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Appendices of
Consistency of the Theory of Contexts

by Bucalo, Hofmann, Honsell, Miculan,
Scagnetto

A Category-theoretic preliminaries

As one of the aims of this paper is to present categorical methods to non-categorically

minded readers, in the following we briefly review some standard notions and

important results we will need. This also allows us to fix notation and to give more

complete references to the involved topics.

Let us start with some basic notation: in the following we will write X ∈ C to

mean that X is an object of the category C and we will denote with C(X,Y ) the

family of arrows in C from X to Y .

We will assume fixed a universe of sets, whose elements are called small sets. A

category C is locally small if for all X,Y ∈ C, the family C(X,Y ) is a small set, and

small if, moreover, the class of objects is a small set. In the following, we will refer

to small sets simply as sets.

Next, we will present some basic results about functor categories, so it is useful a

quick review on some standard notions.

Definition A.1

A category C with terminal object and binary products is cartesian closed if for every

A, C ∈ C there is an object A⇒ C and a morphism evA,C : A× (A⇒ C) −→ C such

that for each morphism f : A × B −→ C there is a unique morphism �f� : B −→
A⇒ C , the exponential transpose of f, such that the following diagram commutes:

A× B

idA×�f�

��

f

		�������������

A× (A⇒ C)
evA,C

�� C

A functor F : C → D is said to be faithful if, for all A,B ∈ C, F is injective on

C(A,B), it is said to be full if for each A, B ∈ C, F carries C(A,B) ontoD(F(A), F(B)).

Finally it is an embedding if it is injective on objects and faithful. given a small index

category J, F induces a functor FJ : CJ → DJ such that, if limits exist both in C
and in D, we have the following diagram:

CJ
lim
←J ��

FJ

��

C

F

��
DJ

lim
←J �� D
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where
lim
←J is the limit functor. By the universal property of limits, we can infer

the existence of a natural transformation α : F◦ lim
←J−→lim

←J ◦FJ. If α is a natural

isomorphism, then F is said to preserve limits. In this case, it will in particular

preserve cartesian products.

In order to improve the readability of formulas and diagrams, we may denote the

application of functors in three different ways: for instance, for F : C −→ D and A

object of C, the notations “FA”, “F(A)” and “FA” are equivalent.

LetSet be the category whose objects are sets and whose morphisms are functions

between sets. Given a locally small category C, we will denote with Č the category

SetC whose objects are the functors from C to Set and whose morphisms are

natural transformations between them. More precisely:

• an object A of Č consists of a family of sets {AX}X∈C, together with a family

of functions {Af}f∈C(X,Y ), X,Y ∈C such that Af : AX −→ AY , AidX = idAX and

Af◦g = Af ◦ Ag;
• a morphism m ∈ Č(A,B) is a family of functions {mX}X∈C, such that mX :

AX −→ BX and for each f : X −→ Y , mY ◦ Af = Bf ◦ mX .

If C is small, it is known that the category Č is cartesian closed with finite products

given by

1X � {�} and 1f � id{�} (empty product)

(A× B)X � AX × BX and (A× B)f � Af × Bf ,

moreover (A⇒ B) is given by

(A⇒ B)X � Č(A×C(X, ), B)

(A⇒ B)f(m) � m ◦ (idA × ( ◦ f)), for f : Y −→ Z and m ∈ Č(A×C(Y , ), B)

and finally evA,C and �f� : B → A⇒ C are given by

(evA,C )X(a, m) � mX(a, idX), for all X ∈ C, a ∈ AX, and m ∈ (A⇒ C)X

(�f�X(b))Y : AY ×V(X,Y ) −→ CY

(�f�X(b))Y (a, h) � fY (a, Bh(b))

Let us consider the functor Y̌ : Cop −→ Č, defined as follows:

• for X ∈ C, Y̌(X) : C → Set is the Homset functor C(X, ), i.e.: Y̌(X)Z �
C(X,Z) and, given f : Y −→ Z , for all g ∈ C(X,Y ), Y̌(X)f(g) � f ◦ g;

• for f : X → Y , Y̌(f) : Y̌(X)→ Y̌(Y ) is the natural transformation such that,

for all Z ∈ C and g ∈ C(Y ,Z), (Y̌(f))X(g) � g ◦ f.

Then, the following fundamental lemma holds:

Proposition A.1 (Yoneda Lemma)

For each A ∈ Č and X ∈ C there is a bijective correspondence between Č(Y̌(X), A)

and AX , and moreover the correspondence is natural in A and X.
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We give the definition of this bijective correspondence between Č(Y̌(X), A) and AX:

ΦX,A(m) = mX(idX), for m ∈ Č(Y̌(X), A); the inverse is the natural transformation

defined on a ∈ AX by (Φ−1
X,A(a))Z (f) � Af(a), for f ∈ Y̌(X)Z .

An immediate and important consequence of the previous result is that the

category Cop fully embeds in Č by means of Y̌, which is called, therefore, Yoneda

embedding.

When an object in Č is isomorphic to an object in the image of Y̌ it is said to be

representable. Notice, for example, that, if C has an initial object 0, then the terminal

object 1 is representable since 1 ∼= Y̌(0).

Another useful notion to recall is the concept of adjunction; for our purposes the

following definition suffices.

Definition A.2

Given categories C and D, an adjunction from C to D is a triple (F,G, φ), where

F,G are functors, F : C −→ D, G : D −→ C and φ is a function which maps every

A ∈ C and B ∈ D to a bijection φA,B : C(A,GB) ∼= D(FA, B), natural in A and B.

F and G are respectively called the left and the right adjoint of the adjunction and

this is denoted by F � G or G � F .

We will use the known property that a functor F : C −→ D with a right

(left) adjoint preserves colimits (limits). For the proof see, e.g., (Mac Lane, 1971).

Theorem 1.27.

Now we introduce some notions and a result about algebras of functors.

Definition A.3

Given a functor T : C −→ C, a T -algebra is a pair 〈A, α〉, with A ∈ C and

φ : TA −→ A morphism of C. A T -algebra morphism from 〈A, α〉 to 〈B, β〉 is an

arrow f ∈ C(A,B) such that the following diagram commutes:

TA
Tf ��

α

��

TB

β

��
A

f �� B

T -algebras and T -algebra morphisms form a category, whose initial object, if it

exists, is said an initial T -algebra.

Theorem A.1 ((Hofmann, 1999))

Let C,D be two categories and F : C −→ D be a functor with a right adjoint F∗.

Let T : C −→ C and T ′ : D −→ D be two functors such that T ′ ◦ F ∼= F ◦ T for

some natural isomorphism φ : T ′ ◦ F −→ F ◦ T . If (A, a : TA → A) is an initial

T -algebra in C, then (FA, Fa ◦ φA : T ′(FA)→ FA) is an initial T ′-algebra in D.

Proof

The adjoint pair F � F∗ can be lifted to a pair of adjoint functors between the

categories of T - and T ′- algebras. Since any functor with a right adjoint preserves

colimits and the initial object is a colimit, then the initial object of the former

category is preserved in the latter. �
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Another useful technique for building initial algebras is based on the notions of

simple slice category and strong functor. We recall here the basic definitions and

related properties from (Jacobs, 1995).

Definition A.4

Given a category C with binary products and G ∈ C, the simple slice category C//G
is defined as follows:

1. Obj(C//G) � Obj(C),

2. C//G(A,B) � C(G× A,B),

3. the identity map on A in C//G is the second projection π′ : G× A −→ A in C,

4. the composition of f : A −→ B and g : B −→ C is defined as follows:

g • f � g ◦ 〈π, f〉 : G× A −→ G× B −→ C,

where • denotes the composition in C//G and ◦ the composition in C.

Given G ∈ C, there is a functor G∗ : C −→ C//G defined as follows:

1. G∗(A) � A for every A ∈ C,

2. G∗(f) � f ◦ π′ for every f ∈ C(A,B).

Definition A.5 (2.6.7 )

An endofunctor T : C −→ C on a category C with finite products is called strong if

it comes equipped with a natural transformation, called strength, with components

stA,B : A× TB −→ T (A× B) making the following two diagrams commute:

A× TB st ��

π′ 

����������� T (A× B)

Tπ′

��
TB

A× (C × TB)
id×st ��

β

��

A× T (C × B)
st �� T (A× (C × B))

Tβ

��
(A× C)× TB st �� T ((A× C)× B)

where β is the obvious isomorphism 〈〈π, π ◦ π′〉, π′ ◦ π′〉.

As proved in (Jacobs, 1995), if T is a strong functor, we can define, for every A ∈ C,

a functor T//A : C//A −→ C//A as follows:

• (T//A)B � TB,

• (T//A)f � Tf ◦ stA,B (for every f ∈ C//A(B,C)).

It turns out that also this new functor is strong.

B Proofs

B.1 Proof of Proposition 3.2

For U,V ∈ PredǏ(F), we put

(U ∨ V )X �UX ∪ VX (U ∧ V )X �UX ∩ VX
(U)X �FX \UX 0X �∅ 1X � FX.
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Now we prove that these objects are indeed predicates, by checking the three

conditions of Definition 3.1:

(U ∨ V ) ∈ PredǏ(F):

Sub Since, by hypothesis, U,V ∈ Pred(F), it follows that UX ⊆ FX and VX ⊆ FX
for X ∈ I; then (U ∨ V )X � UX ∪ VX ⊆ FX;

Func given h ∈ I(X,Y ) and t ∈ (U∨V )X , we can infer that either t ∈ UX or t ∈ VX
(since (U ∨ V )X � UX ∪ VX); in the former case we have that Fh(t) ∈ UY by

hypothesis, hence Fh(t) ∈ UY ∪VY � (U ∨V )Y (in the latter case we can conclude

by a similar argument);

Closure given t ∈ FX and Fh(t) ∈ (U ∨V )Y for some h ∈ I(X,Y ), we can infer that

either Fh(t) ∈ UY or Fh(t) ∈ VY (since (U ∨ V )Y � UY ∪ VY ); in the former case

we can conclude that t ∈ UX , hence t ∈ UX ∪ VX � (U ∨ V )X (in the latter case

we can conclude by a similar argument).

(U ∧ V ) ∈ PredǏ(F):

Sub Since, by hypothesis, U,V ∈ Pred(F), it follows that UX ⊆ FX and VX ⊆ FX
for X ∈ I; then (U ∧ V )X � UX ∩ VX ⊆ FX;

Func given h ∈ I(X,Y ) and t ∈ (U ∧ V )X , we can infer that t ∈ UX and t ∈ VX
(since (U ∧ V )X � UX ∩ VX); then, by hypothesis, Fh(t) ∈ UY and Fh(t) ∈ VY ,

hence we can conclude that Fh(t) ∈ (UY ∩ VY ) � (U ∧ V )Y ;

Closure given t ∈ FX and Fh(t) ∈ (U ∧V )Y for some h ∈ I(X,Y ), we can infer that

Fh(t) ∈ UY and Fh(t) ∈ VY (since (U ∧ V )Y � UY ∩ VY ); then, by hypothesis, we

have that t ∈ UX and t ∈ VX , hence we can conclude t ∈ UX ∩ VX � (U ∧ V )X .

U ∈ PredǏ(F):

Sub Condition (Sub) trivially holds by definition of (U)X;

Func given h ∈ I(X,Y ) and t ∈ (U)X , by definition of U we have that t ∈ FX and

t �∈ UX; then, as U ∈ Pred(F), we can apply condition (Closure) to conclude that

Fh(t) �∈ UY , hence Fh(t) ∈ (U)Y ;

Closure given t ∈ FX and Fh(t) ∈ (U)Y for some h ∈ I(X,Y ), we can infer that

Fh(t) ∈ FY and Fh(t) �∈ UY (by definition of U); then, as U ∈ Pred(F), we can

apply condition (Closure) to conclude that t �∈ UX , hence t ∈ (U)X .

0 ∈ PredǏ(F):

Sub We trivially have 0X � ∅ ⊆ FX for X ∈ I;

Func this condition trivially holds since the premise t ∈ 0X � ∅ is false;

Closure similarly to the previous case this condition is also trivially verified, since

the premise Fh(t) ∈ 0Y � ∅ cannot be fulfilled.

1 ∈ PredǏ(F):

Sub We trivially have 1X � FX ⊆ FX for X ∈ I;

Func given h ∈ I(X,Y ) and t ∈ 1X � FX , we trivially have Fh(t) ∈ FY by

functoriality of F , hence we can immediately conclude since 1Y � FY ;

Closure given t ∈ FX and Fh(t) ∈ 1Y � FY for some h ∈ I(X,Y ), we have by

hypothesis that t ∈ FX , hence we can immediately conclude since 1X � FX .
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One can easily check that PredǏ(F) endowed with these operations can indeed be

turned into a complemented distributive lattice.

B.2 Proof of Proposition 3.3

Given η:F −→ G, U ∈ PredǏ(G) and X ∈ I, we have that (PredǏ(η)(U))X �
η−1
X (UX), hence

χǏF (PredǏ(η)(U))X � λt ∈ FX.({f : X → Y | Ff(t) ∈ (PredǏ(η)(U))Y }}Y ∈I.

On the other hand, we have (χǏG (U))X � λt ∈ GX.({f : X → Y | Gf(t) ∈ UY })Y ∈I,

hence

(Ǐ(η,Ω)(χǏG (U)))X = (χǏG (U) ◦ η)X
= (χǏG (U))X ◦ ηX
� λt ∈ FX.({f : X → Y | Gf(ηX(t)) ∈ UY })Y ∈I,

but, by naturality of η, we have that Gf(ηX(t)) = ηY (Ff(t)), hence Gf(ηX(t)) ∈ UY if

and only if Ff(t) ∈ η−1
Y (UY ) � (PredǏ(η)(U))Y , i.e.,

χǏF (PredǏ(η)(U))X = (Ǐ(η,Ω)(χǏG (U)))X.

Thus, naturality of χǏ is proved. Now, it remains to show that χǏ is a natural

isomorphism, i.e., that χǏF has an inverse for each F ∈ V̌. We will prove that this

inverse is indeed κǏF . First let us verify that κǏF (χǏF (V )) = V for V ∈ PredǏ(F) (i.e.

κǏF ◦ χǏF = idPredǏ(F)):

κǏF (χǏF (V )) � ({t ∈ FX | (χǏF (V ))X(f) = Y̌Ǐ(X)})X∈I
�

(
{t ∈ FX | ({g : X → Y | Fg(t) ∈ VY })Y ∈I = I(X, )}

)
X∈I

= (VX)X∈I (because of property 2 of predicates)

� V

Now we have to prove that χǏF (κǏF (m)) = m (i.e. χǏF ◦ κǏF = idV̌(F,Ω)):

χǏF (κǏF (m)) � (λt ∈ FX.{f : X → Y | Ff(t) ∈ (κǏF (m))Y }Y ∈I)X∈I

By definition of (κǏF (m))Y , we have that Ff(t) ∈ (κǏF (m))Y if and only if mY (Ff(t)) =

I(Y , ). By naturality of m, it follows that

mY (Ff(t)) = Ωf(mX(t)) � PredǏ(Y̌Ǐ(f))(mX(t)) .

Hence for any Z ∈ I,

(PredǏ(Y̌Ǐ(f))(mX(t)))Z � (Y̌Ǐ(f))−1
Z ((mX(t))Z ) = I(Y ,Z),

i.e., for all g ∈ I(Y ,Z), (Y̌Ǐ(f))Z (g) ∈ (mX(t))Z holds. Since (Y̌Ǐ(f))Z (g) = g ◦ f �
I(X, g)(f), we have, by properties (Func) and (Closure) of predicates (remember

that mX(t) ∈ PredǏ(I(X, ))), that mY (Ff(t)) = I(Y , ) if and only if f ∈ (mX(t))Y
holds. Hence, we can conclude that

χǏF (κǏF (m)) = (λt ∈ FX.{f : X → Y | f ∈ (mX(t))Y }Y ∈I)X∈I,

i.e., χǏF (κǏF (m)) = m.
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B.3 Proof of Theorem 4.1

1. First, notice that [[Γ �Σ ∀xσ.p : o]]X(η) =

= (forallσ)X([[Γ �Σ λx
σ.p : σ → o]]X(η))

= {u : X −→ Y | ∀g ∈ I(Y ,Z).∀t ∈ [[σ]]Z .

〈t, g ◦ u〉 ∈ κ[[σ]]×Y̌(X)([[Γ �Σ λx
σ.p : σ → o]]X(η))Z}Y ∈V

= {u : X −→ Y | ∀g ∈ I(Y ,Z).∀t ∈ [[σ]]Z .

([[Γ �Σ λx
σ.p : σ → o]]X(η))Z (〈t, g ◦ u〉) � I(Z, )}Y ∈V

= {u : X −→ Y | ∀g ∈ I(Y ,Z).∀t ∈ [[σ]]Z .(λ〈b, f〉 ∈ [[σ]]Z ×I(X,Z).

[[Γ, x : σ �Σ p : o]]Z (〈[[Γ]]f(η), b〉))(〈t, g ◦ u〉) � I(Z, )}Y ∈V
= {u : X −→ Y | ∀g ∈ I(Y ,Z).∀t ∈ [[σ]]Z .

[[Γ, x : σ �Σ p : o]]Z (〈[[Γ]](g◦ u)(η), t〉) � I(Z, )}Y ∈V

(⇒) By hypothesis we have that X �Γ,η ∀xσ.p, i.e., η ∈ κ[[Γ]]([[Γ �Σ ∀xσ.p : o]])X
which, in turn, is equivalent to [[Γ �Σ ∀xσ.p : o]]X(η) � I(X, ). In particular

we have that h ∈ I(X,Y ) belongs to ([[Γ �Σ ∀xσ.p : o]]X(η))Y . Then, taking

g = idY and t = a, we have that [[Γ, x : σ �Σ p : o]]Y (〈[[Γ]](idY ◦ h)(η), a〉) =

[[Γ, x : σ �Σ p : o]]Y (〈[[Γ]]h(η), a〉) � I(Y , ), i.e., Y �(Γ,x:σ), 〈[[Γ]]h(η),a〉 p.

(⇐) By hypothesis for all Y and h ∈ I(X,Y ), and for all a ∈ [[σ]]Y we have

that Y �(Γ,x:σ), 〈[[Γ]]h(η),a〉 p, i.e., [[Γ, x : σ �Σ p : o]]Y (〈[[Γ]]h(η), a〉) � I(Y , ).

Then, take any u ∈ I(X,Y ), g ∈ I(Y ,Z) and t ∈ [[σ]]Z ; it follows that

h = g ◦ u ∈ I(X,Z). Hence, we can apply the hypothesis and conclude that

[[Γ, x : σ �Σ p : o]]Z (〈[[Γ]](g◦ u)(η), t〉) � I(Z, )

holds. Since the latter holds for every Y and u ∈ I(X,Y ), we have that

[[Γ �Σ ∀xσ.p : o]]X(η) � I(X, ), i.e, X �Γ,η ∀xσ.p.

2. First we note that X �Γ,η p⇒ q if and only if η ∈ κ[[Γ]]([[Γ �Σ p ⇒ q : o]])X
if and only if [[Γ �Σ p ⇒ q : o]]X(η) � I(X, ). Then, since we have that

[[Γ �Σ p ⇒ q : o]] = imp ◦ 〈[[Γ �Σ p : o]], [[Γ �Σ q : o]]〉, the latter condition

is equivalent to [[Γ �Σ p : o]]X(η) ∨ [[Γ �Σ q : o]]X(η) � I(X, ), i.e., for all Y

([[Γ �Σ p : o]]X(η))Y ∪ ([[Γ �Σ q : o]]X(η))Y ⊇ I(X,Y ).

(⇒) By hypothesis we have that X �Γ,η p⇒ q and X �Γ,η p hold and the

latter is equivalent to [[Γ �Σ p : o]]X(η) � I(X, ), i.e., for all Y

([[Γ �Σ p : o]]X(η))Y ⊇ I(X,Y ).

It follows that ([[Γ �Σ p : o]]X(η))Y = V(X,Y ) \ I(X,Y ), hence, by the

preliminary observation, ([[Γ �Σ q : o]]X(η))Y ⊇ I(X,Y ). So we proved that

[[Γ �Σ q : o]]X(η) � I(X, ), i.e., that X �Γ,η q.

(⇐) By hypothesis we have that either X �Γ,η p does not hold or X �Γ,η q

holds. In the former case for all Y ([[Γ �Σ p : o]]X(η))Y �⊇ I(X,Y ), hence

([[Γ �Σ p : o]]X(η))Y ⊇ I(X,Y ). So, by the preliminary observation, we also

have that for all Y ([[Γ �Σ p⇒ q : o]]X(η))Y ⊇ I(X,Y ), hence X �Γ,η p⇒ q.
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The other case is even easier, since we have that for all Y

([[Γ �Σ q : o]]X(η))Y ⊇ I(X,Y )

and we can conlude again by the preliminary observation.

3. By definition, X �Γ,η PM if and only if η ∈ κ[[Γ]]([[Γ �Σ PM : o]])X , i.e., if and

only if [[Γ �Σ PM : o]]X(η) � I(X, ). Then the thesis is a direct consequence

of the following argument:

[[Γ �Σ PM : o]]X(η) = (ev[[σ]],Prop ◦ 〈[[Γ �Σ M : σ]], [[Γ �Σ P : σ → o]]〉)X(η)

= (ev[[σ]],Prop)X(〈[[Γ �Σ M : σ]]X(η), [[Γ �Σ P : σ → o]]X(η)〉)
= ([[Γ �Σ P : σ → o]]X(η))X(idX, [[Γ �Σ M : σ]]X(η))

4. By definition of ⊥ the thesis is equivalent to X �Γ,η ∀ro.r. It follows, by the first

item of this theorem, that we have to prove that there exist Y , h ∈ I(X,Y )

and a ∈ PropY such that it is not the case that Y �(Γ,r:o),〈[[Γ]]h(η),a〉 r, i.e., that

[[Γ, r : o �Σ r : o]]Y (〈[[Γ]]h(η), a〉) = a �� I(Y , ). Hence, it is sufficient to take

a = 0 (i.e., the initial object of Ǐ) to obtain the thesis.

B.4 Proof of Corollary 4.1

1. First of all we have that X �Γ,η ¬p stands for X �Γ,η p⇒ ⊥, which is

equivalent (by Theorem 4.1) to X �Γ,η p implies X �Γ,η ⊥. Obviously, this is

true if and only if X �Γ,η ⊥ or it is not the case that X �Γ,η p.

(⇒) Since by Proposition 4.1 it is not the case that X �Γ,η ⊥, it must be not

the case that X �Γ,η p (by the preliminary observation), i.e., the thesis.

(⇐) Since, by hypothesis, it is not the case that X �Γ,η p, we automatically

have (by the preliminary observation) that X �Γ,η ¬p.
2. By definition of ∧, the previous item and Theorem 4.1, we have:

X �Γ,η p ∧ q iff X �Γ,η ¬(p⇒ ¬q)
iff it is not the case that X �Γ,η p⇒ ¬q
iff X �Γ,η p and it is not the case that X �Γ,η ¬q
iff X �Γ,η p and X �Γ,η q

3. By definition of ∨, point 1 and Theorem 4.1, we have:

X �Γ,η p ∨ q iff X �Γ,η ¬p⇒ q

iff X �Γ,η ¬p implies X �Γ,η q

iff it is not the case that X �Γ,η ¬p or X �Γ,η q

iff X �Γ,η p or X �Γ,η q

4. By definition of ∃, point 1 and Theorem 4.1, we have:

X �Γ,η ∃xσ.p iff X �Γ,η ¬∀xσ.¬p
iff it is not the case that X �Γ,η ∀xσ.¬p
iff there are Y , h ∈ I(X,Y ) and a ∈ [[σ]]Y such that

it is not the case that Y �(Γ,x:σ),〈[[Γ]]h(η),a〉 ¬p
iff there are Y , h ∈ I(X,Y ) and a ∈ [[σ]]Y such that

Y �(Γ,x:σ),〈[[Γ]]h(η),a〉 p
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5. The proof will proceed by induction on n:

(Base case) n = 1: we have to prove that X �Γ,η ∀xσ1

1 .p if and only if for all

Y , f ∈ I(X,Y ) and η1 ∈ [[σ1]]Y , we have that Y �(Γ,x1:σ1),〈[[Γ]]f (η),η1〉 p holds.

This is straightforward by point 1 of Theorem 4.1.

(Inductive case) let us suppose that the thesis holds for n; we will prove that it

also holds for n+1. First of all we apply point 1 of Theorem 4.1 to obtain the

following: X �Γ,η ∀xσ1

1 .∀x
σ2

2 . . . . ∀x
σn+1

n+1p if and only if for all Y , f ∈ I(X,Y ),

η1 ∈ [[σ1]]Y Y �(Γ,x1:σ1),〈[[Γ]]f (η),η1〉 ∀x
σ2

2 . . . . ∀x
σn+1

n+1p holds. Then we may apply

the inductive hypothesis to deduce that the previous forcing statement holds

if and only if for all Z , g ∈ I(Y ,Z), η2 ∈ [[σ2]]Z , . . . , ηn+1 ∈ [[σn+1]]Z we have

that the following holds:

Z �(Γ,x1:σ1 ,x2:σ2 ,... ,xn+1:σn+1),〈[[Γ,x1:σ1]]g(〈[[Γ]]f (η),η1〉),η2 ,... ,ηn+1〉 p.

Then we observe that

[[Γ, x1 : σ1]]g(〈[[Γ]]f(η), η1〉) = 〈[[Γ]]g◦f(η), [[x1 : σ1]]g(η1)〉).

Hence we can easily conclude by taking Z = Y and g = idY :

Y �(Γ,x1:σ1 ,... ,xn+1:σn+1),〈[[Γ]]f (η),η1 ,η2 ,... ,ηn+1〉 p.

B.5 Proof of Theorem 4.4

1. In this case we have to prove that Γ �Σ (p ⇒ q ⇒ r) ⇒ (p ⇒ q) ⇒ p ⇒ r

holds, i.e., that for all X, η ∈ [[Γ]]X we have

X �Γ,η (p⇒ q ⇒ r)⇒ (p⇒ q)⇒ p⇒ r.

By Theorem 4.1, this is equivalent to prove that X �Γ,η (p⇒ q ⇒ r), X �Γ,η

(p⇒ q) and X �Γ,η p imply X �Γ,η r. Hence, applying repeatedly Theorem 4.1,

we can easily deduce that X �Γ,η q holds from X �Γ,η (p⇒ q), since we know

that X �Γ,η p holds. At this point we can easily conclude, applying again

Theorem 4.1, since X �Γ,η r derives from X �Γ,η (p⇒ q ⇒ r), X �Γ,η p and

X �Γ,η q.

2. By definition we have to prove that for all X, η ∈ [[Γ]]X we have X �Γ,η

p⇒ q ⇒ p. By Theorem 4.1, this is equivalent to proving that X �Γ,η p and

X �Γ,η q imply X �Γ,η q. Hence the conclusion is trivial.

3. By definition we have to prove that for all X, η ∈ [[Γ]]X we have X �Γ,η

∀σ(P )⇒ PM. By Theorem 4.1, this is equivalent to prove that X �Γ,η ∀σ(P )

implies X �Γ,η PM. But X �Γ,η ∀σ(P ) is equivalent to saying that, for all Y ,

f ∈ I(X,Y ) and a ∈ [[σ]]Y , Y �(Γ,x:σ),〈[[Γ]]f (η),a〉 Px holds. Hence, taking Y � X,

f � idX and a � [[Γ �Σ M : σ]]X(η), we have that X �(Γ,x:σ),〈η,[[Γ�ΣM:σ]]X (η)〉 Px

holds. By Theorem 4.1, this is equivalent to say that

([[Γ, x : σ �Σ P : σ → o]]X(〈η, [[Γ �Σ M : σ]]X(η)〉))X
(〈idX, [[Γ, x : σ �Σ x : σ]]X(〈η, [[Γ �Σ M : σ]]X(η)〉)〉) � I(X, ).
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Now we observe that

([[Γ, x : σ �Σ P : σ → o]]X(〈η, [[Γ �Σ M : σ]]X(η)〉))X
(〈idX, [[Γ, x : σ �Σ x : σ]]X(〈η, [[Γ �Σ M : σ]]X(η)〉)〉)

= ([[Γ, x : σ �Σ P : σ → o]]X(〈η, [[Γ �Σ M : σ]]X(η)〉))X(〈idX, [[Γ �Σ M : σ]]X(η)〉)
= ([[Γ �Σ P : σ → o]]X(η))X(〈idX, [[Γ �Σ M : σ]]X(η)〉).

Hence, applying again Theorem 4.1, we have proved that X �Γ,η PM holds.

4. By definition we have to prove that for all X, η ∈ [[Γ]]X we have X �Γ,η

(λxσ.M)N =σ′ M[N/x]. First of all we notice that the following holds:

[[Γ �Σ (λxσ.M)N]]X(η) =

= (ev[[σ]],[[σ′]])X(〈[[Γ �Σ N : σ]]X(η), [[Γ �Σ λx
σ.M : σ → σ′]]X(η)〉)

= ([[Γ �Σ λx
σ.M : σ → σ′]]X(η))X(〈idX, [[Γ �Σ N : σ]]X(η)〉)

= [[Γ, x : σ �Σ M : σ′]]X(〈η, [[Γ �Σ N : σ]]X(η)〉)

Now, we can proceed by structural induction on M:

(M ≡ y �= x): Trivial.

(M ≡ x): Trivial.

(M ≡ PQ): The following holds:

[[Γ �Σ (PQ)[N/x] : σ′]]X(η) =

= [[Γ �Σ P [N/x]Q[N/x] : σ′]]X(η)

= (ev[[γ]],[[σ′]])X(〈[[Γ �Σ Q[N/x] : γ]]X(η), [[Γ �Σ P [N/x] : γ → σ′]]X(η)〉)
= ([[Γ �Σ P [N/x] : γ → σ′]]X(η))X(〈idX, [[Γ �Σ Q[N/x] : γ]]X(η)〉)
(I.H.)
= ([[Γ,�Σ (λxσ.P )N : γ → σ′]]X(η))X(〈idX, [[Γ �Σ (λxσ.Q)N : γ]]X(η)〉)

Moreover, we have that:

[[Γ, x : σ �Σ M : σ′]]X(〈η, [[Γ �Σ N : σ]]X(η)〉) =

= [[Γ, x : σ �Σ PQ : σ′]]X(〈η, [[Γ �Σ N : σ]]X(η)〉)
= (ev[[γ]],[[σ′]])X(〈A,B〉)
= (B)X(〈idX, A〉)

where A � [[Γ, x : σ �Σ Q : γ]]X(η)(〈η, [[Γ �Σ N : σ]]X(η)〉) and B � [[Γ, x : σ �Σ

P : γ → σ′]]X(η)(〈η, [[Γ �Σ N : σ]]X(η)〉). Hence we may conclude since we have

[[Γ �Σ (λxσ.Q)N : γ]]X(η) =

= [[Γ, x : σ �Σ Q : γ]]X(η)(〈η, [[Γ �Σ N : σ]]X(η)〉) = A

and

[[Γ,�Σ (λxσ.P )N : γ → σ′]]X(η) =

= [[Γ, x : σ �Σ P : γ → σ′]]X(η)(〈η, [[Γ �Σ N : σ]]X(η)〉) = B

(M ≡ λzγ.P with x �= z): In this case σ′ ≡ γ → δ; hence the following holds

(since we identify terms up-to α-conversion, without loss of generality, we can
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assume that z does not occur in N):

[[Γ �Σ (λzγ.P )[N/x] : σ′]]X(η) =

= [[Γ �Σ (λzγ.P [N/x]) : σ′]]X(η)

= {λ〈f, b〉 ∈ V(X,Y )× [[γ]]Y .[[Γ, z : γ �Σ P [N/x] : δ]]Y (µ)}Y ∈V
(I.H.)
= {λ〈f, b〉 ∈ V(X,Y )× [[γ]]Y .[[Γ, z : γ �Σ (λxσ.P )N : δ]]Y (µ)}Y ∈V

where µ � 〈[[Γ]]f(η), b〉. Moreover, we have

[[Γ, z : γ �Σ (λxσ.P )N : δ]]Y (µ) =

= (ev[[σ]],[[δ]])Y (〈[[Γ, z : γ �Σ N : σ]]Y (µ), [[Γ, z : γ �Σ λx
σ.P : σ → δ]]Y (µ)〉)

= ([[Γ, z : γ �Σ λx
σ.P : σ → δ]]Y (µ))Y (〈idY , [[Γ, z : γ �Σ N : σ]]Y (µ)〉)

= [[Γ, z : γ, x : σ �Σ P : δ]]Y (〈[[Γ]]f(η), b, [[Γ, z : γ �Σ N : σ]]Y (µ)〉)
= [[Γ, x : σ, z : γ �Σ P : δ]]Y (〈[[Γ]]f(η), [[Γ, z : γ �Σ N : σ]]Y (µ), b〉)

For what concerns [[Γ, x : σ �Σ M : σ′]]X(〈η, [[Γ �Σ N : σ]]X(η)〉), we have the

following:

[[Γ, x : σ �Σ M : σ′]]X(〈η, [[Γ �Σ N : σ]]X(η)〉) =

= [[Γ, x : σ �Σ λz
γ.P : σ′]]X(〈η, [[Γ �Σ N : σ]]X(η)〉)

= {λ〈f, b〉 ∈ V(X,Y )× [[γ]]Y .mY (〈[[Γ, x : σ]]f(〈η, [[Γ �Σ N : σ]]X(η)〉), b〉)}Y ∈V
= {λ〈f, b〉 ∈ V(X,Y )× [[γ]]Y .mY (〈[[Γ]]f(η), [[Γ �Σ N : σ]]Y ([[Γ]]f(η)), b〉)}Y ∈V
= {λ〈f, b〉 ∈ V(X,Y )× [[γ]]Y .mY (〈[[Γ]]f(η), β, b〉)}Y ∈V

where m � [[Γ, x : σ, z : γ �Σ P : δ]] and β � [[Γ, z : γ �Σ N : σ]]Y ([[Γ]]f(η), b);

in the fourth step we exploited the naturality of [[Γ �Σ N : σ]] since [[x :

σ]]f([[Γ �Σ N : σ]]X(η)) = [[Γ �Σ N : σ]]Y ([[Γ]]f(η)) and the weakening rule.

Hence we have the thesis.

5. In this case we have to prove that for all X, η ∈ [[Γ]]X we have

X �Γ,η (∀xσ.M =σ′ N)⇒ λxσ.M = λxσ
′
.N,

i.e., by Corollary 4.1, that X �Γ,η (∀xσ.M =σ′ N) implies

X �Γ,η λx
σ.M =σ→σ′ λxσ.N.

First, we observe the following:

[[Γ �Σ λx
σ.M]]X(η) = {λ〈f, b〉 ∈ V(X,Y )× [[σ]]Y .mY (〈[[Γ]]f(η), b〉)}Y ∈V,

where m � [[Γ, x : σ �Σ M : σ′]]. Similarly, we have:

[[Γ �Σ λx
σ.N]]X(η) = {λ〈f, b〉 ∈ V(X,Y )× [[σ]]Y .nY (〈[[Γ]]f(η), b〉)}Y ∈V,

where n � [[Γ, x : σ �Σ N : σ′]]. Hence, in order to conclude, it is sufficient

to show that m = n, i.e., that, for every Y ∈ V, f ∈ V(X,Y ) and b ∈ [[σ]]Y ,

[[Γ, x : σ �Σ M : σ′]](〈f, b〉) = [[Γ, x : σ �Σ N : σ′]]Y (〈f, b〉). Hence, observing

that our hypothesis is equivalent (by Theorem 4.1) to say that for all Y ∈ V,

h ∈ I(X,Y ), ηx ∈ [[σ]]Y , Y �(Γ,x:σ),〈[[Γ]]h(η),ηx〉 M =σ′ N holds, we can conclude

by the same argument used in the proof of Theorem 4.3.
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6. By Theorem 4.2 we have to show that for all X, η ∈ [[Γ]]X the following holds:

[[Γ �Σ λx
σ.Mx : σ → σ′]]X(η) = [[Γ �Σ M : σ → σ′]]X(η).

Since the members of the latter equation are natural transformations between
the functors V(X, )× [[σ]] and [[σ′]], the thesis is equivalent to prove that the
following holds for every Y , f ∈ V(X,Y ) and b ∈ [[σ]]Y :

([[Γ �Σ λx
σ.Mx : σ → σ′]]X(η))Y (〈f, b〉) = ([[Γ �Σ M : σ → σ′]]X(η))Y (〈f, b〉).

Indeed, we have:

([[Γ �Σ λx
σ.Mx : σ → σ′]]X(η))Y (〈f, b〉) =

= [[Γ, x : σ �Σ Mx : σ′]]Y (〈[[Γ]]f(η), b〉)
= (ev[[σ]],[[σ′]])Y (〈b, [[Γ, x : σ �Σ M : σ → σ′]]Y (〈[[Γ]]f(η), b〉)〉)
= ([[Γ, x : σ �Σ M : σ → σ′]]Y (〈[[Γ]]f(η), b〉))Y (〈idY , b〉)
= ([[Γ �Σ M : σ → σ′]]Y ([[Γ]]f(η)))Y (〈idY , b〉)
= (([[σ]]⇒ [[σ′]])f([[Γ �Σ M : σ → σ′]]X(η)))Y (〈idY , b〉)
= ([[Γ �Σ M : σ → σ′]]X(η))Y (〈f, b〉).

7. We have to show that for all X, η ∈ [[Γ]]X X �Γ,η ¬¬p⇒ p holds. By

Theorem 4.1, this is equivelent to prove that X �Γ,η ¬¬p implies X �Γ,η p.

By Corollary 4.1, the premise means that it is not the case that X �Γ,η ¬p
holds. Applying again the same corollary, we have that it is not the case that

X �Γ,η p does not hold, i.e., the thesis.

8. In this case the thesis follows directly from Theorem 4.1.

9. By Theorem 4.1, the premise is equivalent to say that for all X and η ∈ [[Γ, x :

σ]]X X �(Γ,x:σ),η p implies X �(Γ,x:σ),η q. To prove that the thesis holds it suffices

to show, by Theorem 4.1, that for all Y and µ ∈ [[Γ]]Y Y �Γ,µ p implies

Y �Γ,µ ∀xσ.q. The latter, again by Theorem 4.1, is equivalent to show that for

all Z , f ∈ I(Y ,Z) and a ∈ [[σ]]Z
Z �(Γ,x:σ),〈[[Γ]]f (µ),a〉 q holds. From the validity of Y �Γ,µ p, by the monotonicity

of forcing, we can deduce that, for all Z and f ∈ I(Y ,Z), Z �Γ,[[Γ]]f (µ) p holds.

By the weakening rule, we also have that, for all a ∈ [[σ]]Z ,

Z �(Γ,x:σ),〈[[Γ]]f (µ),a〉 p holds. Hence we can apply the premise to conclude that

Z �(Γ,x:σ),〈[[Γ]]f (µ),a〉 q holds.

B.6 Proof of Theorem 4.5

(⇒) By structural induction on the derivation of Γ �Σ M : ι:

(Γ �Σ 0 : ι) Since we have [[Γ �Σ 0 : ι]]X(η) = 0, we can easily conclude observing

that FV (0) = ∅.
(Γ �Σ τ.P : ι) Hence the previous derivation step yields Γ �Σ P : ι. By inductive

hypothesis we have that [[Γ �Σ y : υ]]X(η) �∈ FV ([[Γ �Σ P : ι]]X(η)). Hence we can

deduce that [[Γ �Σ y : υ]]X(η) �∈ FV (τ.[[Γ �Σ P : ι]]X(η)). The thesis is an easy
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consequence observing the following:

τ.[[Γ �Σ P : ι]]X(η) = tauX([[Γ �Σ P : ι]]X(η))

= (tau ◦ [[Γ �Σ P : ι]])X(η) � [[Γ �Σ τ.P : ι]]X(η).

(Γ �Σ P | Q : ι) Hence the previous derivation step yields Γ �Σ P1 : ι and Γ �Σ P2 :

ι. By inductive hypothesis we have [[Γ �Σ y : υ]]X(η) �∈ FV ([[Γ �Σ P : ι]]X(η))

and [[Γ �Σ y : υ]]X(η) �∈ FV ([[Γ �Σ Q : ι]]X(η)). Hence we can deduce that

[[Γ �Σ y : υ]]X(η) �∈ FV ([[Γ �Σ P : ι]]X(η) | [[Γ �Σ Q : ι]]X(η)). The thesis is an easy

consequence observing the following:

[[Γ �Σ P :ι]]X(η)|[[Γ �Σ Q:ι]]X(η) = parX(〈[[Γ �Σ P : ι]]X(η), [[Γ �Σ Q : ι]]X(η)〉)
= (par ◦ 〈[[Γ �Σ P : ι]], [[Γ �Σ Q : ι]]〉)X(η)

= [[Γ �Σ P | Q : ι]]X(η).

(Γ �Σ [u �= v]P : ι) Hence the previous derivation step yields Γ �Σ P : ι. By

inductive hypothesis [[Γ �Σ y : υ]]X(η) �∈ FV ([[Γ �Σ P : ι]]X(η)); moreover,

[[Γ �Σ y : υ]]X(η) �= [[Γ �Σ u : υ]]X(η) and [[Γ �Σ y : υ]]X(η) �= [[Γ �Σ v : υ]]X(η).

Hence we can deduce that [[Γ �Σ y : υ]]X(η) �∈ FV ([[Γ �Σ P : ι]]X(η)) ∪ {[[Γ �Σ

u : υ]]X(η), [[Γ �Σ v : υ]]X(η)}. The thesis is an easy consequence observing the

following:

[[[Γ �Σ u : υ]]X(η) �= [[Γ �Σ v : υ]]X(η)][[Γ �Σ P : ι]]X(η) =

= mismatchX(〈[[Γ �Σ u : υ]]X(η), [[Γ �Σ v : υ]]X(η), [[Γ �Σ P : ι]]X(η)〉)
= (mismatch ◦ 〈[[Γ �Σ u : υ]], [[Γ �Σ v : υ]], [[Γ �Σ P : ι]]〉)X(η)

� [[Γ �Σ [u �= v]P : ι]]X(η).

(Γ �Σ νλx
υ.P : ι) Hence a preceding derivation step yields Γ, x : υ �Σ P : ι. By

inductive hypothesis [[Γ �Σ y : υ]]X(η) �∈ FV ([[Γ, x : υ �Σ P : ι]]X(〈η, ηx〉)) for

all ηx �= [[Γ �Σ y : υ]]X(η). Hence we can deduce that [[Γ �Σ y : υ]]X(η) �∈
FV ((νηx)([[Γ, x : υ �Σ P : ι]]X(〈η, ηx〉))), where ηx ∈ [[x : υ]]X . Again, the thesis is

a direct consequence of the following:

(νηx)([[Γ, x : υ �Σ P : ι]]X(〈η, ηx〉))
= (νηx)([[Γ �Σ λx

υ.P : υ → ι]]X(η))X�{x}(〈idX, ηx〉))
= newX([[Γ �Σ λx

υ.P : υ → ι]]X(η))

= (new ◦ [[Γ �Σ λx
υ.P : υ → ι]])X(η)

� [[Γ �Σ νλx
υ.P : ι]]X(η)

(⇐) Preliminary observation: we recall that y �∈M is an abbreviation for

∀pυ→ι→o.(∀zυ.∀Qι.(T�∈ p z Q)⇒ (p z Q))⇒ (p y M).

Hence, by point 1 of Theorem 4.1, in order to prove that X �Γ,η y �∈M, we must
show that for all Y , f ∈ I(X,Y ) and ηp ∈ [[υ → ι→ o]]Y = (Var ⇒ Proc ⇒ Prop)Y ,

Y �(Γ,p:υ→ι→o),〈[[Γ]]f (η),ηp〉 (∀zυ.∀Qι.(T�∈ p z Q)⇒ (p z Q))⇒ (p y M)
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holds, i.e., by point 2 of Theorem 4.1, if and only if

Y �(Γ,p:υ→ι→o),〈[[Γ]]f (η),ηp〉 ∀zυ. ∀Qι.(T�∈ p z Q)⇒ (p z Q)

implies Y �(Γ,p:υ→ι→o),〈[[Γ]]f (η),ηp〉 (p y M).

So, we suppose that the premise is true and we show that the consequence also holds;

by point 5 of Corollary 4.1, we can deduce that the premise is true if and only if for

all Z , g ∈ I(Y ,Z), ηz ∈ VarZ � Z and ηQ ∈ ProcZ , Z �∆,µ (T�∈ p z Q)⇒ (p z Q)

holds, where ∆ � (Γ, p : υ → ι → o, z : υ, Q : ι) and µ � 〈[[Γ]]g◦f(η), [[p : υ → ι →
o]]g(ηp), ηz, ηQ〉. In particular, taking Z � Y , g � idY , ηz � [[Γ, p : υ → ι → o �Σ y :

υ]]Y (〈[[Γ]]f(η), ηp〉) and ηQ � [[Γ, p : υ → ι → o �Σ M : ι]]Y (〈[[Γ]]f(η), ηp〉), we have

that the following holds:

Y �(Γ,p:υ→ι→o,z:υ,Q:ι),〈[[Γ]]f (η),ηp,ηz ,ηQ〉 (T�∈ p z Q)⇒ (p z Q)

This is equivalent, by Theorem 4.1, to say that

Y �(Γ,p:υ→ι→o,z:υ,Q:ι),〈[[Γ]]f (η),ηp,ηz ,ηQ〉 (T�∈ p z Q)

implies Y �(Γ,p:υ→ι→o,z:υ,Q:ι),〈[[Γ]]f (η),ηp,ηz ,ηQ〉 (p z Q).

Since [[Γ, p : υ → ι → o, z : υ, Q : ι �Σ (p z Q)]]Y (〈[[Γ]]f(η), ηp, ηz, ηQ〉) = [[Γ, p :

υ → ι → o �Σ (p y M)]]Y (〈[[Γ]]f(η), ηp〉), to conclude, it suffices to prove that

Y �(Γ,p:υ→ι→o,z:υ,Q:ι),〈[[Γ]]f (η),ηp,ηz ,ηQ〉 (T�∈ p z Q) holds.

By definition of T�∈, (T�∈ p z Q) is the following λ-term:

Q = 0 ∨
(∃P ι.Q = σ.P ∧ (p z P )) ∨
(∃P ι

1 .∃P ι
2 .Q = P1 | P2 ∧ (p z P1) ∧ (p z P2)) ∨

(∃P ι.∃yυ.∃uυ.Q = [y �= u]P ∧ ¬z =υ y ∧ ¬z =υ u ∧ (p z P )) ∨
(∃P υ→ι.Q = νP ∧ (∀yυ.¬z =υ y ⇒ (p z (P y))))

Hence (by Corollary 4.1), to prove the premise, it suffices to show that one of the

disjunctions holds. At this point we can proceed by structural induction on the

derivation of Γ �Σ M : ι:

(Γ �Σ 0 : ι) Since M ≡ 0, we can immediately conclude by the preliminary obser-

vation, since ηQ was chosen as [[Γ, p : υ → ι → o �Σ M : ι]]Y (〈[[Γ]]f(η), ηp〉),
whence

Y �(Γ,p:υ→ι→o,z:υ,Q:ι),〈[[Γ]]f (η),ηp,ηz ,ηQ〉 Q = 0.

(Γ �Σ τ.P : ι) By inductive hypothesis, we know that X �Γ,η y �∈ P holds. Hence,

by an argument similar to that used in the preliminary observation, we have that

Y �(Γ,p:υ→ι→o),〈[[Γ]]f (η),ηp〉 ∀zυ. ∀Qι.(T�∈ p z Q)⇒ (p z Q)

implies Y �(Γ,p:υ→ι→o),〈[[Γ]]f (η),ηp〉 (p y P ).

But, since the premise is true (by the preliminary observation), we have that

Y �(Γ,p:υ→ι→o),〈[[Γ]]f (η),ηp〉 (p y P ) holds. At this point we may easily conclude
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observing that the second disjunction holds (remember that ηz � [[Γ, p : υ → ι→
o �Σ y : υ]]Y (〈[[Γ]]f(η), ηp〉) and ηQ � [[Γ, p : υ → ι→ o �Σ M : ι]]Y (〈[[Γ]]f(η), ηp〉),
where M ≡ σ.P ).

(Γ �Σ P1 | P2 : ι) X �Γ,η y �∈ P1 and X �Γ,η y �∈ P2 hold by inductive hypothesis.

Hence, like in the previous case, we can deduce that

Y �(Γ,p:υ→ι→o),〈[[Γ]]f (η),ηp〉 (p y P1) and Y �(Γ,p:υ→ι→o),〈[[Γ]]f (η),ηp〉 (p y P2)

hold. At this point we may easily conclude observing that the third disjunction

holds (remember that ηz � [[Γ, p : υ → ι → o �Σ y : υ]]Y (〈[[Γ]]f(η), ηp〉) and

ηQ � [[Γ, p : υ → ι→ o �Σ M : ι]]Y (〈[[Γ]]f(η), ηp〉), where M ≡ P1 | P2).

(Γ �Σ [u �= v]P : ι) By inductive hypothesis we know that X �Γ,η y �∈ P . Hence, as

in the previous cases, we can deduce that

Y �(Γ,p:υ→ι→o),〈[[Γ]]f (η),ηp〉 (p y P )

holds. Moreover from the hypothesis that [[Γ �Σ y : υ]]X(η) �∈ FV ([[Γ �Σ M :

ι]]X(η)) we have that [[Γ �Σ y : υ]]X(η) �= [[Γ �Σ u : υ]]X(η) and [[Γ �Σ y :

υ]]X(η) �= [[Γ �Σ v : υ]]X(η) and consequently that the statements X �Γ,η y =υ u

and X �Γ,η y =υ v do not hold. By Corollary 4.1 this is equivalent to say that

X �Γ,η ¬y =υ u and X �Γ,η ¬y =υ v hold. Whence, by the weakening rule and

the monotonicity of forcing, we have that

Y �(Γ,p:υ→ι→o),〈[[Γ]]f (η),ηp〉 ¬y =υ u and Y �(Γ,p:υ→ι→o),〈[[Γ]]f (η),ηp〉 ¬y =υ v

hold. Again, we may easily conclude by the preliminary observation since the

fourth disjunction holds (remember that ηz � [[Γ, p : υ → ι → o �Σ y :

υ]]Y (〈[[Γ]]f(η), ηp〉) and ηQ � [[Γ, p : υ → ι → o �Σ M : ι]]Y (〈[[Γ]]f(η), ηp〉), where

M ≡ [u �= v]P ).

(Γ �Σ νλx
υ.P ) Since we know that [[Γ �Σ y : υ]]X(η) �∈ FV ([[Γ �Σ νλx

υ.P ]]X(η)) and

[[Γ �Σ νλx
υ.P ]]X(η) � (νηx)([[Γ, x : υ �Σ P : ι]]X(〈η, ηx〉)), by inductive hypothesis

we deduce that X �(Γ,x:υ),〈η,ηx〉 y �∈ P holds for all ηx �= [[Γ �Σ y : υ]]X(η); hence,

proceeding as in the previous cases and applying the weakening rule, we have

that

Y �(Γ,x:υ,p:υ→ι→o),〈[[Γ]]f (η),f(ηx),ηp〉 (p y P )

holds. Moreover we have that Y �(Γ,x:υ,p:υ→ι→o),〈[[Γ]]f (η),f(ηx),ηp〉 ¬y =υ x. At this point

we may easily conclude by the preliminary observation since the fifth disjunction

holds.

B.7 Proof of Theorem 6.1

We will show only the base case (rule Recισ red1) and the case of higher-order

constructor (rule Recισ red5), the others being similar.
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Let G � [[Γ]], A � [[σ]], and

g1 = [[Γ � f1 : σ]] : G −→ A

g2 = [[Γ � f2 : σ → σ]] : G −→ A⇒A
g3 = [[Γ � f3 : σ → σ → σ]] : G −→ A⇒A⇒A
g4 = [[Γ � f4 : υ → υ → σ → σ]] : G −→ Var⇒Var⇒A⇒A
g5 = [[Γ � f5 : (υ → σ)→ σ]] : G −→ (Var⇒A)⇒A

For proving the soundness of Recισ red1 and Recισ red5, we have to prove that for

all X and η ∈ [[Γ]]X the following properties hold:

X �Γ,η (R 0) =σ f1 (B 1)

X �Γ,η ∀P υ→ι.(R νP ) =σ (f5 λx
υ.(R (P x))) (B 2)

where R is a syntactic shorthand for (Recισ f1 f2 f3 f4 f5).

We prove equivalence (B 1). By Theorem 4.2, this is equivalent to proving that

[[Γ �Σ (R 0) : σ]]X(η) = [[Γ �Σ f1 : σ]]X(η)

In fact, the following equalities hold, where [[R]] is a syntactic shorthand for the

interpretation of R, and m : T (G⇒ A) −→ G ⇒ A, m̄ : Proc −→ G ⇒ A are the

natural transformations used in the interpretation of R above:

[[Γ �Σ (R 0) : σ]]X(η) = evX(〈[[Γ �Σ 0 : ι]]X(η), [[R]]X(η)〉)
= ([[R]]X(η))X(〈[[Γ �Σ 0 : ι]]X(η), idX〉)
= (m̄X(0))X(η, idX) by definition of [[R]] and since

[[Γ �Σ 0 : ι]]X(η) = 0

= ((m̄ ◦ α)X(in1(∗)))X(η, idX) since αX(in1(∗)) = 0

= ((m ◦ Tm̄)X(in1(∗)))X(η, idX) by the initial algebra property

= (mX(in1(∗)))X(η, idX) since (Tm̄)X(in1(∗)) = in1(∗)
= g1X(η) by definition of m

= [[Γ �Σ f1 : σ]]X(η)

We prove equivalence (B 2). By Theorem 4.2, this is equivalent to proving that for

all Y stage, h ∈ I(X,Y ), p ∈ (Var ⇒ Proc)Y :

[[Γ, P : υ → ι �Σ (R νP ) : σ]]Y (η[h], p) =

= [[Γ, P : ι �Σ (f5 λx.(R (P x))) : σ]]Y (η[h], p)

In fact, the following equalities hold:

[[Γ, P : υ → ι �Σ (R νP ) : σ]]Y (η[h], p) =

= evY (〈[[Γ, P : υ → ι �Σ νP : ι]]Y (η[h], p), [[R]]Y (η[h], p)〉)
= ([[R]]Y (η[h], p))Y (〈[[Γ, P : υ → ι �Σ νP : ι]]Y (η[h], p), idY 〉)
= (m̄Y (νλx.p)Y (η, idY ) by definition of [[R]] and since

[[Γ, P :υ→ι �Σ νP : ι]]Y (η[h], p) = νλx.p

= ((m̄ ◦ α)Y (in5(p)))Y (η[h], idY ) since αY (in5(p)) = νλx.p

= ((m ◦ Tm̄)Y (in5(p)))Y (η[h], idY ) by the initial algebra property

= . . .
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Now, it is not hard to see that (Tm̄)Y (in5(p)) = in5(m̄ ◦ p), where m̄ ◦ p : Var ×
V(Y , ) −→ G ⇒ A; thus, let r′ ∈ (Var ⇒ A)Y be the natural transformation

defined as

r′ : Var ×V(Y , ) −→ A

r′Z : Z ×V(Y ,Z) −→ AZ

〈z, k〉 �−→ ((m̄ ◦ p)Z (z, k))Z (η[k ◦ h], idZ )

We have then

. . .= (mY (in5(m̄ ◦ p))Y (η[h], idY )

= (g5Y (η[h]))Y (〈r′, idY 〉) by definition of m

= evY (〈r′, [[Γ �Σ f5 : (υ → σ)→ σ]]Y (η[h], p)〉)
= evY (〈[[Γ, P : υ → ι �Σ λx

υ.(R (P x)) : υ → σ]]Y (η[h], p), (∗)
[[Γ �Σ f5 : (υ → σ)→ σ]]Y (η[h], p)〉)

= [[Γ �Σ (f5 λx
υ.(R (P x)) : σ]]Y (η[h], p)

The equality (∗) holds because

[[Γ, P : υ → ι �Σ λx
υ.(R (P x)) : υ → σ]]Y (η[h], p) = r′.

Indeed, for all stage Z , z ∈ Z , k ∈ V(Y ,Z), and let η′ � 〈η[k ◦ h], p[k], z〉:

([[Γ, P : υ → ι �Σ λx
υ.(R (P x)) : υ → σ]]Y (η[h], p))Z (z, k) =

= [[Γ, P : υ → ι, x : υ �Σ (R (P x)) : σ]]Z (η′)

= ([[R]]Z (η′))Z (〈[[Γ, P : υ → ι, x : υ �Σ (P x) : ι]]Z (η′), idZ 〉)
= (m̄Z ([[Γ, P : υ → ι, x : υ �Σ (P x) : ι]]Z (η′)))Z (η′, idZ )

= (m̄Z (p[k]Z (z, idZ )))Z (η′, idZ )

= ((m̄ ◦ p[k])Z (z, idZ ))Z (η′, idZ )

= ((m̄ ◦ p)Z (z, k))Z (η′, idZ ) = r′Z (z, k)

B.8 Proof of Proposition 6.3

Let us check that the first diagram of Definition A.5 commutes, i.e., that for every

A,B ∈ V̌, X ∈ V, a ∈ AX and b ∈ (TB)X we have

(Tπ′)X((stA,B)X(〈a, b〉)) = π′X(〈a, b〉) = b

This is proved by cases over b:

(b = in1(∗)) (Tπ′)X((stA,B)X(〈a, in1(∗)〉)) = (Tπ′)X(in1(∗)) � in1(∗).
(b = in2(b

′)) (Tπ′)X((stA,B)X(〈a, in2(b
′)〉)) = (Tπ′)X(in2(a, b

′))

� in2(π
′(〈a, b′〉)) = in2(b

′).

(b = in3(〈b′, b′′〉)) (Tπ′)X((stA,B)X(〈a, in3(〈b′, b′′〉)〉)) =

(Tπ′)X(in3(〈a, b′, a, b′′〉)) � in3(〈π′(〈a, b′〉), π′(〈a, b′′〉)〉) = in3(〈b′, b′′〉).
(b = in4(〈x, y, b′〉)) (Tπ′)X((stA,B)X(〈a, in4(〈x, y, b′〉)〉)) =

(Tπ′)X(in4(〈x, y, a, b′〉)) � in4(〈x, y, π′(〈a, b′〉)〉) = in3(〈x, y, b′〉).
(b = in5(b

′)) (Tπ′)X((stA,B)X(〈a, in5(b
′)〉)) = (Tπ′)X(in5(ba)) �

in5(γB,X(π′(〈GinX (g), bX�{x}(x, inX)〉))) = in5(γB,X(bX�{x}(x, inX))) = in5(b).
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For what concerns the commutativity of the second diagram of Definition A.5,

we have to show that for every A,B, C ∈ V̌, X ∈ V, a ∈ AX , b ∈ (TB)X and c ∈ CX
we have

(Tβ)X((stA,C×B)X((idA × stC,B)X(〈a, 〈c, b〉〉))) = (stA×C,B)X(βX(〈a, 〈c, b〉〉))

where β � 〈〈π, π ◦ π′〉, π′ ◦ π′〉; it follows that the second member can be simplified

to (stA×C,B)X(〈〈a, c〉, b〉). We prove the thesis, again by cases on b:

(b = in1(∗)) (Tβ)X((stA,C×B)X((idA × stC,B)X(〈a, 〈c, in1(∗)〉〉))) =

= (Tβ)X((stA,C×B)X(〈a, in1(∗)〉)) = (Tβ)X(in1(∗)) = in1(∗) =

= (stA×C,B)X(〈〈a, c〉, in1(∗)〉).
(b = in2(b

′)) (Tβ)X((stA,C×B)X((idA × stC,B)X(〈a, 〈c, in2(b
′)〉〉))) =

= (Tβ)X((stA,C×B)X(〈a, in2(〈c, b′〉)〉)) = (Tβ)X(in2(〈a, 〈c, b′〉〉)) =

= in2(βX(〈a, 〈c, b′〉〉)) = in2(〈〈a, c〉, b′〉) = (stA×C,B)X(〈〈a, c〉, in2(b
′)〉).

(b = in3(〈b′, b′′〉)) (Tβ)X((stA,C×B)X((idA × stC,B)X(〈a, 〈c, in3(〈b′, b′′〉)〉〉))) =

= (Tβ)X((stA,C×B)X(〈a, in3(〈c, b′, c, b′′〉)〉)) = (Tβ)X(in3(〈a, 〈c, b′, c, b′′〉〉)) =

= in3(βX(〈a, 〈c, b′〉, a, 〈c, b′′〉〉)) = in3(〈〈a, c〉, b′, 〈a, c〉, b′′〉) =

= (stA×C,B)X(〈〈a, c〉, in3(〈b′, b′′〉)〉).
(b = in4(〈x, y, b′〉)) (Tβ)X((stA,C×B)X((idA × stC,B)X(〈a, 〈c, in4(〈x, y, b′〉)〉〉))) =

= (Tβ)X((stA,C×B)X(〈a, in4(〈x, y, c, b′〉)〉)) = (Tβ)X(in4(〈x, y, a, 〈c, b′〉〉)) =

= in4(〈x, y, βX(〈a, 〈c, b′〉〉)) = in4(〈x, y, 〈a, c〉, b′〉) =

= (stA×C,B)X(〈〈a, c〉, in4(〈x, y, b′〉)〉).
(b = in5(b

′)) (Tβ)X((stA,C×B)X((idA × stC,B)X(〈a, 〈c, in5(b
′)〉〉))) =

= (Tβ)X((stA,C×B)X(〈a, in5(b′c)〉)) = (Tβ)X(in5((b′c)a)) =

= in5(γ(A×C)×B,X(βX�{x}(〈AinX (a), 〈CinX (c), b′X�{x}(〈x, inX〉)〉〉))) =

= in5(γ(A×C)×B,X(〈AinX (a), CinX (c)〉, b′X�{x}(〈x, inX〉)〉)) = in5(b′〈a,c〉) =

= (stA×C,B)X(〈〈a, c〉, in5(b
′)〉).

B.9 Proof of Proposition 6.4

In order to prove the commutativity of the diagram we must show that, for every

X ∈ V, g ∈ GX and P ∈ (TProc)X , we have fX((idG × α)X(〈g, P 〉)) = βX((〈π, Tf ◦
stG,Proc〉)X(〈g, P 〉)). First of all we notice that the second member can be simplified

to βX(〈g, (Tf)X((stG,Proc)X(〈g, P 〉))〉), then we proceed by cases on P :

(P = in1(∗)) we have fX((idG×α)X(〈g, in1(∗)〉)) = fX(〈g, 0〉)�βX(〈g, in1(∗ )〉), whence

the thesis since βX(〈g, (Tf)X((stG,Proc)X(〈g, in1(∗)〉))〉) =

= βX(〈g, (Tf)X(in1(∗))〉) = βX(〈g, in1(∗)〉).
(P = in2(P

′)) fX((idG × α)X(〈g, in2(P
′)〉)) = fX(〈g, τ.P ′〉) � βX(〈g, in2(fX(〈g, P ′〉))〉),

whence the thesis since βX(〈g, (Tf)X((stG,Proc)X(〈g, in2(P
′)〉))〉) =

= βX(〈g, (Tf)X(in2(〈g, P ′〉))〉) = βX(〈g, in2(fX(〈g, P ′〉))〉).
(P = in3(〈P ′, P ′′〉)) we have fX((idG × α)X(〈g, in3(〈P ′, P ′′〉)〉)) = fX(〈g, P ′|P ′′〉) �
βX(〈g, in3(〈fX(〈g, P ′〉), fX(〈g, P ′′〉)〉)〉), whence the thesis since

βX(〈g, (Tf)X((stG,Proc)X(〈g, in3(〈P ′, P ′′〉)〉))〉) =

= βX(〈g, (Tf)X(in3(〈g, P ′, g, P ′′〉))〉) = βX(〈g, in3(〈fX(〈g, P ′〉), fX(〈g, P ′′〉)〉)〉).
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(P = in4(〈x, y, P ′〉)) we have fX((idG×α)X(〈g, in4(〈x, y, P ′〉)〉)) = fX(〈g, [x �= y]P ′〉) �
βX(〈g, in4(〈x, y, fX(〈g, P ′〉)〉)〉), whence the thesis since

βX(〈g, (Tf)X((stG,Proc)X(〈g, in4(〈x, y, P ′〉)〉))〉) =

= βX(〈g, (Tf)X(in4(〈x, y, g, P ′〉))〉) = βX(〈g, in4(〈x, y, fX(〈g, P ′〉)〉)〉).
(P = in5(P

′)) : fX((idG × α)X(〈g, in5(P
′)〉)) = fX(〈g, (νx)P ′X�{x}(x, inX)〉)

� βX(〈g, in5(γB,X(fX�{x}(〈GinX (g), P ′〉)〉)〉), whence the thesis since

βX(〈g, (Tf)X((stG,Proc)X(〈g, in5(P
′)〉))〉) = βX(〈g, (Tf)X(in5(P ′g))〉) =

= βX(〈g, in5(γB,X(fX�{x}(P
′
X�{x}(〈x, inX〉))))〉).

B.10 Proof of Theorem 6.4

Suppose that

Y �R:ι→o,ηR (R 0), (B 3)

Y �R:ι→o,ηR (∀P ι.(R P )⇒ (R τ.P )), (B 4)

Y �R:ι→o,ηR (∀P ι.(R P )⇒ ∀Qι.(R Q)⇒ (R P |Q)), (B 5)

Y �R:ι→o,ηR (∀yυ.∀zυ.∀P ι.(R P )⇒ (R [y �= z]P )), (B 6)

Y �R:ι→o,ηR (∀P υ→ι.(∀xυ.(R (P x)))⇒ (R νP )), (B 7)

We prove that G∗(�) • G∗(!TU) = p • G∗(α) • T//G(h). We first translate the latter

equation in terms of composition in the category V̌ and we obtain the following:

G∗(�) ◦ 〈π, G∗(!TU)〉 = p ◦ 〈π, G∗(α)〉 ◦ 〈π, (T//G)h〉.

Then, unfolding the definitions of G∗ and T//G, we get:

� ◦ π′ ◦ 〈π, !TU ◦ π′〉 = p ◦ 〈π, α ◦ π′〉 ◦ 〈π, Th ◦ stG,U〉,

i.e., we have to prove that �◦!TU ◦ π′ = p ◦ 〈π, α ◦Th ◦ stG,U〉. So, taken any Z ∈ V,

g ∈ GZ and u ∈ (TU)Z , we have that �Z ((!TU)Z (π′Z (〈g, u〉))) = �Z ((!TU)Z (u)) =

�Z (∗) = I(Z, ), while for the second member of the equation we have the following:

(u = in1(∗))

pZ (〈πZ (〈g, in1(∗)〉), αZ ((Th)Z ((stG,U)Z (〈g, in1(∗)〉)))〉) =

=pZ (〈g, αZ ((Th)Z (in1(∗)))〉) = pZ (〈g, αZ (in1(∗))〉) = pZ (〈g, 0〉)

Hence, pZ (〈g, 0〉) = (evProc,Prop)Z (〈0, g〉)∧I(Z, ) = gZ (〈0, idZ 〉)∧I(Z, ). Since we

know that for all Y ∈ V, and ηR ∈ (Proc ⇒ Prop)Y , Y �R:ι→o,ηR (R 0) holds,

we can deduce, by point 3 of Theorem 4.1, that [[R : ι → o, P : ι �Σ (R P ) :

o]]Z (〈g, 0〉) = ([[R : ι → o, P : ι �Σ R : ι → o]]Z (〈g, 0〉))Z (〈[[R : ι → o, P : ι �Σ 0 :

ι]]Z (〈g, 0〉), idZ 〉) = gZ (〈0, idZ 〉) � I(Z, ), whence the thesis.

(u = in2(q))

pZ (〈πZ (〈g, in2(q)〉), αZ ((Th)Z ((stG,U)Z (〈g, in2(q)〉)))〉) =

= pZ (〈g, αZ ((Th)Z (in2(〈g, q〉)))〉) = pZ (〈g, αZ (in2(hZ (〈g, q〉)))〉) =

= pZ (〈g, τ.hZ (〈g, q〉)〉)
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At this point we know, by equation B 4, that for all Y ∈ V, and ηR ∈ (Proc ⇒
Prop)Y , Y �R:ι→o,ηR ∀P ι.(R P )⇒ (R τP ) holds. By points 1 and 2 of Theorem 4.1,

this amounts to say that, for all V ∈ V, l ∈ I(Y , V ) and ηP ∈ ProcV ,

V �(R:ι→o,P :ι),〈(Proc⇒Prop)l (ηR ),ηP 〉 (R P )

implies V �(R:ι→o,P :ι),〈(Proc⇒Prop)l (ηR ),ηP 〉 (R τP ).

Then we notice the following facts:

1. pZ (〈g, hZ (〈g, q〉)〉) = I(Z, );

2. pZ (〈g, hZ (〈g, q〉)〉) =

= (evProc,Prop)Z (〈hZ (〈g, q〉), g〉) ∧I(Z, ) = gZ (〈hZ (〈g, q〉), idZ 〉) ∧I(Z, );

3. [[R : ι → o, P : ι �Σ (R P ) : o]]Z (〈g, hZ (〈g, q〉)〉) = ([[R : ι → o, P : ι �Σ R :

ι → o]]Z (〈g, hZ (〈g, q〉)〉))Z (〈[[R : ι → o, P : ι �Σ P : ι]]Z (〈g, hZ (〈g, q〉)〉), idZ 〉) =

gZ (〈hZ (〈g, q〉), idZ 〉) (by point 3 of Theorem 4.1); it follows from the previous

two facts that gZ (〈hZ (〈g, q〉), idZ 〉) � I(Z, ); hence Z �(R:ι→o,P :ι),〈g,hZ (〈g,q〉)〉)〉
(R P ) holds;

4. from the previous fact and the inductive hypothesis we can deduce that

Z �(R:ι→o,P :ι),〈g,hZ (〈g,q〉)〉 (R τP )

holds, i.e., [[R : ι→ o, P : ι �Σ (R τP ) : o]]Z (〈g, hZ (〈g, q〉)〉) � I(Z, );

5. by Theorem 4.1(3), we have [[R:ι → o, P :ι �Σ (R τP ):o]]Z (〈g, hZ (〈g, q〉)〉) =

([[R:ι → o, P :ι �Σ R:ι → o]]Z (〈g, hZ (〈g, q〉)〉))Z (〈[[R : ι → o, P : ι �Σ τP :

ι]]Z (〈g, hZ (〈g, q〉)〉), idZ 〉) =

gZ (〈tau([[R:ι→ o, P : ι �Σ P :ι]]Z (〈g, hZ (〈g, q〉)), idZ 〉) =

gZ (〈tau(hZ (〈g, q〉)), idZ 〉) = gZ (τ.hZ (〈g, q〉), idZ ) = pZ (〈g, τ.hZ (〈g, q〉)〉)∧I(Z, )

whence the thesis.

(u = in3(q, r))

pZ (〈πZ (〈g, in3(q, r)〉), αZ ((Th)Z ((stG,U)Z (〈g, in3(q, r)〉)))〉) =

= pZ (〈g, αZ ((Th)Z (in3(〈g, q, g, r〉)))〉) =

= pZ (〈g, αZ (in3(hZ (〈g, q〉), in3(hZ (〈g, r〉))))〉) =

= pZ (〈g, hZ (〈g, q〉)|hZ (〈g, r〉)〉)

Equation B 5, states that for all Y ∈ V, and ηR ∈ (Proc ⇒ Prop)Y , Y �R:ι→o,ηR
∀P ι.(R P )⇒ ∀Qι.(R Q)⇒ (R P |Q) holds. By points 1 and 2 of Theorem 4.1, this

amounts to say that, for all V ∈ V, l ∈ I(Y , V ) and ηP ∈ ProcV ,

V �(R:ι→o,P :ι),〈(Proc⇒Prop)l (ηR ),ηP 〉 (R P )

implies V �(R:ι→o,P :ι),〈(Proc⇒Prop)l (ηR ),ηP 〉 ∀Qι.(R Q)⇒ (R P |Q).

Applying again the same theorem, the latter judgment is in turn equivalent to say

that, for all W ∈ V, m ∈ I(V ,W ) and ηQ ∈ ProcW ,

W �(R:ι→o,P :ι,Q:ι),〈(Proc⇒Prop)m◦l (ηR ),Procm(ηP ),ηQ〉 (R Q)

implies W �(R:ι→o,P :ι,Q:ι),〈(Proc⇒Prop)m◦l (ηR ),Procm(ηP ),ηQ〉 (R P |Q).
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Then we notice the following facts:

1. pZ (〈g, hZ (〈g, q〉)〉) = I(Z, ) and pZ (〈g, hZ (〈g, r〉)〉) = I(Z, );

2. pZ (〈g, hZ (〈g, q〉)〉)=(evProc,Prop)Z (〈hZ (〈g, q〉), g〉)∧I(Z, )=gZ (〈hZ (〈g, q〉), idZ 〉)
∧I(Z, ) and analogously pZ (〈g, hZ (〈g, r〉)〉) = gZ ( 〈hZ (〈g, r〉), idZ 〉) ∧I(Z, );

3. [[R : ι → o, P : ι �Σ (R P ) : o]]Z (〈g, hZ (〈g, q〉)〉) = ([[R : ι → o, P : ι �Σ R :

ι → o]]Z (〈g, hZ (〈g, q〉)〉))Z (〈[[R : ι → o, P : ι �Σ P : ι]]Z (〈g, hZ (〈g, q〉)〉), idZ 〉) =

gZ (〈hZ (〈g, q〉), idZ 〉) (by point 3 of Theorem 4.1); it follows from the previous

two facts that gZ (〈hZ (〈g, q〉), idZ 〉) � I(Z, ); hence Z �(R:ι→o,P :ι),〈g,hZ (〈g,q〉)〉)〉
(R P ) holds;

4. similarly we have that [[R:ι → o, P :ι, Q:ι �Σ (R Q) : o]]Z (〈g, hZ (〈g, q〉),
hZ (〈g, r〉)〉) = gZ (〈hZ (〈g, r〉), idZ 〉) � I(Z, ); hence Z �(R:ι→o,P :ι),〈g,hZ (〈g,r〉)〉)〉
(R Q) holds;

5. from the previous facts and the inductive hypothesis we can deduce that

Z �(R:ι→o,P :ι,Q:ι),〈g,hZ (〈g,q〉),hZ (〈g,r〉)〉 (R P |Q)

holds, i.e.,

[[R : ι→ o, P : ι, Q : ι �Σ (R P |Q) : o]]Z (〈g, hZ (〈g, q〉), hZ (〈g, r〉)〉) � I(Z, );

6. by Theorem 4.1(3), we have

[[R:ι→ o, P :ι, Q:ι �Σ (R P |Q) : o]]Z (〈g, hZ (〈g, q〉), hZ (〈g, r〉)〉) =

= ([[R:ι → o, P :ι, Q:ι �Σ R : ι → o]]Z (〈g, hZ (〈g, q〉), hZ (〈g, r〉)〉))Z (〈[[R:ι →
o, P :ι, Q:ι �Σ P |Q:ι]]Z (〈g, hZ (〈g, q〉), hZ (〈g, r〉)〉), idZ 〉) =

= gZ (〈par(〈[[R : ι → o, P :ι, Q:ι �Σ P :ι]]Z (〈g, hZ (〈g, q〉), hZ (〈g, r〉)〉),[[R:ι →
o, P :ι, Q:ι �Σ Q:ι]]Z (〈g, hZ (〈g, q〉), hZ (〈g, r〉)〉)〉), idZ 〉) =

= gZ (〈par(〈hZ (〈g, q〉), hZ (〈g, r〉)〉), idZ 〉) = gZ (hZ (〈g, q〉)|hZ (〈g, r〉), idZ ) =

pZ (〈g, hZ (〈g, q〉)|hZ (〈g, r〉)〉) ∧I(Z, ), whence the thesis.

(u = in4(v, w, q))

pZ (〈πZ (〈g, in4(v, w, q)〉), αZ ((Th)Z ((stG,U)Z (〈g, in4(v, w, q)〉)))〉) =

=pZ (〈g, αZ ((Th)Z (in4(〈v, w, g, q〉)))〉) =

=pZ (〈g, αZ (in4(〈v, w, hZ (〈g, q〉)〉))〉) = pZ (〈g, [v �= w]hZ (〈g, q〉)〉)

At this point we know, by equation B 6, that for all Y ∈ V, and ηR ∈ (Proc ⇒
Prop)Y , Y �R:ι→o,ηR ∀xυ.∀yυ.∀P ι.(R P )⇒ (R [x �= y]P ) holds. By point 2 of

Theorem 4.1 and point 5 of Corollary 4.1, this amounts to say that, for all

V ∈ V, l ∈ I(Y , V ) ηx, ηy ∈ V and ηP ∈ ProcV ,

V �(R:ι→o,x:υ,y:υ,P :ι),〈(Proc⇒Prop)l (ηR ),ηx,ηy ,ηP 〉 (R P )

implies V �(R:ι→o,x:υ,y:υ,P :ι),〈(Proc⇒Prop)l (ηR ),ηx,ηy ,ηP 〉 (R [x �= y]P ).

Then we notice the following facts:

1. pZ (〈g, hZ (〈g, q〉)〉) = I(Z, );

2. pZ (〈g, hZ (〈g, q〉)〉) = (evProc,Prop)Z (〈hZ (〈g, q〉), g〉) ∧I(Z, ) =

= gZ (〈hZ (〈g, q〉), idZ 〉) ∧I(Z, );

3. [[R : ι → o, P : ι �Σ (R P ) : o]]Z (〈g, hZ (〈g, q〉)〉) = ([[R : ι → o, P : ι �Σ R :

ι → o]]Z (〈g, hZ (〈g, q〉)〉))Z (〈[[R : ι → o, P : ι �Σ P : ι]]Z (〈g, hZ (〈g, q〉)〉), idZ 〉) =
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gZ (〈hZ (〈g, q〉), idZ 〉) (by point 3 of Theorem 4.1); it follows from the previous

two facts that gZ (〈hZ (〈g, q〉), idZ 〉) � I(Z, ); hence Z �(R:ι→o,P :ι),〈g,hZ (〈g,q〉)〉)〉
(R P ) holds;

4. from the previous fact and the inductive hypothesis we can deduce that

Z �(R:ι→o,x:υ,y:υ,P :ι),〈g,v,w,hZ (〈g,q〉)〉 (R [x �= y]P )

holds, i.e.,

[[R : ι→ o, x : υ, y : υ, P : ι �Σ (R [x �= y]P ) : o]]Z (〈g, v, w, hZ (〈g, q〉)〉) � I(Z, );

5. by Theorem 4.1(3), we have [[R:ι → o, x:υ, y:υ, P :ι �Σ (R [x �= y]P ):o]]Z (〈g,
v, w, hZ (〈g, q〉)〉) = ([[R:ι→ o, x:υ, y:υ, P :ι �Σ R : ι→ o]]Z (〈g, v, w, hZ (〈g, q〉)〉))Z
(〈[[R : ι → o, x : υ, y : υ, P : ι �Σ [x �= y]P : ι]]Z (〈g, v, w, hZ (〈g, q〉)〉), idZ 〉) =

gZ (〈mismatch(〈[[R:ι → o, x:υ, y:υ, P :ι �Σ x:υ]]Z (〈g, v, w, hZ (〈g, q〉)), [[R : ι →
o, x:υ, y:υ, P :ι �Σ y:υ]]Z (〈g, v, w, hZ (〈g, q〉)), [[R:ι → o, x:υ, y:υ, P :ι �Σ P :

ι]]Z (〈g, v, w, hZ (〈g, q〉))〉), idZ 〉) = gZ (〈mismatch(〈v, w, hZ (〈g, q〉)〉), idZ 〉) =

gZ ([v �= w]hZ (〈g, q〉), idZ ) = pZ (〈g, [v �= w]hZ (〈g, q〉)〉) ∧ I(Z, ), whence the

thesis.

(u = in5(q))

pZ (〈πZ (〈g, in5(q)〉), αZ ((Th)Z ((stG,U)Z (〈g, in5(q)〉)))〉) =

=pZ (〈g, αZ ((Th)Z (in5(qg)))〉) =

=pZ (〈g, αZ (in5(hZ�z((qg)Z�z(z, inZ )))〉) =

=pZ (〈g, (νz)hZ�z((qg)Z�z(z, inZ ))〉),

where qg : Var ×V(Z, ) −→ G×U is the natural transformation such that, for

all Y ∈ V, y ∈ Y and f ∈ V(Z, Y ), (qg)Y (y, f) = 〈Gf(g), qY (〈y, f〉)〉.
At this point we know, by equation B 7, that for all Y ∈ V, and ηR ∈ (Proc ⇒
Prop)Y , Y �R:ι→o,ηR ∀P υ→ι.(∀xυ.(R (P x)))⇒ (R νP ) holds. By points 1 and 2

of Theorem 4.1, this amounts to say that, for all V ∈ V, l ∈ I(Y , V ) and

ηP ∈ (Var ⇒ Proc)V ,

V �(R:ι→o,P :υ→ι),〈(Proc⇒Prop)l (ηR ),ηP 〉 ∀xυ.(R (P x))

implies V �(R:ι→o,P :υ→ι),〈(Proc⇒Prop)l (ηR ),ηP 〉 (R νP ).

Then we notice the following facts:

1. V �(R:ι→o,P :υ→ι),〈(Proc⇒Prop)l (ηR ),ηP 〉 ∀xυ.(R (P x)) iff, for allW ∈ W, m ∈ I(V ,W )

and ηx ∈W , the following holds:

W �(R:ι→o,P :υ→ι,x:υ),〈(Proc⇒Prop)m◦l (ηR ),ηP ,ηx〉 (R (P x)),

i.e., iff

[[∆ �Σ (R (P x)) : o]]W (η) � I(W, ),

where ∆ � R : ι → o, P : υ → ι, x : υ and η � 〈(Proc ⇒ Prop)m◦l(ηR), (Var ⇒
Proc)m(ηP ), ηx〉. The first member of the preceding inequality can be simplified
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as follows according to Theorem 4.1:

[[∆ �Σ (R (P x)) : o]]W (η) � I(W, )

=([[∆ �Σ R : ι→ o]]W (η))W (〈[[∆ �Σ (P x) : ι]]W (η), idW 〉)
=((Proc ⇒ Prop)m◦l(ηR))W (〈([[∆ �Σ P : υ → ι]]W (η))W

(〈[[∆ �Σ x : υ]]W (η), idW 〉), idW 〉)
=((Proc ⇒ Prop)m◦l(ηR))W (〈((Var ⇒ Proc)m(ηP ))W (〈ηx, idW 〉), idW 〉)

2. in particular, when V � Z , l � idZ , ηR � g and ηP � h ◦ qg , we have that the

following holds:

((Proc ⇒ Prop)m(g))W (〈((Var ⇒ Proc)m(h ◦ qg))W (〈ηx, idW 〉), idW 〉)
=((Proc ⇒ Prop)m(g))W (〈(h ◦ qg)W (〈ηx, m〉), idW 〉)
=((Proc ⇒ Prop)m(g))W (〈hW (〈(Proc ⇒ Prop)m(g), qW (〈ηX, m〉)〉), idW 〉)

3. pW (〈(Proc ⇒ Prop)m(g), hW (〈(Proc ⇒ Prop)m(g), qW (〈ηX, m〉)〉), idW 〉)〉) =

I(W, );

4. pW (〈(Proc ⇒ Prop)m(g), hW (〈(Proc ⇒ Prop)m(g), qW (〈ηX, m〉)〉), idW 〉)〉) =

((Proc⇒Prop)m(g))W (〈hW (〈(Proc⇒Prop)m(g), qW (〈 ηX, m〉)〉), idW 〉)∧I(W, );

hence, for all W , m ∈ I(Z,W ) and ηx ∈W we have

W �(R:ι→o,P :υ→ι,x:υ),〈(Proc⇒Prop)m(g),h◦qg,ηx〉 (R (P x));

5. it follows that Z �(R:ι→o,P :υ→ι),〈g,h◦qg〉 (R νP ) holds by the previous point and

the inductive hypothesis, i.e, [[R:ι → o, P :υ → ι �Σ (R νP ) : ι]]Z (〈g, h ◦ qg〉) =
([[R:ι → o, P :υ → ι �Σ R:ι → o]]Z (〈g, h ◦ qg〉))Z (〈[[R:ι → o, P :υ → ι �Σ νP :
ι]]Z (〈g, h◦qg〉), idZ 〉) = gZ (〈newZ (〈h◦qg〉), idZ 〉) = gZ (〈(νz)((h◦qg)Z�z(〈z, inZ 〉)),
idZ 〉) = gZ (〈(νz)(hZ�z((qg)Z�z(〈z, inZ 〉))), idZ 〉) � I(Z, ) holds. The thesis
follows since

pZ (〈g, (νz)hZ�z((qg)Z�z(z, inZ ))〉) = gZ (〈(νz)(hZ�z((qg)Z�z(〈z, inZ 〉))), idZ 〉) ∧I(Z, ).




