _), (I, E) is label-
deterministic and Q is left-path, then for each judgement

E'; T'bp for X in Qg return Q, : (T'; &)
in the proof tree of E; I'-g Q : (T; %), we have

E'; T'Fp Q1 :(Ty;) A UpperTreesg(T) < {m[U]} for some m, U

26 D. Colazzo et al.

Proof
By Lemma 6.7 we have that (E’,I”) is label-deterministic and that the query
for X in Q1 return Q, is left-path. Hence

Q1 = y Step, Step,...Step, (*)

Moreover, since E; I'g Q : (T; _) holds, we have that E'; I" kg Q; : (T1; &)
holds as well. It remains to prove that UpperTreesy (T;) < {m[U]}. This follows by
the fact that (E’,T"”) is label-deterministic, by (*) and Lemma 6.5. O

