# Appendices of <br> Consistency of the Theory of Contexts by Bucalo, Hofmann, Honsell, Miculan, Scagnetto 

## A Category-theoretic preliminaries

As one of the aims of this paper is to present categorical methods to non-categorically minded readers, in the following we briefly review some standard notions and important results we will need. This also allows us to fix notation and to give more complete references to the involved topics.

Let us start with some basic notation: in the following we will write $X \in \mathscr{C}$ to mean that $X$ is an object of the category $\mathscr{C}$ and we will denote with $\mathscr{C}(X, Y)$ the family of arrows in $\mathscr{C}$ from $X$ to $Y$.

We will assume fixed a universe of sets, whose elements are called small sets. A category $\mathscr{C}$ is locally small if for all $X, Y \in \mathscr{C}$, the family $\mathscr{C}(X, Y)$ is a small set, and small if, moreover, the class of objects is a small set. In the following, we will refer to small sets simply as sets.

Next, we will present some basic results about functor categories, so it is useful a quick review on some standard notions.

## Definition A. 1

A category $\mathscr{C}$ with terminal object and binary products is cartesian closed if for every $A, C \in \mathscr{C}$ there is an object $A \Rightarrow C$ and a morphism $e v_{A, C}: A \times(A \Rightarrow C) \longrightarrow C$ such that for each morphism $f: A \times B \longrightarrow C$ there is a unique morphism $\left.{ }^{\ulcorner } f\right\urcorner: B \longrightarrow$ $A \Rightarrow C$, the exponential transpose of $f$, such that the following diagram commutes:


A functor $F: \mathscr{C} \rightarrow \mathscr{D}$ is said to be faithful if, for all $A, B \in \mathscr{C}, F$ is injective on $\mathscr{C}(A, B)$, it is said to be $f u l l$ if for each $A, B \in \mathscr{C}, F$ carries $\mathscr{C}(A, B)$ onto $\mathscr{D}(F(A), F(B))$. Finally it is an embedding if it is injective on objects and faithful. given a small index category $\mathscr{J}, F$ induces a functor $F^{\mathscr{\mathscr { I }}}: \mathscr{C}^{\mathscr{I}} \rightarrow \mathscr{D}^{\mathscr{\mathscr { I }}}$ such that, if limits exist both in $\mathscr{C}$ and in $\mathscr{D}$, we have the following diagram:

where ${ }_{\leftarrow \rightarrow}^{\lim }$ is the limit functor. By the universal property of limits, we can infer the existence of a natural transformation $\alpha: F \circ \lim _{\leftarrow \& \longrightarrow \leftarrow}^{\lim _{\leftarrow}} \circ F^{\mathcal{E}}$. If $\alpha$ is a natural isomorphism, then $F$ is said to preserve limits. In this case, it will in particular preserve cartesian products.

In order to improve the readability of formulas and diagrams, we may denote the application of functors in three different ways: for instance, for $F: \mathscr{C} \longrightarrow \mathscr{D}$ and $A$ object of $\mathscr{C}$, the notations " $F A$ ", " $F(A)$ " and " $F_{A}$ " are equivalent.

Let $\mathscr{S}$ et be the category whose objects are sets and whose morphisms are functions between sets. Given a locally small category $\mathscr{C}$, we will denote with $\check{\mathscr{C}}$ the category $\mathscr{S} e t^{\mathscr{C}}$ whose objects are the functors from $\mathscr{C}$ to $\mathscr{S}$ et and whose morphisms are natural transformations between them. More precisely:

- an object $A$ of $\check{\mathscr{C}}$ consists of a family of sets $\left\{A_{X}\right\}_{X \in \mathscr{C}}$, together with a family of functions $\left\{A_{f}\right\}_{f \in \mathscr{C}(X, Y), X, Y \in \mathscr{C}}$ such that $A_{f}: A_{X} \longrightarrow A_{Y}, A_{\mathrm{id}_{X}}=\operatorname{id}_{A_{X}}$ and $A_{f \circ g}=A_{f} \circ A_{g} ;$
- a morphism $m \in \check{\mathscr{C}}(A, B)$ is a family of functions $\left\{m_{X}\right\}_{X \in \mathscr{C}}$, such that $m_{X}$ : $A_{X} \longrightarrow B_{X}$ and for each $f: X \longrightarrow Y, m_{Y} \circ A_{f}=B_{f} \circ m_{X}$.

If $\mathscr{C}$ is small, it is known that the category $\check{\mathscr{C}}$ is cartesian closed with finite products given by

$$
\begin{array}{r}
\mathbf{1}_{X} \triangleq\{\star\} \text { and } \mathbf{1}_{f} \triangleq \operatorname{id}_{\{\star\}}(\text { empty product }) \\
(A \times B)_{X} \triangleq A_{X} \times B_{X} \text { and }(A \times B)_{f} \triangleq A_{f} \times B_{f}
\end{array}
$$

moreover $(A \Rightarrow B)$ is given by

$$
\begin{aligned}
\quad(A \Rightarrow B)_{X} & \triangleq \check{\mathscr{C}}(A \times \mathscr{C}(X,-), B) \\
(A \Rightarrow B)_{f}(m) & \triangleq m \circ\left(\operatorname{id}_{A} \times(-\circ f)\right), \text { for } f: Y \longrightarrow Z \text { and } m \in \check{\mathscr{C}}\left(A \times \mathscr{C}\left(Y, \_\right), B\right)
\end{aligned}
$$

and finally $e v_{A, C}$ and $\ulcorner f\urcorner: B \rightarrow A \Rightarrow C$ are given by

$$
\begin{aligned}
& \quad\left(e v_{A, C}\right)_{X}(a, m) \triangleq m_{X}\left(a, \mathrm{id}_{X}\right), \text { for all } X \in \mathscr{C}, a \in A_{X}, \text { and } m \in(A \Rightarrow C)_{X} \\
& \quad\left(\ulcorner f\urcorner_{X}(b)\right)_{Y}: A_{Y} \times \mathscr{V}(X, Y) \longrightarrow C_{Y} \\
& \left(\ulcorner f\urcorner_{X}(b)\right)_{Y}(a, h) \triangleq f_{Y}\left(a, B_{h}(b)\right)
\end{aligned}
$$

Let us consider the functor $\check{\mathscr{Y}}: \mathscr{C}^{o p} \longrightarrow \check{\mathscr{C}}$, defined as follows:

- for $X \in \mathscr{C}, \mathscr{\mathscr { Y }}(X): \mathscr{C} \rightarrow \mathscr{S}$ et is the Homset functor $\mathscr{C}(X$, , $)$, i.e.: $\check{\mathscr{Y}}(X)_{Z} \triangleq$ $\mathscr{C}(X, Z)$ and, given $f: Y \longrightarrow Z$, for all $g \in \mathscr{C}(X, Y), \check{\mathscr{Y}}(X)_{f}(g) \triangleq f \circ g$;
- for $f: X \rightarrow Y$, $\check{\mathscr{Y}}(f): \check{\mathscr{Y}}(X) \rightarrow \check{\mathscr{Y}}(Y)$ is the natural transformation such that, for all $Z \in \mathscr{C}$ and $g \in \mathscr{C}(Y, Z),(\check{\mathscr{Y}}(f))_{X}(g) \triangleq g \circ f$.

Then, the following fundamental lemma holds:

## Proposition A. 1 (Yoneda Lemma)

For each $A \in \check{\mathscr{C}}$ and $X \in \mathscr{C}$ there is a bijective correspondence between $\check{\mathscr{C}}(\check{\mathscr{Y}}(X), A)$ and $A_{X}$, and moreover the correspondence is natural in $A$ and $X$.

We give the definition of this bijective correspondence between $\check{\mathscr{C}}(\mathscr{Y}(X), A)$ and $A_{X}$ : $\Phi_{X, A}(m)=m_{X}\left(\operatorname{id}_{X}\right)$, for $m \in \check{\mathscr{C}}(\check{\mathscr{Y}}(X), A)$; the inverse is the natural transformation defined on $a \in A_{X}$ by $\left(\Phi_{X, A}^{-1}(a)\right)_{Z}(f) \triangleq A_{f}(a)$, for $f \in \check{\mathscr{Y}}(X)_{Z}$.

An immediate and important consequence of the previous result is that the category $\mathscr{C}^{o p}$ fully embeds in $\check{\mathscr{C}}$ by means of $\check{\mathscr{Y}}$, which is called, therefore, Yoneda embedding.

When an object in $\check{\mathscr{C}}$ is isomorphic to an object in the image of $\check{\mathscr{Y}}$ it is said to be representable. Notice, for example, that, if $\mathscr{C}$ has an initial object $\mathbf{0}$, then the terminal object $\mathbf{1}$ is representable since $\mathbf{1} \cong \check{\mathscr{Y}}(\mathbf{0})$.

Another useful notion to recall is the concept of adjunction; for our purposes the following definition suffices.

## Definition A. 2

Given categories $\mathscr{C}$ and $\mathscr{D}$, an adjunction from $\mathscr{C}$ to $\mathscr{D}$ is a triple $(F, G, \phi)$, where $F, G$ are functors, $F: \mathscr{C} \longrightarrow \mathscr{D}, G: \mathscr{D} \longrightarrow \mathscr{C}$ and $\phi$ is a function which maps every $A \in \mathscr{C}$ and $B \in \mathscr{D}$ to a bijection $\phi_{A, B}: \mathscr{C}\left(A, G_{B}\right) \cong \mathscr{D}\left(F_{A}, B\right)$, natural in $A$ and $B$.
$F$ and $G$ are respectively called the left and the right adjoint of the adjunction and this is denoted by $F \dashv G$ or $G \vdash F$.

We will use the known property that a functor $F: \mathscr{C} \longrightarrow \mathscr{D}$ with a right (left) adjoint preserves colimits (limits). For the proof see, e.g., (Mac Lane, 1971). Theorem 1.27.

Now we introduce some notions and a result about algebras of functors.

## Definition A. 3

Given a functor $T: \mathscr{C} \longrightarrow \mathscr{C}$, a $T$-algebra is a pair $\langle A, \alpha\rangle$, with $A \in \mathscr{C}$ and $\phi: T A \longrightarrow A$ morphism of $\mathscr{C}$. A $T$-algebra morphism from $\langle A, \alpha\rangle$ to $\langle B, \beta\rangle$ is an arrow $f \in C(A, B)$ such that the following diagram commutes:

$T$-algebras and $T$-algebra morphisms form a category, whose initial object, if it exists, is said an initial $T$-algebra.

Theorem A. 1 ((Hofmann, 1999))
Let $\mathscr{C}, \mathscr{D}$ be two categories and $F: \mathscr{C} \longrightarrow \mathscr{D}$ be a functor with a right adjoint $F^{*}$. Let $T: \mathscr{C} \longrightarrow \mathscr{C}$ and $T^{\prime}: \mathscr{D} \longrightarrow \mathscr{D}$ be two functors such that $T^{\prime} \circ F \cong F \circ T$ for some natural isomorphism $\phi: T^{\prime} \circ F \longrightarrow F \circ T$. If $(A, a: T A \rightarrow A)$ is an initial $T$-algebra in $\mathscr{C}$, then $\left(F_{A}, F_{a} \circ \phi_{A}: T^{\prime}\left(F_{A}\right) \rightarrow F_{A}\right)$ is an initial $T^{\prime}$-algebra in $\mathscr{D}$.

## Proof

The adjoint pair $F \dashv F^{*}$ can be lifted to a pair of adjoint functors between the categories of $T$ - and $T^{\prime}$ - algebras. Since any functor with a right adjoint preserves colimits and the initial object is a colimit, then the initial object of the former category is preserved in the latter.

Another useful technique for building initial algebras is based on the notions of simple slice category and strong functor. We recall here the basic definitions and related properties from (Jacobs, 1995).

## Definition A. 4

Given a category $\mathscr{C}$ with binary products and $G \in \mathscr{C}$, the simple slice category $\mathscr{C} / / G$ is defined as follows:

1. $\operatorname{Obj}(\mathscr{C} / / G) \triangleq \operatorname{Obj}(\mathscr{C})$,
2. $\mathscr{C} / / G(A, B) \triangleq \mathscr{C}(G \times A, B)$,
3. the identity map on $A$ in $\mathscr{C} / / G$ is the second projection $\pi^{\prime}: G \times A \longrightarrow A$ in $\mathscr{C}$,
4. the composition of $f: A \longrightarrow B$ and $g: B \longrightarrow C$ is defined as follows:

$$
g \bullet f \triangleq g \circ\langle\pi, f\rangle: G \times A \longrightarrow G \times B \longrightarrow C
$$

where $\bullet$ denotes the composition in $\mathscr{C} / / G$ and $\circ$ the composition in $\mathscr{C}$.
Given $G \in \mathscr{C}$, there is a functor $G^{*}: \mathscr{C} \longrightarrow \mathscr{C} / / G$ defined as follows:

1. $G^{*}(A) \triangleq A$ for every $A \in \mathscr{C}$,
2. $G^{*}(f) \triangleq f \circ \pi^{\prime}$ for every $f \in \mathscr{C}(A, B)$.

Definition A.5 (2.6.7)
An endofunctor $T: \mathscr{C} \longrightarrow \mathscr{C}$ on a category $\mathscr{C}$ with finite products is called strong if it comes equipped with a natural transformation, called strength, with components $s t_{A, B}: A \times T B \longrightarrow T(A \times B)$ making the following two diagrams commute:

where $\beta$ is the obvious isomorphism $\left\langle\left\langle\pi, \pi \circ \pi^{\prime}\right\rangle, \pi^{\prime} \circ \pi^{\prime}\right\rangle$.
As proved in (Jacobs, 1995), if $T$ is a strong functor, we can define, for every $A \in \mathscr{C}$, a functor $T / / A: \mathscr{C} / / A \longrightarrow \mathscr{C} / / A$ as follows:

- $(T / / A)_{B} \triangleq T B$,
- $(T / / A)_{f} \triangleq T f \circ s t_{A, B}$ (for every $f \in \mathscr{C} / / A(B, C)$ ).

It turns out that also this new functor is strong.

## B Proofs

## B.1 Proof of Proposition 3.2

For $U, V \in \operatorname{Pred}_{\check{\mathscr{y}}}(F)$, we put

$$
\begin{array}{rrr}
(U \vee V)_{X} \triangleq U_{X} \cup V_{X} & (U \wedge V)_{X} \triangleq U_{X} \cap V_{X} \\
(\bar{U})_{X} \triangleq F_{X} \backslash U_{X} & 0_{X} \triangleq \emptyset & 1_{X} \triangleq F_{X} .
\end{array}
$$

Now we prove that these objects are indeed predicates, by checking the three conditions of Definition 3.1:
$(U \vee V) \in \operatorname{Pred}_{\mathscr{I}}(F):$
Sub Since, by hypothesis, $U, V \in \operatorname{Pred}(F)$, it follows that $U_{X} \subseteq F_{X}$ and $V_{X} \subseteq F_{X}$ for $X \in \mathscr{I}$; then $(U \vee V)_{X} \triangleq U_{X} \cup V_{X} \subseteq F_{X}$;
Func given $h \in \mathscr{I}(X, Y)$ and $t \in(U \vee V)_{X}$, we can infer that either $t \in U_{X}$ or $t \in V_{X}$ (since $\left.(U \vee V)_{X} \triangleq U_{X} \cup V_{X}\right)$; in the former case we have that $F_{h}(t) \in U_{Y}$ by hypothesis, hence $F_{h}(t) \in U_{Y} \cup V_{Y} \triangleq(U \vee V)_{Y}$ (in the latter case we can conclude by a similar argument);
Closure given $t \in F_{X}$ and $F_{h}(t) \in(U \vee V)_{Y}$ for some $h \in \mathscr{I}(X, Y)$, we can infer that either $F_{h}(t) \in U_{Y}$ or $F_{h}(t) \in V_{Y}$ (since $\left.(U \vee V)_{Y} \triangleq U_{Y} \cup V_{Y}\right)$; in the former case we can conclude that $t \in U_{X}$, hence $t \in U_{X} \cup V_{X} \triangleq(U \vee V)_{X}$ (in the latter case we can conclude by a similar argument).
$(U \wedge V) \in \operatorname{Pred}_{\mathscr{f}}(F):$
Sub Since, by hypothesis, $U, V \in \operatorname{Pred}(F)$, it follows that $U_{X} \subseteq F_{X}$ and $V_{X} \subseteq F_{X}$ for $X \in \mathscr{I}$; then $(U \wedge V)_{X} \triangleq U_{X} \cap V_{X} \subseteq F_{X}$;
Func given $h \in \mathscr{I}(X, Y)$ and $t \in(U \wedge V)_{X}$, we can infer that $t \in U_{X}$ and $t \in V_{X}$ (since $\left.(U \wedge V)_{X} \triangleq U_{X} \cap V_{X}\right)$; then, by hypothesis, $F_{h}(t) \in U_{Y}$ and $F_{h}(t) \in V_{Y}$, hence we can conclude that $F_{h}(t) \in\left(U_{Y} \cap V_{Y}\right) \triangleq(U \wedge V)_{Y}$;
Closure given $t \in F_{X}$ and $F_{h}(t) \in(U \wedge V)_{Y}$ for some $h \in \mathscr{I}(X, Y)$, we can infer that $F_{h}(t) \in U_{Y}$ and $F_{h}(t) \in V_{Y}$ (since $\left.(U \wedge V)_{Y} \triangleq U_{Y} \cap V_{Y}\right)$; then, by hypothesis, we have that $t \in U_{X}$ and $t \in V_{X}$, hence we can conclude $t \in U_{X} \cap V_{X} \triangleq(U \wedge V)_{X}$.
$\bar{U} \in \operatorname{Pred}_{\check{\mathscr{I}}}(F):$
Sub Condition (Sub) trivially holds by definition of $(\bar{U})_{X}$;
Func given $h \in \mathscr{I}(X, Y)$ and $t \in(\bar{U})_{X}$, by definition of $\bar{U}$ we have that $t \in F_{X}$ and $t \notin U_{X}$; then, as $U \in \operatorname{Pred}(F)$, we can apply condition (Closure) to conclude that $F_{h}(t) \notin U_{Y}$, hence $F_{h}(t) \in(\bar{U})_{Y} ;$
Closure given $t \in F_{X}$ and $F_{h}(t) \in(\bar{U})_{Y}$ for some $h \in \mathscr{I}(X, Y)$, we can infer that $F_{h}(t) \in F_{Y}$ and $F_{h}(t) \notin U_{Y}$ (by definition of $\bar{U}$ ); then, as $U \in \operatorname{Pred}(F)$, we can apply condition (Closure) to conclude that $t \notin U_{X}$, hence $t \in(\bar{U})_{X}$.
$0 \in \operatorname{Pred}_{\breve{\mathscr{I}}}(F):$
Sub We trivially have $0_{X} \triangleq \emptyset \subseteq F_{X}$ for $X \in \mathscr{I}$;
Func this condition trivially holds since the premise $t \in 0_{X} \triangleq \emptyset$ is false;
Closure similarly to the previous case this condition is also trivially verified, since the premise $F_{h}(t) \in 0_{Y} \triangleq \emptyset$ cannot be fulfilled.
$1 \in \operatorname{Pred}_{\mathscr{\mathscr { y }}}(F):$
Sub We trivially have $1_{X} \triangleq F_{X} \subseteq F_{X}$ for $X \in \mathscr{I}$;
Func given $h \in \mathscr{I}(X, Y)$ and $t \in 1_{X} \triangleq F_{X}$, we trivially have $F_{h}(t) \in F_{Y}$ by functoriality of $F$, hence we can immediately conclude since $1_{Y} \triangleq F_{Y}$;
Closure given $t \in F_{X}$ and $F_{h}(t) \in 1_{Y} \triangleq F_{Y}$ for some $h \in \mathscr{I}(X, Y)$, we have by hypothesis that $t \in F_{X}$, hence we can immediately conclude since $1_{X} \triangleq F_{X}$.

One can easily check that $\operatorname{Pred}_{\mathscr{\mathscr { I }}}(F)$ endowed with these operations can indeed be turned into a complemented distributive lattice.

## B. 2 Proof of Proposition 3.3

Given $\eta: F \longrightarrow G, U \in \operatorname{Pred}_{\mathscr{\mathscr { I }}}(G)$ and $X \in \mathscr{I}$, we have that $\left(\operatorname{Pred}_{\mathscr{I}}(\eta)(U)\right)_{X} \triangleq$ $\eta_{X}^{-1}\left(U_{X}\right)$, hence

$$
\chi_{F}^{\check{f}}\left(\operatorname{Pred}_{\check{I}}(\eta)(U)\right)_{X} \triangleq \lambda t \in F_{X} .\left(\left\{f: X \rightarrow Y \mid F_{f}(t) \in\left(\operatorname{Pred}_{\check{\mathscr{I}}}(\eta)(U)\right)_{Y}\right\}\right\}_{Y \in \mathscr{I}} .
$$

On the other hand, we have $\left(\chi_{G}^{\check{f}}(U)\right)_{X} \triangleq \lambda t \in G_{X} \cdot\left(\left\{f: X \rightarrow Y \mid G_{f}(t) \in U_{Y}\right\}\right)_{Y \in \mathscr{I}}$, hence

$$
\begin{aligned}
\left(\check{\mathscr{I}}(\eta, \Omega)\left(\chi_{G}^{\check{G}}(U)\right)\right)_{X} & =\left(\chi_{G}^{\check{G}}(U) \circ \eta\right)_{X} \\
& =\left(\chi_{G}^{\mathscr{y}}(U)\right)_{X} \circ \eta_{X} \\
& \triangleq \lambda t \in F_{X} \cdot\left(\left\{f: X \rightarrow Y \mid G_{f}\left(\eta_{X}(t)\right) \in U_{Y}\right\}\right)_{Y \in \mathscr{F}}
\end{aligned}
$$

but, by naturality of $\eta$, we have that $G_{f}\left(\eta_{X}(t)\right)=\eta_{Y}\left(F_{f}(t)\right)$, hence $G_{f}\left(\eta_{X}(t)\right) \in U_{Y}$ if and only if $F_{f}(t) \in \eta_{Y}^{-1}\left(U_{Y}\right) \triangleq\left(\operatorname{Pred}_{\mathscr{I}}(\eta)(U)\right)_{Y}$, i.e.,

$$
\chi_{F}^{\check{F}}\left(\operatorname{Pred}_{\check{I}}(\eta)(U)\right)_{X}=\left(\check{\mathscr{I}}(\eta, \Omega)\left(\chi_{G}^{\check{G}}(U)\right)\right)_{X} .
$$

Thus, naturality of $\chi^{\check{y}}$ is proved. Now, it remains to show that $\chi^{\check{\mathscr{Y}}}$ is a natural isomorphism, i.e., that $\chi_{F}^{\check{G}}$ has an inverse for each $F \in \check{\mathscr{V}}$. We will prove that this inverse is indeed $\kappa_{F}^{\mathscr{y}}$. First let us verify that $\kappa_{F}^{\mathscr{y}}\left(\chi_{F}^{\breve{y}}(V)\right)=V$ for $V \in \operatorname{Pred}_{\breve{\prime}}(F)$ (i.e. $\left.\kappa_{F}^{\check{\zeta}} \circ \chi_{F}^{\check{F}}=\operatorname{id}_{\text {Pred }}^{\check{j}(F)}{ }^{(F)}\right):$

$$
\begin{aligned}
\kappa_{F}^{\check{F}}\left(\chi_{F}^{\check{F}}(V)\right) & \triangleq\left(\left\{t \in F_{X} \mid\left(\chi_{F}^{\mathscr{F}}(V)\right)_{X}(f)=\check{\mathscr{Y}}_{\check{\mathscr{y}}}(X)\right\}\right)_{X \in \mathscr{I}} \\
& \triangleq\left(\left\{t \in F_{X} \mid\left(\left\{g: X \rightarrow Y \mid F_{g}(t) \in V_{Y}\right\}\right)_{Y \in \mathscr{I}}=\mathscr{I}(X,-)\right\}\right)_{X \in \mathscr{I}} \\
& =\left(V_{X}\right)_{X \in \mathscr{I}} \text { (because of property } 2 \text { of predicates) } \\
& \triangleq V
\end{aligned}
$$

Now we have to prove that $\chi_{F}^{\check{F}}\left(\kappa_{F}^{\check{G}}(m)\right)=m$ (i.e. $\left.\chi_{F}^{\check{F}} \circ \kappa_{F}^{\check{Y}}=\mathrm{id}_{\check{V}(F, \Omega)}\right)$ :

$$
\chi_{F}^{\check{G}}\left(\kappa_{F}^{\check{G}}(m)\right) \triangleq\left(\lambda t \in F_{X} \cdot\left\{f: X \rightarrow Y \mid F_{f}(t) \in\left(\kappa_{F}^{\check{G}}(m)\right)_{Y}\right\}_{Y \in \mathscr{I}}\right)_{X \in \mathscr{I}}
$$

By definition of $\left(\kappa_{F}^{\check{F}}(m)\right)_{Y}$, we have that $F_{f}(t) \in\left(\kappa_{F}^{\check{F}}(m)\right)_{Y}$ if and only if $m_{Y}\left(F_{f}(t)\right)=$ $\mathscr{I}\left(Y,,_{-}\right)$. By naturality of $m$, it follows that

$$
m_{Y}\left(F_{f}(t)\right)=\Omega_{f}\left(m_{X}(t)\right) \triangleq \operatorname{Pred}_{\check{\mathscr{I}}}(\check{\mathscr{Y}} \check{\mathscr{I}}(f))\left(m_{X}(t)\right) .
$$

Hence for any $Z \in \mathscr{I}$,

$$
\left.\left(\operatorname{Pred}_{\check{\mathscr{I}}} \check{\mathscr{Y}} \check{\mathscr{I}}(f)\right)\left(m_{X}(t)\right)\right)_{Z} \triangleq(\check{\mathscr{Y}} \check{\mathscr{I}}(f))_{Z}^{-1}\left(\left(m_{X}(t)\right)_{Z}\right)=\mathscr{I}(Y, Z),
$$

i.e., for all $g \in \mathscr{I}(Y, Z),(\check{\mathscr{Y}} \check{\mathscr{\mathscr { I }}}(f))_{Z}(g) \in\left(m_{X}(t)\right)_{Z}$ holds. Since $\left(\check{\mathscr{Y}}_{\check{\mathscr{I}}}(f)\right)_{Z}(g)=g \circ f \triangleq$ $\mathscr{I}(X, g)(f)$, we have, by properties (Func) and (Closure) of predicates (remember that $m_{X}(t) \in \operatorname{Pred}_{\check{\mathscr{I}}}(\mathscr{I}(X,-))$ ), that $m_{Y}\left(F_{f}(t)\right)=\mathscr{I}\left(Y,{ }_{-}\right)$if and only if $f \in\left(m_{X}(t)\right)_{Y}$ holds. Hence, we can conclude that

$$
\chi_{F}^{\check{\mathscr{G}}}\left(\kappa_{F}^{\check{G}}(m)\right)=\left(\lambda t \in F_{X} \cdot\left\{f: X \rightarrow Y \mid f \in\left(m_{X}(t)\right)_{Y}\right\}_{Y \in \mathscr{I}}\right)_{X \in \mathscr{I}},
$$

i.e., $\chi_{F}^{\check{f}}\left(\kappa_{F}^{\check{\zeta}}(m)\right)=m$.

## B.3 Proof of Theorem 4.1

1. First, notice that $\llbracket \Gamma \vdash_{\Sigma} \forall x^{\sigma} \cdot p: o \rrbracket_{X}(\eta)=$

$$
\begin{aligned}
&=\left(\text { forall }_{\sigma}\right)_{X}\left(\llbracket \Gamma \vdash_{\Sigma} \lambda x^{\sigma} \cdot p: \sigma \rightarrow o \rrbracket_{X}(\eta)\right) \\
&=\left\{u: X \longrightarrow Y \mid \forall g \in \mathscr{I}(Y, Z) \cdot \forall t \in \llbracket \sigma \rrbracket_{Z} .\right. \\
&\left.\langle t, g \circ u\rangle \in \kappa_{\llbracket \sigma \rrbracket \times \mathscr{Y}(X)}\left(\llbracket \Gamma \vdash_{\Sigma} \lambda x^{\sigma} \cdot p: \sigma \rightarrow o \rrbracket_{X}(\eta)\right)_{Z}\right\}_{Y \in \mathscr{V}} \\
&=\left\{u: X \longrightarrow Y \mid \forall g \in \mathscr{I}(Y, Z) \cdot \forall t \in \llbracket \sigma \rrbracket_{Z} .\right. \\
&\left.\quad\left(\llbracket \Gamma \vdash_{\Sigma} \lambda x^{\sigma} \cdot p: \sigma \rightarrow o \rrbracket_{X}(\eta)\right)_{Z}(\langle t, g \circ u\rangle) \geqslant \mathscr{I}(Z,-)\right\}_{Y \in \mathscr{V}} \\
&=\left\{u: X \longrightarrow Y \mid \forall g \in \mathscr{I}(Y, Z) \cdot \forall t \in \llbracket \sigma \rrbracket_{Z} \cdot\left(\lambda\langle b, f\rangle \in \llbracket \sigma \rrbracket_{Z} \times \mathscr{I}(X, Z) .\right.\right. \\
&\left.\left.\llbracket \Gamma, x: \sigma \vdash_{\Sigma} p: o \rrbracket_{Z}\left(\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), b\right\rangle\right)\right)(\langle t, g \circ u\rangle) \geqslant \mathscr{I}\left(Z,{ }_{-}\right)\right\}_{Y \in \mathscr{V}} \\
&=\left\{u: X \longrightarrow Y \mid \forall g \in \mathscr{I}(Y, Z) \cdot \forall t \in \llbracket \sigma \rrbracket_{Z .} .\right. \\
&\left.\left.\llbracket \Gamma, x: \sigma \vdash_{\Sigma} p: o \rrbracket_{Z}\left(\left\langle\llbracket \Gamma \rrbracket_{(g \circ u)}(\eta), t\right\rangle\right) \geqslant \mathscr{I}(Z,-)\right\}\right\}_{Y \in \mathscr{V}}
\end{aligned}
$$

$(\Rightarrow)$ By hypothesis we have that $X \vdash_{\Gamma, \eta} \forall x^{\sigma} . p$, i.e., $\eta \in \kappa_{\llbracket \Gamma \rrbracket}\left(\llbracket \Gamma \vdash_{\Sigma} \forall x^{\sigma} . p: o \rrbracket\right)_{X}$ which, in turn, is equivalent to $\llbracket \Gamma \vdash_{\Sigma} \forall x^{\sigma} . p: o \rrbracket_{X}(\eta) \geqslant \mathscr{I}\left(X,{ }_{-}\right)$. In particular we have that $h \in \mathscr{I}(X, Y)$ belongs to $\left(\llbracket \Gamma \vdash_{\Sigma} \forall x^{\sigma} . p: o \rrbracket_{X}(\eta)\right)_{Y}$. Then, taking $g=\operatorname{id}_{Y}$ and $t=a$, we have that $\llbracket \Gamma, x: \sigma \vdash_{\Sigma} p: o \rrbracket_{Y}\left(\left\langle\llbracket \Gamma \rrbracket_{\left(\mathrm{id}_{Y} \circ h\right)}(\eta), a\right\rangle\right)=$ $\llbracket \Gamma, x: \sigma \vdash_{\Sigma} p: o \rrbracket_{Y}\left(\left\langle\llbracket \Gamma \rrbracket_{h}(\eta), a\right\rangle\right) \geqslant \mathscr{I}(Y$, -$)$, i.e., $Y \vdash_{(\Gamma, x: \sigma),\langle }\left\langle\llbracket \Gamma \rrbracket_{h}(\eta), a\right\rangle p$.
$(\Leftarrow)$ By hypothesis for all $Y$ and $h \in \mathscr{I}(X, Y)$, and for all $a \in \llbracket \sigma \rrbracket_{Y}$ we have that $Y \Vdash_{(\Gamma, x: \sigma),\left\langle\llbracket \Gamma \rrbracket_{h}(\eta), a\right\rangle} p$, i.e., $\llbracket \Gamma, x: \sigma \vdash_{\Sigma} p: o \rrbracket_{Y}\left(\left\langle\llbracket \Gamma \rrbracket_{h}(\eta), a\right\rangle\right) \geqslant \mathscr{I}(Y,-)$. Then, take any $u \in \mathscr{I}(X, Y), g \in \mathscr{I}(Y, Z)$ and $t \in \llbracket \sigma \rrbracket_{Z}$; it follows that $h=g \circ u \in \mathscr{I}(X, Z)$. Hence, we can apply the hypothesis and conclude that

$$
\llbracket \Gamma, x: \sigma \vdash_{\Sigma} p: o \rrbracket_{Z}\left(\left\langle\llbracket \Gamma \rrbracket_{(g \circ u)}(\eta), t\right\rangle\right) \geqslant \mathscr{I}\left(Z,_{-}\right)
$$

holds. Since the latter holds for every $Y$ and $u \in \mathscr{I}(X, Y)$, we have that $\llbracket \Gamma \vdash_{\Sigma} \forall x^{\sigma} . p: o \rrbracket_{X}(\eta) \geqslant \mathscr{I}(X,-)$, i.e, $X \vdash_{\Gamma, \eta} \forall x^{\sigma} . p$.
2. First we note that $X \vdash_{\Gamma, \eta} p \Rightarrow q$ if and only if $\eta \in \kappa_{\llbracket \Gamma \rrbracket}\left(\llbracket \Gamma \vdash_{\Sigma} p \Rightarrow q: o \rrbracket\right)_{X}$ if and only if $\llbracket \Gamma \vdash_{\Sigma} p \Rightarrow q: o \rrbracket_{X}(\eta) \geqslant \mathscr{I}\left(X,,_{-}\right)$. Then, since we have that $\llbracket \Gamma \vdash_{\Sigma} p \Rightarrow q: o \rrbracket=i m p \circ\left\langle\llbracket \Gamma \vdash_{\Sigma} p: o \rrbracket, \llbracket \Gamma \vdash_{\Sigma} q: o \rrbracket\right\rangle$, the latter condition is equivalent to $\overline{\llbracket \Gamma \vdash_{\Sigma} p: o \rrbracket_{X}(\eta)} \vee \llbracket \Gamma \vdash_{\Sigma} q: o \rrbracket_{X}(\eta) \geqslant \mathscr{I}(X,-)$, i.e., for all $Y$ $\left(\overline{\llbracket \Gamma \vdash_{\Sigma} p: o \rrbracket_{X}(\eta)}\right)_{Y} \cup\left(\llbracket \Gamma \vdash_{\Sigma} q: o \rrbracket_{X}(\eta)\right)_{Y} \supseteq \mathscr{I}(X, Y)$.
$(\Rightarrow)$ By hypothesis we have that $X \Vdash_{\Gamma, \eta} p \Rightarrow q$ and $X \Vdash_{\Gamma, \eta} p$ hold and the latter is equivalent to $\llbracket \Gamma \vdash_{\Sigma} p: o \rrbracket_{X}(\eta) \geqslant \mathscr{I}\left(X,{ }_{-}\right)$, i.e., for all $Y$

$$
\left(\llbracket \Gamma \vdash_{\Sigma} p: o \rrbracket_{X}(\eta)\right)_{Y} \supseteq \mathscr{I}(X, Y) .
$$

It follows that $\left(\overline{\llbracket \Gamma \vdash_{\Sigma} p: o \rrbracket_{X}(\eta)}\right)_{Y}=\mathscr{V}(X, Y) \backslash \mathscr{I}(X, Y)$, hence, by the preliminary observation, $\left(\llbracket \Gamma \vdash_{\Sigma} q: o \rrbracket_{X}(\eta)\right)_{Y} \supseteq \mathscr{I}(X, Y)$. So we proved that $\llbracket \Gamma \vdash_{\Sigma} q: o \rrbracket_{X}(\eta) \geqslant \mathscr{I}(X,-)$, i.e., that $X \vdash_{\Gamma, \eta} q$.
$(\Leftarrow)$ By hypothesis we have that either $X \stackrel{\vdash}{\Gamma, \eta} p$ does not hold or $X \Vdash_{\Gamma, \eta} q$ holds. In the former case for all $Y\left(\llbracket \Gamma \vdash_{\Sigma} p: o \rrbracket_{X}(\eta)\right)_{Y} \nexists \mathscr{I}(X, Y)$, hence $\left(\overline{\llbracket \Gamma \vdash_{\Sigma} p: o \rrbracket_{X}(\eta)}\right)_{Y} \supseteq \mathscr{I}(X, Y)$. So, by the preliminary observation, we also have that for all $Y\left(\llbracket \Gamma \vdash_{\Sigma} p \Rightarrow q: o \rrbracket_{X}(\eta)\right)_{Y} \supseteq \mathscr{I}(X, Y)$, hence $X \vdash_{\Gamma, \eta} p \Rightarrow q$.

The other case is even easier, since we have that for all $Y$

$$
\left(\llbracket \Gamma \vdash_{\Sigma} q: o \rrbracket_{X}(\eta)\right)_{Y} \supseteq \mathscr{I}(X, Y)
$$

and we can conlude again by the preliminary observation.
3. By definition, $X \vdash_{\Gamma, \eta} P M$ if and only if $\eta \in \kappa_{\llbracket \Gamma \rrbracket}\left(\llbracket \Gamma \vdash_{\Sigma} P M: o \rrbracket\right)_{X}$, i.e., if and only if $\llbracket \Gamma \vdash_{\Sigma} P M: o \rrbracket_{X}(\eta) \geqslant \mathscr{I}\left(X,{ }_{-}\right)$. Then the thesis is a direct consequence of the following argument:

$$
\begin{aligned}
\llbracket \Gamma \vdash_{\Sigma} P M: o \rrbracket_{X}(\eta) & =\left(e v_{\llbracket \sigma \rrbracket, P r o p} \circ\left\langle\llbracket \Gamma \vdash_{\Sigma} M: \sigma \rrbracket, \llbracket \Gamma \vdash_{\Sigma} P: \sigma \rightarrow o \rrbracket\right\rangle\right)_{X}(\eta) \\
& =\left(e v_{\llbracket \sigma \rrbracket, P r o p}\right)_{X}\left(\left\langle\llbracket \Gamma \vdash_{\Sigma} M: \sigma \rrbracket_{X}(\eta), \llbracket \Gamma \vdash_{\Sigma} P: \sigma \rightarrow o \rrbracket_{X}(\eta)\right\rangle\right) \\
& =\left(\llbracket \Gamma \vdash_{\Sigma} P: \sigma \rightarrow o \rrbracket_{X}(\eta)\right)_{X}\left(\operatorname{id}_{X}, \llbracket \Gamma \vdash_{\Sigma} M: \sigma \rrbracket_{X}(\eta)\right)
\end{aligned}
$$

4. By definition of $\perp$ the thesis is equivalent to $X \Vdash_{\Gamma, \eta} \forall r^{o}$.r. It follows, by the first item of this theorem, that we have to prove that there exist $Y, h \in \mathscr{I}(X, Y)$ and $a \in \operatorname{Prop}_{Y}$ such that it is not the case that $Y \Vdash_{(\Gamma, r: o),\left\langle\llbracket \Gamma \rrbracket_{h}(\eta), a\right\rangle} r$, i.e., that $\llbracket \Gamma, r: o \vdash_{\Sigma} r: o \rrbracket_{Y}\left(\left\langle\llbracket \Gamma \rrbracket_{h}(\eta), a\right\rangle\right)=a \ngtr \mathscr{I}\left(Y,{ }_{-}\right)$. Hence, it is sufficient to take $a=\mathbf{0}$ (i.e., the initial object of $\mathscr{\mathscr { I }}$ ) to obtain the thesis.

## B.4 Proof of Corollary 4.1

1. First of all we have that $X \Vdash_{\Gamma, \eta} \neg p$ stands for $X \Vdash_{\Gamma, \eta} p \Rightarrow \perp$, which is equivalent (by Theorem 4.1) to $X \Vdash_{\Gamma, \eta} p$ implies $X \Vdash_{\Gamma, \eta} \perp$. Obviously, this is true if and only if $X \Vdash_{\Gamma, \eta} \perp$ or it is not the case that $X \Vdash_{\Gamma, \eta} p$.
$(\Rightarrow)$ Since by Proposition 4.1 it is not the case that $X \Vdash_{\Gamma, \eta} \perp$, it must be not the case that $X \Vdash_{\Gamma, \eta} p$ (by the preliminary observation), i.e., the thesis.
$(\Leftarrow)$ Since, by hypothesis, it is not the case that $X \Vdash_{\Gamma, \eta} p$, we automatically have (by the preliminary observation) that $X \Vdash_{\Gamma, \eta} \neg$ p.
2. By definition of $\wedge$, the previous item and Theorem 4.1, we have:

$$
\begin{array}{lll}
X \vdash_{\Gamma, \eta} p \wedge q & \text { iff } & X \Vdash_{\Gamma, \eta} \neg(p \Rightarrow \neg q) \\
& \text { iff } & \text { it is not the case that } X \vdash_{\Gamma, \eta} p \Rightarrow \neg q \\
& \text { iff } & X \Vdash_{\Gamma, \eta} p \text { and it is not the case that } X \vdash_{\Gamma, \eta} \neg q \\
\text { iff } & X \vdash_{\Gamma, \eta} p \text { and } X \vdash_{\Gamma, \eta} q
\end{array}
$$

3. By definition of $\vee$, point 1 and Theorem 4.1, we have:

$$
\begin{array}{lll}
X \Vdash_{\Gamma, \eta} p \vee q & \text { iff } & X \Vdash_{\Gamma, \eta} \neg p \Rightarrow q \\
& \text { iff } & X \vdash_{\Gamma, \eta} \neg p \text { implies } X \Vdash_{\Gamma, \eta} q \\
& \text { iff } & \text { it is not the case that } X \Vdash_{\Gamma, \eta} \neg p \text { or } X \Vdash_{\Gamma, \eta} q \\
& \text { iff } & X \vdash_{\Gamma, \eta} p \text { or } X \vdash_{\Gamma, \eta} q
\end{array}
$$

4. By definition of $\exists$, point 1 and Theorem 4.1, we have:

$$
\begin{array}{lll}
X \Vdash_{\Gamma, \eta} \exists x^{\sigma} . p & \text { iff } & X \Vdash_{\Gamma, \eta} \neg \forall x^{\sigma} \cdot \neg p \\
& \text { iff } & \text { it is not the case that } X \Vdash_{\Gamma, \eta} \forall x^{\sigma} . \neg p \\
& \text { iff } & \text { there are } Y, h \in \mathscr{I}(X, Y) \text { and } a \in \llbracket \sigma \rrbracket_{Y} \text { such that } \\
& \text { it is not the case that } Y \Vdash_{(\Gamma, x: \sigma),\left\langle\llbracket \Gamma \rrbracket_{h}(\eta), a\right\rangle} \neg p \\
& \text { iff } & \text { there are } Y, h \in \mathscr{I}(X, Y) \text { and } a \in \llbracket \sigma \rrbracket_{Y} \text { such that } \\
& Y \Vdash_{(\Gamma, x: \sigma),\left\langle\llbracket \Gamma \rrbracket_{h(\eta), a\rangle} p\right.}
\end{array}
$$

5. The proof will proceed by induction on $n$ :
(Base case) $n=1$ : we have to prove that $X \Vdash_{\Gamma, \eta} \forall x_{1}^{\sigma_{1}} . p$ if and only if for all $Y, f \in \mathscr{I}(X, Y)$ and $\eta_{1} \in \llbracket \sigma_{1} \rrbracket_{Y}$, we have that $Y \Vdash_{\left(\Gamma, x_{1}: \sigma_{1}\right),\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{1}\right\rangle} p$ holds. This is straightforward by point 1 of Theorem 4.1.
(Inductive case) let us suppose that the thesis holds for $n$; we will prove that it also holds for $n+1$. First of all we apply point 1 of Theorem 4.1 to obtain the following: $X \Vdash_{\Gamma, \eta} \forall x_{1}^{\sigma_{1}} . \forall x_{2}^{\sigma_{2}} \ldots \forall x_{n+1}^{\sigma_{n+1}} p$ if and only if for all $Y, f \in \mathscr{I}(X, Y)$, $\eta_{1} \in \llbracket \sigma_{1} \rrbracket_{Y} Y \Vdash_{\left(\Gamma, x_{1}: \sigma_{1}\right),\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{1}\right\rangle} \forall x_{2}^{\sigma_{2}} \ldots \forall x_{n+1}^{\sigma_{n+1}} p$ holds. Then we may apply the inductive hypothesis to deduce that the previous forcing statement holds if and only if for all $Z, g \in \mathscr{I}(Y, Z), \eta_{2} \in \llbracket \sigma_{2} \rrbracket_{Z}, \ldots, \eta_{n+1} \in \llbracket \sigma_{n+1} \rrbracket_{z}$ we have that the following holds:

$$
Z \Vdash_{\left(\Gamma, x_{1}: \sigma_{1}, x_{2}: \sigma_{2}, \ldots, x_{n+1}: \sigma_{n+1}\right),\left\langle\left[\Gamma, x_{1}: \sigma_{1} \rrbracket_{g}\left(\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{1}\right\rangle\right), \eta_{2}, \ldots, \eta_{n+1}\right\rangle\right.} p .
$$

Then we observe that

$$
\left.\llbracket \Gamma, x_{1}: \sigma_{1} \rrbracket_{g}\left(\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{1}\right\rangle\right)=\left\langle\llbracket \Gamma \rrbracket_{g \circ f}(\eta), \llbracket x_{1}: \sigma_{1} \rrbracket_{g}\left(\eta_{1}\right)\right\rangle\right) .
$$

Hence we can easily conclude by taking $Z=Y$ and $g=\mathrm{id}_{Y}$ :

$$
Y \Vdash_{\left(\Gamma, x_{1}: \sigma_{1}, \ldots, x_{n+1}: \sigma_{n+1}\right),\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{1}, \eta_{2}, \ldots, \eta_{n+1}\right\rangle} p
$$

## B.5 Proof of Theorem 4.4

1. In this case we have to prove that $\Gamma \triangleright_{\Sigma}(p \Rightarrow q \Rightarrow r) \Rightarrow(p \Rightarrow q) \Rightarrow p \Rightarrow r$ holds, i.e., that for all $X, \eta \in \llbracket \Gamma \rrbracket_{X}$ we have

$$
X \Vdash_{\Gamma, \eta}(p \Rightarrow q \Rightarrow r) \Rightarrow(p \Rightarrow q) \Rightarrow p \Rightarrow r .
$$

By Theorem 4.1, this is equivalent to prove that $X \vdash_{\Gamma, \eta}(p \Rightarrow q \Rightarrow r), X \vdash_{\Gamma, \eta}$ $(p \Rightarrow q)$ and $X \Vdash_{\Gamma, \eta} p$ imply $X \Vdash_{\Gamma, \eta} r$. Hence, applying repeatedly Theorem 4.1, we can easily deduce that $X \Vdash_{\Gamma, \eta} q$ holds from $X \Vdash_{\Gamma, \eta}(p \Rightarrow q)$, since we know that $X \Vdash_{\Gamma, \eta} p$ holds. At this point we can easily conclude, applying again Theorem 4.1, since $X \Vdash_{\Gamma, \eta} r$ derives from $X \Vdash_{\Gamma, \eta}(p \Rightarrow q \Rightarrow r), X \Vdash_{\Gamma, \eta} p$ and $X \Vdash_{\Gamma, \eta} q$.
2. By definition we have to prove that for all $X, \eta \in \llbracket \Gamma \rrbracket_{X}$ we have $X \Vdash_{\Gamma, \eta}$ $p \Rightarrow q \Rightarrow p$. By Theorem 4.1, this is equivalent to proving that $X \Vdash_{\Gamma, \eta} p$ and $X \Vdash_{\Gamma, \eta} q$ imply $X \Vdash_{\Gamma, \eta} q$. Hence the conclusion is trivial.
3. By definition we have to prove that for all $X, \eta \in \llbracket \Gamma \rrbracket_{X}$ we have $X \Vdash_{\Gamma, \eta}$ $\forall_{\sigma}(P) \Rightarrow P M$. By Theorem 4.1, this is equivalent to prove that $X \Vdash_{\Gamma, \eta} \forall_{\sigma}(P)$ implies $X \vdash_{\Gamma, \eta} P M$. But $X \vdash_{\Gamma, \eta} \forall_{\sigma}(P)$ is equivalent to saying that, for all $Y$, $f \in \mathscr{I}(X, Y)$ and $a \in \llbracket \sigma \rrbracket_{Y}, Y \Vdash_{(\Gamma, x: \sigma),\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), a\right\rangle} P x$ holds. Hence, taking $Y \triangleq X$, $f \triangleq \operatorname{id}_{X}$ and $a \triangleq \llbracket \Gamma \vdash_{\Sigma} M: \sigma \rrbracket_{X}(\eta)$, we have that $X \vdash_{(\Gamma, x: \sigma),\left\langle\eta, \llbracket \Gamma \vdash_{\Sigma} M: \sigma \rrbracket_{X}(\eta)\right\rangle} P x$ holds. By Theorem 4.1, this is equivalent to say that

$$
\begin{aligned}
& \left(\llbracket \Gamma, x: \sigma \vdash_{\Sigma} P: \sigma \rightarrow o \rrbracket_{X}\left(\left\langle\eta, \llbracket \Gamma \vdash_{\Sigma} M: \sigma \rrbracket_{X}(\eta)\right\rangle\right)\right)_{X} \\
& \quad\left(\left\langle\operatorname{id}_{X}, \llbracket \Gamma, x: \sigma \vdash_{\Sigma} x: \sigma \rrbracket_{X}\left(\left\langle\eta, \llbracket \Gamma \vdash_{\Sigma} M: \sigma \rrbracket_{X}(\eta)\right\rangle\right)\right\rangle\right) \geqslant \mathscr{I}(X,-) .
\end{aligned}
$$

Now we observe that

$$
\begin{aligned}
& \left(\llbracket \Gamma, x: \sigma \vdash_{\Sigma} P: \sigma \rightarrow o \rrbracket_{X}\left(\left\langle\eta, \llbracket \Gamma \vdash_{\Sigma} M: \sigma \rrbracket_{X}(\eta)\right\rangle\right)\right)_{X} \\
& \quad\left(\left\langle\operatorname{id}_{X}, \llbracket \Gamma, x: \sigma \vdash_{\Sigma} x: \sigma \rrbracket_{X}\left(\left\langle\eta, \llbracket \Gamma \vdash_{\Sigma} M: \sigma \rrbracket_{X}(\eta)\right\rangle\right)\right\rangle\right) \\
& =\left(\llbracket \Gamma, x: \sigma \vdash_{\Sigma} P: \sigma \rightarrow o \rrbracket_{X}\left(\left\langle\eta, \llbracket \Gamma \vdash_{\Sigma} M: \sigma \rrbracket_{X}(\eta)\right\rangle\right)\right)_{X}\left(\left\langle\operatorname{id}_{X}, \llbracket \Gamma \vdash_{\Sigma} M: \sigma \rrbracket_{X}(\eta)\right\rangle\right) \\
& =\left(\llbracket \Gamma \vdash_{\Sigma} P: \sigma \rightarrow o \rrbracket_{X}(\eta)\right)_{X}\left(\left\langle\operatorname{id}_{X}, \llbracket \Gamma \vdash_{\Sigma} M: \sigma \rrbracket_{X}(\eta)\right\rangle\right) .
\end{aligned}
$$

Hence, applying again Theorem 4.1, we have proved that $X \vdash_{\Gamma, \eta} P M$ holds.
4. By definition we have to prove that for all $X, \eta \in \llbracket \Gamma \rrbracket_{X}$ we have $X \Vdash_{\Gamma, \eta}$ $\left(\lambda x^{\sigma} \cdot M\right) N={ }^{\sigma^{\prime}} M[N / x]$. First of all we notice that the following holds:

$$
\begin{aligned}
& \llbracket \Gamma \vdash_{\Sigma}\left(\lambda x^{\sigma} \cdot M\right) N \rrbracket_{X}(\eta)= \\
& =\left(e v_{\llbracket \sigma \rrbracket \rrbracket \rrbracket^{\prime} \rrbracket}\right)_{X}\left(\left\langle\llbracket \Gamma \vdash_{\Sigma} N: \sigma \rrbracket_{X}(\eta), \llbracket \Gamma \vdash_{\Sigma} \lambda x^{\sigma} \cdot M: \sigma \rightarrow \sigma^{\prime} \rrbracket_{X}(\eta)\right\rangle\right) \\
& =\left(\llbracket \Gamma \vdash_{\Sigma} \lambda x^{\sigma} \cdot M: \sigma \rightarrow \sigma^{\prime} \rrbracket_{X}(\eta)\right)_{X}\left(\left\langle\mathrm{id}_{X}, \llbracket \Gamma \vdash_{\Sigma} N: \sigma \rrbracket_{X}(\eta)\right\rangle\right) \\
& =\llbracket \Gamma, x: \sigma \vdash_{\Sigma} M: \sigma^{\prime} \rrbracket_{X}\left(\left\langle\eta, \llbracket \Gamma \vdash_{\Sigma} N: \sigma \rrbracket_{X}(\eta)\right\rangle\right)
\end{aligned}
$$

Now, we can proceed by structural induction on $M$ :
$(M \equiv y \neq x)$ : Trivial.
$(M \equiv x)$ : Trivial.
$(M \equiv P Q)$ : The following holds:

$$
\begin{aligned}
& \llbracket \Gamma \vdash_{\Sigma}(P Q)[N / x]: \sigma^{\prime} \rrbracket_{X}(\eta)= \\
& =\llbracket \Gamma \vdash_{\Sigma} P[N / x] Q[N / x]: \sigma^{\prime} \rrbracket_{X}(\eta) \\
& =\left(e v_{\llbracket \gamma \eta} \rrbracket, \sigma^{\prime} \rrbracket\right)_{X}\left(\left\langle\llbracket \Gamma \vdash_{\Sigma} Q[N / x]: \gamma \rrbracket_{X}(\eta), \llbracket \Gamma \vdash_{\Sigma} P[N / x]: \gamma \rightarrow \sigma^{\prime} \rrbracket_{X}(\eta)\right\rangle\right) \\
& =\left(\llbracket \Gamma \vdash_{\Sigma} P[N / x]: \gamma \rightarrow \sigma^{\prime} \rrbracket_{X}(\eta)\right)_{X}\left(\left\langle\mathrm{id}_{X}, \llbracket \Gamma \vdash_{\Sigma} Q[N / x]: \gamma \rrbracket_{X}(\eta)\right\rangle\right) \\
& \stackrel{(1 . H)}{=}\left(\llbracket \Gamma, \vdash_{\Sigma}\left(\lambda x^{\sigma} . P\right) N: \gamma \rightarrow \sigma^{\prime} \rrbracket_{X}(\eta)\right)_{X}\left(\left\langle\operatorname{id}_{X}, \llbracket \Gamma \vdash_{\Sigma}\left(\lambda x^{\sigma} . Q\right) N: \gamma \rrbracket_{X}(\eta)\right\rangle\right)
\end{aligned}
$$

Moreover, we have that:

$$
\begin{aligned}
& \llbracket \Gamma, x: \sigma \vdash_{\Sigma} M: \sigma^{\prime} \rrbracket_{X}\left(\left\langle\eta, \llbracket \Gamma \vdash_{\Sigma} N: \sigma \rrbracket_{X}(\eta)\right\rangle\right)= \\
& =\llbracket \Gamma, x: \sigma \vdash_{\Sigma} P Q: \sigma^{\prime} \rrbracket_{X}\left(\left\langle\eta, \llbracket \Gamma \vdash_{\Sigma} N: \sigma \rrbracket_{X}(\eta)\right\rangle\right) \\
& =\left(e v_{\llbracket \gamma \rrbracket, \llbracket \sigma^{\prime} \rrbracket}\right)_{X}(\langle A, B\rangle) \\
& =(B)_{X}\left(\left\langle\mathrm{id}_{X}, A\right\rangle\right)
\end{aligned}
$$

where $A \triangleq \llbracket \Gamma, x: \sigma \vdash_{\Sigma} Q: \gamma \rrbracket_{X}(\eta)\left(\left\langle\eta, \llbracket \Gamma \vdash_{\Sigma} N: \sigma \rrbracket_{X}(\eta)\right\rangle\right)$ and $B \triangleq \llbracket \Gamma, x: \sigma \vdash_{\Sigma}$ $P: \gamma \rightarrow \sigma^{\prime} \rrbracket_{X}(\eta)\left(\left\langle\eta, \llbracket \Gamma \vdash_{\Sigma} N: \sigma \rrbracket_{X}(\eta)\right\rangle\right)$. Hence we may conclude since we have

$$
\begin{aligned}
& \llbracket \Gamma \vdash_{\Sigma}\left(\lambda x^{\sigma} \cdot Q\right) N: \gamma \rrbracket_{X}(\eta)= \\
& =\llbracket \Gamma, x: \sigma \vdash_{\Sigma} Q: \gamma \rrbracket_{X}(\eta)\left(\left\langle\eta, \llbracket \Gamma \vdash_{\Sigma} N: \sigma \rrbracket_{X}(\eta)\right\rangle\right)=A
\end{aligned}
$$

and

$$
\begin{aligned}
& \llbracket \Gamma, \vdash_{\Sigma}\left(\lambda x^{\sigma} . P\right) N: \gamma \rightarrow \sigma^{\prime} \rrbracket_{X}(\eta)= \\
& =\llbracket \Gamma, x: \sigma \vdash_{\Sigma} P: \gamma \rightarrow \sigma^{\prime} \rrbracket_{X}(\eta)\left(\left\langle\eta, \llbracket \Gamma \vdash_{\Sigma} N: \sigma \rrbracket_{X}(\eta)\right\rangle\right)=B
\end{aligned}
$$

$\left(M \equiv \lambda z^{\gamma} . P\right.$ with $\left.x \neq z\right)$ : In this case $\sigma^{\prime} \equiv \gamma \rightarrow \delta$; hence the following holds (since we identify terms up-to $\alpha$-conversion, without loss of generality, we can
assume that $z$ does not occur in $N$ ):

$$
\begin{aligned}
& \llbracket \Gamma \vdash_{\Sigma}\left(\lambda z^{\gamma} . P\right)[N / x]: \sigma^{\prime} \rrbracket_{X}(\eta)= \\
& =\llbracket \Gamma \vdash_{\Sigma}\left(\lambda z^{\gamma} \cdot P[N / x]\right): \sigma^{\prime} \rrbracket_{X}(\eta) \\
& =\left\{\lambda\langle f, b\rangle \in \mathscr{V}(X, Y) \times \llbracket \gamma \rrbracket_{Y} \cdot \llbracket \Gamma, z: \gamma \vdash_{\Sigma} P[N / x]: \delta \rrbracket_{Y}(\mu)\right\}_{Y \in \mathscr{V}} \\
& \stackrel{([. H),}{=}\left\{\lambda\langle f, b\rangle \in \mathscr{V}(X, Y) \times \llbracket \gamma \rrbracket_{Y} \cdot \llbracket \Gamma, z: \gamma \vdash_{\Sigma}\left(\lambda x^{\sigma} . P\right) N: \delta \rrbracket_{Y}(\mu)\right\}_{Y \in \mathscr{V}}
\end{aligned}
$$

where $\mu \triangleq\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), b\right\rangle$. Moreover, we have

$$
\begin{aligned}
& \llbracket \Gamma, z: \gamma \vdash_{\Sigma}\left(\lambda x^{\sigma} . P\right) N: \delta \rrbracket_{Y}(\mu)= \\
& =\left(e v_{\llbracket \sigma \rrbracket \rrbracket \rrbracket}\right)_{Y}\left(\left\langle\llbracket \Gamma, z: \gamma \vdash_{\Sigma} N: \sigma \rrbracket_{Y}(\mu), \llbracket \Gamma, z: \gamma \vdash_{\Sigma} \lambda x^{\sigma} . P: \sigma \rightarrow \delta \rrbracket_{Y}(\mu)\right\rangle\right) \\
& =\left(\llbracket \Gamma, z: \gamma \vdash_{\Sigma} \lambda x^{\sigma} . P: \sigma \rightarrow \delta \rrbracket_{Y}(\mu)\right)_{Y}\left(\left\langle\operatorname{id}_{Y}, \llbracket \Gamma, z: \gamma \vdash_{\Sigma} N: \sigma \rrbracket_{Y}(\mu)\right\rangle\right) \\
& =\llbracket \Gamma, z: \gamma, x: \sigma \vdash_{\Sigma} P: \delta \rrbracket_{Y}\left(\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), b, \llbracket \Gamma, z: \gamma \vdash_{\Sigma} N: \sigma \rrbracket_{Y}(\mu)\right\rangle\right) \\
& =\llbracket \Gamma, x: \sigma, z: \gamma \vdash_{\Sigma} P: \delta \rrbracket_{Y}\left(\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \llbracket \Gamma, z: \gamma \vdash_{\Sigma} N: \sigma \rrbracket_{Y}(\mu), b\right\rangle\right)
\end{aligned}
$$

For what concerns $\llbracket \Gamma, x: \sigma \vdash_{\Sigma} M: \sigma^{\prime} \rrbracket_{X}\left(\left\langle\eta, \llbracket \Gamma \vdash_{\Sigma} N: \sigma \rrbracket_{X}(\eta)\right\rangle\right)$, we have the following:

$$
\begin{aligned}
& \llbracket \Gamma, x: \sigma \vdash_{\Sigma} M: \sigma^{\prime} \rrbracket_{X}\left(\left\langle\eta, \llbracket \Gamma \vdash_{\Sigma} N: \sigma \rrbracket_{X}(\eta)\right\rangle\right)= \\
& =\llbracket \Gamma, x: \sigma \vdash_{\Sigma} \lambda z^{\gamma} \cdot P: \sigma^{\prime} \rrbracket_{X}\left(\left\langle\eta, \llbracket \Gamma \vdash_{\Sigma} N: \sigma \rrbracket_{X}(\eta)\right\rangle\right) \\
& =\left\{\lambda\langle f, b\rangle \in \mathscr{V}(X, Y) \times \llbracket \gamma \rrbracket_{Y} \cdot m_{Y}\left(\left\langle\llbracket \Gamma, x: \sigma \rrbracket_{f}\left(\left\langle\eta, \llbracket \Gamma \vdash_{\Sigma} N: \sigma \rrbracket_{X}(\eta)\right\rangle\right), b\right\rangle\right)\right\}_{Y \in \mathscr{V}} \\
& =\left\{\lambda\langle f, b\rangle \in \mathscr{V}(X, Y) \times \llbracket \gamma \rrbracket_{Y} \cdot m_{Y}\left(\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \llbracket \Gamma \vdash_{\Sigma} N: \sigma \rrbracket_{Y}\left(\llbracket \Gamma \rrbracket_{f}(\eta)\right), b\right\rangle\right)\right\}_{Y \in \mathscr{V}} \\
& =\left\{\lambda\langle f, b\rangle \in \mathscr{V}(X, Y) \times \llbracket \gamma \rrbracket_{Y} \cdot m_{Y}\left(\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \beta, b\right\rangle\right)\right\}_{Y \in \mathscr{V}}
\end{aligned}
$$

where $m \triangleq \llbracket \Gamma, x: \sigma, z: \gamma \vdash_{\Sigma} P: \delta \rrbracket$ and $\beta \triangleq \llbracket \Gamma, z: \gamma \vdash_{\Sigma} N: \sigma \rrbracket_{Y}\left(\llbracket \Gamma \rrbracket_{f}(\eta), b\right)$; in the fourth step we exploited the naturality of $\llbracket \Gamma \vdash_{\Sigma} N: \sigma \rrbracket$ since $\llbracket x$ : $\sigma \rrbracket_{f}\left(\llbracket \Gamma \vdash_{\Sigma} N: \sigma \rrbracket_{X}(\eta)\right)=\llbracket \Gamma \vdash_{\Sigma} N: \sigma \rrbracket_{Y}\left(\llbracket \Gamma \rrbracket_{f}(\eta)\right)$ and the weakening rule. Hence we have the thesis.
5. In this case we have to prove that for all $X, \eta \in \llbracket \Gamma \rrbracket_{X}$ we have

$$
X \Vdash_{\Gamma, \eta}\left(\forall x^{\sigma} . M==^{\sigma^{\prime}} N\right) \Rightarrow \lambda x^{\sigma} . M=\lambda x^{\sigma^{\prime}} . N,
$$

i.e., by Corollary 4.1, that $X \vdash_{\Gamma, \eta}\left(\forall x^{\sigma} . M={ }^{\sigma^{\prime}} N\right)$ implies

$$
X \Vdash_{\Gamma, \eta} \lambda x^{\sigma} . M={ }^{\sigma \rightarrow \sigma^{\prime}} \lambda x^{\sigma} . N .
$$

First, we observe the following:

$$
\llbracket \Gamma \vdash_{\Sigma} \lambda x^{\sigma} . M \rrbracket_{X}(\eta)=\left\{\lambda\langle f, b\rangle \in \mathscr{V}(X, Y) \times \llbracket \sigma \rrbracket_{Y} \cdot m_{Y}\left(\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), b\right\rangle\right)\right\}_{Y \in \mathscr{V}},
$$

where $m \triangleq \llbracket \Gamma, x: \sigma \vdash_{\Sigma} M: \sigma^{\prime} \rrbracket$. Similarly, we have:

$$
\llbracket \Gamma \vdash_{\Sigma} \lambda x^{\sigma} . N \rrbracket_{X}(\eta)=\left\{\lambda\langle f, b\rangle \in \mathscr{V}(X, Y) \times \llbracket \sigma \rrbracket_{Y} \cdot n_{Y}\left(\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), b\right\rangle\right)\right\}_{Y \in \mathscr{V}},
$$

where $n \triangleq \llbracket \Gamma, x: \sigma \vdash_{\Sigma} N: \sigma^{\prime} \rrbracket$. Hence, in order to conclude, it is sufficient to show that $m=n$, i.e., that, for every $Y \in \mathscr{V}, f \in \mathscr{V}(X, Y)$ and $b \in \llbracket \sigma \rrbracket_{Y}$, $\llbracket \Gamma, x: \sigma \vdash_{\Sigma} M: \sigma^{\prime} \rrbracket(\langle f, b\rangle)=\llbracket \Gamma, x: \sigma \vdash_{\Sigma} N: \sigma^{\prime} \rrbracket_{Y}(\langle f, b\rangle)$. Hence, observing that our hypothesis is equivalent (by Theorem 4.1) to say that for all $Y \in \mathscr{V}$, $h \in \mathscr{I}(X, Y), \eta_{x} \in \llbracket \sigma \rrbracket_{Y}, Y \Vdash_{(\Gamma, x: \sigma),\left\langle\llbracket \Gamma \rrbracket_{h}(\eta), \eta_{x}\right\rangle} M=\sigma^{\sigma^{\prime}} N$ holds, we can conclude by the same argument used in the proof of Theorem 4.3.
6. By Theorem 4.2 we have to show that for all $X, \eta \in \llbracket \Gamma \rrbracket_{X}$ the following holds:

$$
\llbracket \Gamma \vdash_{\Sigma} \lambda x^{\sigma} . M x: \sigma \rightarrow \sigma^{\prime} \rrbracket_{X}(\eta)=\llbracket \Gamma \vdash_{\Sigma} M: \sigma \rightarrow \sigma^{\prime} \rrbracket_{X}(\eta) .
$$

Since the members of the latter equation are natural transformations between the functors $\mathscr{V}(X,-) \times \llbracket \sigma \rrbracket$ and $\llbracket \sigma^{\prime} \rrbracket$, the thesis is equivalent to prove that the following holds for every $Y, f \in \mathscr{V}(X, Y)$ and $b \in \llbracket \sigma \rrbracket_{Y}$ :

$$
\left(\llbracket \Gamma \vdash_{\Sigma} \lambda x^{\sigma} . M x: \sigma \rightarrow \sigma^{\prime} \rrbracket_{X}(\eta)\right)_{Y}(\langle f, b\rangle)=\left(\llbracket \Gamma \vdash_{\Sigma} M: \sigma \rightarrow \sigma^{\prime} \rrbracket_{X}(\eta)\right)_{Y}(\langle f, b\rangle) .
$$

Indeed, we have:

$$
\begin{aligned}
& \left(\llbracket \Gamma \vdash_{\Sigma} \lambda x^{\sigma} \cdot M x: \sigma \rightarrow \sigma^{\prime} \rrbracket_{X}(\eta)\right)_{Y}(\langle f, b\rangle)= \\
& =\llbracket \Gamma, x: \sigma \vdash_{\Sigma} M x: \sigma^{\prime} \rrbracket_{Y}\left(\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), b\right\rangle\right) \\
& =\left(e v_{\llbracket \sigma \rrbracket, \llbracket \sigma^{\prime} \rrbracket}\right)_{Y}\left(\left\langle b, \llbracket \Gamma, x: \sigma \vdash_{\Sigma} M: \sigma \rightarrow \sigma^{\prime} \rrbracket_{Y}\left(\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), b\right\rangle\right)\right\rangle\right) \\
& =\left(\llbracket \Gamma, x: \sigma \vdash_{\Sigma} M: \sigma \rightarrow \sigma^{\prime} \rrbracket_{Y}\left(\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), b\right\rangle\right)\right)_{Y}\left(\left\langle\mathrm{id}_{Y}, b\right\rangle\right) \\
& =\left(\llbracket \Gamma \vdash_{\Sigma} M: \sigma \rightarrow \sigma^{\prime} \rrbracket_{Y}\left(\llbracket \Gamma \rrbracket_{f}(\eta)\right)\right)_{Y}\left(\left\langle\operatorname{id}_{Y}, b\right\rangle\right) \\
& =\left(\left(\llbracket \sigma \rrbracket \Rightarrow \llbracket \sigma^{\prime} \rrbracket\right)_{f}\left(\llbracket \Gamma \vdash_{\Sigma} M: \sigma \rightarrow \sigma^{\prime} \rrbracket_{X}(\eta)\right)\right)_{Y}\left(\left\langle\operatorname{id}_{Y}, b\right\rangle\right) \\
& =\left(\llbracket \Gamma \vdash_{\Sigma} M: \sigma \rightarrow \sigma^{\prime} \rrbracket_{X}(\eta)\right)_{Y}(\langle f, b\rangle) .
\end{aligned}
$$

7. We have to show that for all $X, \eta \in \llbracket \Gamma \rrbracket_{X} X \Vdash_{\Gamma, \eta} \neg \neg p \Rightarrow p$ holds. By Theorem 4.1, this is equivelent to prove that $X \Vdash_{\Gamma, \eta} \neg \neg p$ implies $X \Vdash_{\Gamma, \eta} p$. By Corollary 4.1, the premise means that it is not the case that $X \Vdash_{\Gamma, \eta} \neg p$ holds. Applying again the same corollary, we have that it is not the case that $X \Vdash_{\Gamma, \eta} p$ does not hold, i.e., the thesis.
8. In this case the thesis follows directly from Theorem 4.1.
9. By Theorem 4.1, the premise is equivalent to say that for all $X$ and $\eta \in \llbracket \Gamma, x$ : $\sigma \rrbracket_{X} X \Vdash_{(\Gamma, x: \sigma), \eta} p$ implies $X \Vdash_{(\Gamma, x: \sigma), \eta} q$. To prove that the thesis holds it suffices to show, by Theorem 4.1, that for all $Y$ and $\mu \in \llbracket \Gamma \rrbracket_{Y} Y \Vdash_{\Gamma, \mu} p$ implies $Y \Vdash_{\Gamma, \mu} \forall x^{\sigma} . q$. The latter, again by Theorem 4.1, is equivalent to show that for all $Z, f \in \mathscr{I}(Y, Z)$ and $a \in \llbracket \sigma \rrbracket_{Z}$
$Z \Vdash_{(\Gamma, x: \sigma),\left\langle\left[\Gamma \rrbracket_{f}(\mu), a\right\rangle\right.} q$ holds. From the validity of $Y \Vdash_{\Gamma, \mu} p$, by the monotonicity of forcing, we can deduce that, for all $Z$ and $f \in \mathscr{I}(Y, Z), Z \Vdash_{\Gamma, \llbracket \Gamma \rrbracket_{f}(\mu)} p$ holds. By the weakening rule, we also have that, for all $a \in \llbracket \sigma \rrbracket_{Z}$, $Z \Vdash_{(\Gamma, x: \sigma),\left\langle\llbracket \Gamma \rrbracket_{f}(\mu), a\right\rangle} p$ holds. Hence we can apply the premise to conclude that $Z \Vdash_{(\Gamma, x: \sigma),\left\langle\llbracket \Gamma \rrbracket_{f}(\mu), a\right\rangle} q$ holds.

## B.6 Proof of Theorem 4.5

$(\Rightarrow)$ By structural induction on the derivation of $\Gamma \vdash_{\Sigma} M: \imath$ :
$\left(\Gamma \vdash_{\Sigma} 0: \imath\right)$ Since we have $\llbracket \Gamma \vdash_{\Sigma} 0: \imath \rrbracket_{X}(\eta)=0$, we can easily conclude observing that $F V(0)=\emptyset$.
$\left(\Gamma \vdash_{\Sigma} \tau . P: \imath\right)$ Hence the previous derivation step yields $\Gamma \vdash_{\Sigma} P: \imath$. By inductive hypothesis we have that $\llbracket \Gamma \vdash_{\Sigma} y: v \rrbracket_{X}(\eta) \notin F V\left(\llbracket \Gamma \vdash_{\Sigma} P: \imath \rrbracket_{X}(\eta)\right)$. Hence we can deduce that $\llbracket \Gamma \vdash_{\Sigma} y: v \rrbracket_{X}(\eta) \notin F V\left(\tau \cdot \llbracket \Gamma \vdash_{\Sigma} P: \imath \rrbracket_{X}(\eta)\right)$. The thesis is an easy
consequence observing the following:

$$
\begin{aligned}
\tau . \llbracket \Gamma \vdash_{\Sigma} P: \imath \rrbracket_{X}(\eta) & =\operatorname{tau}\left(\llbracket \Gamma \vdash_{\Sigma} P: \imath \rrbracket_{X}(\eta)\right) \\
& =\left(\operatorname{tau} \circ \llbracket \Gamma \vdash_{\Sigma} P: \imath \rrbracket\right)_{X}(\eta) \triangleq \llbracket \Gamma \vdash_{\Sigma} \tau . P: \imath \rrbracket_{X}(\eta) .
\end{aligned}
$$

$\left(\Gamma \vdash_{\Sigma} P \mid Q: \imath\right)$ Hence the previous derivation step yields $\Gamma \vdash_{\Sigma} P_{1}: \imath$ and $\Gamma \vdash_{\Sigma} P_{2}$ : . By inductive hypothesis we have $\llbracket \Gamma \vdash_{\Sigma} y: v \rrbracket_{X}(\eta) \notin F V\left(\llbracket \Gamma \vdash_{\Sigma} P: \imath \rrbracket_{X}(\eta)\right)$ and $\llbracket \Gamma \vdash_{\Sigma} y: v \rrbracket_{X}(\eta) \notin F V\left(\llbracket \Gamma \vdash_{\Sigma} Q: \imath \rrbracket_{X}(\eta)\right)$. Hence we can deduce that $\llbracket \Gamma \vdash_{\Sigma} y: v \rrbracket_{X}(\eta) \notin F V\left(\llbracket \Gamma \vdash_{\Sigma} P: \imath \rrbracket_{X}(\eta) \mid \llbracket \Gamma \vdash_{\Sigma} Q: \imath \rrbracket_{X}(\eta)\right)$. The thesis is an easy consequence observing the following:

$$
\begin{aligned}
\llbracket \Gamma \vdash_{\Sigma} P: l \rrbracket_{X}(\eta) \mid \llbracket \Gamma \vdash_{\Sigma} Q: \imath \rrbracket_{X}(\eta) & =\operatorname{par}_{X}\left(\left\langle\llbracket \Gamma \vdash_{\Sigma} P: \imath \rrbracket_{X}(\eta), \llbracket \Gamma \vdash_{\Sigma} Q: \imath \rrbracket_{X}(\eta)\right\rangle\right) \\
& =\left(\operatorname{par} \circ\left\langle\llbracket \Gamma \vdash_{\Sigma} P: \imath \rrbracket, \llbracket \Gamma \vdash_{\Sigma} Q: \imath \rrbracket\right\rangle\right)_{X}(\eta) \\
& =\llbracket \Gamma \vdash_{\Sigma} P \mid Q: \imath \rrbracket_{X}(\eta) .
\end{aligned}
$$

$\left(\Gamma \vdash_{\Sigma}[u \neq v] P: \imath\right)$ Hence the previous derivation step yields $\Gamma \vdash_{\Sigma} P: \imath$. By inductive hypothesis $\llbracket \Gamma \vdash_{\Sigma} y: v \rrbracket_{X}(\eta) \notin F V\left(\llbracket \Gamma \vdash_{\Sigma} P: l \rrbracket_{X}(\eta)\right)$; moreover, $\llbracket \Gamma \vdash_{\Sigma} y: v \rrbracket_{X}(\eta) \neq \llbracket \Gamma \vdash_{\Sigma} u: v \rrbracket_{X}(\eta)$ and $\llbracket \Gamma \vdash_{\Sigma} y: v \rrbracket_{X}(\eta) \neq \llbracket \Gamma \vdash_{\Sigma} v: v \rrbracket_{X}(\eta)$. Hence we can deduce that $\llbracket \Gamma \vdash_{\Sigma} y: v \rrbracket_{X}(\eta) \notin F V\left(\llbracket \Gamma \vdash_{\Sigma} P: l \rrbracket_{X}(\eta)\right) \cup\left\{\llbracket \Gamma \vdash_{\Sigma}\right.$ $u: v \rrbracket_{X}(\eta)$, $\left.\llbracket \Gamma \vdash_{\Sigma} v: v \rrbracket_{X}(\eta)\right\}$. The thesis is an easy consequence observing the following:

$$
\begin{aligned}
& {\left[\llbracket \Gamma \vdash_{\Sigma} u: v \rrbracket_{X}(\eta) \neq \llbracket \Gamma \vdash_{\Sigma} v: v \rrbracket_{X}(\eta)\right] \llbracket \Gamma \vdash_{\Sigma} P: \imath \rrbracket_{X}(\eta)=} \\
& =\text { mismatch }_{X}\left(\left\langle\llbracket \Gamma \vdash_{\Sigma} u: v \rrbracket_{X}(\eta), \llbracket \Gamma \vdash_{\Sigma} v: v \rrbracket_{X}(\eta), \llbracket \Gamma \vdash_{\Sigma} P: \imath \rrbracket_{X}(\eta)\right\rangle\right) \\
& =\left(\text { mismatch } \circ\left\langle\llbracket \Gamma \vdash_{\Sigma} u: v \rrbracket, \llbracket \Gamma \vdash_{\Sigma} v: v \rrbracket, \llbracket \Gamma \vdash_{\Sigma} P: \imath \rrbracket\right\rangle\right)_{X}(\eta) \\
& \triangleq \llbracket \Gamma \vdash_{\Sigma}[u \neq v] P: \imath \rrbracket_{X}(\eta) .
\end{aligned}
$$

$\left(\Gamma \vdash_{\Sigma} v \lambda x^{0} . P: \imath\right)$ Hence a preceding derivation step yields $\Gamma, x: v \vdash_{\Sigma} P: l$. By inductive hypothesis $\llbracket \Gamma \vdash_{\Sigma} y: v \rrbracket_{X}(\eta) \notin F V\left(\llbracket \Gamma, x: v \vdash_{\Sigma} P: \imath \rrbracket_{X}\left(\left\langle\eta, \eta_{x}\right\rangle\right)\right)$ for all $\eta_{x} \neq \llbracket \Gamma \vdash_{\Sigma} y: v \rrbracket_{X}(\eta)$. Hence we can deduce that $\llbracket \Gamma \vdash_{\Sigma} y: v \rrbracket_{X}(\eta) \notin$ $F V\left(\left(v \eta_{x}\right)\left(\llbracket \Gamma, x: v \vdash_{\Sigma} P: \imath \rrbracket_{X}\left(\left\langle\eta, \eta_{x}\right\rangle\right)\right)\right)$, where $\eta_{x} \in \llbracket x: v \rrbracket_{X}$. Again, the thesis is a direct consequence of the following:

$$
\begin{aligned}
& \left(v \eta_{x}\right)\left(\llbracket \Gamma, x: v \vdash_{\Sigma} P: \imath \rrbracket_{X}\left(\left\langle\eta, \eta_{x}\right\rangle\right)\right) \\
& \left.=\left(v \eta_{x}\right)\left(\llbracket \Gamma \vdash_{\Sigma} \lambda x^{v} . P: v \rightarrow i \rrbracket_{X}(\eta)\right)_{X \uplus\{x\}}\left(\left\langle\operatorname{id}_{X}, \eta_{x}\right\rangle\right)\right) \\
& =n e w_{X}\left(\llbracket \Gamma \vdash_{\Sigma} \lambda x^{v} . P: v \rightarrow \imath \rrbracket_{X}(\eta)\right) \\
& =\left(\text { new } \circ \llbracket \Gamma \vdash_{\Sigma} \lambda x^{v} . P: v \rightarrow \imath \rrbracket\right)_{X}(\eta) \\
& \triangleq \llbracket \Gamma \vdash_{\Sigma} v \lambda x^{v} . P: \imath \rrbracket_{X}(\eta)
\end{aligned}
$$

$(\Leftarrow)$ Preliminary observation: we recall that $y \notin M$ is an abbreviation for

$$
\forall p^{v \rightarrow l \rightarrow o} \cdot\left(\forall z^{v} . \forall Q^{l} \cdot\left(T_{\notin} p z Q\right) \Rightarrow(p z Q)\right) \Rightarrow\left(\begin{array}{lll}
p y & \text { y }
\end{array}\right) .
$$

Hence, by point 1 of Theorem 4.1, in order to prove that $X \Vdash_{\Gamma, \eta} y \notin M$, we must show that for all $Y, f \in \mathscr{I}(X, Y)$ and $\eta_{p} \in \llbracket v \rightarrow i \rightarrow o \rrbracket_{Y}=(\text { Var } \Rightarrow \text { Proc } \Rightarrow \text { Prop })_{Y}$,

$$
Y \Vdash_{(\Gamma, p: v \rightarrow \rightarrow \rightarrow),\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{p}\right\rangle}\left(\forall z^{v} \cdot \forall Q^{l} \cdot\left(T_{\notin} p z Q\right) \Rightarrow(p z Q)\right) \Rightarrow(p y M)
$$

holds, i.e., by point 2 of Theorem 4.1, if and only if

$$
\begin{aligned}
& Y \Vdash_{(\Gamma, p: v \rightarrow l \rightarrow o),\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{p}\right\rangle} \forall z^{v} . \forall Q^{l} \cdot\left(T_{\notin} p z Q\right) \Rightarrow \\
& \text { implies } \quad(p z Q)
\end{aligned}
$$

So, we suppose that the premise is true and we show that the consequence also holds; by point 5 of Corollary 4.1, we can deduce that the premise is true if and only if for all $Z, g \in \mathscr{I}(Y, Z), \eta_{z} \in \operatorname{Var}_{Z} \triangleq Z$ and $\eta_{Q} \in \operatorname{Proc}_{Z}, Z \Vdash_{\Delta, \mu}\left(T_{\notin} p z Q\right) \Rightarrow(p z Q)$ holds, where $\Delta \triangleq(\Gamma, p: v \rightarrow \imath \rightarrow o, z: v, Q: \imath)$ and $\mu \triangleq\left\langle\llbracket \Gamma \rrbracket_{g \circ f}(\eta), \llbracket p: v \rightarrow \imath \rightarrow\right.$ $\left.o \rrbracket_{g}\left(\eta_{p}\right), \eta_{z}, \eta_{Q}\right\rangle$. In particular, taking $Z \triangleq Y, g \triangleq \operatorname{id}_{Y}, \eta_{z} \triangleq \llbracket \Gamma, p: v \rightarrow i \rightarrow o \vdash_{\Sigma} y:$ $v \rrbracket_{Y}\left(\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{p}\right\rangle\right)$ and $\eta_{Q} \triangleq \llbracket \Gamma, p: v \rightarrow \imath \rightarrow o \vdash_{\Sigma} M: \imath \rrbracket_{Y}\left(\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{p}\right\rangle\right)$, we have that the following holds:

$$
Y \Vdash_{(\Gamma, p: v \rightarrow l \rightarrow o, z: v, Q: Q),\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{p}, \eta_{z}, \eta_{Q}\right\rangle}\left(T_{\notin} p z Q\right) \Rightarrow(p z Q)
$$

This is equivalent, by Theorem 4.1, to say that

$$
\begin{aligned}
& Y \Vdash_{(\Gamma, p: v \rightarrow l \rightarrow o z z: 0, Q: l),\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{p}, \eta_{z}, \eta_{\eta}\right\rangle}\left(T_{\notin p} p z \quad Q\right) \\
& \text { implies } \quad Y \Vdash_{(\Gamma, p: v \rightarrow l \rightarrow o, z: 0, Q::),\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{p}, \eta_{z}, \eta_{Q}\right\rangle}(p z Q) .
\end{aligned}
$$

Since $\llbracket \Gamma, p: v \rightarrow l \rightarrow o, z: v, Q: \imath \vdash_{\Sigma}\left(\begin{array}{lll}p & z & Q\end{array}\right) \rrbracket_{Y}\left(\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{p}, \eta_{z}, \eta_{Q}\right\rangle\right)=\llbracket \Gamma, p:$ $v \rightarrow l \rightarrow o \vdash_{\Sigma}\left(\begin{array}{lll}p & y & M) \rrbracket_{Y}\left(\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{p}\right\rangle\right) \text {, to conclude, it suffices to prove that }\end{array}\right.$ $Y \Vdash_{(\Gamma, p: v \rightarrow l \rightarrow 0, z: v, Q: l),\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{p}, \eta_{z}, \eta_{Q}\right\rangle}\left(T_{\notin} p z Q\right)$ holds.

By definition of $T_{\notin},\left(T_{\notin p} z Q\right)$ is the following $\lambda$-term:

$$
\begin{aligned}
& Q=0 \vee \\
& \left(\exists P^{v} \cdot Q=\sigma \cdot P \wedge(p z P)\right) \vee \\
& \left(\exists P_{1}^{l} \cdot \exists P_{2}^{\prime} \cdot Q=P_{1} \mid P_{2} \wedge\left(p z P_{1}\right) \wedge\left(p z P_{2}\right)\right) \vee \\
& \left(\exists P^{\imath} \cdot \exists y^{v} \cdot \exists u^{v} \cdot Q=[y \neq u] P \wedge \neg z=^{v} y \wedge \neg z=^{v} u \wedge(p z P)\right) \vee \\
& \left(\exists P^{v \rightarrow l} \cdot Q=v P \wedge\left(\forall y^{v} \cdot \neg z=^{v} y \Rightarrow(p z(P y))\right)\right)
\end{aligned}
$$

Hence (by Corollary 4.1), to prove the premise, it suffices to show that one of the disjunctions holds. At this point we can proceed by structural induction on the derivation of $\Gamma \vdash_{\Sigma} M: \imath$ :
$\left(\Gamma \vdash_{\Sigma} 0: \imath\right)$ Since $M \equiv 0$, we can immediately conclude by the preliminary observation, since $\eta_{Q}$ was chosen as $\llbracket \Gamma, p: v \rightarrow \imath \rightarrow o \vdash_{\Sigma} M: \imath \rrbracket_{Y}\left(\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{p}\right\rangle\right)$, whence

$$
Y \Vdash_{(\Gamma, p: v \rightarrow l \rightarrow o, z: 0, Q: l),\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{p}, \eta_{z}, \eta_{Q}\right\rangle} Q=0 .
$$

$\left(\Gamma \vdash_{\Sigma} \tau . P: \imath\right)$ By inductive hypothesis, we know that $X \vdash_{\Gamma, \eta} y \notin P$ holds. Hence, by an argument similar to that used in the preliminary observation, we have that

$$
\begin{aligned}
Y \Vdash_{(\Gamma, p: v \rightarrow l \rightarrow o),\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{p}\right\rangle} \forall z^{v} \cdot \forall Q^{l} \cdot( & \left.T_{\notin} p z Q\right) \Rightarrow \\
\text { implies } \quad & (p z Q) \\
& Y \Vdash_{(\Gamma, p: v \rightarrow l \rightarrow o),\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{p}\right\rangle}\left(\begin{array}{ll}
p & y
\end{array}\right) .
\end{aligned}
$$

But, since the premise is true (by the preliminary observation), we have that $Y \Vdash_{(\Gamma, p: v \rightarrow l \rightarrow o),\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{p}\right\rangle}\left(\begin{array}{ll}p & y\end{array}\right)$ holds. At this point we may easily conclude
observing that the second disjunction holds (remember that $\eta_{z} \triangleq \llbracket \Gamma, p: v \rightarrow l \rightarrow$ $o \vdash_{\Sigma} y: v \rrbracket_{Y}\left(\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{p}\right\rangle\right)$ and $\eta_{Q} \triangleq \llbracket \Gamma, p: v \rightarrow \imath \rightarrow o \vdash_{\Sigma} M: \imath \rrbracket_{Y}\left(\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{p}\right\rangle\right)$, where $M \equiv \sigma . P)$.
$\left(\Gamma \vdash_{\Sigma} P_{1} \mid P_{2}: \imath\right) X \vdash_{\Gamma, \eta} y \notin P_{1}$ and $X \Vdash_{\Gamma, \eta} y \notin P_{2}$ hold by inductive hypothesis. Hence, like in the previous case, we can deduce that

$$
\left.\left.Y \Vdash_{(\Gamma, p: v \rightarrow l \rightarrow o),\langle\llbracket \Gamma} \rrbracket_{f}(\eta), \eta_{p}\right\rangle\left(\begin{array}{lll}
p & y & P_{1}
\end{array}\right) \quad \text { and } \quad Y \Vdash_{(\Gamma, p: v \rightarrow l \rightarrow o),\langle },\left[\Gamma \rrbracket_{f}(\eta), \eta_{p}\right\rangle\right)\left(\begin{array}{ll}
p & P_{2}
\end{array}\right)
$$

hold. At this point we may easily conclude observing that the third disjunction holds (remember that $\eta_{z} \triangleq \llbracket \Gamma, p: v \rightarrow \imath \rightarrow o \vdash_{\Sigma} y: v \rrbracket_{Y}\left(\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{p}\right\rangle\right)$ and $\eta_{Q} \triangleq \llbracket \Gamma, p: v \rightarrow \imath \rightarrow o \vdash_{\Sigma} M: \imath \rrbracket_{Y}\left(\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{p}\right\rangle\right)$, where $\left.M \equiv P_{1} \mid P_{2}\right)$.
$\left(\Gamma \vdash_{\Sigma}[u \neq v] P: \imath\right)$ By inductive hypothesis we know that $X \vdash_{\Gamma, \eta} y \notin P$. Hence, as in the previous cases, we can deduce that

$$
Y \Vdash_{(\Gamma, p: v \rightarrow l \rightarrow o),\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{p}\right\rangle}\left(\begin{array}{l}
\text { p }
\end{array}\right)
$$

holds. Moreover from the hypothesis that $\llbracket \Gamma \vdash_{\Sigma} y: v \rrbracket_{X}(\eta) \notin F V\left(\llbracket \Gamma \vdash_{\Sigma} M\right.$ : $\left.\imath \rrbracket_{X}(\eta)\right)$ we have that $\llbracket \Gamma \vdash_{\Sigma} y: v \rrbracket_{X}(\eta) \neq \llbracket \Gamma \vdash_{\Sigma} u: v \rrbracket_{X}(\eta)$ and $\llbracket \Gamma \vdash_{\Sigma} y$ : $v \rrbracket_{X}(\eta) \neq \llbracket \Gamma \vdash_{\Sigma} v: v \rrbracket_{X}(\eta)$ and consequently that the statements $X \vdash_{\Gamma, \eta} y={ }^{0} u$ and $X \Vdash_{\Gamma, \eta} y={ }^{v} v$ do not hold. By Corollary 4.1 this is equivalent to say that $X \Vdash_{\Gamma, \eta} \neg y={ }^{v} u$ and $X \Vdash_{\Gamma, \eta} \neg y={ }^{v} v$ hold. Whence, by the weakening rule and the monotonicity of forcing, we have that

$$
Y \Vdash_{(\Gamma, p: v \rightarrow l \rightarrow o),\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{p}\right\rangle} \neg y=^{v} u \quad \text { and } \quad Y \Vdash_{(\Gamma, p: v \rightarrow l \rightarrow o),\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{p}\right\rangle} \neg y=^{v} v
$$

hold. Again, we may easily conclude by the preliminary observation since the fourth disjunction holds (remember that $\eta_{z} \triangleq \llbracket \Gamma, p: v \rightarrow l \rightarrow o \vdash_{\Sigma} y$ : $v \rrbracket_{Y}\left(\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{p}\right\rangle\right)$ and $\eta_{Q} \triangleq \llbracket \Gamma, p: v \rightarrow l \rightarrow o \vdash_{\Sigma} M: \imath \rrbracket_{Y}\left(\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), \eta_{p}\right\rangle\right)$, where $M \equiv[u \neq v] P)$.
$\left(\Gamma \vdash_{\Sigma} v \lambda x^{0} . P\right)$ Since we know that $\llbracket \Gamma \vdash_{\Sigma} y: v \rrbracket_{X}(\eta) \notin F V\left(\llbracket \Gamma \vdash_{\Sigma} v \lambda x^{v} . P \rrbracket_{X}(\eta)\right)$ and $\llbracket \Gamma \vdash_{\Sigma} v \lambda x^{v} . P \rrbracket_{X}(\eta) \triangleq\left(v \eta_{x}\right)\left(\llbracket \Gamma, x: v \vdash_{\Sigma} P: \imath \rrbracket_{X}\left(\left\langle\eta, \eta_{x}\right\rangle\right)\right)$, by inductive hypothesis we deduce that $X \Vdash_{(\Gamma, x: v),\left\{\eta, \eta_{x}\right\rangle} y \notin P$ holds for all $\eta_{x} \neq \llbracket \Gamma \vdash_{\Sigma} y: v \rrbracket_{X}(\eta)$; hence, proceeding as in the previous cases and applying the weakening rule, we have that

$$
Y \vdash_{(\Gamma, x: 0, p: p \rightarrow l \rightarrow o),\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), f\left(\eta_{x}\right), \eta_{p}\right\rangle}\left(\begin{array}{ll}
p & y
\end{array}\right)
$$

holds. Moreover we have that $Y \Vdash_{(\Gamma, x: v, p: v \rightarrow l \rightarrow o),\left\langle\llbracket \Gamma \rrbracket_{f}(\eta), f\left(\eta_{x}\right), \eta_{p}\right\rangle} \neg y={ }^{v} x$. At this point we may easily conclude by the preliminary observation since the fifth disjunction holds.

## B. 7 Proof of Theorem 6.1

We will show only the base case (rule $\operatorname{Rec}_{\sigma}^{l} r_{-} d_{1}$ ) and the case of higher-order constructor (rule $\operatorname{Rec}_{\sigma}^{l}-r e d_{5}$ ), the others being similar.

Let $G \triangleq \llbracket \Gamma \rrbracket, A \triangleq \llbracket \sigma \rrbracket$, and

$$
\begin{array}{ll}
g_{1}=\llbracket \Gamma \vdash f_{1}: \sigma \rrbracket & : G \longrightarrow A \\
g_{2}=\llbracket \Gamma \vdash f_{2}: \sigma \rightarrow \sigma \rrbracket & : G \longrightarrow A \Rightarrow A \\
g_{3}=\llbracket \Gamma \vdash f_{3}: \sigma \rightarrow \sigma \rightarrow \sigma \rrbracket & : G \longrightarrow A \Rightarrow A \Rightarrow A \\
g_{4}=\llbracket \Gamma \vdash f_{4}: v \rightarrow v \rightarrow \sigma \rightarrow \sigma \rrbracket: G \longrightarrow \operatorname{Var} \Rightarrow \operatorname{Var} \Rightarrow A \Rightarrow A \\
g_{5}=\llbracket \Gamma \vdash f_{5}:(v \rightarrow \sigma) \rightarrow \sigma \rrbracket & : G \longrightarrow(\operatorname{Var} \Rightarrow A) \Rightarrow A
\end{array}
$$

For proving the soundness of $\operatorname{Rec}_{\sigma}^{l}-$ red $_{1}$ and $\operatorname{Rec}_{\sigma}^{l}$ red $_{5}$, we have to prove that for all $X$ and $\eta \in \llbracket \Gamma \rrbracket_{X}$ the following properties hold:

$$
\begin{align*}
& X \Vdash_{\Gamma, \eta}(R 0)={ }^{\sigma} f_{1}  \tag{B1}\\
& X \Vdash_{\Gamma, \eta} \forall P^{v \rightarrow l} .(R v P)={ }^{\sigma}\left(f_{5} \lambda x^{v} .(R(P \quad x))\right) \tag{B2}
\end{align*}
$$

where $R$ is a syntactic shorthand for $\left(\operatorname{Rec}_{\sigma}^{l} f_{1} f_{2} f_{3} f_{4} f_{5}\right)$.
We prove equivalence (B1). By Theorem 4.2, this is equivalent to proving that

$$
\llbracket \Gamma \vdash_{\Sigma}(R 0): \sigma \rrbracket_{X}(\eta)=\llbracket \Gamma \vdash_{\Sigma} f_{1}: \sigma \rrbracket_{X}(\eta)
$$

In fact, the following equalities hold, where $\llbracket R \rrbracket$ is a syntactic shorthand for the interpretation of $R$, and $m: T(G \Rightarrow A) \longrightarrow G \Rightarrow A, \bar{m}: \operatorname{Proc} \longrightarrow G \Rightarrow A$ are the natural transformations used in the interpretation of $R$ above:

$$
\begin{array}{rlrl}
\llbracket \Gamma \vdash_{\Sigma}(R 0): \sigma \rrbracket_{X}(\eta)=e v_{X}\left(\left\langle\llbracket \Gamma \vdash_{\Sigma} 0: \imath \rrbracket_{X}(\eta), \llbracket R \rrbracket_{X}(\eta)\right\rangle\right) \\
& =\left(\llbracket R \rrbracket_{X}(\eta)\right)_{X}\left(\left\langle\llbracket \Gamma \vdash_{\Sigma} 0: \imath \rrbracket_{X}(\eta), \mathrm{id}_{X}\right\rangle\right) & & \\
& =\left(\bar{m}_{X}(0)\right)_{X}\left(\eta, \mathrm{id}_{X}\right) & & \text { by definition of } \llbracket R \rrbracket \text { and since } \\
& =\left((\bar{m} \circ \alpha)_{X}\left(i n_{1}(*)\right)\right)_{X}\left(\eta, \mathrm{id}_{X}\right) & & \llbracket \Gamma \vdash_{\Sigma} 0: \imath \rrbracket_{X}(\eta)=0 \\
& =\left((m \circ T \bar{m})_{X}\left(i n_{1}(*)\right)\right)_{X}\left(\eta, \mathrm{id}_{X}\right) & & \text { since } \alpha_{X}\left(i n_{1}(*)\right)=0 \\
& =\left(m_{X}\left(i n_{1}(*)\right)\right)_{X}\left(\eta, i d_{X}\right) & & \text { since }(T \bar{m})_{X}\left(i n_{1}(*)\right)=i n_{1}(*) \\
& =g_{1 X}(\eta) & & \text { by definition of } m \\
& =\llbracket \Gamma \vdash_{\Sigma} f_{1}: \sigma \rrbracket_{X}(\eta) & &
\end{array}
$$

We prove equivalence (B2). By Theorem 4.2, this is equivalent to proving that for all $Y$ stage, $h \in \mathscr{I}(X, Y), p \in(\text { Var } \Rightarrow \text { Proc })_{Y}$ :

$$
\begin{aligned}
& \llbracket \Gamma, P: v \rightarrow \imath \vdash_{\Sigma}(R v P): \sigma \rrbracket_{Y}(\eta[h], p)= \\
& \quad=\llbracket \Gamma, P: \imath \vdash_{\Sigma}\left(f_{5} \lambda x .(R(P x))\right): \sigma \rrbracket_{Y}(\eta[h], p)
\end{aligned}
$$

In fact, the following equalities hold:

$$
\begin{array}{ll}
\llbracket \Gamma, P: v \rightarrow \imath \vdash_{\Sigma}(R v P): \sigma \rrbracket_{Y}(\eta[h], p)= \\
=e v_{Y}\left(\left\langle\llbracket \Gamma, P: v \rightarrow \imath \vdash_{\Sigma} v P: \imath \rrbracket_{Y}(\eta[h], p), \llbracket R \rrbracket_{Y}(\eta[h], p)\right\rangle\right) \\
=\left(\llbracket R \rrbracket_{Y}(\eta[h], p)\right)_{Y}\left(\left\langle\llbracket \Gamma, P: v \rightarrow \imath \vdash_{\Sigma} v P: \imath \rrbracket_{Y}(\eta[h], p), \text { id } d_{Y}\right\rangle\right) \\
=\left(\bar{m}_{Y}(v \lambda x \cdot p)_{Y}\left(\eta, \operatorname{id}_{Y}\right)\right. & \text { by definition of } \llbracket R \rrbracket \text { and since } \\
=\left((\bar{m} \circ \alpha)_{Y}\left(i_{5}(p)\right)\right)_{Y}\left(\eta[h], \mathrm{id}_{Y}\right) & \text { since } \alpha_{Y}\left(i i_{5}(p)\right)=v \lambda: \imath \rrbracket_{Y}(\eta[h], p)=v \lambda x . p \\
=\left((m \circ T \bar{m})_{Y}\left(i n_{5}(p)\right)\right)_{Y}\left(\eta[h], i d_{Y}\right) & \text { by the initial algebra property } \\
=\ldots &
\end{array}
$$

Now, it is not hard to see that $\left(\operatorname{Tim}_{Y}\left(\operatorname{in}_{5}(p)\right)=\operatorname{in}_{5}(\bar{m} \circ p)\right.$, where $\bar{m} \circ p: \operatorname{Var} \times$ $\mathscr{V}\left(Y,,^{)} \longrightarrow G \Rightarrow A\right.$; thus, let $r^{\prime} \in(\operatorname{Var} \Rightarrow A)_{Y}$ be the natural transformation defined as

$$
\begin{aligned}
r^{\prime}: \operatorname{Var} \times \mathscr{V}\left(Y, \_\right) & \longrightarrow A \\
r_{Z}^{\prime}: Z \times \mathscr{V}(Y, Z) & \longrightarrow A_{Z} \\
\langle z, k\rangle & \longmapsto\left((\bar{m} \circ p)_{Z}(z, k)\right)_{Z}\left(\eta[k \circ h], \mathrm{id}_{Z}\right)
\end{aligned}
$$

We have then

$$
\begin{align*}
\ldots & =\left(m_{Y}\left(\operatorname{in}_{5}(\bar{m} \circ p)\right)_{Y}\left(\eta[h], \mathrm{id}_{Y}\right)\right. \\
& =\left(g_{5 Y}(\eta[h])\right)_{Y}\left(\left\langle r^{\prime}, \mathrm{id}_{Y}\right\rangle\right) \\
& =e v_{Y}\left(\left\langle r^{\prime}, \llbracket \Gamma \vdash_{\Sigma} f_{5}:(v \rightarrow \sigma) \rightarrow \sigma \rrbracket_{Y}(\eta[h], p)\right\rangle\right) \quad \text { by definition of } m \\
& =e v_{Y}\left(\left\langle\llbracket \Gamma, P: v \rightarrow \imath \vdash_{\Sigma} \lambda x^{0} .(R(P x)): v \rightarrow \sigma \rrbracket_{Y}(\eta[h], p),\right.\right.  \tag{*}\\
& \left.\left.\llbracket \Gamma \vdash_{\Sigma} f_{5}:(v \rightarrow \sigma) \rightarrow \sigma \rrbracket_{Y}(\eta[h], p)\right\rangle\right) \\
& =\llbracket \Gamma \vdash_{\Sigma}\left(f_{5} \lambda x^{v} .(R(P x)): \sigma \rrbracket_{Y}(\eta[h], p)\right.
\end{align*}
$$

The equality (*) holds because

$$
\llbracket \Gamma, P: v \rightarrow \imath \vdash_{\Sigma} \lambda x^{v} .(R(P x)): v \rightarrow \sigma \rrbracket_{Y}(\eta[h], p)=r^{\prime} .
$$

Indeed, for all stage $Z, z \in Z, k \in \mathscr{V}(Y, Z)$, and let $\eta^{\prime} \triangleq\langle\eta[k \circ h], p[k], z\rangle$ :

$$
\begin{aligned}
& \left(\llbracket \Gamma, P: v \rightarrow \imath \vdash_{\Sigma} \lambda x^{v} .(R(P x)): v \rightarrow \sigma \rrbracket_{Y}(\eta[h], p)\right)_{Z}(z, k)= \\
& =\llbracket \Gamma, P: v \rightarrow l, x: v \vdash_{\Sigma}(R(P x)): \sigma \rrbracket_{Z}\left(\eta^{\prime}\right) \\
& =\left(\llbracket R \rrbracket_{Z}\left(\eta^{\prime}\right)\right)_{Z}\left(\left\langle\llbracket \Gamma, P: v \rightarrow i, x: v \vdash_{\Sigma}(P x): \imath \rrbracket_{Z}\left(\eta^{\prime}\right), \mathrm{id}_{Z}\right\rangle\right) \\
& =\left(\bar{m}_{Z}\left(\llbracket \Gamma, P: v \rightarrow \imath, x: v \vdash_{\Sigma}(P x): \imath \rrbracket_{Z}\left(\eta^{\prime}\right)\right)\right)_{Z}\left(\eta^{\prime}, \mathrm{id}_{Z}\right) \\
& =\left(\bar{m}_{Z}\left(p[k]_{Z}\left(z, \mathrm{id}_{Z}\right)\right)\right)_{Z}\left(\eta^{\prime}, \operatorname{id}_{Z}\right) \\
& =\left((\bar{m} \circ p[k])_{Z}\left(z, \operatorname{id}_{Z}\right)\right)_{Z}\left(\eta^{\prime}, \mathrm{id}_{Z}\right) \\
& =\left((\bar{m} \circ p)_{Z}(z, k)\right)_{Z}\left(\eta^{\prime}, \mathrm{id}_{Z}\right)=r_{Z}^{\prime}(z, k)
\end{aligned}
$$

## B. 8 Proof of Proposition 6.3

Let us check that the first diagram of Definition A. 5 commutes, i.e., that for every $A, B \in \check{\mathscr{V}}, X \in \mathscr{V}, a \in A_{X}$ and $b \in(T B)_{X}$ we have

$$
\left(T \pi^{\prime}\right)_{X}\left(\left(s t_{A, B}\right)_{X}(\langle a, b\rangle)\right)=\pi_{X}^{\prime}(\langle a, b\rangle)=b
$$

This is proved by cases over $b$ :

$$
\begin{aligned}
& \left(b=\operatorname{in}_{1}(*)\right)\left(T \pi^{\prime}\right)_{X}\left(\left(s t_{A, B}\right)_{X}\left(\left\langle a, i n_{1}(*)\right\rangle\right)\right)=\left(T \pi^{\prime}\right)_{X}\left(i_{1}(*)\right) \triangleq i n_{1}(*) . \\
& \left(b=\operatorname{in}_{2}\left(b^{\prime}\right)\right)\left(T \pi^{\prime}\right)_{X}\left(\left(s t_{A, B}\right)_{X}\left(\left\langle a, \operatorname{in}_{2}\left(b^{\prime}\right)\right\rangle\right)\right)=\left(T \pi^{\prime}\right)_{X}\left(n_{2}\left(a, b^{\prime}\right)\right) \\
& \triangleq i_{2}\left(\pi^{\prime}\left(\left\langle a, b^{\prime}\right\rangle\right)\right)=i n_{2}\left(b^{\prime}\right) . \\
& \left(b=\operatorname{in}_{3}\left(\left\langle b^{\prime}, b^{\prime \prime}\right\rangle\right)\right)\left(T \pi^{\prime}\right)_{X}\left(\left(s t_{A, B}\right)_{X}\left(\left\langle a, i n_{3}\left(\left\langle b^{\prime}, b^{\prime \prime}\right\rangle\right)\right\rangle\right)\right)= \\
& \left(T \pi^{\prime}\right)_{X}\left(\operatorname{in}_{3}\left(\left\langle a, b^{\prime}, a, b^{\prime \prime}\right\rangle\right)\right) \triangleq \operatorname{in}_{3}\left(\left\langle\pi^{\prime}\left(\left\langle a, b^{\prime}\right\rangle\right), \pi^{\prime}\left(\left\langle a, b^{\prime \prime}\right\rangle\right)\right\rangle\right)=\operatorname{in}_{3}\left(\left\langle b^{\prime}, b^{\prime \prime}\right\rangle\right) . \\
& \left(b=i n_{4}\left(\left\langle x, y, b^{\prime}\right\rangle\right)\right)\left(T \pi^{\prime}\right)_{X}\left(\left(s t_{A, B}\right)_{X}\left(\left\langle a, i n_{4}\left(\left\langle x, y, b^{\prime}\right\rangle\right)\right\rangle\right)\right)= \\
& \left(T \pi^{\prime}\right)_{X}\left(i n_{4}\left(\left\langle x, y, a, b^{\prime}\right\rangle\right)\right) \triangleq i n_{4}\left(\left\langle x, y, \pi^{\prime}\left(\left\langle a, b^{\prime}\right\rangle\right)\right\rangle\right)=i n_{3}\left(\left\langle x, y, b^{\prime}\right\rangle\right) . \\
& \left(b=i n_{5}\left(b^{\prime}\right)\right)\left(T \pi^{\prime}\right)_{X}\left(\left(s t_{A, B}\right)_{X}\left(\left\langle a, i n_{5}\left(b^{\prime}\right)\right\rangle\right)\right)=\left(T \pi^{\prime}\right)_{X}\left(i n_{5}\left(\bar{b}_{a}\right)\right) \triangleq \\
& \operatorname{in}_{5}\left(\gamma_{B, X}\left(\pi^{\prime}\left(\left\langle G_{i n_{X}}(g), b_{X \uplus\{x\}}\left(x, i n_{X}\right)\right\rangle\right)\right)\right)=\operatorname{in}_{5}\left(\gamma_{B, X}\left(b_{X \uplus\{ } x_{\}}\left(x, i n_{X}\right)\right)\right)=\operatorname{in}_{5}(b) .
\end{aligned}
$$

For what concerns the commutativity of the second diagram of Definition A.5, we have to show that for every $A, B, C \in \mathscr{V}, X \in \mathscr{V}, a \in A_{X}, b \in(T B)_{X}$ and $c \in C_{X}$ we have

$$
(T \beta)_{X}\left(\left(s t_{A, C \times B}\right)_{X}\left(\left(\mathrm{id}_{A} \times s t_{C, B}\right)_{X}(\langle a,\langle c, b\rangle\rangle)\right)\right)=\left(s t_{A \times C, B}\right)_{X}\left(\beta_{X}(\langle a,\langle c, b\rangle\rangle)\right)
$$

where $\beta \triangleq\left\langle\left\langle\pi, \pi \circ \pi^{\prime}\right\rangle, \pi^{\prime} \circ \pi^{\prime}\right\rangle$; it follows that the second member can be simplified to $\left(s t_{A \times C, B}\right)_{X}(\langle\langle a, c\rangle, b\rangle)$. We prove the thesis, again by cases on $b$ :

$$
\begin{aligned}
& \left(b=\operatorname{in}_{1}(*)\right)(T \beta)_{X}\left(\left(s t_{A, C \times B}\right)_{X}\left(\left(\mathrm{id}_{A} \times s t_{C, B}\right)_{X}\left(\left\langle a,\left\langle c, i n_{1}(*)\right\rangle\right\rangle\right)\right)\right)= \\
& =(T \beta)_{X}\left(\left(s t_{A, C \times B}\right)_{X}\left(\left\langle a, i n_{1}(*)\right\rangle\right)\right)=(T \beta)_{X}\left(i n_{1}(*)\right)=i n_{1}(*)= \\
& =\left(s t_{A \times C, B}\right)_{X}\left(\left\langle\langle a, c\rangle, i n_{1}(*)\right\rangle\right) \text {. } \\
& \left(b=i_{2}\left(b^{\prime}\right)\right)(T \beta)_{X}\left(\left(s t_{A, C \times B}\right)_{X}\left(\left(\operatorname{id}_{A} \times s t_{C, B}\right)_{X}\left(\left\langle a,\left\langle c, i_{2}\left(b^{\prime}\right)\right\rangle\right\rangle\right)\right)\right)= \\
& =(T \beta)_{X}\left(\left(s t_{A, C \times B}\right)_{X}\left(\left\langle a, i n_{2}\left(\left\langle c, b^{\prime}\right\rangle\right)\right\rangle\right)\right)=(T \beta)_{X}\left(i n_{2}\left(\left\langle a,\left\langle c, b^{\prime}\right\rangle\right\rangle\right)\right)= \\
& =\operatorname{in}_{2}\left(\beta_{X}\left(\left\langle a,\left\langle c, b^{\prime}\right\rangle\right\rangle\right)\right)=\operatorname{in}_{2}\left(\left\langle\langle a, c\rangle, b^{\prime}\right\rangle\right)=\left(s t_{A \times C, B}\right)_{X}\left(\left\langle\langle a, c\rangle, i n_{2}\left(b^{\prime}\right)\right\rangle\right) . \\
& \left(b=\operatorname{in}_{3}\left(\left\langle b^{\prime}, b^{\prime \prime}\right\rangle\right)\right)(T \beta)_{X}\left(\left(s t_{A, C \times B}\right)_{X}\left(\left(\operatorname{id}_{A} \times s t_{C, B}\right)_{X}\left(\left\langle a,\left\langle c, i n_{3}\left(\left\langle b^{\prime}, b^{\prime \prime}\right\rangle\right)\right\rangle\right\rangle\right)\right)\right)= \\
& =(T \beta)_{X}\left(\left(s t_{A, C \times B}\right)_{X}\left(\left\langle a, i n_{3}\left(\left\langle c, b^{\prime}, c, b^{\prime \prime}\right\rangle\right)\right\rangle\right)\right)=(T \beta)_{X}\left(i n_{3}\left(\left\langle a,\left\langle c, b^{\prime}, c, b^{\prime \prime}\right\rangle\right\rangle\right)\right)= \\
& =\operatorname{in}_{3}\left(\beta_{X}\left(\left\langle a,\left\langle c, b^{\prime}\right\rangle, a,\left\langle c, b^{\prime \prime}\right\rangle\right\rangle\right)\right)=\operatorname{in}_{3}\left(\left\langle\langle a, c\rangle, b^{\prime},\langle a, c\rangle, b^{\prime \prime}\right\rangle\right)= \\
& =\left(s t_{A \times C, B}\right)_{X}\left(\left\langle\langle a, c\rangle, \operatorname{in}_{3}\left(\left\langle b^{\prime}, b^{\prime \prime}\right\rangle\right)\right\rangle\right) . \\
& \left(b=\operatorname{in}_{4}\left(\left\langle x, y, b^{\prime}\right\rangle\right)\right)(T \beta)_{X}\left(\left(s t_{A, C \times B}\right)_{X}\left(\left(\mathrm{id}_{A} \times s t_{C, B}\right)_{X}\left(\left\langle a,\left\langle c, i n_{4}\left(\left\langle x, y, b^{\prime}\right\rangle\right)\right\rangle\right\rangle\right)\right)\right)= \\
& =(T \beta)_{X}\left(\left(s t_{A, C \times B}\right)_{X}\left(\left\langle a, i n_{4}\left(\left\langle x, y, c, b^{\prime}\right\rangle\right)\right\rangle\right)\right)=(T \beta)_{X}\left(i n_{4}\left(\left\langle x, y, a,\left\langle c, b^{\prime}\right\rangle\right\rangle\right)\right)= \\
& =\operatorname{in}_{4}\left(\left\langle x, y, \beta_{X}\left(\left\langle a,\left\langle c, b^{\prime}\right\rangle\right\rangle\right)\right)=\operatorname{in}_{4}\left(\left\langle x, y,\langle a, c\rangle, b^{\prime}\right\rangle\right)=\right. \\
& =\left(s t_{A \times C, B}\right)_{X}\left(\left\langle\langle a, c\rangle, i n_{4}\left(\left\langle x, y, b^{\prime}\right\rangle\right)\right\rangle\right) . \\
& \left(b=i n_{5}\left(b^{\prime}\right)\right)(T \beta)_{X}\left(\left(s t_{A, C \times B}\right)_{X}\left(\left(\mathrm{id}_{A} \times s t_{C, B}\right)_{X}\left(\left\langle a,\left\langle c, i n_{5}\left(b^{\prime}\right)\right\rangle\right\rangle\right)\right)\right)= \\
& \left.=(T \beta)_{X}\left(\left(s t_{A, C \times B}\right)_{X}\left(\left\langle a, i n_{5}\left(\overline{b_{c}^{\prime}}\right)\right\rangle\right)\right)=(T \beta)_{X}\left(i n_{5}\left(\overline{\left(\overline{b_{c}^{\prime}}\right.}\right)_{a}\right)\right)= \\
& =\operatorname{in}_{5}\left(\gamma_{(A \times C) \times B, X}\left(\beta_{X \uplus\{x\}}\left(\left\langle A_{i n_{X}}(a),\left\langle C_{i n_{X}}(c), b_{X \uplus\{x\}}^{\prime}\left(\left\langle x, i n_{X}\right\rangle\right)\right\rangle\right\rangle\right)\right)\right)= \\
& \left.=i n_{5}\left(\gamma_{(A \times C) \times B, X}\left(\left\langle A_{i n_{X}}(a), C_{i n_{X}}(c)\right\rangle, b_{X \uplus\{x\}}^{\prime}\left(\left\langle x, i n_{X}\right\rangle\right)\right\rangle\right)\right)=i n_{5}\left(\overline{b^{\prime}}\langle a, c\rangle\right)= \\
& =\left(s t_{A \times C, B}\right)_{X}\left(\left\langle\langle a, c\rangle, \operatorname{in}_{5}\left(b^{\prime}\right)\right\rangle\right) .
\end{aligned}
$$

## B.9 Proof of Proposition 6.4

In order to prove the commutativity of the diagram we must show that, for every $X \in \mathscr{V}, g \in G_{X}$ and $P \in(T P r o c)_{X}$, we have $f_{X}\left(\left(\operatorname{id}_{G} \times \alpha\right)_{X}(\langle g, P\rangle)\right)=\beta_{X}((\langle\pi, T f \circ$ $\left.\left.\left.s t_{G, P r o c}\right\rangle\right)_{X}(\langle g, P\rangle)\right)$. First of all we notice that the second member can be simplified to $\beta_{X}\left(\left\langle g,(T f)_{X}\left(\left(s t_{G, P r o c}\right)_{X}(\langle g, P\rangle)\right)\right\rangle\right)$, then we proceed by cases on $P$ :
$\left(P=i n_{1}(*)\right)$ we have $f_{X}\left(\left(\operatorname{id}_{G} \times \alpha\right)_{X}\left(\left\langle g, i n_{1}(*)\right\rangle\right)\right)=f_{X}(\langle g, 0\rangle) \triangleq \beta_{X}\left(\left\langle g, i n_{1}(*)\right\rangle\right)$, whence the thesis since $\beta_{X}\left(\left\langle g,(T f)_{X}\left(\left(s t_{G, P r o c}\right)_{X}\left(\left\langle g, i_{1}(*)\right\rangle\right)\right)\right\rangle\right)=$
$=\beta_{X}\left(\left\langle g,(T f)_{X}\left(i_{1}(*)\right)\right\rangle\right)=\beta_{X}\left(\left\langle g, i n_{1}(*)\right\rangle\right)$.
$\left(P=i n_{2}\left(P^{\prime}\right)\right) f_{X}\left(\left(\operatorname{id}_{G} \times \alpha\right)_{X}\left(\left\langle g, i n_{2}\left(P^{\prime}\right)\right\rangle\right)\right)=f_{X}\left(\left\langle g, \tau . P^{\prime}\right\rangle\right) \triangleq \beta_{X}\left(\left\langle g, i n_{2}\left(f_{X}\left(\left\langle g, P^{\prime}\right\rangle\right)\right)\right\rangle\right)$, whence the thesis since $\beta_{X}\left(\left\langle g,(T f)_{X}\left(\left(s t_{G, \operatorname{Proc}}\right)_{X}\left(\left\langle g, i n_{2}\left(P^{\prime}\right)\right\rangle\right)\right)\right\rangle\right)=$
$=\beta_{X}\left(\left\langle g,(T f)_{X}\left(i n_{2}\left(\left\langle g, P^{\prime}\right\rangle\right)\right)\right\rangle\right)=\beta_{X}\left(\left\langle g, \operatorname{in}_{2}\left(f_{X}\left(\left\langle g, P^{\prime}\right\rangle\right)\right)\right\rangle\right)$.
$\left(P=\operatorname{in}_{3}\left(\left\langle P^{\prime}, P^{\prime \prime}\right\rangle\right)\right)$ we have $f_{X}\left(\left(\operatorname{id}_{G} \times \alpha\right)_{X}\left(\left\langle g\right.\right.\right.$, in $\left.\left.\left._{3}\left(\left\langle P^{\prime}, P^{\prime \prime}\right\rangle\right)\right\rangle\right)\right)=f_{X}\left(\left\langle g, P^{\prime} \mid P^{\prime \prime}\right\rangle\right) \triangleq$ $\beta_{X}\left(\left\langle g, \operatorname{in}_{3}\left(\left\langle f_{X}\left(\left\langle g, P^{\prime}\right\rangle\right), f_{X}\left(\left\langle g, P^{\prime \prime}\right\rangle\right)\right\rangle\right)\right\rangle\right)$, whence the thesis since
$\beta_{X}\left(\left\langle g,(T f)_{X}\left(\left(s t_{G, P r o c}\right)_{X}\left(\left\langle g, i_{3}\left(\left\langle P^{\prime}, P^{\prime \prime}\right\rangle\right)\right\rangle\right)\right)\right\rangle\right)=$
$=\beta_{X}\left(\left\langle g,(T f)_{X}\left(i n_{3}\left(\left\langle g, P^{\prime}, g, P^{\prime \prime}\right\rangle\right)\right)\right\rangle\right)=\beta_{X}\left(\left\langle g, i_{3}\left(\left\langle f_{X}\left(\left\langle g, P^{\prime}\right\rangle\right), f_{X}\left(\left\langle g, P^{\prime \prime}\right\rangle\right)\right\rangle\right)\right\rangle\right)$.

```
\(\left(P=\operatorname{in}_{4}\left(\left\langle x, y, P^{\prime}\right\rangle\right)\right)\) we have \(f_{X}\left(\left(\operatorname{id}_{G} \times \alpha\right)_{X}\left(\left\langle g, \operatorname{in}_{4}\left(\left\langle x, y, P^{\prime}\right\rangle\right)\right\rangle\right)\right)=f_{X}\left(\left\langle g,[x \neq y] P^{\prime}\right\rangle\right) \triangleq\)
    \(\beta_{X}\left(\left\langle g, i_{4}\left(\left\langle x, y, f_{X}\left(\left\langle g, P^{\prime}\right\rangle\right)\right\rangle\right)\right\rangle\right)\), whence the thesis since
    \(\beta_{X}\left(\left\langle g,(T f)_{X}\left(\left(s t_{G, P r o c}\right)_{X}\left(\left\langle g, i n_{4}\left(\left\langle x, y, P^{\prime}\right\rangle\right)\right\rangle\right)\right)\right\rangle\right)=\)
    \(=\beta_{X}\left(\left\langle g,(T f)_{X}\left(i n_{4}\left(\left\langle x, y, g, P^{\prime}\right\rangle\right)\right)\right\rangle\right)=\beta_{X}\left(\left\langle g, i n_{4}\left(\left\langle x, y, f_{X}\left(\left\langle g, P^{\prime}\right\rangle\right)\right\rangle\right)\right\rangle\right)\).
\(\left(P=\operatorname{in}_{5}\left(P^{\prime}\right)\right): f_{X}\left(\left(\operatorname{id}_{G} \times \alpha\right)_{X}\left(\left\langle g, \operatorname{in}_{5}\left(P^{\prime}\right)\right\rangle\right)\right)=f_{X}\left(\left\langle g,(v x) P_{X \uplus\{x\}}^{\prime}\left(x, i n_{X}\right)\right\rangle\right)\)
    \(\triangleq \beta_{X}\left(\left\langle g, i_{5}\left(\gamma_{B, X}\left(f_{X \uplus\{x\}}\left(\left\langle G_{i n_{X}}(g), P^{\prime}\right\rangle\right)\right\rangle\right)\right\rangle\right)\), whence the thesis since
    \(\beta_{X}\left(\left\langle g,(T f)_{X}\left(\left(s t_{G, P r o c}\right)_{X}\left(\left\langle g, i n_{5}\left(P^{\prime}\right)\right\rangle\right)\right)\right\rangle\right)=\beta_{X}\left(\left\langle g,(T f)_{X}\left(i n_{5}\left(\overline{P_{g}^{\prime}}\right)\right)\right\rangle\right)=\)
    \(=\beta_{X}\left(\left\langle g, \operatorname{in}_{5}\left(\gamma_{B, X}\left(f_{X \uplus\{x\}}\left(P_{X \uplus\{x\}}^{\prime}\left(\left\langle x, i n_{X}\right\rangle\right)\right)\right)\right)\right\rangle\right)\).
```


## B.10 Proof of Theorem 6.4

Suppose that

$$
\begin{align*}
& Y \Vdash_{R: l \rightarrow o, \eta_{R}}(R 0),  \tag{B3}\\
& Y \Vdash_{R: l \rightarrow o, \eta_{R}}\left(\forall P^{l} .(R P) \Rightarrow(R \tau . P)\right),  \tag{B4}\\
& Y \Vdash_{R: l \rightarrow o, \eta_{R}}\left(\forall P^{l} .(R P) \Rightarrow \forall Q^{l} \cdot(R Q) \Rightarrow(R P \mid Q)\right),  \tag{B5}\\
& Y \Vdash_{R: l \rightarrow o, \eta_{R}}\left(\forall y^{v} . \forall z^{v} . \forall P^{l} .(R P) \Rightarrow(R[y \neq z] P)\right),  \tag{B6}\\
& Y \Vdash_{R: l \rightarrow o, \eta_{R}}\left(\forall P^{v \rightarrow l} .\left(\forall x^{v} .(R(P x))\right) \Rightarrow(R v P)\right), \tag{B7}
\end{align*}
$$

We prove that $G^{*}(T) \bullet G^{*}\left(!_{T U}\right)=p \bullet G^{*}(\alpha) \bullet T / / G(h)$. We first translate the latter equation in terms of composition in the category $\check{\mathscr{V}}$ and we obtain the following:

$$
G^{*}(T) \circ\left\langle\pi, G^{*}\left(!_{T U}\right)\right\rangle=p \circ\left\langle\pi, G^{*}(\alpha)\right\rangle \circ\left\langle\pi,(T / / G)_{h}\right\rangle .
$$

Then, unfolding the definitions of $G^{*}$ and $T / / G$, we get:

$$
\mathrm{\top} \circ \pi^{\prime} \circ\left\langle\pi,!_{T U} \circ \pi^{\prime}\right\rangle=p \circ\left\langle\pi, \alpha \circ \pi^{\prime}\right\rangle \circ\left\langle\pi, T h \circ s t_{G, U}\right\rangle,
$$

i.e., we have to prove that $T \circ!_{T U} \circ \pi^{\prime}=p \circ\left\langle\pi, \alpha \circ T h \circ s t_{G, U}\right\rangle$. So, taken any $Z \in \mathscr{V}$, $g \in G_{Z}$ and $u \in(T U)_{Z}$, we have that $\top_{Z}\left(\left(!_{T U}\right)_{Z}\left(\pi_{Z}^{\prime}(\langle g, u\rangle)\right)\right)=\top_{Z}\left(\left(!_{T U}\right)_{Z}(u)\right)=$ $\top_{Z}(*)=\mathscr{I}\left(Z,{ }_{-}\right)$, while for the second member of the equation we have the following:

$$
\left(u=i n_{1}(*)\right)
$$

$$
\begin{aligned}
& p_{Z}\left(\left\langle\pi_{Z}\left(\left\langle g, i_{1}(*)\right\rangle\right), \alpha_{Z}\left((T h)_{Z}\left(\left(s t_{G, U}\right)_{Z}\left(\left\langle g, i n_{1}(*)\right\rangle\right)\right)\right)\right\rangle\right)= \\
= & p_{Z}\left(\left\langle g, \alpha_{Z}\left((T h)_{Z}\left(i n_{1}(*)\right)\right)\right\rangle\right)=p_{Z}\left(\left\langle g, \alpha_{Z}\left(i_{1}(*)\right)\right\rangle\right)=p_{Z}(\langle g, 0\rangle)
\end{aligned}
$$

Hence, $p_{Z}(\langle g, 0\rangle)=\left(e v_{\text {Proc,Prop }}\right)_{Z}(\langle 0, g\rangle) \wedge \mathscr{I}\left(Z,_{-}\right)=g_{Z}\left(\left\langle 0, \mathrm{id}_{Z}\right\rangle\right) \wedge \mathscr{I}\left(Z,{ }_{-}\right)$. Since we know that for all $Y \in \mathscr{V}$, and $\eta_{R} \in\left(\operatorname{Proc} \Rightarrow \operatorname{Prop}_{)_{Y}}, Y \vdash_{R: l \rightarrow o, \eta_{R}}(R 0)\right.$ holds, we can deduce, by point 3 of Theorem 4.1, that $\llbracket R: \imath \rightarrow o, P: \imath \vdash_{\Sigma}(R P)$ : $o \rrbracket_{Z}(\langle g, 0\rangle)=\left(\llbracket R: \imath \rightarrow o, P: \imath \vdash_{\Sigma} R: \imath \rightarrow o \rrbracket_{Z}(\langle g, 0\rangle)\right)_{Z}\left(\left\langle\llbracket R: \imath \rightarrow o, P: \imath \vdash_{\Sigma} 0:\right.\right.$ $\left.\left.l \rrbracket_{Z}(\langle g, 0\rangle), \mathrm{id}_{Z}\right\rangle\right)=g_{Z}\left(\left\langle 0, \mathrm{id}_{Z}\right\rangle\right) \geqslant \mathscr{I}(Z,-)$, whence the thesis.

$$
\left(u=i n_{2}(q)\right)
$$

$$
\begin{aligned}
& p_{Z}\left(\left\langle\pi_{Z}\left(\left\langle g, i n_{2}(q)\right\rangle\right), \alpha_{Z}\left((T h)_{Z}\left(\left(s t_{G, U}\right)_{Z}\left(\left\langle g, i n_{2}(q)\right\rangle\right)\right)\right)\right\rangle\right)= \\
& =p_{Z}\left(\left\langle g, \alpha_{Z}\left((T h)_{Z}\left(i_{2}(\langle g, q\rangle)\right)\right)\right\rangle\right)=p_{Z}\left(\left\langle g, \alpha_{Z}\left(i_{2}\left(h_{Z}(\langle g, q\rangle)\right)\right)\right\rangle\right)= \\
& =p_{Z}\left(\left\langle g, \tau . h_{Z}(\langle g, q\rangle)\right\rangle\right)
\end{aligned}
$$

At this point we know, by equation B4, that for all $Y \in \mathscr{V}$, and $\eta_{R} \in(\operatorname{Proc} \Rightarrow$ Prop $)_{Y}, Y \Vdash_{R: l \rightarrow o, \eta_{R}} \forall P^{l} .(R P) \Rightarrow(R \tau P)$ holds. By points 1 and 2 of Theorem 4.1, this amounts to say that, for all $V \in \mathscr{V}, l \in \mathscr{I}(Y, V)$ and $\eta_{P} \in \operatorname{Proc}_{V}$,

$$
\begin{aligned}
V \Vdash_{(R: I \rightarrow o, P: u),\left\langle(P r o c \rightarrow P r o p)_{( }\left(\eta_{R}\right), \eta_{P}\right\rangle} & (R P) \\
& \text { implies } \quad V \Vdash_{(R: l \rightarrow o, P::),\left\langle(P r o c \rightarrow P r o p)_{l}\left(\eta_{R}\right), \eta_{P}\right\rangle}(R \tau P) .
\end{aligned}
$$

Then we notice the following facts:

1. $p_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle)\right\rangle\right)=\mathscr{I}\left(Z,{ }_{-}\right)$;
2. $p_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle)\right\rangle\right)=$ $=\left(e v_{\text {Proc,Prop }}\right)_{Z}\left(\left\langle h_{Z}(\langle g, q\rangle), g\right\rangle\right) \wedge \mathscr{I}\left(Z,_{-}\right)=g_{Z}\left(\left\langle h_{Z}(\langle g, q\rangle), \mathrm{id}_{Z}\right\rangle\right) \wedge \mathscr{I}\left(Z,_{-}\right)$;
3. $\llbracket R: \imath \rightarrow o, P: \imath \vdash_{\Sigma}(R P): o \rrbracket_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle)\right\rangle\right)=\left(\llbracket R: \imath \rightarrow o, P: \imath \vdash_{\Sigma} R:\right.$ $\left.\iota \rightarrow o \rrbracket_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle)\right\rangle\right)\right)_{Z}\left(\left\langle\llbracket R: \imath \rightarrow o, P: \imath \vdash_{\Sigma} P: \imath \rrbracket_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle)\right\rangle\right), \mathrm{id}_{Z}\right\rangle\right)=$ $g_{Z}\left(\left\langle h_{Z}(\langle g, q\rangle), \mathrm{id}_{Z}\right\rangle\right)$ (by point 3 of Theorem 4.1); it follows from the previous two facts that $g_{Z}\left(\left\langle h_{Z}(\langle g, q\rangle), \operatorname{id}_{Z}\right\rangle\right) \geqslant \mathscr{I}\left(Z,{ }_{-}\right)$; hence $Z \Vdash_{\left.\left.(R: I \rightarrow o, P: I),\left\{g, h_{Z}(\langle g, q\rangle)\right\rangle\right\rangle\right\rangle}$ ( $R P$ ) holds;
4. from the previous fact and the inductive hypothesis we can deduce that

$$
Z \Vdash_{(R: l \rightarrow o, P: l),\left\langle g, h_{Z}(\langle g, q\rangle)\right\rangle}(R \tau P)
$$

holds, i.e., $\llbracket R: l \rightarrow o, P: \imath \vdash_{\Sigma}(R \tau P): o \rrbracket_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle)\right\rangle\right) \geqslant \mathscr{I}\left(Z,{ }_{-}\right)$;
5. by Theorem 4.1(3), we have $\llbracket R: \imath \rightarrow o, P: \imath \vdash_{\Sigma}(R \tau P): o \rrbracket_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle)\right\rangle\right)=$ $\left(\llbracket R: \imath \rightarrow o, P: \imath \vdash_{\Sigma} R: \imath \rightarrow o \rrbracket_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle)\right\rangle\right)\right)_{Z}\left(\left\langle\llbracket R: \imath \rightarrow o, P: \imath \vdash_{\Sigma} \tau P:\right.\right.$ $\left.\left.\rrbracket_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle)\right\rangle\right), \mathrm{id}_{Z}\right\rangle\right)=$ $g_{Z}\left(\left\langle\operatorname{tau}\left(\llbracket R: \iota \rightarrow o, P: \imath \vdash_{\Sigma} P: \imath \rrbracket_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle)\right), \mathrm{id}_{Z}\right\rangle\right)=\right.\right.$ $g_{Z}\left(\left\langle\operatorname{tau}\left(h_{Z}(\langle g, q\rangle)\right), \mathrm{id}_{Z}\right\rangle\right)=g_{Z}\left(\tau . h_{Z}(\langle g, q\rangle), \mathrm{id}_{Z}\right)=p_{Z}\left(\left\langle g, \tau . h_{Z}(\langle g, q\rangle)\right\rangle\right) \wedge \mathscr{I}\left(Z,{ }_{-}\right)$ whence the thesis.
( $u=i n_{3}(q, r)$ )

$$
\begin{aligned}
& p_{Z}\left(\left\langle\pi_{Z}\left(\left\langle g, i n_{3}(q, r)\right\rangle\right), \alpha_{Z}\left((T h)_{Z}\left(\left(s t_{G, U}\right)_{Z}\left(\left\langle g, i n_{3}(q, r)\right\rangle\right)\right)\right)\right\rangle\right)= \\
& =p_{Z}\left(\left\langle g, \alpha_{Z}\left((T h)_{Z}\left(i n_{3}(\langle g, q, g, r\rangle)\right)\right)\right\rangle\right)= \\
& =p_{Z}\left(\left\langle g, \alpha_{Z}\left(i n_{3}\left(h_{Z}(\langle g, q\rangle), i_{3}\left(h_{Z}(\langle g, r\rangle)\right)\right)\right\rangle\right)=\right. \\
& =p_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle) \mid h_{Z}(\langle g, r\rangle)\right\rangle\right)
\end{aligned}
$$

Equation B 5, states that for all $Y \in \mathscr{V}$, and $\eta_{R} \in(\text { Proc } \Rightarrow \text { Prop })_{Y}, Y \Vdash_{R: 1 \rightarrow o, \eta_{R}}$ $\forall P^{l} .(R P) \Rightarrow \forall Q^{l} .(R Q) \Rightarrow(R P \mid Q)$ holds. By points 1 and 2 of Theorem 4.1, this amounts to say that, for all $V \in \mathscr{V}, l \in \mathscr{I}(Y, V)$ and $\eta_{P} \in \operatorname{Proc}_{V}$,

$$
\begin{aligned}
& V \Vdash_{(R: l \rightarrow o, P: l),\left\langle(P r o c \rightarrow P r o p)_{l}\left(\eta_{R}\right), \eta_{P}\right\rangle}(R P) \\
& \quad \text { implies } \quad V \Vdash_{(R: l \rightarrow o, P:: l),\left\langle(P r o c \Rightarrow P r o p)_{l}\left(\eta_{R}\right), \eta_{P}\right)} \forall Q^{l} .(R Q) \Rightarrow(R P \mid Q) .
\end{aligned}
$$

Applying again the same theorem, the latter judgment is in turn equivalent to say that, for all $W \in \mathscr{V}, m \in \mathscr{I}(V, W)$ and $\eta_{Q} \in \operatorname{Proc}_{W}$,

$$
\begin{aligned}
& W \Vdash_{(R: I \rightarrow 0, P:, Q: Q),\left\langle(P r o c \Rightarrow \operatorname{Prop})_{m o l}\left(\eta_{R}\right), P r o c\right.}{ }^{\left.\left(\eta_{P}\right), \eta_{Q}\right\rangle}(R Q)
\end{aligned}
$$

Then we notice the following facts:

1. $p_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle)\right\rangle\right)=\mathscr{I}\left(Z,{ }_{-}\right)$and $p_{Z}\left(\left\langle g, h_{Z}(\langle g, r\rangle)\right\rangle\right)=\mathscr{I}\left(Z,_{-}\right)$;
2. $p_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle)\right\rangle\right)=\left(e v_{\text {Proc,Prop }}\right)_{Z}\left(\left\langle h_{Z}(\langle g, q\rangle), g\right\rangle\right) \wedge \mathscr{I}(Z,-)=g_{Z}\left(\left\langle h_{Z}(\langle g, q\rangle), \mathrm{id}_{Z}\right\rangle\right)$ $\wedge \mathscr{I}\left(Z,{ }_{-}\right)$and analogously $p_{Z}\left(\left\langle g, h_{Z}(\langle g, r\rangle)\right\rangle\right)=g_{Z}\left(\left\langle h_{Z}(\langle g, r\rangle), \mathrm{id}_{Z}\right\rangle\right) \wedge \mathscr{I}\left(Z,{ }_{-}\right) ;$
3. $\llbracket R: \imath \rightarrow o, P: \imath \vdash_{\Sigma}(R P): o \rrbracket_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle)\right\rangle\right)=\left(\llbracket R: \imath \rightarrow o, P: \imath \vdash_{\Sigma} R:\right.$ $\left.\imath \rightarrow o \rrbracket_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle)\right\rangle\right)\right)_{Z}\left(\left\langle\llbracket R: \imath \rightarrow o, P: \imath \vdash_{\Sigma} P: \imath \rrbracket_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle)\right\rangle\right), \mathrm{id}_{Z}\right\rangle\right)=$ $g_{Z}\left(\left\langle h_{Z}(\langle g, q\rangle), \mathrm{id}_{Z}\right\rangle\right)$ (by point 3 of Theorem 4.1); it follows from the previous two facts that $g_{Z}\left(\left\langle h_{Z}(\langle g, q\rangle), \operatorname{id}_{Z}\right\rangle\right) \geqslant \mathscr{I}\left(Z, \__{-}\right)$; hence $Z \Vdash_{\left.\left.(R: l \rightarrow o, P: l),\left\{g, h_{Z}(\langle g, q\rangle)\right\rangle\right)\right\rangle}$ ( $R P$ ) holds;
4. similarly we have that $\llbracket R: l \rightarrow o, P: l, Q: l \vdash_{\Sigma}(R \quad Q): o \rrbracket_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle)\right.\right.$, $\left.\left.h_{Z}(\langle g, r\rangle)\right\rangle\right)=g_{Z}\left(\left\langle h_{Z}(\langle g, r\rangle), \operatorname{id}_{Z}\right\rangle\right) \geqslant \mathscr{I}\left(Z,{ }_{-}\right)$; hence $Z \Vdash_{\left.\left.(R: l \rightarrow o, P: l),\left\langle g, h_{Z}(\langle g, r\rangle)\right\rangle\right)\right\rangle}$ ( $R Q$ ) holds;
5. from the previous facts and the inductive hypothesis we can deduce that

$$
Z \Vdash_{\left.(R: l \rightarrow o, P: l, Q::),\left\langle g, h_{Z}(\langle g, q\rangle), h_{Z}(\langle g, r\rangle)\right\rangle\right\rangle}(R P \mid Q)
$$

holds, i.e.,

$$
\llbracket R: \imath \rightarrow o, P: \imath, Q: \imath \vdash_{\Sigma}(R P \mid Q): o \rrbracket_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle), h_{Z}(\langle g, r\rangle)\right\rangle\right) \geqslant \mathscr{I}(Z,-) ;
$$

6. by Theorem 4.1(3), we have
$\llbracket R: \iota \rightarrow o, P: \iota, Q: \iota \vdash_{\Sigma}(R P \mid Q): o \rrbracket_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle), h_{Z}(\langle g, r\rangle)\right\rangle\right)=$
$=\left(\llbracket R: \imath \rightarrow o, P: l, Q: \imath \vdash_{\Sigma} R: \imath \rightarrow o \rrbracket_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle), h_{Z}(\langle g, r\rangle)\right\rangle\right)\right)_{Z}(\langle\llbracket R: \imath \rightarrow$ $\left.o, P: l, Q: \imath \vdash_{\Sigma} P\left|Q: \imath \rrbracket_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle), h_{Z}(\langle g, r\rangle)\right\rangle\right), \mathrm{id}_{Z}\right\rangle\right)=$
$=g_{Z}\left(\left\langle\operatorname{par}\left(\left\langle\llbracket R: l \rightarrow o, P: l, Q: \imath \vdash_{\Sigma} P: \imath \rrbracket_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle), h_{Z}(\langle g, r\rangle)\right\rangle\right), \llbracket R: \iota \rightarrow\right.\right.\right.\right.$ $\left.\left.\left.\left.o, P: l, Q: \imath \vdash_{\Sigma} Q: \imath \rrbracket_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle), h_{Z}(\langle g, r\rangle)\right\rangle\right)\right\rangle\right), \mathrm{id}_{Z}\right\rangle\right)=$
$=g_{Z}\left(\left\langle\operatorname{par}\left(\left\langle h_{Z}(\langle g, q\rangle), h_{Z}(\langle g, r\rangle)\right\rangle\right), \mathrm{id}_{Z}\right\rangle\right)=g_{Z}\left(h_{Z}(\langle g, q\rangle) \mid h_{Z}(\langle g, r\rangle), \mathrm{id}_{Z}\right)=$ $p_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle) \mid h_{Z}(\langle g, r\rangle)\right\rangle\right) \wedge \mathscr{I}(Z,-)$, whence the thesis.
( $\left.u=\operatorname{in}_{4}(v, w, q)\right)$

$$
\begin{aligned}
& p_{Z}\left(\left\langle\pi_{Z}\left(\left\langle g, i n_{4}(v, w, q)\right\rangle\right), \alpha_{Z}\left((T h)_{Z}\left(\left(s t_{G, U}\right)_{Z}\left(\left\langle g, i n_{4}(v, w, q)\right\rangle\right)\right)\right)\right\rangle\right)= \\
= & p_{Z}\left(\left\langle g, \alpha_{Z}\left((T h)_{Z}\left(i n_{4}(\langle v, w, g, q\rangle)\right)\right)\right\rangle\right)= \\
= & p_{Z}\left(\left\langle g, \alpha_{Z}\left(i n_{4}\left(\left\langle v, w, h_{Z}(\langle g, q\rangle)\right\rangle\right)\right)\right\rangle\right)=p_{Z}\left(\left\langle g,[v \neq w] h_{Z}(\langle g, q\rangle)\right\rangle\right)
\end{aligned}
$$

At this point we know, by equation B6, that for all $Y \in \mathscr{V}$, and $\eta_{R} \in(\operatorname{Proc} \Rightarrow$ Prop $)_{Y}, \quad Y \Vdash_{R: l \rightarrow o, \eta_{R}} \forall x^{v} . \forall y^{v} . \forall P^{l} .(R P) \Rightarrow(R[x \neq y] P)$ holds. By point 2 of Theorem 4.1 and point 5 of Corollary 4.1, this amounts to say that, for all $V \in \mathscr{V}, l \in \mathscr{I}(Y, V) \eta_{x}, \eta_{y} \in V$ and $\eta_{P} \in \operatorname{Proc}_{V}$,

```
V }\mp@subsup{\vdash}{(R:l->o,x:v,y:v,P:l),\langle(Proc=>Prop),(\eta\mp@subsup{\eta}{R}{\prime},\mp@subsup{\eta}{x}{},\mp@subsup{\eta}{y}{},\eta\mp@subsup{\eta}{P}{}\rangle}{}(RP
implies VV|}\mp@subsup{\Vdash}{(R:l->o,x:v,y:v,P:l),{(Proc=>Prop\mp@subsup{)}{l}{\prime}(\mp@subsup{\eta}{R}{}),\mp@subsup{\eta}{x}{},\mp@subsup{\eta}{v}{},\mp@subsup{\eta}{P}{})}{}(R[x\not=y]P)
```

Then we notice the following facts:

1. $p_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle)\right\rangle\right)=\mathscr{I}\left(Z,{ }_{-}\right)$;
2. $p_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle)\right\rangle\right)=\left(e v_{\text {Proc,Prop }}\right)_{Z}\left(\left\langle h_{Z}(\langle g, q\rangle), g\right\rangle\right) \wedge \mathscr{I}\left(Z,{ }_{-}\right)=$ $=g_{Z}\left(\left\langle h_{Z}(\langle g, q\rangle), \mathrm{id}_{Z}\right\rangle\right) \wedge \mathscr{I}\left(Z,{ }_{-}\right)$;
3. $\llbracket R: \imath \rightarrow o, P: \imath \vdash_{\Sigma}(R P): o \rrbracket_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle)\right\rangle\right)=\left(\llbracket R: \imath \rightarrow o, P: \imath \vdash_{\Sigma} R:\right.$ $\left.\iota \rightarrow o \rrbracket_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle)\right\rangle\right)\right)_{Z}\left(\left\langle\llbracket R: \imath \rightarrow o, P: \imath \vdash_{\Sigma} P: \imath \rrbracket_{Z}\left(\left\langle g, h_{Z}(\langle g, q\rangle)\right\rangle\right), \mathrm{id}_{Z}\right\rangle\right)=$
$g_{Z}\left(\left\langle h_{Z}(\langle g, q\rangle), \mathrm{id}_{Z}\right\rangle\right)$ (by point 3 of Theorem 4.1); it follows from the previous two facts that $g_{Z}\left(\left\langle h_{Z}(\langle g, q\rangle), \operatorname{id}_{Z}\right\rangle\right) \geqslant \mathscr{I}\left(Z,{ }_{-}\right)$; hence $Z \Vdash_{\left.\left.(R: I \rightarrow o, P: ı),\left\{g, h_{Z}(\langle g, q\rangle)\right\rangle\right\rangle\right\rangle}$ ( $R P$ ) holds;
4. from the previous fact and the inductive hypothesis we can deduce that

$$
Z \Vdash_{(R: l \rightarrow o, x: v, y: v, P: l),\left\{g, v, w, h_{Z}(\langle g, q\rangle)\right\rangle}(R[x \neq y] P)
$$

holds, i.e.,

$$
\llbracket R: \imath \rightarrow o, x: v, y: v, P: \imath \vdash_{\Sigma}(R[x \neq y] P): o \rrbracket_{Z}\left(\left\langle g, v, w, h_{Z}(\langle g, q\rangle)\right\rangle\right) \geqslant \mathscr{I}(Z,-) ;
$$

5. by Theorem 4.1(3), we have $\llbracket R: \imath \rightarrow o, x: v, y: v, P: \imath \vdash_{\Sigma}(R[x \neq y] P): o \rrbracket_{Z}(\langle g$, $\left.\left.v, w, h_{Z}(\langle g, q\rangle)\right\rangle\right)=\left(\llbracket R: \imath \rightarrow o, x: v, y: v, P: \imath \vdash_{\Sigma} R: \imath \rightarrow o \rrbracket_{Z}\left(\left\langle g, v, w, h_{Z}(\langle g, q\rangle)\right\rangle\right)\right)_{Z}$ $\left(\left\langle\llbracket R: \imath \rightarrow o, x: v, y: v, P: \imath \vdash_{\Sigma}[x \neq y] P: \imath \rrbracket_{Z}\left(\left\langle g, v, w, h_{Z}(\langle g, q\rangle)\right\rangle\right), \mathrm{id}_{Z}\right\rangle\right)=$ $g_{Z}\left(\left\langle\right.\right.$ mismatch $\left(\left\langle\llbracket R: \imath \rightarrow o, x: v, y: v, P: l \vdash_{\Sigma} x: v \rrbracket_{Z}\left(\left\langle g, v, w, h_{Z}(\langle g, q\rangle)\right), \llbracket R: l \rightarrow\right.\right.\right.$ $o, x: v, y: v, P: l \vdash_{\Sigma} y: v \rrbracket_{Z}\left(\left\langle g, v, w, h_{Z}(\langle g, q\rangle)\right), \llbracket R: \imath \rightarrow o, x: v, y: v, P: l \vdash_{\Sigma} P:\right.$ $\left.\left.\left.\rrbracket_{Z}\left(\left\langle g, v, \quad w, h_{Z}(\langle g, q\rangle)\right)\right\rangle\right), \quad \operatorname{id}_{Z}\right\rangle\right)=g_{Z}\left(\left\langle\operatorname{mismatch}\left(\left\langle v, w, h_{Z}(\langle g, q\rangle)\right\rangle\right), \mathrm{id}_{Z}\right\rangle\right)=$ $g_{Z}\left([v \neq w] h_{Z}(\langle g, q\rangle), \operatorname{id}_{Z}\right)=p_{Z}\left(\left\langle g,[v \neq w] h_{Z}(\langle g, q\rangle)\right\rangle\right) \wedge \mathscr{I}(Z,-)$, whence the thesis.

$$
\begin{aligned}
&\left(u=\operatorname{in}_{5}(q)\right) \\
& p_{Z}\left(\left\langle\pi_{Z}\left(\left\langle g, i n_{5}(q)\right\rangle\right), \alpha_{Z}\left((T h)_{Z}\left(\left(s t_{G, U}\right)_{Z}\left(\left\langle g, i i_{5}(q)\right\rangle\right)\right)\right)\right\rangle\right)= \\
&= p_{Z}\left(\left\langle g, \alpha_{Z}\left((T h)_{Z}\left(i n_{5}\left(\bar{q}_{g}\right)\right)\right)\right\rangle\right)= \\
&= p_{Z}\left(\left\langle g, \alpha_{Z}\left(i n_{5}\left(h_{Z \uplus Z}\left(\left(\bar{q}_{g}\right)_{Z \uplus Z}\left(z, i n_{Z}\right)\right)\right)\right\rangle\right)=\right. \\
&= p_{Z}\left(\left\langle g,(v z) h_{Z \uplus Z}\left(\left(\bar{q}_{g}\right)_{Z \uplus Z}\left(z, i n_{Z}\right)\right)\right\rangle\right),
\end{aligned}
$$

where $\bar{q}_{g}: \operatorname{Var} \times \mathscr{V}\left(Z,,_{-}\right) \longrightarrow G \times U$ is the natural transformation such that, for all $Y \in \mathscr{V}, y \in Y$ and $f \in \mathscr{V}(Z, Y),\left(\bar{q}_{g}\right)_{Y}(y, f)=\left\langle G_{f}(g), q_{Y}(\langle y, f\rangle)\right\rangle$.
At this point we know, by equation B7, that for all $Y \in \mathscr{V}$, and $\eta_{R} \in(\operatorname{Proc} \Rightarrow$ Prop $)_{Y}, Y \Vdash_{R: l \rightarrow o, \eta_{R}} \forall P^{v \rightarrow l} .\left(\forall x^{v} .(R(P x))\right) \Rightarrow(R v P)$ holds. By points 1 and 2 of Theorem 4.1, this amounts to say that, for all $V \in \mathscr{V}, l \in \mathscr{I}(Y, V)$ and $\eta_{P} \in(\text { Var } \Rightarrow \text { Proc })_{V}$,

$$
\begin{aligned}
& V \Vdash_{(R: l \rightarrow o, P: v \rightarrow l),\left\langle(P r o c \rightarrow P r o p)_{l}\left(\eta_{R}\right), \eta_{P}\right\rangle} \\
& \text { implies } \quad \forall x^{v} .(R(P \quad x)) \\
& \Vdash_{(R: l \rightarrow o, P: v \rightarrow l),\left\langle(P r o c \rightarrow P r o p)_{l}\left(\eta_{R}\right), \eta_{P}\right\rangle}(R \\
& \text { imP). }
\end{aligned}
$$

Then we notice the following facts:

1. $V \Vdash_{(R: l \rightarrow o, P: p \rightarrow l),\left\langle(P r o c \Rightarrow P r o p)_{( }\left(\eta_{R}\right), \eta_{P}\right\rangle} \forall x^{v}$. $\left(R\left(\begin{array}{ll}P & x)) \text { iff, for all } W \in \mathscr{W}, m \in \mathscr{I}(V, W) \\ \end{array}\right.\right.$ and $\eta_{x} \in W$, the following holds:

$$
W \Vdash_{(R: I \rightarrow o, P: v \rightarrow l, x::)),\langle(P r o c \Rightarrow P r o p}{)_{m o l}\left(\eta_{R}\right), \eta_{P}, \eta_{x}\right\rangle}(R(P \quad x)),
$$

i.e., iff

$$
\llbracket \Delta \vdash_{\Sigma}(R(P \quad x)): o \rrbracket_{W}(\eta) \geqslant \mathscr{I}\left(W,{ }_{-}\right),
$$

where $\Delta \triangleq R: \imath \rightarrow o, P: v \rightarrow \imath, x: v$ and $\eta \triangleq\left\langle(\text { Proc } \Rightarrow \operatorname{Prop})_{m o l}\left(\eta_{R}\right),(\right.$ Var $\Rightarrow$ $\left.\operatorname{Proc})_{m}\left(\eta_{P}\right), \eta_{x}\right\rangle$. The first member of the preceding inequality can be simplified
as follows according to Theorem 4.1:

$$
\begin{aligned}
& \llbracket \Delta \vdash_{\Sigma}(R(P x)): o \rrbracket_{W}(\eta) \geqslant \mathscr{I}(W,-) \\
= & \left(\llbracket \Delta \vdash_{\Sigma} R: l \rightarrow o \rrbracket_{W}(\eta)\right)_{W}\left(\left\langle\llbracket \Delta \vdash_{\Sigma}(P x): \imath \rrbracket_{W}(\eta), \mathrm{id}_{W}\right\rangle\right) \\
= & \left((\operatorname{Proc} \Rightarrow \operatorname{Prop})_{m o l}\left(\eta_{R}\right)\right)_{W}\left(\left\langle\left(\llbracket \Delta \vdash_{\Sigma} P: v \rightarrow \imath \rrbracket_{W}(\eta)\right)_{W}\right.\right. \\
& \left.\left.\quad\left(\left\langle\llbracket \Delta \vdash_{\Sigma} x: v \rrbracket_{W}(\eta), \mathrm{id}_{W}\right\rangle\right), \mathrm{id}_{W}\right\rangle\right) \\
= & \left((\operatorname{Proc} \Rightarrow \operatorname{Prop})_{m o l}\left(\eta_{R}\right)\right)_{W}\left(\left\langle\left((\operatorname{Var} \Rightarrow \operatorname{Proc})_{m}\left(\eta_{P}\right)\right)_{W}\left(\left\langle\eta_{x}, \mathrm{id}_{W}\right\rangle\right), \mathrm{id}_{W}\right\rangle\right)
\end{aligned}
$$

2. in particular, when $V \triangleq Z, l \triangleq \mathrm{id}_{Z}, \eta_{R} \triangleq g$ and $\eta_{P} \triangleq h \circ \bar{q}_{g}$, we have that the following holds:

$$
\begin{aligned}
& \left((\operatorname{Proc} \Rightarrow \operatorname{Prop})_{m}(g)\right)_{W}\left(\left\langle\left((\operatorname{Var} \Rightarrow \operatorname{Proc})_{m}\left(h \circ \bar{q}_{g}\right)\right)_{W}\left(\left\langle\eta_{x}, \mathrm{id}_{W}\right\rangle\right), \mathrm{id}_{W}\right\rangle\right) \\
= & \left(\left(\operatorname{Proc} \Rightarrow \operatorname{Prop}_{m}(g)\right)_{W}\left(\left\langle\left(h \circ \bar{q}_{g}\right)_{W}\left(\left\langle\eta_{x}, m\right\rangle\right), \mathrm{id}_{W}\right\rangle\right)\right. \\
= & \left(\left(\operatorname{Proc} \Rightarrow \operatorname{Prop}_{m}(g)\right)_{W}\left(\left\langle h_{W}\left(\left\langle(\operatorname{Proc} \Rightarrow \operatorname{Prop})_{m}(g), q_{W}\left(\left\langle\eta_{X}, m\right\rangle\right)\right\rangle\right), \mathrm{id}_{W}\right\rangle\right)\right.
\end{aligned}
$$

3. $\left.\left.p_{W}\left(\left\langle(\operatorname{Proc} \Rightarrow \operatorname{Prop})_{m}(g), h_{W}\left(\left\langle(\operatorname{Proc} \Rightarrow \operatorname{Prop})_{m}(g), q_{W}\left(\left\langle\eta_{X}, m\right\rangle\right)\right\rangle\right), \mathrm{id}_{W}\right\rangle\right)\right\rangle\right)=$ $\mathscr{I}(W, \quad$ );
4. $\left.\left.p_{W}\left(\left\langle(\operatorname{Proc} \Rightarrow \operatorname{Prop})_{m}(g), h_{W}\left(\left\langle(\operatorname{Proc} \Rightarrow \operatorname{Prop})_{m}(g), q_{W}\left(\left\langle\eta_{X}, m\right\rangle\right)\right\rangle\right), \operatorname{id}_{W}\right\rangle\right)\right\rangle\right)=$ $\left((\operatorname{Proc} \Rightarrow \operatorname{Prop})_{m}(g)\right)_{W}\left(\left\langle h_{W}\left(\left\langle(\operatorname{Proc} \Rightarrow \operatorname{Prop})_{m}(g), q_{W}\left(\left\langle\eta_{X}, m\right\rangle\right)\right\rangle\right), \mathrm{id}_{W}\right\rangle\right) \wedge \mathscr{I}(W, \quad) ;$ hence, for all $W, m \in \mathscr{I}(Z, W)$ and $\eta_{x} \in W$ we have

$$
W \Vdash_{(R: l \rightarrow o, P: 0 \rightarrow l, x: v),\left\langle(P r o c \Rightarrow P r o p)_{m}(g), h o \bar{q}_{g}, \eta_{x}\right\rangle}\left(R \left(\begin{array}{ll}
P & x)) ; ;
\end{array}\right.\right.
$$

5. it follows that $Z \Vdash_{(R: l \rightarrow o, P: D \rightarrow l),\left\langle g, h o \bar{q}_{g}\right\rangle}(R v P)$ holds by the previous point and the inductive hypothesis, i.e, $\llbracket R: \imath \rightarrow o, P: 0 \rightarrow \imath \vdash_{\Sigma}(R v P): \imath \rrbracket_{Z}\left(\left\langle g, h \circ \bar{q}_{g}\right\rangle\right)=$ $\left(\llbracket R: \imath \rightarrow o, P: v \rightarrow \imath \vdash_{\Sigma} R: \imath \rightarrow o \rrbracket_{Z}\left(\left\langle g, h \circ \bar{q}_{g}\right\rangle\right)\right)_{Z}\left(\left\langle\llbracket R: \imath \rightarrow o, P: v \rightarrow t \vdash_{\Sigma} v P:\right.\right.$ $\left.\left.\rrbracket_{Z}\left(\left\langle g, h \circ \bar{q}_{g}\right\rangle\right), \mathrm{id}_{Z}\right\rangle\right)=g_{Z}\left(\left\langle\right.\right.$ new $\left.\left._{Z}\left(\left\langle h \circ \bar{q}_{g}\right\rangle\right), \mathrm{id}_{Z}\right\rangle\right)=g_{Z}\left(\left\langle(v z)\left(\left(h \circ \bar{q}_{g}\right)_{Z \uplus z}\left(\left\langle z, i n_{Z}\right\rangle\right)\right)\right.\right.$, $\left.\left.\mathrm{id}_{Z}\right\rangle\right)=g_{Z}\left(\left\langle(v z)\left(h_{Z \uplus z}\left(\left(\bar{q}_{g}\right)_{Z \uplus z}\left(\left\langle z, i n_{Z}\right\rangle\right)\right)\right), \mathrm{id}_{Z}\right\rangle\right) \geqslant \mathscr{I}\left(Z,_{-}\right)$holds. The thesis follows since

$$
p_{Z}\left(\left\langle g,(v z) h_{Z \uplus z}\left(\left(\bar{q}_{g}\right)_{Z \uplus z}\left(z, i i_{Z}\right)\right)\right\rangle\right)=g_{Z}\left(\left\langle(v z)\left(h_{Z \uplus z}\left(\left(\bar{q}_{g}\right)_{Z \uplus z}\left(\left\langle z, i i_{Z}\right\rangle\right)\right)\right), \operatorname{id}_{Z}\right\rangle\right) \wedge \mathscr{I}(Z,-) .
$$

