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Abstract

This paper presents STAL, a variant of Typed Assembly Language with constructs and

types to support a limited form of stack allocation. As with other statically-typed low-level

languages, the type system of STAL ensures that a wide class of errors cannot occur at

run time, and therefore the language can be adapted for use in certifying compilers where

security is a concern. Like the Java Virtual Machine Language (JVML), STAL supports

stack allocation of local variables and procedure activation records, but unlike the JVML,

STAL does not pre-suppose fixed notions of procedures, exceptions, or calling conventions.

Rather, compiler writers can choose encodings for these high-level constructs using the more

primitive RISC-like mechanisms of STAL. Consequently, some important optimizations that

are impossible to perform within the JVML, such as tail call elimination or callee-saves

registers, can be easily expressed within STAL.

Capsule Review

The ability to type-check low-level executable code plays an important role in ensuring safe

execution of untrusted code in a secure environment, such as Web applets, mobile code,

and user-provided kernel extensions. Bytecode verification in Java is a well-known example

of type-checking executable code, but it applies only to a specific, rather high-level virtual

machine instruction set. Typed Assembly Language (TAL), introduced by Morrisett et al. in

1998, extends this approach to much lower-level executable code: it provides a flexible type

system for a language similar to the machine code of contemporary processors. However, one

limitation of TAL is that it applies only to code compiled in continuation-passing style, that is,
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with all activation records allocated on the heap. This article lifts this limitation and extends

TAL with the ability to type-check code compiled in direct style, with activation records

allocated on a stack. The resulting STAL type system is remarkably flexible and precise; in

particular, it can handle many classic uses of the stack in optimized compiled code, including

exception handling and callee-save registers. This article is therefore an important step towards

making executable code verification applicable to a large class of source languages, optimizing

compiler technology, and machine-level instruction sets.

1 Introduction and motivation

A certifying compiler takes high-level source code and produces low-level target code,

but in addition, produces explicit evidence that the target code will not perform

some ‘bad’ action when executed. By checking the evidence before executing the

code, an untrusting system can verify that the target code will be well-behaved

independent of the source code or compiler. Thus, to the degree that we trust the

verifier, we need not trust either the code producer or the compiler.

As an example, Sun Microsystem’s javac compiler takes Java source code

(Gosling et al., 1996) and produces Java Virtual Machine Language (JVML) byte-

codes (Lindholm & Yellin, 1996) which contain explicit typing annotations as

evidence. An untrusting system, such as a Web browser, can verify the typing an-

notations against the bytecodes using a form of dataflow analysis to ensure that,

when executed, the bytecodes will not violate type safety. In turn, the type safety

guarantees can be used to ensure a wide class of important security properties, such

as memory safety, control safety, or more generally, fault isolation.

Though a portable and successful target language for certifying compilers, the

JVML type system is not without its shortcomings. In particular, the bytecodes con-

sist of relatively high-level instructions. As such, the code must either be interpreted,

which can yield poor performance, or else compiled to native code. In either case,

we must introduce a software component (interpreter or compiler) into our trusted

computing base, thereby increasing the probability of error. In addition, both the

bytecodes and the type system are tailored for Java, and thus form a poor target for

many other source languages. For example, method call and return are high-level

instructions with no provision for tail calls. Consequently, with JVML it is difficult to

compile functional languages, such as Scheme (Scheme, 1998), that depend upon tail

calls for proper space overheads. As another example, the type system has no direct

support for parametric polymorphism, making it difficult to compile languages such

as SML (Milner et al., 1997). Finally, the JVML type system and semantics were

not designed with a formal model in mind, and thus it has been difficult to state or

prove properties about the language such as type soundness, though much recent

progress has been made (Freund & Mitchell, 1999; Coglio et al., 1998; Goldberg,

1998; Qian, 1998; Freund & Mitchell, 1998; O’Callahan, 1999).

These observations motivated our exploration of type systems for very low-level,

explicitly typed target languages with a more low-level philosophy. Our goal was

to discover generic target-level type structure that could be applied for any source

language and any certifying compiler. As a step towards this goal, in earlier work we
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presented a core typed assembly language (TAL) (Morrisett et al., 1998a; Morrisett

et al., 1999a), where almost all of the instructions had a one-to-one correspondence

with a conventional MIPS-like assembly language. Thus, the language had no built-

in notion of high-level features such as methods, functions, or objects. The primary

challenge in designing TAL was to come up with a simple but expressive type system

that would allow compiler writers to efficiently encode these features.

We based the type system of TAL on a variant of the Girard-Reynolds poly-

morphic lambda calculus, also known as System F. Doing so had a number of

benefits: First, it was easy to adapt the relatively simple rewriting model and proof

techniques developed for System F to the assembly language arena. In turn, this

allowed us to state and prove a type soundness theorem easily. Secondly, a number

of researchers have studied how to encode high-level language features, such as

abstract data types, continuations, closures and objects, using the typing facilities of

System F or extensions thereof. By basing the TAL type system on System F, we

could immediately transfer these results.

We demonstrated the expressiveness of TAL and its type structure by formally

defining a type-preserving, certifying compiler from an ML-like language to TAL.

The compiler ensured that well-typed source programs were always mapped to well-

typed assembly language programs. Furthermore, we claimed that the type system

of TAL did not interfere with a class of desirable compiler optimizations including

inlining, loop unrolling, register allocation, common sub-expression elimination,

and instruction scheduling. Our preliminary implementation experience seems to

substantiate these claims.

However, the compiler we presented was critically based on a continuation-passing

style (CPS) transform, which eliminated the need for a control stack. In particular,

activation records were represented by heap-allocated closures as in the Rabbit and

SML of New Jersey compilers (Steele Jr., 1978; Appel & MacQueen, 1991), and

we relied upon a garbage collector to reclaim these closures. There are some good

reasons for implementing procedure activations in this fashion (see, for example,

Appel’s book (Appel, 1992)), but the approach is fairly non-standard. Indeed, almost

all compilers allocate activation records on a stack and explicitly deallocate them

upon procedure return (or tail call). Unfortunately, the simple typing model of TAL

was unable to support this approach.

In this paper, we explore additions to the type structure of TAL that support

limited forms of stack-based memory management. The resulting target language,

which we call STAL, is remarkably simple, but powerful enough to compile the

control aspects of languages such as Pascal, Java or ML. More specifically, the STAL

typing discipline supports stack allocation of temporary variables and values that

do not escape upwards; stack allocation of procedure activation frames, exception

handlers, and displays; and optimizations such as tail call elimination and callee-

saves registers. Unlike JVML, STAL is flexible enough that we need not add

high-level procedure call/return primitives. Rather, by providing a general form of

stack polymorphism and polymorphic recursion, these high-level operations can be

synthesized from standard primitives such as loads, stores, and jumps.

Nevertheless, the typing discipline of STAL is not powerful enough to support all
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desirable optimizations. For example, the approach does not support ‘zero-overhead-

try’ exception handlers, nor does it support general stack allocation of data (e.g.

alloca). But in general, our approach seems to strike a good balance between sim-

plicity and expressiveness. Indeed, O’Callahan suggested that the most appropriate

way to model and understand important aspects of the JVML type system, such as

sub-routines, was to map it to a restricted version of STAL (O’Callahan, 1999).

The basic ideas behind our stack typing discipline were presented in an earlier

workshop paper (Morrisett et al., 1998b). Here we extend that work by giving a

more thorough and formal treatment, including a proof of type soundness. To keep

the development self-contained, we begin in section 2 by giving an overview of the

original core typed assembly language, and by describing how a certifying compiler

for a functional language can use it as a target language. In sections 3 and 4, we

motivate our extensions to support stack allocation through a series of examples

involving temporary values, activation records, and exception contexts. In section 5

we formally define the static and dynamic semantics of STAL, deferring the proof

of type soundness to Appendix A. We close in section 6 with a brief description of

our implementation of STAL for the IA32 instruction set architecture (i.e. the Intel

x86), and a discussion of related and future work.

2 Overview of TAL and CPS-based compilation

In this section, we give a brief overview of core Typed Assembly Language (TAL)

and how it may be used as the target of a certifying compiler. This presentation is

based on our earlier work (Morrisett et al., 1999a), but simplifies the treatment of

allocation and initialization (as noted below).

Like a conventional assembly language, the code in a TAL program consists of a

set of labelled instruction sequences, where the labels are used as symbolic addresses

for control transfers. However, TAL programs are explicitly typed, meaning that

instructions and operands are decorated with enough typing information that type

checking the language can be done in a syntax-directed manner.

The syntax of instructions and instruction sequences is given below and except

for two of the instructions (malloc and unpack), corresponds directly to RISC-style

instructions:

instruction sequences I ::= jmp v | halt[τ] | ι; I
instructions ι ::= aop rd, rs, v | mov rd, v | ld rd, rs(i) |

st rd(i), rs | bop r, v |
malloc r, 〈v1, . . . , vn〉 | unpack [α, rd], v

arithmetic ops aop ::= add | sub | mul
branch ops bop ::= beq | bneq | bgt | blt | bgte | blte

An instruction sequence is a list of instructions terminated by an unconditional

control transfer (either jmp or halt). In the syntax, we use r to represent a register

operand and v to represent an operand that is either a register or an immediate

word-sized value (e.g. an integer, code label or data label). We use the meta-variable

w to range over word-sized values.

The arithmetic instructions take a source register as one operand (rs), and either
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another source register or immediate value as another operand (v), perform the

appropriate arithmetic on the values, and store the result in the destination register

(rd). The mov instruction simply moves the value of v into the destination register

rd. The instruction ld rd, rs(i) loads a word of memory at an offset of i words from

the base address indicated by the source operand rs into the destination register rd.

Dually, the st rd(i), rs instruction stores the contents of rs into memory at the word

offset i from the base address rd.

The branch instructions branch to their second operand if the first operand is

appropriately related to 0. For example, the instruction bneq r2, foo branches to

the label foo when register r2 is not 0. The jmp instruction unconditionally transfers

control to the address indicated by its operand and the halt instruction terminates

the operation of the program.

The malloc and unpack instructions do not correspond to conventional machine

instructions. Rather, they are higher-level primitives that make it easier to prove code

is type safe and would typically be implemented by a small sequence of machine-

specific instructions. The malloc instruction is used to dynamically allocate and

initialize memory, and returns a pointer to the memory object in the specified

register. In the original formulation of TAL, we had more primitive mechanisms

that separated allocation and initialization, but to simplify the presentation, we

use a combined mechanism here. As in the original TAL model, we assume that

heap-allocated memory is reclaimed by a garbage collector.

The unpack is a technical device that is used to ‘open’ a value that has an

existential type (Mitchell & Plotkin, 1988), and is discussed more thoroughly in

section 2.2.

2.1 The TAL abstract machine

The dynamic semantics of TAL is specified as an abstract rewriting machine similar

to the SECD (Landin, 1964) or CESK (Felleisen, 1987) machines used to model

higher-level functional languages. This level of abstraction hides some machine-

specific details, but makes it easier to relate the semantics to existing formalisms.

The abstract machine maintains, but does not use the typing information during

evaluation. This facilitates the proof of type soundness but also admits an imple-

mentation where type information is erased prior to execution.

A TAL abstract machine state M consists of three components: a heap (H), a

register file (R), and a current instruction sequence (I). The heap provides a symbolic

store for both code and data; the register file provides values for the registers; and

the instruction sequence simulates a program counter. Evaluation is modelled by a

deterministic rewriting system that maps machine states to machine states, written

M 7−→M ′.
Most of the rewriting rules are straightforward and directly encode the informal

semantics discussed earlier. For example, there is one rule for addition using an

immediate value that looks like this:

(H,R, add rd, rs, i; I) 7−→ (H,R{rd 7→ R(rs) + i}, I)
Here, we look up the value of rs in the register file, add it to the immediate value i
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(where i ranges over integer literals), and step to a new state where the register file is

updated to map rd to the sum, and where the ‘program counter’ has been advanced

by taking the tail of the instruction sequence.

We model register files as functions from register names (r) to word-sized values

(w), and we model heaps as partial functions from labels (`) to heap values (discussed

below). This level of abstraction hides many details, such as the relative order of heap

values, which is convenient for high-level reasoning. For example, an implementation

that uses a copying garbage collector is free to rearrange heap values without

observably affecting the machine state.

Heap values consist of tuples of word sized values (〈w1, . . . , wn〉, n > 0) or

typed instruction sequences (code[∆]Γ.I). It is possible to add other forms of data,

including tagged unions (sums), arrays, objects, etc., but in this formal treatment, we

have kept data forms to a minimum to simplify the presentation.

A typed instruction sequence consists of a typing pre-condition ([∆]Γ) and an

instruction sequence (I). Informally, ∆ is a list of bound type variables that can be

used as abstract types within the code, and Γ describes the types that registers must

have before control can be transferred to the associated code sequence. The formal

role of the typing pre-condition should become clear when we discuss the static

semantics in the next section.

The syntax for machine states, register files, heap values, word values, and typed

instruction sequences is summarized below:

machine states M ::= (H,R, I)

register files R ::= {r1 7→ w1, . . . , rn 7→ wn}
heaps H ::= {`1 7→ h1, . . . , `n 7→ hn}
heap values h ::= 〈w1, . . . , wn〉 | code[∆]Γ.I

word values w ::= ` | i | w[τ] | pack [τ, w] as τ′
operands v ::= r | w | v[τ] | pack [τ, v] as τ′

As mentioned earlier, word values include labels (i.e. pointers) and immediate

integers, but in addition, they include a number of other syntactic forms. The value

w[τ] is a polymorphic type instantiation when w is a polymorphic value (i.e. a

label for a polymorphic instruction sequence.) A value pack [τ, w] as τ′ is used to

introduce existential types.

Like typing pre-conditions, these annotations on values are not used during

evaluation but rather keep the process of type checking syntax-directed.

We can now describe the semantics of the rest of the instructions. In the semantics,

we use R̂ to convert an operand to a word value as follows:

R̂(r) = R(r)

R̂(w) = w

R̂(v[τ]) = (R̂(v))[τ]

R̂(pack [τ, v] as τ′) = pack [τ, R̂(v)] as τ′

The mov instruction simply moves the word value of the operand into the appropriate

register:

(H,R, mov rd, v; I) 7−→ (H,R{rd 7→ R̂(v)}, I)
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The ld instruction expects that its operand contains a label bound in the heap to a

tuple. The ith component of the tuple is returned as the result:

(H,R, ld rd, rs(i); I) 7−→
(H,R{rd 7→ wi}, I) when H(R̂(rs)) = 〈w1, . . . , wi, . . . , wn〉

The st instruction is the dual:

(H{` 7→ 〈w1, . . . , wi, . . . , wn〉}, R, st rd(i), rs; I) 7−→
(H{` 7→ 〈w1, . . . , R̂(rs), . . . , wn〉}, R, I) when R̂(rd) = `

The malloc instruction allocates and initializes a new tuple in the heap:

(H,R, malloc rd, 〈v1, . . . , vn〉; I) 7−→
(H{` 7→ 〈R̂(v1), . . . , R̂(vn)〉}, R{rd 7→ `}, I) where ` 6∈ Dom(H)

For the branch instructions, if the condition is not true, then we simply move on

to the tail of the current instruction sequence. Otherwise, we ‘jump’ to the code

specified by the operand by installing its associated code. For example:

(H,R, beq r, `; I) 7−→
(H,R, I ′) when R(r) = 0 and H(`) = code[]Γ.I ′

Other control transfers, such as jmp behave in a similar fashion.

In general, instruction sequences can be polymorphic with respect to types. That is,

they can abstract a sequence of type variables ∆ = α1, . . . , αn and these type variables

may occur free within the code sequence. Before control can be transferred to a

polymorphic instruction sequence, the type variables must be explicitly instantiated.

Thus, the general rule for a control transfer, such as a jmp, requires that we supply

type parameters [τ1, . . . , τn] as in:

(H,R, jmp `[τ1, . . . , τn]) 7−→
(H,R, I ′[τi/αi]) when H(`) = code[α1, . . . , αn]Γ.I

′

(We write the capture-avoiding substitution of τ for α in an expression E as

E[τ/α].) Notice that when the control transfer is performed, we substitute the type

parameter τi for the appropriate type variable αi within the code sequence that

abstracts the type variables. Again, the type instantiation and substitution are not

necessary for evaluation, but rather make it easier to prove type soundness. In a real

implementation, type information may be erased prior to execution.

The abstract machine’s terminal states are of the form (H,R[r1 7→ v], halt[τ]),

where v is a value of type τ. We say that a non-terminal machine state is stuck

if there is no valid transition to a new machine state. For example, the machine

becomes stuck if it attempts to perform a load or store on an integer operand, or

attempts to jump to an operand that is not a code label. The goal of the type system,

discussed in the next section, is to ensure that well-formed programs never become

stuck.
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2.2 Overview of the TAL type system

The abstract syntax for the types of the TAL abstract machine is given below:

types τ ::= α | int | 〈τ1, . . . , τn〉 | ∀[∆].Γ | ∃α.τ
type assignments ∆ ::= · | ∆, α
register assignments Γ ::= {r1:τ1, . . . , rn:τn}
label assignments Ψ ::= {`1:τ1, . . . `n:τn}

Types include type variables, int , tuple types, polymorphic code types, and existential

types. Code types (∀[∆].Γ), similar to polymorphic function types, are used to classify

pointers to heap-allocated instruction sequences. As discussed above, control can

only be transferred to a value with a code type when we supply types for the type

parameters, and ensure that our current register state has a typing that satisfies the

pre-condition of the instruction sequence. Code types have no post-condition or

return type because control is either terminated via halt or transferred to another

code block. When the set of abstracted type variables is empty, we often omit the

‘∀[∆]’.

The type variables that are abstracted in a code block provide a means to write

polymorphic code sequences. For example, the polymorphic code block

code[α]{r1:α, r2:∀[ ].{r1:〈α, α〉}}.
malloc r3, 〈r1, r1〉
mov r1, r3

jmp r2

roughly corresponds to a CPS version of the ML function fn (x:α) => (x, x). The

block expects upon entry that register r1 contains a value of the abstract type α,

and r2 contains a return address (or continuation label) of type ∀[ ].{r1:〈α, α〉}. In

other words, the return address requires register r1 to contain a pointer to a pair of

values of type α before control can be returned to this address. The instructions of

the code block allocate and initialize a tuple using the value in r1, move the pointer

to the tuple into r1 and then jump to the return address in order to ‘return’ the

tuple to the caller. If the code block is bound to a label `, then it may be invoked

by simultaneously instantiating the type variable and jumping to the label (e.g.,

jmp `[int]).

Existential types are used to represent a form of first-class abstract data types.

When a value v has type τ1[τ2/α] we can abstract the type τ2 by packing the

value into the type ∃α.τ1. For example, if v has type 〈int , {r1:〈int , int〉}〉, then we can

abstract some of the occurrences of int by writing pack [int , v] as ∃α.〈α, {r1:〈α, int〉}〉.
The instruction unpack [β, rd], v opens a value v of existential type, placing a copy

of the underlying packed value in rd. In addition, it introduces a local type variable

(β) to name the abstracted type. The scope of the type variable extends to the end

of the enclosing instruction sequence. As usual, the type variable must be different

from any other variable in the context to avoid unsoundness, but this can always

be accomplished by alpha-converting the code sequence. The following code block
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gives a simple example of using an existential:

code[]{r1:∃α.〈α, {r1:α}〉}.
unpack [β, r2], r1 % r2:〈β, {r1:β}〉
ld r1, r2(0) % r1:β

ld r3, r2(1) % r3:{r1:β}
jmp r3

Here, the code expects a tuple value in register r1, where the type of the first

component is abstract (α), and the second component is a code label expecting a

value of type α to be passed in register r1. The sequence begins by unpacking the

value into register r2, introducing a unique, local name β for the abstract type.

Register r2 is thus assigned the type 〈β, {r1:β}〉. We then load the abstract value

and the code label into registers r1 and r3 respectively, and jump to the code

label. In the next section, we give a similar but more realistic example showing how

existential types can be used to implement closures.

Finally, label assignments (Ψ) are used to give types to heaps during evaluation.

A heap H = {`1 7→ h1, . . . , `n 7→ hn} has type Ψ = {`1:τ1, . . . , `n:τn} when, under the

assumption that H:Ψ, we can show that hi:τi for 1 6 i 6 n. Thus, the typing rule

for heaps is similar to a ‘letrec’ construct in a conventional functional language as

it allows heap values to indirectly refer to one another via their labels.

The major typing judgment for the abstract machine requires that we be able to

assign a type Ψ to the heap H , assign a type Γ to the register file R, and check

that the current instruction sequence I is well-formed under the assumptions of Ψ

and Γ:
` H : Ψ Ψ ` R : Γ Ψ; ·; Γ ` I

` (H,R, I)

We determine that an instruction sequence is well-formed by checking that it uses

registers and labels in a type-consistent manner. For instance, the add instruction

requires that both of its operands have type int , whereas the jmp instruction requires

that its operand have a code type. After checking that an instruction uses operands

in a type-consistent manner, we produce a typing post-condition which is used as

the pre-condition of the next instruction in the sequence. For example, the typing

rule for the add instruction looks similar to this:

Γ(rs) = int Ψ; ∆; Γ ` v : int

Ψ; ∆; Γ ` add rd, rs, v ⇒ ∆; Γ{rd : int}
In this particular case, the post condition is the same as the pre-condition, except

that register rd is assigned the type int .

In general, we need to keep track of the types of labels and registers, and the set of

type variables that are in scope. Thus, the judgment for instructions is parameterized

by a label assignment Ψ, a type assignment ∆, and a register assignment Γ. With

respect to typing, most instructions only affect the register file. However, the unpack

instruction introduces new type variables that can be used in subsequent instructions

in a sequence:

Ψ; ∆; Γ ` v : ∃α.τ α 6∈ ∆

Ψ; ∆; Γ ` unpack [α, rd], v ⇒ (∆, α); Γ{rd:τ}
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Consequently, the post-condition for an instruction includes a new type assignment

as well as an updated register assignment.

Notice that the post-condition does not affect the label assignment. This is

because, unlike registers, we do not allow labels to change types under evaluation.

The issue here is that, unlike registers, labels are first-class values. Because each copy

is checked independently, it is difficult to ensure that the different occurrences are

treated consistently without explicitly tracking which values are (potentially) aliases

to a given label. Therefore, we require that the type of a label remain constant

through evaluation, similar to the treatment of state used in other typing disciplines

(for instance, Harper (1994)).

Though the type of a given label cannot change, the heap (and thus its type) can

be extended via malloc. At type-checking time, we do not know what label will be

used when the malloc is executed so we cannot calculate a precise type for the heap.

Rather, we rely upon the fact that the heap grows monotonically and consequently,

the compile time type of the heap will always be a super-type of the heap at any

point during evaluation. Thus, the typing rule for malloc uses only the information

available at type-checking time:

Ψ; ∆; Γ ` vi : τi (1 6 i 6 n)

Ψ; ∆; Γ ` malloc rd, 〈v1, . . . , vn〉 ⇒ ∆; Γ[rd 7→ 〈τ1, . . . , τn〉]
We string sequences of instructions together by using the post-condition of one

instruction as the pre-condition of the next in the style of Hoare-logic:

Ψ; ∆; Γ ` ι⇒ ∆′; Γ′ Ψ; ∆′; Γ′ ` I
Ψ; ∆; Γ ` ι; I

A control transfer, such as a jmp, requires that the operand have a code type and that

the current register typing is a sub-type of the destination’s typing pre-condition:

Ψ; ∆; Γ ` v : ∀[ ].Γ′ Γ 6 Γ′

Ψ; ∆; Γ ` jmp v

We choose to treat subtyping on register file types similar to ‘width’ sub-typing on

records:

{r1:τ1, . . . , rn:τn, rn+1:τn+1} 6 {r1:τ1, . . . , rn:τn}
There are of course alternatives. For instance, we could add a more complete notion

of subtyping, and the rule to include both depth and width subtyping. However,

this would add a substantial number of rules to the type system and therefore

complicate the proof of soundness. Alternatively, we could eliminate subtyping all

together and instead use polymorphism to abstract the types of registers we would

otherwise forget. However, in practice, we have found that the width sub-typing

approach yields smaller and thus more readable typing annotations.

Obviously, there are additional judgments that are needed for the other in-

structions, operands, heap values, etc., but these are fairly straightforward and are

presented in detail in section 5. As mentioned in the previous section, the principal

goal of the type system is to ensure that well-formed machine states do not become

stuck. Indeed, this fact can be proven by establishing subject reduction and progress

lemmas as we do in the Appendix.
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2.3 Compiling to TAL

Although TAL is a fairly simple programming language and has a fairly simple

type system, we can still compile high-level polymorphic functional languages, such

as core ML, to type-correct TAL code. In our previous work, we described a

prototypical compiler that was composed of four stages: The first stage converted

code to continuation passing style (CPS) in order to make the control context explicit

using higher-order functions. The second stage closure converted the resulting CPS

code by representing functions as pairs of a closed piece of code abstracting the free

variables of the function, and an environment which provided values for the free

variables. The third stage lifted closed functions to the top-level and made allocation

of tuples explicit (the latter function is made unnecessary by the simplified version

of malloc in this paper) and resulted in code that was very C-like in nature. The

final stage, code generation, simply translated the resulting code into TAL in a

straightforward fashion.

At the TAL level, we represent closures as a pair consisting of a code block label

and a pointer to an environment data structure. The type of the environment must

be held abstract in order to avoid typing difficulties (Minamide et al., 1996),1 and

thus we pack the type of the environment and the pair to form an existential type.

All functions, including continuation functions introduced during CPS conversion,

are thus represented as existentials. For example, once CPS converted, a source

function of type int →〈〉 has type (int , (〈〉→ void ))→ void.2 Then, after closures are

introduced, the code has type:

∃α1.〈(α1, int , ∃α2.〈(α2, 〈〉)→ void , α2〉)→ void , α1〉
Finally, at the TAL level the function will be represented by a value with the type:

∃α1.〈∀[ ].{r1:α1, r2:int , r3:∃α2.〈∀[ ].{r1:α2, r2:〈〉}, α2〉}, α1〉
Here, α1 is the abstracted type of the closure’s environment. The code for the closure

requires that the environment be passed in register r1, the integer argument in r2,

and the continuation in r3. The continuation is itself a closure where α2 is the

abstracted type of its environment. The code for the continuation closure requires

that the environment be passed in r1 and the unit result of the computation in r2.

To apply a closure at the TAL level, we first use the unpack operation to open

the existential package. Then the code and the environment of the closure pair are

loaded into appropriate registers, along with the argument to the function. Finally,

we use a jump instruction to transfer control to the closure’s code.

As an example, consider the following ML code which computes 6 factorial:

1 The issue is that, two source level functions with the same source type, might have different environment
types at the target level (e.g. because they have different free variables.) Existentially quantifying the
type of the environment ensures that the target-level types remain the same.

2 The void return types are intended to suggest the non-returning aspect of CPS functions.
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(H, {}, I) where

H = l fact 7→
code[ ]{r1:〈〉,r2:int,r3:τk}.

bneq r2,l nonzero

unpack [α,r3],r3 % zero branch: call k (in r3) with 1

ld r4,r3(0) % project k code

ld r1,r3(1) % project k environment

mov r2,1

jmp r4 % jump to k

l nonzero 7→
code[ ]{r1:〈〉,r2:int,r3:τk}.

sub r4,r2,1 % n− 1

malloc r5,〈r2,r3〉 % create environment for cont in r5

malloc r3,〈l cont,r5〉 % create cont closure in r3

mov r2,r4 % arg := n− 1

mov r3,pack [〈int , τk〉,r3] as τk % abstract the type of the environment

jmp l fact % recursive call

l cont 7→
code[ ]{r1:〈int , τk〉,r2:int}. % r2 contains (n− 1)!

ld r3,r1(0) % retrieve n

ld r4,r1(1) % retrieve k

mul r2,r3,r2 % n× (n− 1)!

unpack [α,r4],r4 % unpack k

ld r3,r4(0) % project k code

ld r1,r4(1) % project k environment

jmp r3 % jump to k

l halt 7→
code[ ]{r1:〈〉,r2:int}.
mov r1,r2

halt[int] % halt with result in r1

and I = malloc r1,〈 〉 % create empty environment

mov r2,r1 % create another empty environment

malloc r3,〈l halt,r2〉 % create halt closure in r3

mov r2,6 % load argument (6)

mov r3,pack [〈〉,r3] as τk % abstract the type of the environment

jmp l fact % begin fact with

% {r1 = 〈〉, r2 = 6, r3 = haltcont}
and τk = ∃α.〈∀[ ].{r1:α,r2:int}, α〉

Fig. 1. Typed assembly code for factorial (unoptimized).

let fun fact (n:int):int =

if n = 0 then 1 else n * fact (n-1)

in

fact 6

end

Figure 1 gives equivalent TAL code that would result from our simple compiler.
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types τ ::= · · · | >
stack types σ ::= ρ | nil | τ::σ
type assignments ∆ ::= · · · | ρ,∆
register assignments Γ ::= {r1:τ1, . . . , rn:τn, sp:σ}
word values w ::= · · · | w[σ] | ns

small values v ::= · · · | v[σ]

register files R ::= {r1 7→ w1, . . . , rn 7→ wn, sp 7→ S}
stacks S ::= nil | w::S

instructions ι ::= · · · | salloc n | sfree n | sld rd, sp(i) | sst sp(i), rs

Fig. 2. Additions to TAL for simple stacks.

3 Adding a stack to TAL

In this section, we describe how to extend TAL to obtain a Stack-Based Typed

Assembly Language (STAL), focusing on the key issues. Here, we informally discuss

the dynamic and static semantics for the modified language, leaving formal treatment

to section 5. We also discuss how these features may be used in a type-directed

compiler.

3.1 Basic developments

Figure 2 defines the new syntactic constructs for adding stacks to the TAL abstract

machine. Operationally we model stacks (S) as lists of word-sized values. We

augment the machine state by adding a new distinguished register sp to the register

file component to hold the current value of the stack. Thus, machine states are of

the form (H,R[sp 7→ S], I) and consist of a heap, register file (including the stack),

and instruction sequence.

There are four new instructions that manipulate the stack: The salloc n instruc-

tion enlarges the stack by n words. On a conventional machine, assuming stacks

grow toward lower addresses, an salloc operation would correspond to subtract-

ing n from the stack pointer (or, more realistically, 4n). The new stack slots are

uninitialized, which we formalize by filling them with ‘nonsense’ words denoted by

ns . Nonsense values are assigned the type >, suggesting that there are no useful

operations on values of this type. In the presence of a primitive notion of sub-typing,

we could also treat > as the greatest type (top).

The sfree n instruction removes the top n words from the stack, and corresponds

to adding n to the stack pointer. The sld r, sp(i) instruction loads the ith word

(from zero) of the stack into register r, whereas the sst sp(i), r stores register r into

the ith word.

Stacks are classified by stack types (σ), which include nil and τ::σ. The former

describes the empty stack and the latter describes a stack of the form w::S where w

has type τ and S has type σ. Stack types also include stack type variables (ρ), which

may be used to abstract the tail of a stack type. The ability to abstract stack types

is critical for supporting procedure calls and is discussed in detail later.
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As before, the register file for the abstract machine is typed by a register assignment

(Γ) mapping registers to types. However, Γ also maps the distinguished register sp to

a stack type σ. Finally, code blocks and code types support polymorphic abstraction

over both types and stack types. In the interest of clarity, from time to time we will

give registers symbolic names (such as ra for return address).

In addition to the possibilities for stuck states arising from TAL, our new abstract

machine can become stuck if we attempt to execute:

• sfree n and the stack does not contain at least n words, or

• sld r, sp(i) or sst sp(i), r and the stack does not contain at least i+ 1 words.

As usual, a type safety theorem (Theorem 5.1) dictates that no well-formed program

can become stuck.

3.2 Using the stack for temporaries

One of the uses of the stack is to save temporary values during a computation. The

general problem is to save on the stack n registers, say r1 through rn, of types τ1

through τn, perform some computation e, and then restore the temporary values to

their respective registers. This would be accomplished by the following instruction

sequence where the comments (delimited by %) show the stack’s type at the end of

each step of the computation.

% σ

salloc n % >::>:: · · · ::>::σ

sst sp(0), r1 % τ1::>:: · · · ::>::σ
...

sst sp(n− 1), rn % τ1::τ2:: · · · ::τn::σ
code for e % τ1::τ2:: · · · ::τn::σ
sld r1, sp(0) % τ1::τ2:: · · · ::τn::σ
...

sld rn, sp(n− 1) % τ1::τ2:: · · · ::τn::σ
sfree n % σ

If, upon entry, ri has type τi and the stack is described by σ, and if the code for

e leaves the state of the stack unchanged, then this code sequence is well-typed.

Furthermore, the typing discipline does not place constraints on the order in which

the stores or loads are performed.

It is straightforward to model higher-level primitives, such as push and pop. A

push can be seen as simply salloc 1 followed by a store to sp(0), whereas a pop is

a load from sp(0) followed by sfree 1. Also, a ‘jump-and-link’ or ‘call’ instruction

that automatically moves the return address into a register or onto the stack can

be synthesized from our primitives. To simplify the presentation, we did not include

these instructions in STAL; a practical implementation, however, would need a full

set of instructions appropriate to the architecture. There are other practical issues,

including allocation for sizes different than a word, or alignment constraints that we
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also do not treat here. However, we expect that it is not too difficult to extend the

formalism to deal with such details.

3.3 Stack polymorphism and recursive functions

The stack is commonly used to save the current return address, and temporary

values across procedure calls. Which registers to save and in what order is usually

specified by a compiler-specific calling convention. Here we consider a simple calling

convention where it is assumed that there is one integer argument and one unit

result, both of which are passed in register r1, and that the return address is passed

in the register ra. When invoked, a procedure may choose to place temporaries on

the stack as shown above, but when it jumps to the return address, the stack should

be in the same state as it was upon entry. Naively, we might expect the code for a

function obeying this calling convention to have the following STAL type:

{r1:int , sp:σ, ra:{r1:〈〉, sp:σ}}
Notice that the type of the return address is constrained so that the stack must have

the same shape upon return as it had upon entry. Hence, if the procedure pushes

any arguments onto the stack, it must pop them off.

However, this typing is unsatisfactory for two important reasons:

• Nothing prevents the function from popping off values from the stack and

then pushing new values (of the appropriate type) onto the stack. In other

words, the caller’s stack frame is not protected from the function’s code.

• Such a function can only be invoked from states where the entire stack is

described exactly by σ. This effectively limits invocation of the procedure to

a single, pre-determined point in the execution of the program. For example,

there is no way for a procedure to push its return address onto the stack and

to jump to itself (i.e. to recurse).

The solution to both problems is to abstract the type of the stack using a stack

type variable:

∀[ρ].{r1:int , sp:ρ, ra:{r1:int , sp:ρ}}
To invoke a function having this type, the caller must instantiate the bound stack

type variable ρ with the current type of the stack. As before, the function can only

jump to the return address when the stack is in the same state as it was upon entry.

This mechanism addresses the first problem because the type checker treats ρ as

an abstract stack type while checking the body of the code. Hence, the code cannot

perform an sfree, sld, or sst on the stack it receives. It must first allocate its own

space on the stack, only this space may be accessed by the function, and the space

must be freed before returning to the caller. (A formal proof of this fact appears in

Crary (1999).)

The second problem is also solved because the stack type variable may be

instantiated in multiple different ways. Hence multiple call sites with different stack

states, including recursive calls, may now invoke the function. In fact, a recursive
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(H, {sp 7→ nil}, I) where

H = l fact:

code[ρ]{r1 : 〈〉, r2 : int , sp : ρ, ra : τρ}.
bneq r2,l nonzero[ρ] % if n = 0 continue

mov r1,1 % result is 1

jmp ra % return

l nonzero:

code[ρ]{r1 : 〈〉, r2 : int , sp : ρ, ra : τρ}.
sub r3,r2,1 % n− 1

salloc 2 % allocate stack space for n and the return address

sst sp(0),r2 % save n

sst sp(1),ra % save return address

mov r2,r3

mov ra,l cont[ρ]

jmp l fact[int::τρ::ρ] % recursive call to fact with n− 1,

% abstracting saved data atop the stack

l cont:

code[ρ]{r1 : int , sp : int::τρ::ρ}.
sld r2,sp(0) % restore n

sld ra,sp(1) % restore return address

sfree 2

mul r1,r2,r1 % n× (n− 1)!

jmp ra % return

l halt:

code[ ]{r1 : int , sp : nil}.
halt[int]

and I = malloc r1,〈 〉 % create empty environment

mov r2,6 % argument

mov ra,l halt % return address for initial call

jmp l fact[nil ]

and τρ = ∀[ ].{r1 : int , sp : ρ}

Fig. 3. STAL factorial example.

call will usually instantiate the stack variable with a different type than the original

call because, unless it is a tail call, it will need to store its own return address on the

stack.

Figure 3 gives stack-based code for the factorial program. The function is invoked

by moving its environment (an empty tuple, since factorial has no free variables)

into r1, the argument into r2, and the return address label into ra and jumping

to the label l fact. Notice that the nonzero branch must save the argument and

current return address on the stack before jumping to the fact label in a recursive

call. In so doing, the code must use stack polymorphism to account for its additions

to the stack.
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3.4 Calling conventions

It is interesting to note that the stack-based code is quite similar to the heap-

based code of Figure 1. In a sense, the stack-based code remains in continuation

passing style, but instead of passing the continuation as a heap-allocated tuple, the

environment of the continuation is passed in the stack pointer and the code of

the continuation is passed in the return address register. To fully appreciate the

correspondence, consider the type of the TAL version of l fact from Figure 1:

{r1:〈〉, r2:int , ra:∃α.〈{r1:α, r2:int}, α〉}
We could have used an alternative approach where the continuation closure is passed

unboxed in separate registers. To do so, the function’s type must perform the duty

of abstracting α, since the continuation’s code and environment must each still refer

to the same α:

∀[α].{r1:〈〉, r2:int , ra:{r1:α, r2:int}, ra′:α}
Now recall the type of the corresponding STAL code:

∀[ρ].{r1:〈〉, r2:int , ra:{sp:ρ, r1:int}, sp:ρ}
These types are essentially the same! Indeed, the only difference between stack-

based execution and continuation-passing execution is that in stack-based execution

continuations are unboxed and their environments are allocated on the stack. This

connection is among the folklore of continuation-passing compilers, but the similarity

of the two types in STAL summarizes the connection particularly succinctly.

The STAL types discussed above each serve the purpose of formally specifying

a procedure calling convention, specifying the usage of the registers and stack on

entry to and return from a procedure. In each of the above calling conventions,

the environment, argument, and result are passed in registers. We also can specify

that the environment, argument, return address, and the result are all passed on the

stack. In this calling convention, the factorial function has type (remember that the

convention for the result is given by the type of the return address):

∀[ρ].{sp : {sp:int::ρ}::int::〈〉::ρ}
These types do not constrain optimizations that respect the given calling conven-

tions. For instance, tail calls can be eliminated in CPS (the first two conventions)

simply by forwarding the continuation to the next function. In a stack-based system

(the second two), the type system similarly allows us (if necessary) to pop the current

activation frame off the stack and to push arguments before performing the tail

call. As a simple example, Figure 4 gives STAL code for the following tail-recursive

factorial code:

fun tail_fact n =

let fun loop(a,n) =

if n = 0 then a else loop(a*n,n-1)

in

loop(1,n)

end
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l loop:

code[ρ]{r1 : int , r2 : int , sp : ρ, ra : {r1 : int , sp : ρ}}.
bneq r2,l nonzero[ρ] % if n = 0 continue

jmp ra % return

l nonzero:

code[ρ]{r1 : int , r2 : int , sp : ρ, ra : {r1 : int , sp : ρ}}.
mul r1,r1,r2 % a = a ∗ n
sub r2,r2,1 % n = n− 1

jmp l loop[ρ] % loop(a,n)

l tail fact:

code[ρ]{r1 : 〈〉, r2 : int , sp : ρ, ra : {r1 : int , sp : ρ}}.
mov r1,1

jmp l loop[ρ] % loop(1,n)

Fig. 4. Tail-recursive factorial example.

Types may express more complex conventions as well. For example, callee-saves

registers (registers whose values must be preserved across function calls) can be

handled in the same fashion as the stack pointer: A function’s type abstracts the

type of the callee-saves register and provides that the register have the same type

upon return. For instance, if we wish to preserve register r3 across a call to factorial,

we would use the type:

∀[ρ, α].{r1:〈〉, r2:int , r3:α, ra:{sp:ρ, r1:int , r3:α}, sp:ρ}
Alternatively, with boxed, heap-allocated closures, we would use the type:

∀[α].{r1:〈〉, r2:int , r3:α, ra:∃β.〈{r1:β, r2:int , r3:α}, β〉}
This is the type that corresponds to the callee-saves protocol of Appel and Shao (Ap-

pel & Shao, 1992). Again the close correspondence holds between the stack- and

heap-oriented types. Indeed, either one can be obtained mechanically from the other.

4 Compound stacks

The simple stack mechanisms described in the previous section support encodings

for simple forms of procedures. However, as we will argue, the mechanisms are not

sufficient for compiling more sophisticated control mechanisms, such as exceptions,

or procedures with static links. The problem is that the typing discipline treats the

stack in a linear fashion in that it only allows access to the stack contents through

the stack pointer register. That is, there is no general facility for obtaining pointers

into the middle of the stack. This restriction allows us to easily re-use space on the

stack for values of different types and to grow or shrink the stack, but prevents a

number of useful encodings.

Unfortunately, we see no simple way to extend the type system to support arbitrary

pointers into the stack soundly. However, in this section, we consider an extension to

the typing discipline that supports a limited form of pointer into the stack without
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unduly complicating the type system. We motivate the mechanism by showing how

it may be used to encode (one treatment of) exceptions and static links.

4.1 Exception calling conventions

We now consider one way to implement exceptions in STAL. In languages such

as ML or Java, the exception mechanisms consist of a control aspect (raising and

handling the exception) and a data aspect (the exception value or object, and

matching or testing for a particular exception constructor). We only consider the

control aspects here to avoid the need to introduce extensible sums or objects.

In a heap-based CPS framework, exceptions are implemented by passing two

continuations: the usual continuation and an exception continuation. Code raises

an exception by jumping to the latter. For an integer to unit function, this calling

convention is expressed as the following TAL type (ignoring the outer closure and

environment and treating rex as the register to hold the exception continuation):

{r1:int , ra:∃α1.〈{r1:α1, r2:〈〉}, α1〉, rex:∃α2.〈{r1:α2, r2:exn}, α2〉}
As before, the caller could unbox the continuations:

∀[α1, α2].{r1:int , ra:{r1:α1, r2:〈〉}, ra′:α1, rex:{r1:α2, r2:exn}, rex′:α2}
Then the caller might (erroneously) attempt to place the continuation environments

on stacks, as before:

∀[ρ1, ρ2].{r1:int , ra:{sp:ρ1, r1:〈〉}, sp:ρ1, rex:{sp:ρ2, r1:exn}, sp′:ρ2}
Unfortunately, this calling convention uses two stack pointers, and there is only one

stack. Observe, though, that the exception continuation’s stack is necessarily a tail of

the ordinary continuation’s stack, though this fact is not captured by the types. This

observation leads to the following calling convention for exceptions with stacks:

∀[ρ1, ρ2].{sp:ρ1 @ ρ2, r1:int , ra:{sp:ρ1 @ ρ2, r1:〈〉},
rex:{sp:ρ2, r1:exn}, res:ptr(ρ2)}

This type uses the notion of a compound stack: When σ1 and σ2 are stack types, the

compound stack type σ1 @ σ2 is the result of appending the two types. Thus, in the

above type, the function is presented with a stack with type ρ1 @ ρ2, all of which

is expected by the regular continuation, but only a tail of which (ρ2) is expected by

the exception continuation. Since ρ1 and ρ2 are quantified, the function may still be

used for any stack so long as the exception continuation accepts some tail of that

stack.

To raise an exception, the exception is placed in r1 and control is transferred

to the exception continuation. This requires cutting the actual stack down to just

that expected by the exception continuation. Since the length of ρ1 is unknown, this

can not be done by sfree. Instead, a pointer to the desired position in the stack

is supplied in res, and is moved into sp. The type ptr(σ) is the type of pointers

into the stack at a position where the stack has type σ. Such pointers are obtained

simply by moving sp into a register.
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types τ ::= · · · | ptr(σ)

stack types σ ::= · · · | σ1 @ σ2

word values w ::= · · · | ptr(i)

instructions ι ::= · · · | mov rd, sp | mov sp, rs | sld rd, rs(i) | sst rd(i), rs

Fig. 5. Additions to TAL for compound stacks.

4.2 Compound stacks

The additional syntax to support compound stacks is summarized in Figure 5. The

type constructs σ1 @ σ2 and ptr(σ) were discussed above. The word value ptr(i) is

used by the operational semantics to represent pointers into the stack; the element

pointed to is i words from the bottom of the stack. Of course, on a real machine,

such a value would be implemented by an actual pointer. The instructions mov rd, sp

and mov sp, rs save and restore the stack pointer, and the instructions sld rd, rs(i)

and sst rd(i), rs allow for loading from and storing to pointers.

The introduction of pointers into the stack raises a delicate issue for the type

system. When the stack pointer is copied into a register, changes to the stack are not

reflected in the type of the copy and can invalidate a pointer. Consider the following

incorrect code:

% begin with sp : τ::σ, sp 7→ w::S (τ 6= >)

mov r1, sp % r1 : ptr(τ::σ)

sfree 1 % sp : σ, sp 7→ S

salloc 1 % sp : >::σ, sp 7→ ns::S

sld r2, r1(0) % r2 : τ but r2 7→ ns

When execution reaches the final line, r1 still has type ptr(τ::σ), but this type is no

longer consistent with the state of the stack; the pointer in r1 points to ns , which

does not have type τ.

To prevent erroneous loads of this sort, the type system requires that the pointer

rs be valid when used in the instructions sld rd, rs(i), sst rd(i), rs, and mov sp, rs. An

invariant of the type system is that the type of sp always describes the current stack,

so using a pointer into the stack will be sound if that pointer’s type is consistent

with sp’s type. Suppose sp has type σ1 and r has type ptr(σ2), then r is valid if σ2

is a tail of σ1 (formally, if there exists some σ′ such that σ1 = σ′ @ σ2). If a pointer

is invalid, it may be neither loaded from nor moved into the stack pointer. In the

above example the load is rejected because r1’s type τ::σ is not a tail of sp’s type,

>::σ.

It may not be obvious that this simple approach of ‘validating’ a pointer into the

middle of the stack is actually sound. Therefore, in section 5, we formalize the type

system and prove a soundness result in the Appendix.
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4.3 Using compound stacks

Recall the type for integer to unit functions in the presence of exceptions:

∀[ρ1, ρ2].{sp:ρ1 @ ρ2, r1:int , ra:{sp:ρ1 @ ρ2, r1:〈〉},
rex:{sp:ρ2, r1:exn}, res:ptr(ρ2)}

An exception may be raised within the body of such a function by restoring the

handler’s stack from res and jumping to the handler. A new exception handler may

be installed by copying the stack pointer to res and making subsequent function

calls with the stack type variables instantiated to nil and ρ1 @ ρ2. Calls that do

not install new exception handlers would attach their frames to ρ1 and pass on ρ2

unchanged.

Since exceptions are probably raised infrequently, an implementation could save

a register by storing the exception continuation’s code pointer on the stack, instead

of in its own register. If this convention were used, functions would expect stacks

with the type ρ1 @ (τhandler::ρ2) and exception pointers with the type ptr(τhandler::ρ2)

where τhandler = ∀[ ].{sp:ρ2, r1:exn}.
This last convention illustrates a use for compound stacks that goes beyond

implementing exceptions. We have a general tool for locating data of type τ amidst

the stack by using the calling convention:

∀[ρ1, ρ2].{sp:ρ1 @ (τ::ρ2), r1:ptr(τ::ρ2), . . .}
One application of this tool would be for implementing languages such as Pascal

that require static links to access variables defined in outer enclosing lexical scopes.

For example, the code for a procedure at lexical depth n > 0 would have a stack

type σn where:

σ0 = nil

σi = τi,1::τi,2:: · · · ::τi,mi::ptr(σi−1)::ρi @ σi−1

For a given segment σi, we would have the local variables (τi,1, τi,2, . . . , τi,mi), followed

by a static link to the next segment (ptr(σi−1)), followed by a stack type variable ρi
which abstracts the dynamic portion of the stack between the frames σi and σi−1.

By loading the pointer to σi−1 into a register, we can access the local variables for

the statically enclosing scope. We can also access the pointer to σi−2 to access the

next scope, etc. If desired, the chaining overhead can be avoided by caching the link

pointers in a heap-allocated tuple.

The primary limitation of this approach to placing data on the stack is that it

forces us to expose the relative order of data allocated on the stack, though we can

abstract the distance. Furthermore, the type system forces us to distinguish between

stack-allocated values and heap-allocated values. Consequently, it does not support

compilation of languages such as C that allow stack and heap pointers to be freely

mixed, and that allow pointers to stack-allocated values to be passed as arguments

in any order.

Finally, we note that our treatment of exceptions here is somewhat simplistic. In

particular, we have ignored the data aspects and assumed a single exception value

model. However, it is straightforward to generalize to multiple exception values.
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In our implementation of STAL for the Intel x86, we use the hierarchically tagged

object approach of Glew (Glew, 1999) which supports both ML-style extensible sums

and Java-style objects as exception constructors. When an exception is raised, the

exception value is passed to the nearest (dynamically) enclosing exception handler.

A primitive form of matching is used to determine if the handler can actually handle

the given exception. If not, then the exception is re-raised by throwing the value to

the next exception handler. In this fashion, the stack is dynamically unwound to the

nearest context that can handle the exception.

Another technique, first described in the context of Clu (Liskov & Snyder, 1979),

is used in most Java compilers today: When an exception is raised, a runtime routine

unwinds the stack to the nearest enclosing handler that can handle the particular ex-

ception. Doing so requires that the compiler emit tables indexed by return addresses

to describe the layout of stack frames, callee-save register information, and where to

find handler code. The advantage of this approach is that it requires no exception

register and has no overhead upon entering a try-block. However, to ensure that the

code is type safe, we would have to modify the type system to ensure that the tables

are properly constructed, and that the runtime unwinding routine is correct.

5 Formal STAL semantics

This section contains a complete technical description of the STAL abstract machine,

which is very similar to the TAL abstract machine (described in detail in Morrisett

et al., 1999a). We also state a type soundness theorem for the language and give a

proof of that fact in Appendix A.

5.1 Syntax

The complete abstract syntax for STAL appears in Figure 6. As discussed earlier, the

type structure has five distinct syntactic classes: Types (τ) are used to classify word-

sized values, operands, and heap values. Stack types (σ) are used to classify stacks.

Label assignments are used to classify heaps and are partial functions from labels

to types. Type assignments track the type variables and stack type variables that

are in scope. Finally, register assignments map registers to types. The distinguished

register sp is always mapped to a stack type, whereas all other registers are mapped

to conventional types.

In a code type ∀[∆].Γ, we consider the type variables in ∆ to be bound within Γ.

In an existential type ∃α.τ, we consider α to be bound in τ. As usual, we consider

types to be equivalent up to alpha-conversion of bound type variables. In addition,

we consider register files, heaps, register type assignments and label type assignments

to be equivalent up to re-ordering of their components.

Machine states consist of three components: a heap H mapping labels to heap

values; a register file R mapping registers to word values and the distinguished

register sp to a stack; and a current instruction sequence I . Heap values consist

of typed instruction sequences or tuples of word-size values. In a typed instruction

sequence code[∆]Γ.I , we require the type variables in ∆ to be distinct and consider
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types τ ::= α | int | > | 〈τ1, . . . , τn〉 | ∀[∆].Γ | ∃α.τ | ptr(σ)

stack types σ ::= ρ | nil | τ::σ | σ1 @ σ2

label assignments Ψ ::= {`1:τ1, . . . , `n:τn}
type assignments ∆ ::= · | α,∆ | ρ,∆
register assignments Γ ::= {sp:σ, r1:τ1, . . . , rn:τn}

registers r ::= r1 | r2 | · · ·
word values w ::= ` | i | ns | w[τ] | w[σ] | pack [τ, w] as τ′ | ptr(i)

operands v ::= r | w | v[τ] | v[σ] | pack [τ, v] as τ′
heap values h ::= 〈w1, . . . , wn〉 | code[∆]Γ.I

heaps H ::= {`1 7→ h1, . . . , `n 7→ hn}
register files R ::= {sp 7→ S, r1 7→ w1, . . . , rn 7→ wn}
stacks S ::= nil | w::S

instructions ι ::= aop rd, rs, v | bop r, v | ld rd, rs(i) |
malloc rd, 〈v1, . . . , vn〉 | mov rd, v | mov sp, rs |
mov rd, sp | salloc n | sfree n |
sld rd, sp(i) | sld rd, rs(i) | sst sp(i), rs |
sst rd(i), rs | st rd(i), rs | unpack [α, rd], v

arithmetic ops aop ::= add | sub | mul
branch ops bop ::= beq | bneq | bgt | blt | bgte | blte
instruction sequences I ::= ι; I | jmp v | halt[τ]

machine states M ::= (H,R, I)

Fig. 6. Syntax of STAL.

them bound in both Γ and I , and consider such heap values as equivalent up to

alpha-conversion of the bound type variables. In an instruction sequence of the form

unpack [α, rd], v; I , we consider α bound in the remaining sequence I .

Word values form a proper syntactic subclass of operands, as they exclude registers

and operands built from them. Otherwise, the two classes are the same. They include

labels, integers, a nonsense value (ns) used when space is allocated on the stack,

polymorphic instantiations (for both regular types and stack types), and packed

values. Packed values abstract a type and are used to introduce existential types.

5.2 Dynamic semantics

The formal operational semantics for STAL is given as a deterministic rewriting

system in Figures 7 and 8. A terminal configuration is a program of the form

(H,R{r1 7→ w}, halt[τ]). A program is said to be stuck if it is irreducible and not a

terminal configuration.

For each arithmetic operation aop, we write ||aop|| for the obvious arithmetic

function on integer values. For example, ||add||(i1, i2) = i1 + i2. For each branch

operation bop, we associate the obvious unary predicate ||bop||, on integers. For

example, ||blte||(x) evaluates to the same truth value as the predicate x 6 0. As

described in section 2.1, we write R̂ to lift the register file R to map operands to

word values in the obvious manner, replacing registers with their values.

The notation a[b/c] denotes capture avoiding substitution of b for c in a. The
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(H,R, I) 7−→M where

if I = then M =

aop rd, rs, v; I
′ (H,R{rd 7→ ||aop||(R(rs), R̂(v))}, I ′)

bop r, v; I ′ (H,R, I ′)
when not ||bop||(R(r))

bop r, v; I ′ (H,R, I ′′[ψ/∆])

when ||bop||(R(r)) where R̂(v) = `[ψ] and H(`) = code[∆]Γ.I ′′

jmp v (H,R, I ′[ψ/∆])

where R̂(v) = `[ψ] and H(`) = code[∆]Γ.I ′

ld rd, rs(i); I
′ (H,R{rd 7→ wi}, I ′)

where R(rs) = `, H(`) = 〈w0, . . . , wn−1〉, and 0 6 i < n

malloc rd, 〈v1, . . . , vn〉 (H{` 7→ 〈R̂(v1), . . . , R̂(vn)〉}, R{rd 7→ `}, I ′)
where ` 6∈ Dom(H)

mov rd, v; I
′ (H,R{rd 7→ R̂(v)}, I ′)

st rd(i), rs; I
′ (H{` 7→ 〈w0, . . . , wi−1, R(rs), wi+1, . . . , wn−1〉}, R, I ′)

where R(rd) = `, H(`) = 〈w0, . . . , wn−1〉, and 0 6 i < n

unpack [α, rd], v; I
′ (H,R{rd 7→ w}, I ′[τ/α])

where R̂(v) = pack [τ, w] as τ′

Fig. 7. Operational semantics of STAL, Part I.

notation a{b 7→ c}, where a is a mapping, represents map update. The notation fv(a)

denotes the free variables of a.

In general, the branching rules must instantiate bound type variables as described

earlier. To make the presentation simpler, some extra notation is used for expressing

sequences of type and stack type instantiations. We use a new syntactic class (ψ) of

type sequences:

ψ ::= · | τ, ψ | σ, ψ
The notation w[ψ] stands for the natural iteration of instantiations, and the substi-

tution notation I[ψ/∆] is defined to mean:

I[·/·] = I

I[τ, ψ/α,∆] = I[τ/α][ψ/∆]

I[σ, ψ/ρ,∆] = I[σ/ρ][ψ/∆]
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(H,R, I) 7−→M where

if I = then M =

mov rd, sp; I ′ (H,R{rd 7→ ptr(n)}, I ′)
where R(sp) = w0:: · · · ::wn−1::nil

mov sp, rs; I
′ (H,R{sp 7→ wn−j:: · · · ::wn−1::nil}, I ′)

where R(sp) = w0:: · · · ::wn−1::nil , R(rs) = ptr(j), and 0 6 j 6 n

salloc n; I ′ (H,R{sp 7→ ns:: · · · ::ns︸ ︷︷ ︸
n

::R(sp)}, I ′)

sfree n; I ′ (H,R{sp 7→ S}, I ′)
where R(sp) = w0:: · · · ::wn−1::S

sld rd, sp(i); I ′ (H,R{rd 7→ wi}, I ′)
where R(sp) = w0:: · · · ::wn−1::nil and 0 6 i < n

sld rd, rs(i); I
′ (H,R{rd 7→ wn−j+i}, I ′)

where R(rs) = ptr(j), R(sp) = w0:: · · · ::wn−1::nil , and 0 6 i < j 6 n

sst sp(i), rs; I
′ (H,R{sp 7→ w0:: · · · ::wi−1::R(rs)::S}, I ′)

where R(sp) = w0:: · · · ::wi::S and 0 6 i

sst rd(i), rs; I
′ (H,R{sp 7→ w0:: · · · ::wn−j+i−1::R(rs)::wn−j+i+1:: · · · ::wn−1::nil}, I ′)

where R(rd) = ptr(j), R(sp) = w0:: · · · ::wn−1::nil , and 0 6 i < j 6 n

Fig. 8. Operational semantics of STAL, Part II.

5.3 Static semantics

The static semantics of STAL is given by a suite of judgments summarized in

Figure 9. The definitions of the relations defined by the judgments are given in

Figures 10–12.

The first set of judgments are used to provide simple well-formedness constraints

on static objects. The judgments ∆ ` τ and ∆ ` σ are used to ensure that types

and stack types are well-formed in a given context and simply require that the free

type and stack type variables be drawn from ∆. The judgment ` Ψ asserts that a

label type assignment is well formed. The types occurring in Ψ cannot mention free

type variables, reflecting the fact that during evaluation, type variables are replaced

with closed types. The judgment ∆ ` Γ asserts that the register assignment Γ is

well-formed in that the free type variables occurring within it are drawn from ∆.

The judgment ∆ ` σ1 = σ2 gives a standard notion of definitional equivalence on

stack types. In particular, (τ::σ1) @ σ2 is equivalent to τ::(σ1 @ σ2). Furthermore, @

is associative, with nil treated as both a left and right unit. To determine when the
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Judgment Meaning Figure

∆ ` τ τ is a valid type 10

∆ ` σ σ is a valid stack type

` Ψ Ψ is a valid heap type

∆ ` Γ Γ is a valid register file type

∆ ` σ1 = σ2 σ1 and σ2 are equivalent stack types

∆ ` Γ1 6 Γ2 Γ1 is a register file sub-type of Γ2

` H : Ψ the heap H has type Ψ assuming Ψ 11

Ψ ` S : σ the stack S has type σ

Ψ ` R : Γ the register file R has type Γ

Ψ ` h : τ hval the heap value h has type τ

Ψ; ∆; Γ ` v : τ the operand v has type τ

Ψ; ∆; Γ ` ι⇒ ∆′; Γ′ instruction ι requires a context of type Ψ; ∆; Γ 12

and produces a context of type Ψ; ∆′; Γ′

Ψ; ∆; Γ ` I I is a valid sequence of instructions 11

`M M is a well-typed machine state

Fig. 9. Static semantics of STAL (judgments).

relation holds, it is possible to calculate a normal form for stack types by orienting

the various β-rules from left-to-right to generate a reduction relation, apply this

(confluent) reduction in any order until the types are irreducible, and then compare

the resulting normal forms up to alpha-equivalence.

The judgment ∆ ` Γ1 6 Γ2 provides a notion of sub-typing on register file types

that is used to type check control transfers as described in Section 2.2.

The rest of the judgments are used to check well-formedness of the various term

constructs. The judgment ` H : Ψ is used to give a label assignment Ψ to a heap

H . The relation holds when the heap values in H have types given by Ψ under

the assumptions of Ψ, thereby allowing heap values to refer to one another. Note

that we require that the heap of a machine state be closed (with respect to type

variables), and thus no context is necessary for checking the heap.

The judgment Ψ ` S : σ asserts that the stack S is described by the stack type

σ. The only interesting rule is (stkeq), which allows us to assign a stack any of its

equivalent types. The judgments Ψ ` R : Γ and Ψ ` h : τ hval are used to type

register files and heap values respectively. As with heaps, stacks, and register files,

heap values must be closed with respect to type variables and thus the judgments

for these terms are not parameterized by a type assignment ∆. The most interesting

rule among those that define these judgments is the one for code:

code
∆ ` Γ Ψ; ∆; Γ ` I

Ψ ` code[∆]Γ.I : ∀[∆].Γ hval

Here, we require that the typing pre-condition (Γ) be well-formed, and that the
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instruction sequence I be well-formed under the assumptions of Ψ, ∆, and Γ. Thus,

the instructions are type checked assuming that the type variables in ∆ are abstract.

The most involved judgment for values is the one for operands. Notice that, since

word values are a sub-class of operands, the rules supply typing for both syntactic

classes. Most of the rules are straightforward but a few deserve special mention. In

particular, the (ptr) rule:

ptr
∆ ` σ

Ψ; ∆; · ` ptr(i) : ptr(σ)
(|σ| = i)

allows a pointer into the stack ptr(i) to be given the type ptr(σ) for any stack type

σ as long as σ is well-formed and has a length of i, where we define the length of a

stack type as follows:

|nil | = 0

|τ::σ| = 1 + |σ|
|σ1 @ σ2| = |σ1|+ |σ2|

|ρ| undefined

Notice that the length is undefined when the stack type σ involves a stack type

variable. At first, this may seem to make pointers into the stack useless, as our

compilation strategy involves writing code that abstracts the tail of the current

stack. However, as we evaluate, these stack type variables will be replaced with

ground types. It also seems unusual that we can assign a stack pointer any stack

type. However, recall that we validate such a pointer by checking that its type is a

tail of the current ‘true’ type of the stack before allowing the pointer to be used.

The judgment Ψ; ∆; Γ ` I asserts that a sequence of instructions is well-formed

under the assumptions that the heap is described by Ψ, that the type variables in

scope are in ∆, and that the registers have types described by Γ. A sequence of the

form ι; I is verified by checking that ι is well-formed under these assumptions and

has a post-condition ∆′; Γ′ which we use as the pre-condition on the rest of the

sequence I .

For the degenerate sequence jmp v, we must first check that v has a code type of

the form ∀[].Γ2. Typically, v will be of the form v′[ψ] where v′ has a polymorphic

type ∀[∆].Γ2 and ψ is an appropriate instantiation for the bound variables in ∆.

We then must verify that the typing pre-condition Γ2 for the target of the jump is

a super-type of the current register type Γ1. From a Hoare logic perspective, we

are ensuring that the typing predicate describing the current state of the machine

implies the pre-condition for the destination code.

The degenerate sequence halt[τ] is used to terminate the machine. The intention

is that the ‘result’ of the computation will have type τ and will be placed in a

particular register. In this case, the typing rule requires that register r1 contain the

result.

The definition for the remaining judgment, Ψ; ∆1; Γ1 ` ι ⇒ ∆2; Γ2 is given in

Figure 12. The judgment asserts that the instruction ι is well-formed and has a

post-condition ∆2; Γ2. Most of the rules are straightforward so we restrict attention

to the unusual rules involving the stack.

An salloc n instruction results in a state where n nonsense values are pushed on
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the stack, so the post-condition for this instruction simply adds n copies of the type

> to the current type of the stack pointer. Dually, the sfree n instruction removes

n words from the stack. Thus, we require that the stack type have at least n words

described by types τ0, τ1, . . . , τn−1 as the pre-condition, and remove those types in the

post-condition. Notice that it is impossible to ‘pop’ the stack when it is described

by nil or a stack type variable.

An instruction mov rd, sp moves a stack pointer value into register rd, and thus

its post-condition gives rd the type ptr(σ) where σ is the current type of the stack.

Dually, the instruction mov sp, rd is used to restore a previously saved stack pointer.

However, here we must validate that rd is still valid, and thus we check that rd has

type ptr(σ2) where σ2 is a tail of the current stack type.

Loading values from or storing values to the stack is straightforward to verify

when the stack pointer is used: we simply need to check that if the instruction uses

a stack offset i, then the stack has at least i word values on it. Like sfree, these

instructions cannot ‘read past’ a stack described by nil or a stack type variable.

In the case that we store a value, we must update the type of the stack pointer

appropriately.

Loading or storing is not quite as straightforward when we use another register r

which has a pointer back into the stack. First, we must validate r by checking that

its current type is a tail of the current stack pointer’s type. Second, in the case of a

store, we must modify both the type of the true stack pointer as well as the type of r.

Modifying the type of the stack pointer is necessary to ensure that subsequent stack

operations are sound. Modifying the type of r is not strictly speaking necessary, but

not doing so could result in invalidating the pointer for subsequent operations.

The principal theorem regarding the semantics is type safety:

Theorem 5.1 (Type Safety)

If `M then M cannot become stuck during evaluation.

That is, either M steps to a well-formed terminal configuration or else M diverges,

but at no point during evaluation will we reach a configuration in which we are

stuck due to a type error. The theorem is proved using the usual Subject Reduction

and Progress lemmas, each of which are proved by induction on typing derivations.

Lemma 5.2 (Subject Reduction)

If ` P and P 7−→ P ′ then ` P ′.
Lemma 5.3 (Progress)

If ` P then either P is a terminal configuration or there exists P ′ such that P 7−→ P ′.

Proofs for both lemmas appear in Appendix A.

6 Related and future work

Our work is partially inspired by Reynolds (1995), who uses functor categories to

“replace continuations by instruction sequences and store shapes by descriptions

of the structure of the run-time stack.” However, Reynolds was primarily con-

cerned with using functors to express an intermediate language of a semantics-based
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compiler for Algol, whereas we are primarily concerned with type structure for

general-purpose target languages.

Stata & Abadi (1999) formalize the Java bytecode verifier’s treatment of subrou-

tines by giving a type system for a subset of the JVML (Lindholm & Yellin, 1996).

In particular, their type system ensures that within a procedure activation, given

any program control point, the stack is of the same size each time that control

point is reached during execution. Consequently, procedure call must be a primitive

construct (which it is in JVML). In contrast, our treatment supports polymorphic

stack recursion, and hence procedure calls can be encoded using existing assembly

language primitives.

More recently, O’Callahan (1999) has used the mechanisms in this paper to

devise an alternative, simpler type system for JVML bytecodes that differs from

the official specification (Lindholm & Yellin, 1996). By permitting polymorphic

typing of subroutines, O’Callahan’s type system accepts strictly more programs

while preserving safety. This type system sheds light on which of the verifier’s

restrictions are essential and which are not.

Necula and Lee introduced the idea of proof-carrying code (PCC) as a general

framework for certifying compilers (Necula & Lee, 1996; Necula, 1997). In the PCC

approach, the compiler produces an explicit proof that the target code respects a

given security policy, instead of using typing annotations and an implicit proof. The

general framework is quite attractive because in theory, it supports enforcement of

any security policy, not just type safety, and because there are no a priori restrictions

placed upon the code that might hamper optimizations. They demonstrated these

ideas by constructing a certifying compiler called Touchstone that mapped a safe

subset of C to an instance of PCC and showed that the resulting code could be as fast

as the best C compilers (Necula & Lee, 1998). However, the verification condition

generator and safety conditions used in the Touchstone PCC system pre-supposed

a fairly restrictive calling convention and stack model. In particular, there was no

provision for pointers back into the stack, and thus no support for stack allocation

of exception contexts, displays, or other data. Fortunately, it seems relatively easy to

adapt the ideas behind STAL to the PCC setting to achieve the advantages of each.

Tofte and others (Birkedal et al., 1996; Tofte & Talpin, 1994) have developed

an allocation strategy using a region-based model and effects-based type system.

Regions are lexically scoped containers that have a LIFO ordering on their lifetimes,

much like the values on a stack. As in our approach, polymorphic recursion on

abstracted region variables plays a critical role. However, unlike the objects in

our stacks, regions are variable-sized, and objects need not be allocated into the

region which was most recently created. Furthermore, there is only one allocation

mechanism in Tofte’s system (the stack of regions) and no need for a garbage

collector. In contrast, STAL only allows allocation at the top of the stack and

assumes a garbage collector for heap-allocated values. However, the type system for

STAL is considerably simpler than the type system of Tofte et al., as it requires

no effect information in types. Rather, we leverage a combination of linearity and

validation to ensure that stack references are sound.

Bailey & Davidson (1995) also describe a specification language for modeling
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procedure calling conventions and checking that implementations respect these

conventions. They are able to specify features such as a variable number of arguments

that our formalism does not address. However, their model is explicitly tied to a

stack-based calling convention and does not address features such as exception

handlers. Furthermore, their approach does not integrate the specification of calling

conventions with a general-purpose type system.

Although our type system is sufficiently expressive for compilation of a number

of source languages, it has several limitations. First, it cannot support general

pointers into the stack because of the ordering requirements (see section 4.3); nor

can stack and heap pointers be unified so that a function taking a tuple argument

can be passed either a heap-allocated or a stack-allocated tuple. Secondly, threads

and advanced mechanisms for implementing first-class continuations such as the

work by Hieb et al. (1990) cannot be modeled in this system without adding new

primitives. Thirdly, and perhaps most importantly, the type system does not protect

against stack overflow. One way to support this is to read- and write-protect the

last page of the stack, and enforce the constraints that (a) the stack is never grown

by more than a page amount, and (b) when the stack is grown, the last word is

immediately written. A type-theoretic solution should also be feasible with only

moderate additional complexity.

Nevertheless, we claim that the framework presented here is a practical approach

to compilation. To substantiate this claim, we have constructed a certifying compiler

called Popcorn that maps a type safe subset of C to a variant of STAL, suitably

adapted for the 32-bit Intel architecture (Morrisett et al., 1999b). We have found

it straightforward to enrich the target language type system to include support for

other type constructors, such as references, higher-order constructors, datatypes, and

recursive types. The compiler uses an unboxed stack allocation style of continuation

passing, as discussed in this paper.

Although we have discussed mechanisms for typing stacks at the assembly lan-

guage level, our techniques generalize to other languages. The same mechanisms,

including polymorphic recursion to abstract the tail of a stack, can be used to in-

troduce explicit stacks in higher level calculi. An intermediate language with explicit

stacks would allow control over allocation at a point where more information is

available to guide allocation decisions.

7 Summary

We have given a type system for assembly language that supports both a heap and a

stack. We ensure soundness for stack [de]allocation and stack slot re-use by treating

the stack in a quasi-linear fashion and by conservatively validating pointers into

the middle of the stack. This discipline forces us to maintain a distinction between

stack and heap pointers and to keep track of the relative ordering of stack pointers.

Though this prevents us from generally allocating values on the stack, our language

is flexible enough to support many common uses of a control stack in that it allows:

CPS using either heap or stack allocation, a variety of procedure calling conventions,

static links and displays, exceptions, tail-call elimination, and callee-saves registers.
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A key contribution of the type system is that it makes procedure calling conven-

tions explicit and provides a means of specifying and checking calling conventions

that is grounded in language theory. The type system also makes clear the re-

lationship between heap allocation and stack allocation of continuation closures,

capturing both allocation strategies in a single calculus.

A Proof of type soundess for STAL

Lemma A.1 (Derived Judgements)

1. If ` H : Ψ then ` Ψ.

2. If ` Ψ and Ψ ` R : Γ then · ` Γ.

3. If ∆ ` Γ then fv(Γ) ⊆ ∆.

Proof

By straightforward induction on the derivation. q

Lemma A.2 (Context Strengthening)

If ∆1 ` σ1 = σ2 and ∆1 ⊆ ∆2 then ∆2 ` σ1 = σ2.

Proof

By straightforward induction on the derivation. q

A closed stack type is always equivalent to a list of ordinary types. Thus, the idea

of the i-th element of a stack type is useful in proving certain lemmas. We denote

this σ[i] and define it as follows:

ρ[i] undefined

nil [i] undefined

(τ::σ)[i] =

{
τ i = 1

σ[i− 1] i > 1

(σ1 @ σ2)[i] =

{
σ1[i] i 6 |σ1|
σ2[i− |σ1|] i > |σ1|

Lemma A.3

If · ` σ then · ` σ = σ[1]:: · · · ::σ[|σ|]::nil .

Proof

By rule (stype), fv(σ) = ∅ so σ is composed of nil , ::, @, and types. The proof is by

induction on the structure of σ.

σ = nil : Immediate.

σ = τ::σ′: By the induction hypothesis, · ` σ′ = σ′[1]:: · · · ::σ′[|σ′|]::nil . By defini-

tion, the latter equals σ[2]:: · · · ::σ[|σ|]::nil . The result follows by rule (seq-cons).

σ = σ1 @ σ2: By the induction hypothesis, · ` σ1 = σ1[1]:: · · · ::σ1[|σ1|]::nil and

· ` σ2 = σ2[1]:: · · · ::σ2[|σ2|]::nil . Thus, · ` σ = (σ[1]:: · · · ::σ[|σ1|]::nil ) @ (σ[|σ1|+
1]:: · · · ::σ[|σ|]::nil ). Then by an inner induction on the length of σ1, using the

(stkβ3), (stkβ1), and (seq-trans) rules, the result follows.

q
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Lemma A.4 (Stack Equality)

1. · ` σ1 = σ2 if and only if |σ1| = |σ2| and ∀1 6 i 6 |σ1| : σ1[i] = σ2[i].

2. If · ` σ1 = σ2 then |σ1| = |σ2|.
3. If · ` τ1:: · · · ::τn::σ = τ′1:: · · · ::τ′n::σ′ then τi = τ′i for 1 6 i 6 n and · ` σ = σ′.
4. If · ` τn:: · · · ::τ1::nil = σ1 @ σ2 then · ` τn:: · · · ::τn−|σ1|+1::nil = σ1 and

· ` τ|σ2|:: · · · ::τ1::nil = σ2.

Proof

Items 2–4 are corollaries of part 1. The left to right part of item 1 is by a

straightforward induction on the derivation. The right to left part of item 1 follows

by rules (seq-sym), (seq-trans), (seq-cons), and (seq-refl) from Lemma A.3. q

Lemma A.5 (Type Substitution 1 )

If ∆1 ` τi then:

1. If ∆2,~α,∆1 ` Γ1 6 Γ2 then ∆2,∆1 ` Γ1[~τ/~α] 6 Γ2[~τ/~α]

2. If ∆2,~α,∆1 ` σ1 = σ2 then ∆2,∆1 ` σ1[~τ/~α] = σ2[~τ/~α]

3. If ∆2,~α,∆1 ` τ then ∆2,∆1 ` τ[~τ/~α]
4. If ∆2,~α,∆1 ` σ then ∆2,∆1 ` σ[~τ/~α]

5. If ∆2,~α,∆1 ` Γ then ∆2,∆1 ` Γ[~τ/~α]

Proof

By induction on the derivation using Context Strengthening. q

Lemma A.6 (Heap Extension)

If ` H : Ψ, · ` τ, Ψ{`:τ} ` h : τ hval, and ` /∈ H then:

1. ` Ψ{`:τ}
2. ` H{` 7→ h} : Ψ{`:τ}
3. If Ψ ` R : Γ then Ψ{`:τ} ` R : Γ

4. If Ψ ` S : σ then Ψ{`:τ} ` S : σ

5. If Ψ; ∆; Γ ` I then Ψ{`:τ}; ∆; Γ ` I
6. If Ψ; ∆; Γ ` ι⇒ ∆′; Γ′ then Ψ{`:τ}; ∆; Γ ` ι⇒ ∆′; Γ′
7. If Ψ ` h : τ′ hval then Ψ{`:τ} ` h : τ′ hval

8. If Ψ; ∆; Γ ` v : τ′ then Ψ{`:τ}; ∆; Γ ` v : τ′

Proof

Part 1 is immediate. Part 2 follows from parts 1 and 7. Parts 3–8 are by straightfor-

ward induction on derivations. q

Lemma A.7

If Ψ ` w1::w2:: · · · ::wn::nil : σ, then for some τ1, . . . , τn, · ` σ = τ1:: · · · ::τn::nil and

Ψ; ·; · ` wi : τi for 1 6 i 6 n.

Proof

We proceed by induction on the derivation of Ψ ` w1::w2:: · · · ::wn::nil : σ.

(nil): Trivial.

(cons): We know σ is τ1::σ′ for some τ1 and σ′ and Ψ; ·; · ` w1 : τ1 and Ψ `
w2:: · · · ::wn::nil : σ′. Then by the induction hypothesis, · ` σ′ = τ2:: · · · ::τn::nil

and Ψ; ·; · ` wi : τi for 2 6 i 6 n.
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(stkeq): We have · ` σ = σ′ and Ψ ` w1::w2:: · · · ::wn::nil : σ′. By the induction

hypothesis, · ` σ′ = τ1::τ2:: · · · ::τn::nil and Ψ; ·; · ` wi : τi for 1 6 i 6 n. The

result then follows from (seq-trans).

q

Lemma A.8 (Canonical Stack Forms)

If Ψ ` R : Γ then R(sp) = w1:: · · · ::wn::nil for some w1, . . . , wn, · ` Γ(sp) =

τ1:: · · · ::τn::nil for some τ1, . . . , τn, and Ψ; ·; · ` wi : τi for 1 6 i 6 n. Note also that

|R(sp)| = n = |Γ(sp)|.
Proof

By the definition of the abstract syntax, R(sp) = w1:: · · ·wn::nil for some w1, . . . , wn
where n > 0. By (regfile) it must be that Ψ ` w1:: · · ·wn::nil : Γ(sp). By the

previous Lemma, there exists τ1, · · · , τn such that · ` Γ(sp) = τ1:: · · · ::τn::nil and

Ψ; ·; · ` wi : τi. q

Lemma A.9 (R̂ Typing)

If Ψ ` R : Γ and Ψ; ·; Γ ` v : τ then Ψ; ·; · ` R̂(v) : τ.

Proof

The proof is by induction on the derivation of Ψ; ·; Γ ` v : τ. Consider the following

cases for the last rule used in the derivation:

(label), (int), (ns), and (ptr): Immediate.

(reg): This rule requires τ = Γ(r). The only rule that can type R is (regfile), and this

rule requires Ψ; ·; · ` R(r) : Γ(r). The conclusion follows since R̂(r) = R(r).

(tapp): This rule requires that τ = ∀[∆′].Γ′[τ′/α], v = v′[τ′], and Ψ; ·; Γ ` v′ :

∀[α,∆′].Γ′. By the induction hypothesis, we deduce Ψ; ·; · ` R̂(v′) : ∀[α,∆′].Γ′, and

the rule (tapp) proves Ψ; ·; · ` R̂(v′)[τ′] : τ. The result follows since R̂(v) = R̂(v′)[τ′].
(stapp): This case follows by the same argument as for (tapp).

(pack): This rule requires τ = ∃α.τ′, v = pack [τ′′, v′] as ∃α.τ′, and Ψ; ·; Γ ` v′ :

τ′[τ′′/α]. By the induction hypothesis, we deduce Ψ; ·; · ` R̂(v′) : τ′[τ′′/α], and

the rule (pack) proves Ψ; ·; · ` pack [τ′, R̂(v′)] as τ : τ. The result follows since

R̂(v) = pack [τ′, R̂(v′)] as τ.

q

Lemma A.10 (Register File Weakening)

If · ` Γ1 6 Γ2 and Ψ ` R : Γ1 then Ψ ` R : Γ2.

Proof

The judgments · ` Γ1 6 Γ2 and Ψ ` R : Γ1 can only be derived by the rules (rf-leq)

and (regfile) respectively. It follows that R = {sp 7→ S, r1 7→ w1, . . . , rm 7→ wm},
Γ1 = {sp:σ, r1:τ1, . . . , rn:τn}, Γ2 = {sp:σ′, r1:τ1, . . . , rp:τp}, m > n > p, Ψ ` S : σ,

Ψ; ·; · ` wi : τi for 1 6 i 6 n, and · ` σ = σ′. By rule (stkeq) Ψ ` S : σ′. The result

follows by rule (regfile). q
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Lemma A.11 (Register File Update)

1. If Ψ ` R : Γ and Ψ; ·; · ` w : τ then Ψ ` R{r 7→ w} : Γ{r:τ}.
2. If Ψ ` R : Γ and Ψ ` S : σ then Ψ ` R{sp 7→ S} : Γ{sp:σ}.

Proof

For part 1, suppose R is {sp 7→ S, r1 7→ w1, . . . , rm 7→ wm} where r may or may not

be in {r1, . . . , rm} and Γ is {sp:σ, r1:τ1, . . . , rn:τn}. Since Ψ ` R : Γ, by the rule (regfile)

it must be the case that m > n and Ψ; ·; · ` wi : τi (for all 1 6 i 6 m and some

τn+1, . . . , τm). So certainly for i such that ri 6= r, Ψ; ·; · ` wi : τi, and by hypothesis

Ψ; ·; · ` w : τ so by rule (regfile) Ψ ` R{r 7→ w} : Γ{r:τ}. Part 2 follows by a similar

argument. q

Lemma A.12 (Canonical Heap Forms)

If Ψ ` h : τ hval then:

1. If τ = ∀[∆].Γ then:

(a) h = code[∆]Γ.I

(b) Ψ; ∆; Γ ` I
2. If τ = 〈τ0, . . . , τn〉 then:

(a) h = 〈w0, . . . , wn〉
(b) Ψ; ·; · ` wi : τi

3. There are no other possible forms for τ.

Proof

The only applicable rules are (tuple) and (code). The result follows by inspection of

those rules. q

Lemma A.13 (Canonical Forms)

If ` H : Ψ, Ψ ` R : Γ, and Ψ; ·; Γ ` v : τ then:

1. If τ = int then R̂(v) = i.

2. If τ = ∀[∆2].Γ′ then:

(a) R̂(v) = `[ψ]

(b) for each τ ∈ ψ, · ` τ
(c) for each σ ∈ ψ, · ` σ
(d) H(`) = code[∆1,∆2]Γ′′.I
(e) Γ′ = Γ′′[ψ/∆1]

(f) Ψ; (∆1,∆2); Γ′′ ` I
3. If τ = 〈τ0, . . . , τn〉 then:

(a) R̂(v) = `

(b) H(`) = 〈w0, . . . , wn〉
(c) Ψ; ·; · ` wi : τi

4. If τ = ∃α.τ′ then R̂(v) = pack [τ′′, w′] as τ′′′, · ` τ′′, and Ψ; ·; · ` w′ : τ′[τ′′/α].
5. If τ = ptr(σ) then R̂(v) = ptr(|σ|).
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Proof

Let w = R̂(v). By R̂ Typing, Ψ; ·; · ` w : τ. The proof proceeds by induction on this

judgment’s derivation. Consider the last rule used in the derivation:

(label): This rule requires w = ` and Ψ(`) = τ. Since ` H : Ψ, it follows that

Ψ ` H(`) : τ hval. Then the result follows by Canonical Heap Forms.

(int), (ns), and (ptr): Immediate.

(reg): This case is not possible since the register assignment is empty.

(tapp): This rule requires that τ = ∀[∆].Γ′[τ′/α], w = w′[τ′], and Ψ; ·; · ` w′ :

∀[α,∆].Γ′. By the induction hypothesis, w′ = `[ψ], H(`) = code[∆′, α,∆]Γ′′.I ,
Γ′ = Γ′′[ψ/∆′], and Ψ; (∆′, α,∆); Γ′′ ` I . Clearly Γ′[τ′/α] = Γ′′[ψ/∆′][τ′/α] =

Γ′[ψ, τ′/∆′, α]. The conclusion follows since w = `[ψ, τ′].
(stapp): This case follows by the same argument as for (tapp).

(pack): Immediate.

q

Lemma A.14 (Type Substitution 2 )

If · ` τi then:

1. If Ψ; (∆,~α); Γ ` I then Ψ; ∆; Γ[~τ/~α] ` I[~τ/~α].
2. If Ψ; (∆,~α); Γ ` ι⇒ (∆′,∆,~α); Γ′ then

Ψ; ∆; Γ[~τ/~α] ` ι[~τ/~α]⇒ (∆′,∆); Γ′[~τ/~α]
3. If Ψ; (∆,~α); Γ ` v : τ then Ψ; ∆; Γ[~τ/~α] ` v[~τ/~α] : τ[~τ/~α]

Proof

The proof is by induction on derivations, Context Strengthening, and Type Substi-

tution 1. q

Theorem A.15 (Subject Reduction)

If ` P and P 7−→ P ′ then ` P ′.
Proof

P has the form (H,R, ι; I) or (H,R, jmp v). Let TD be the derivation of ` P .

Consider the following cases for jmp or ι:

case aop: TD has the form:

` H : Ψ Ψ ` R : Γ

Ψ; ·; Γ ` rs : int Ψ; ·; Γ ` v : int

Ψ; ·; Γ ` aop rd, rs, v ⇒ ·; Γ{rd:int} Ψ; ·; Γ{rd:int} ` I
Ψ; ·; Γ ` ι; I

` P
By the operational semantics P ′ = (H,R′, I) where R′ = R{rd 7→ i} and i =

||aop||(R(rs), R̂(v)). Then:

1. ` H : Ψ is in TD.

2. By Canonical Forms it follows that R(rs) and R̂(v) are integer literals, and

therefore Ψ; ·; · ` i : int . Hence Ψ ` R′ : Γ{rd:int} by Register File Update.

3. Ψ; ·; Γ{rd:int} ` I is in TD.



78 G. Morrisett et al.

case bop: TD has the form:

` H : Ψ Ψ ` R : Γ

Ψ; ·; Γ ` r : int Ψ; ·; Γ ` v : ∀[ ].Γ′ · ` Γ 6 Γ′

Ψ; ·; Γ ` bop r, v ⇒ ·; Γ Ψ; ·; Γ ` I
Ψ; ·; Γ ` ι; I

` P
If not ||bop||(R(r)) then P ′ = (H,R, I) and ` P ′ follows since Ψ; ·; Γ ` I is in TD.

Otherwise the reasoning is exactly as in the case for jmp below.

case jmp: TD has the form:

` H : Ψ Ψ ` R : Γ

Ψ; ·; Γ ` v : ∀[ ].Γ′ · ` Γ 6 Γ′

Ψ; ·; Γ ` jmp v

` P
By the operational semantics, P ′ = (H,R, I[ψ/∆]) where R̂(v) = `[ψ] and H(`) =

code[∆]Γ′′.I . Then:

1. ` H : Ψ is in TD.

2. From · ` Γ 6 Γ′ and Ψ ` R : Γ it follows by Register File Weakening that

Ψ ` R : Γ′.
3. By Canonical Forms it follows from Ψ; ·; Γ ` v : ∀[ ].Γ′ that · ` ψ, Γ′ =

Γ′′[ψ/∆], and Ψ; ∆; Γ′′ ` I . By Type Substitution 2 Ψ; ·; Γ′′[ψ/∆] ` I[ψ/∆],

which is the same as Ψ; ·; Γ′ ` I[ψ/∆].

case ld: TD has the form:

` H : Ψ Ψ ` R : Γ

Ψ; ·; Γ ` rs : 〈τ0, . . . , τn〉 0 6 i 6 n

Ψ; ·; Γ ` ld rd, rs(i)⇒ ·; Γ{rd:τi} Ψ; ·; Γ{rd:τi} ` I
Ψ; ·; Γ ` ι; I

` P
By the operational semantics P ′ = (H,R′, I) where R′ = R{rd 7→ wi}, R(rs) = `,

H(`) = 〈w0, . . . , wm〉, and 0 6 i 6 m. Then:

1. ` H : Ψ is in TD.

2. By Canonical Forms it follows from Ψ; ·; Γ ` rs : 〈τ0, . . . , τn〉 that m = n

and Ψ; ·; · ` wj : τj for 0 6 j 6 n. By Register File update we conclude

Ψ ` R′ : Γ{rd:τi}.
3. Ψ; ·; Γ{rd:τi} ` I is in TD.

case malloc: TD has the form:

` H : Ψ Ψ ` R : Γ

Ψ; ·; Γ ` vi : τi (for 1 6 i 6 n)

Ψ; ·; Γ ` malloc r, 〈v1, . . . , vn〉 ⇒ ·; Γ′ Ψ; ·; Γ′ ` I
Ψ; ·; Γ ` ι; I

` P
where Γ′ = Γ{r:τ} and τ = 〈τ1, . . . , τn〉. By the operational semantics P ′ =

(H ′, R′, I) where H ′ = H{` 7→ 〈R̂(v1), . . . , R̂(vn)〉}, R′ = R{r 7→ `}, and ` 6∈ H . Let

Ψ′ = Ψ{`:τ}, then:

1. By R̂ Typing Ψ; ·; · ` R̂(vi) : τi for 1 6 i 6 n. By rule (tuple) Ψ `
〈R̂(v1), . . . , R̂(vn)〉 : τ hval. By Heap Extension it follows that ` H ′ : Ψ′.
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2. By rule (label) Ψ′; ·; · ` ` : τ. By Heap Extension Ψ′ ` R : Γ and it follows by

Register File update that Ψ′ ` R′ : Γ′.
3. By Heap Extension Ψ′; ·; Γ′ ` I .

case mov r, v: TD has the form:

` H : Ψ Ψ ` R : Γ

Ψ; ·; Γ ` v : τ

Ψ; ·; Γ ` mov r, v ⇒ ·; Γ{r:τ} Ψ; ·; Γ{r:τ} ` I
Ψ; ·; Γ ` ι; I

` P
By the operational semantics P ′ = (H,R′, I) where R′ = R{rd 7→ R̂(v)}. Then:

1. ` H : Ψ is in TD.

2. By R̂ Typing it follows from Ψ; ·; Γ ` v : τ that Ψ; ·; · ` R̂(v) : τ. Using Register

File Update we conclude that Ψ ` R′ : Γ{r:τ}.
3. Ψ; ·; Γ{r:τ} ` I is in TD.

case mov rd, sp: TD has the form:

` H : Ψ Ψ ` R : Γ

Ψ; ·; Γ ` mov rd, sp⇒ ·; Γ{rd:ptr(σ)} (Γ(sp) = σ)

Ψ; ·; Γ{rd:ptr(σ)} ` I
Ψ; ·; Γ ` ι; I

` P
By the operational semantics P ′ = (H,R′, I) where R′ = R{rd 7→ ptr(|R(sp)|)}.
Then:

1. ` H : Ψ is in TD.

2. By Canonical Stack Forms it follows from Γ(sp) = σ that |σ| = |R(sp)|.
By Derived Judgments and inversion of rule (rftype) · ` σ, so by (ptr)

Ψ; ·; · ` ptr(|R(sp)|) : ptr(σ). By Register File Update, Ψ ` R′ : Γ{rd:ptr(σ)}.
3. Ψ; ·; Γ{rd:ptr(σ)} ` I is in TD.

case mov sp, rs: TD has the form:

` H : Ψ

Ψ ` R : Γ

Ψ; ·; Γ ` rs : ptr(σ2) · ` Γ(sp) = σ1 @ σ2

Ψ; ·; Γ ` mov sp, rs ⇒ ·; Γ{sp:σ2} Ψ; ·; Γ{sp:σ2} ` I
Ψ; ·; Γ ` ι; I

` P
By the operational semantics P ′ = (H,R′, I) where R′ = R{sp 7→ S}, S =

wi:: · · · ::w1::nil , R(sp) = wn:: · · ·wi:: · · · ::w1::nil , R(rs) = ptr(i), and 0 6 i 6 n.

Let σ3 = τi:: · · · ::τ1::nil , then:

1. ` H : Ψ is in TD.

2. By Canonical Stack Forms, · ` Γ(sp) = τn:: · · · ::τ1::nil (∗) and Ψ; ·; · ` wj : τj
for 1 6 j 6 n. By repeated use of rules (nil) and (cons), Ψ ` S : σ3. By R̂

Typing, Ψ; ·; · ` ptr(i) : ptr(σ2), and by inversion on (ptr), we have |σ2| = i.

By Stack Equality, it follows from · ` Γ(sp) = σ1 @ σ2, (∗), (seq-sym), and

(seq-trans) that · ` σ3 = σ2. By rule (stkeq) Ψ ` S : σ2. By Register File

Update it follows that Ψ ` R′ : Γ{sp:σ2}.
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3. Ψ; ·; Γ{sp:σ2} ` is in TD.

case salloc: TD has the form:

` H : Ψ Ψ ` R : Γ

Γ(sp) = σ

Ψ; ·; Γ ` salloc n⇒ ·; Γ′ Ψ; ·; Γ′ ` I
Ψ; ·; Γ ` ι; I

` P
where Γ′ = Γ{sp:σ} and σ = >:: · · · ::>︸ ︷︷ ︸

n

::Γ(sp). By the operational semantics

P ′ = (H,R′, I) where R′ = R{sp 7→ S} and S = ns:: · · · ::ns︸ ︷︷ ︸
n

::R(sp). Then:

1. ` H : Ψ is in TD.

2. By the (regfile) rule it must be that Ψ; ·; · ` R(sp) : Γ(sp). By repeated use of

the (ns) and (cons) rules we can conclude that Ψ; · ` S : σ. Using Register File

Update we conclude that Ψ ` R′ : Γ′.
3. Ψ; ·; Γ′ ` I is in TD.

case sfree: TD has the form:

` H : Ψ Ψ ` R : Γ

· ` Γ(sp) = τ1:: · · · ::τn::σ2

Ψ; ·; Γ ` sfree n⇒ ·; Γ{sp:σ2} Ψ; ·; Γ{sp:σ2} ` I
Ψ; ·; Γ ` ι; I

` P
By the operational semantics P ′ = (H,R′, I) where R′ = R{sp 7→ S} and R(sp) =

w1:: · · · ::wn::S . Then:

1. ` H : Ψ is in TD.

2. By Canonical Stack Forms, for some m > n, S = wn+1:: · · · ::wm::nil , · `
Γ(sp) = τ′1:: · · · ::τ′m::nil (∗), and Ψ; ·; · ` wi : τ′i for 1 6 i 6 m. By repeated

use of the (nil) and (cons) rules, Ψ ` S : τ′n+1:: · · · ::τ′m::nil . By Stack Equality

it follows from · ` Γ(sp) = τ1:: · · · ::τn::σ2, (∗), (seq-sym), and (seq-trans) that

· ` τ′n+1:: · · · ::τ′m::nil = σ2. By rule (stkeq) Ψ ` S : σ2. By Register File Update

Ψ ` R′ : Γ{sp:σ2}.
3. Ψ; ·; Γ{sp:σ2} ` I is in TD.

case sld rd, sp(i): TD has the form:

` H : Ψ Ψ ` R : Γ

· ` Γ(sp) = τ0:: · · · ::τi::σ2 0 6 i

Ψ; ·; Γ ` sld rd, sp(i)⇒ ·; Γ{rd:τi} Ψ; ·; Γ{rd:τi} ` I
Ψ; ·; Γ ` ι; I

` P
By the operational semantics P ′ = (H,R′, I) where R′ = R{rd 7→ wi}, R(sp) =

w0:: · · · ::wn::nil , and 0 6 i 6 n. Then:

1. ` H : Ψ is in TD.

2. By Canonical Stack Forms, ` Γ(sp) = τ′0:: · · · ::τ′n::nil (∗) and Ψ; ·; · ` wi : τ′i.
By Stack Equality, it follows from · ` Γ(sp) = τ0:: · · · ::τi::σ2, (∗), (seq-sym),

and (seq-trans) that τ′i = τi. By Register File Update, we may conclude

Ψ ` R′ : Γ{rd:τi}.
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3. Ψ; ·; Γ{rd:τi} ` I is in TD.

case sld rd, rs(i): TD has the form:

` H : Ψ

Ψ ` R : Γ

0 6 i · ` Γ(sp) = σ1 @ σ2

Ψ; ·; Γ ` rs : ptr(σ2) · ` σ2 = τ0:: · · · ::τi::σ3

Ψ; ·; Γ ` sld rd, rs(i)⇒ ·; Γ{rd:τi} Ψ; ·; Γ{rd:τi} ` I
Ψ; ·; Γ ` sld rd, rs(i); I

` P

By the operational semantics P ′ = (H,R′, I) where R′ = R{rd 7→ wj−i}, R(sp) =

wn:: · · · ::w1::nil , R(rs) = ptr(j), and 0 6 i < j 6 n. Then:

1. ` H : Ψ is in TD.

2. By Canonical Stack Forms, · ` Γ(sp) = τ′n:: · · · ::τ′1::nil (1) and Ψ; ·; · ` wk : τ′k .
By Canonical Forms, j = |σ2| (2). By Stack Equality, it follows from · ` Γ(sp) =

σ1 @ σ2, (1), (2), (seq-sym), and (seq-trans) that · ` τ′j:: · · · ::τ′1::nil = σ2.

From the latter, · ` σ2 = τ0:: · · · ::τi::σ3, and rule (seq-trans) it follows that

· ` τ′j:: · · · ::τ′1::nil = τ0:: · · · ::τi::σ3. Then by Stack Equality, τ′j−i = τi. By

Register File Update, Ψ ` R′ : Γ{rd:τi}.
3. Ψ; ·; Γ{rd:τi} ` I is in TD.

case sst sp(i), rs: TD has the form:

` H : Ψ

Ψ ` R : Γ

· ` Γ(sp) = τ0:: · · · ::τi::σ2 Ψ; ·; Γ ` rs : τ 0 6 i

Ψ; ·; Γ ` sst sp(i), rs ⇒ ·; Γ′ Ψ; ·; Γ′ ` I
Ψ; ·; Γ ` sst sp(i), rs; I

` P

where Γ′ = Γ{sp:σ} and σ = τ0:: · · · ::τi−1::τ::σ2. By the operational seman-

tics P ′ = (H,R′, I) where R′ = R{sp 7→ w0:: · · · ::wi−1::R(rs)::S} and R(sp) =

w0:: · · · ::wi::S . Then:

1. ` H : Ψ is in TD.

2. By Canonical Stack Forms, · ` Γ(sp) = τ′0:: · · · ::τ′n::nil (1) and for some

n > i and wi+1 through wn, S = wi+1:: · · · ::wn::nil and Ψ; ·; · ` wj : τ′j . Let

σ′ = τ′0:: · · · ::τ′i−1::τ::τ′i+1:: · · · ::τ′n::nil . By R̂ Typing, Ψ; ·; · ` R(rs) : τ. By

repeated use of the (cons) and (nil) rules, Ψ ` w0:: · · · ::wi−1::R(rs)::S : σ′. By

Stack Equality it follows from · ` Γ(sp) = τ0:: · · · ::τi::σ2, (1), (seq-sym), and

(seq-trans) that τ′j = τj and · ` τ′i+1:: · · · ::τ′n::nil = σ2. By repeated use of the

(seq-cons) rule, · ` σ′ = σ. By rule (stkeq), Ψ ` w0:: · · · ::wi−1::R(rs)::S : σ. By

Register File Update it follows that Ψ ` R′ : Γ′.
3. Ψ; ·; Γ′ ` I is in TD.



82 G. Morrisett et al.

case sst rd(i), rs: TD has the form:

` H : Ψ

Ψ ` R : Γ

0 6 i · ` Γ(sp) = σ1 @ σ2

Ψ; ·; Γ ` rd : ptr(σ2) · ` σ2 = τ0:: · · · ::τi::σ3

Ψ; ·; Γ ` rs : τ · ` σ4 = τ0:: · · · ::τi−1::τ::σ3

Ψ; ·; Γ ` sst rd(i), rs ⇒ ·; Γ′ Ψ; ·; Γ′ ` I
Ψ; ·; Γ ` sst rd(i), rs; I

` P
where Γ′ = Γ{sp:σ1 @ σ4, rd:ptr(σ4)}. By the operational semantics P ′=(H,R′, I)
where R′ = R{sp 7→ S ′}, S ′ = wn:: · · · ::wj−i+1::R(rs)::wj−i−1:: · · · ::w1::nil , R(rd) =

ptr(j), R(sp) = wn:: · · · ::w1::nil , and 0 6 i < j 6 n. Then:

1. ` H : Ψ is in TD.

2. By Canonical Forms j = |σ2|, and by Stack Equality |σ2| = 1 + i + |σ3| and

|σ4| = 1 + i + |σ3|. Therefore j = |σ4|, and by (ptr) Ψ; ·; · ` ptr(j) : σ4. By

Register File Update, Ψ ` R : Γ{rd:ptr(σ4)}. By Canonical Stack Forms,

· ` Γ(sp) = τ′n:: · · · ::τ′1::nil (1) and Ψ; ·; · ` wk : τ′k for 1 6 k 6 n. Let

σ = τ′n:: · · · ::τ′j−i+1::τ::τ′j−i−1:: · · · ::τ′1::nil . By R̂ Typing, Ψ; ·; · ` R(rs) : τ. By

repeated use of the (cons) and (nil) rules, Ψ ` S ′ : σ. By Stack Equality

it follows from · ` Γ(sp) = σ1 @ σ2, (1), (seq-sym), and (seq-trans) that

· ` τ′n:: · · · ::τ′j+1::nil = σ1 and · ` τ′j:: · · · ::τ′1::nil = σ2. By the latter, · ` σ2 =

τ0:: · · · ::τi::σ3, (seq-sym), and (seq-trans), by Stack Equality it follows that

τk = τ′j−k (for 0 6 k 6 i) and · ` τ′j−i−1:: · · · ::τ′1::nil = σ3. By repeated use of

rule (seq-cons) · ` τ′j:: · · · ::τ′j−i+1::τ::τ′j−i−1:: · · · ::τ′1::nil = τ0:: · · · ::τi−1::τ::σ3.

By · ` σ4 = τ0:: · · · ::τi−1::τ::σ3, (seq-sym), and (seq-trans), it follows that

· ` τ′j:: · · · ::τ′j−i+1::τ::τ′j−i−1:: · · · ::τ′1::nil = σ4. Using rule (seq-append), it

follows that · ` (τ′n:: · · · ::τ′j+1::nil ) @ (τ′j:: · · · ::τ′j−i+1::τ::τ′j−i−1:: · · · ::τ′1::nil ) =

σ1 @ σ4. By repeated use of rules (cons), (stkβ3), and (stkβ1) it follows

that · ` (τ′n:: · · · ::τ′j+1::nil )@(τ′j:: · · · ::τ′j−i+1::τ::τ′j−i−1:: · · · ::τ′1::nil ) = σ. Then

using rules (seq-sym) and (seq-trans), we may conclude · ` σ = σ1 @ σ4. By

(stkeq) Ψ ` S ′ : σ1 @ σ4. By Register File Update it follows that Ψ ` R′ : Γ′.
3. Ψ; ·; Γ′ ` I is in TD.

case st: TD has the form:

` H : Ψ

Ψ ` R : Γ

Ψ; ·; Γ ` rd : 〈τ0, . . . , τn〉 Ψ; ·; Γ ` rs : τi 0 6 i 6 n

Ψ; ·; Γ ` st rd(i), rs ⇒ ·; Γ Ψ; ·; Γ ` I
Ψ; ·; Γ ` ι; I

` P
By the operational semantics, P ′ = (H ′, R, I) where H ′ = H{` 7→ h′} and h′ =

〈w0, . . . , wi−1, R(rs), wi+1, . . . , wn〉, R(rd) = `, H(`) = 〈w0, . . . , wn〉, and 0 6 i 6 n.

Then:

1. Inspection of the rule (heap) reveals that ` H ′ : Ψ if Ψ ` h′ : Ψ(`) hval. By

R̂ Typing, Ψ; ·; · ` ` : 〈τ0, . . . , τn〉 and, by Canonical Forms, Ψ; ·; · ` wj : τj for

0 6 j 6 n (∗). Since the former can only be concluded by the rule (label), it
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must be that Ψ(`) = 〈τ0, . . . , τn〉. By R̂ Typing Ψ; ·; · ` R(rs) : τi. By (∗) and

rule (tuple) Ψ ` h′ : Ψ(`) hval as required.

2. Ψ ` R : Γ is in TD.

3. Ψ; ·; Γ ` I is in TD.

case unpack: TD has the form:

` H : Ψ Ψ ` R : Γ

Ψ; ·; Γ ` v : ∃α.τ
Ψ; ·; Γ ` unpack [α, r], v ⇒ α; Γ{r:τ} Ψ; α; Γ{r:τ} ` I

Ψ; ·; Γ ` ι; I
` P

By the operational semantics, P ′= (H,R{r 7→ w}, I[τ′/α]) where R̂(v)= pack [τ′, w]

as τ′′. Let τ′′′ = τ[τ′/α]. Then:

1. ` H : Ψ is in TD.

2. By Canonical Forms it follows from Ψ; ·; Γ ` v : ∃α.τ that · ` τ′ and Ψ; ·; · `
w : τ′′′. By Register File Update it follows that Ψ ` R{r 7→ w} : Γ{r:τ′′′}.

3. By Type Substitution 2 and Ψ; α; Γ{r:τ} ` I it follows that Ψ′; ·; Γ{r:τ′′′} `
I[τ′/α]. (Note that Γ[τ′/α] = Γ follows from Derived Judgments.)

q

Theorem A.16 (Progress)

If ` P then either P has the form (H,R{r1 7→ w}, halt[τ]) (and, moreover, Ψ; ·; · `
w : τ for some Ψ such that ` H : Ψ) or there exists P ′ such that P 7−→ P ′.

Proof

Suppose P = (H,R, Ifull). Let TD be the derivation of ` P . The proof is by cases on

the first instruction of Ifull.

case aop: TD has the form:

` H : Ψ Ψ ` R : Γ

Ψ; ·; Γ ` rs : int Ψ; ·; Γ ` v : int

Ψ; ·; Γ ` aop rd, rs, v ⇒ ·; Γ{rd:int} Ψ; ·; Γ{rd:int} ` I
Ψ; ·; Γ ` aop rd, rs, v; I

` P
By Canonical Forms, R(rs) and R̂(v) each represent integer literals. Hence P 7−→
(H,R{rd 7→ ||aop||(R(rs), R̂(v)), I).

case bop: TD has the form:

` H : Ψ Ψ ` R : Γ

Ψ; ·; Γ ` r : int Ψ; ·; Γ ` v : ∀[ ].Γ′ · ` Γ 6 Γ′

Ψ; ·; Γ ` bop r, v ⇒ ·; Γ Ψ; ·; Γ ` I
Ψ; ·; Γ ` bop r, v; I

` P
By Canonical Forms R(r) is an integer literal and R̂(v) = `[ψ] where H(`) =

code[∆]Γ′′.I ′ and |ψ| = |∆|. If not ||bop||R(r) then P 7−→ (H,R, I). If ||bop||R(r)

then P 7−→ (H,R, I ′[ψ/∆]).
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case halt: TD has the form:

` H : Ψ Ψ ` R : Γ

Ψ; ·; Γ ` r1 : τ

Ψ; ·; Γ ` halt[τ]

` (H,R, halt[τ])

By R̂ Typing we may deduce that R̂(r1) is defined and Ψ; ·; · ` R̂(r1) : τ. In other

words, R = R′{r1 7→ w} and Ψ; ·; · ` w : τ.

case jmp: TD has the form:

` H : Ψ Ψ ` R : Γ

Ψ; ·; Γ ` v : ∀[ ].Γ′ · ` Γ 6 Γ′

Ψ; ·; Γ ` jmp v

` P
By Canonical Forms, R̂(v) = `[ψ] where H(`) = code[∆]Γ′′.I ′ and |ψ| = |∆|.
Hence P 7−→ (H,R, I ′[ψ/∆]).

case ld: TD has the form:

` H : Ψ Ψ ` R : Γ

Ψ; ·; Γ ` rs : 〈τ0, . . . , τn〉 0 6 i 6 n

Ψ; ·; Γ ` ld rd, rs(i)⇒ ·; Γ{rd:τi} Ψ; ·; Γ{rd:τi} ` I
Ψ; ·; Γ ` ld rd, rs(i); I

` P
By Canonical Forms, R(rs) = ` and H(`) = 〈w0, . . . , wn〉. Therefore, by the opera-

tional semantics P 7−→ (H,R{rd 7→ wi}, I).
case malloc: TD has the form:

` H : Ψ Ψ ` R : Γ

Ψ; ·; Γ ` vi : τi (for 1 6 i 6 n)

Ψ; ·; Γ ` malloc r, 〈v1, . . . , vn〉 ⇒ ·; Γ′ Ψ; ·; Γ′ ` I
Ψ; ·; Γ ` ι; I

` P
By R̂ Typing, R̂(vi) is well-defined (for 1 6 i 6 n). Then P 7−→ (H{` 7→
〈R̂(v1), . . . , R̂(vn)〉}, R{r 7→ `}, I) for some ` /∈ H .

case mov r, v: TD has the form:

` H : Ψ Ψ ` R : Γ

Ψ; ·; Γ ` v : τ

Ψ; ·; Γ ` mov r, v ⇒ ·; Γ{r:τ} Ψ; ·; Γ{r:τ} ` I
Ψ; ·; Γ ` mov r, v; I

` P
By R̂ Typing R̂(v) is well-defined. Hence P 7−→ (H,R{r 7→ R̂(v)}, I).

case mov rd, sp: Suppose Ifull has the form mov rd, sp; I then P 7−→ (H,R{rd 7→
ptr(|R(sp)|)}, I).

case mov sp, rs: TD has the form:

` H : Ψ Ψ ` R : Γ

· ` Γ(sp) = σ1 @ σ2 Ψ; ·; Γ ` rs : ptr(σ2)

Ψ; ·; Γ ` mov sp, rs ⇒ ·; Γ{sp:σ2}
Ψ; ·; Γ ` mov sp, rs; I

` P
By Canonical Forms, R(rs) = ptr(|σ2|). By Canonical Stack Forms R(sp) =
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wn:: · · · ::w1::nil where n = |Γ(sp)|. By Stack Equality |Γ(sp)| = |σ1 @ σ2|, and by

definition the latter equals |σ1| + |σ2|. So 0 6 |σ2| 6 n, hence P 7−→ (H,R{sp 7→
w|σ2|:: · · · ::w1::nil}, I).

case salloc: Suppose Ifull has the form salloc n; I then:

P 7−→ (H,R{sp 7→ ns:: · · · ::ns︸ ︷︷ ︸
n

::R(sp)}, I)

case sfree: TD has the form:

` H : Ψ Ψ ` R : Γ

· ` Γ(sp) = τ1:: · · · ::τn::σ2

Ψ; ·; Γ ` sfree n⇒ ·; Γ{sp:σ2} Ψ; ·; Γ{sp:σ2} ` I
Ψ; ·; Γ ` sfree n; I

` P
By Canonical Stack Forms R(sp) = wm:: · · · ::w1::nil where m = |Γ(sp)|. By Stack

Equality |Γ(sp)| = |τ1:: · · · ::τn::σ2|, and the latter equals n+ |σ2|, so m > n. Hence

P 7−→ (H,R{sp 7→ wm−n:: · · · ::w1::nil}, I).
case sld rd, sp(i): TD has the form:

` H : Ψ Ψ ` R : Γ

· ` Γ(sp) = τ0:: · · · ::τi::σ2 0 6 i

Ψ; ·; Γ ` sld rd, sp(i)⇒ ·; Γ{rd:τi}
Ψ; ·; Γ ` sld rd, sp(i); I

` P
By Canonical Stack Forms R(sp) = wn:: · · · ::w1::nil where n = |Γ(sp)|. By Stack

Equality |Γ(sp)| = |τ0:: · · · ::τi::σ2|, and the latter equals 1 + i+ |σ2|, so 0 6 i < n.

Hence P 7−→ (H,R{rd 7→ wn−i}, I).
case sld rd, rs(i): TD has the form:

` H : Ψ Ψ ` R : Γ

0 6 i · ` Γ(sp) = σ1 @ σ2

Ψ; ·; Γ ` rs : ptr(σ2) · ` σ2 = τ0:: · · · ::τi::σ3

Ψ; ·; Γ ` sld rd, rs(i)⇒ ·; Γ{rd:τi}
Ψ; ·; Γ ` sld rd, rs(i); I

` P
By Canonical Forms R(rs) = ptr(|σ2|). By Canonical Stack Forms R(sp) =

wn:: · · · ::w1::nil where n = |Γ(sp)|. By Stack Equality |Γ(sp)| = |σ1 @ σ2|, and the

latter equals |σ1|+ |σ2|, so |σ2| 6 n. Again by Stack Equality |σ2| = |τ0:: · · · ::τi::σ3|,
and the latter equals 1+i+|σ3|, so 0 6 i < |σ2|. Hence P 7−→ (H,R{rd 7→ w|σ2|−i}, I).

case sst sp(i), rs: TD has the form:

` H : Ψ Ψ ` R : Γ

· ` Γ(sp) = τ0:: · · · ::τi::σ2 Ψ; ·; Γ ` rs : τ 0 6 i

Ψ; ·; Γ ` sst sp(i), rs ⇒ ·; Γ′

Ψ; ·; Γ ` sst sp(i), rs; I

` P
By Canonical Stack Forms R(sp) = wn:: · · · ::w1::nil where n = |Γ(sp)|. By

Stack Equality |Γ(sp)| = |τ0:: · · · ::τi::σ2|, and the latter equals 1 + i + |σ2|,
so 0 6 i < n. By R̂ Typing, R(rs) is defined. Hence P 7−→ (H,R{sp 7→
wn:: · · · ::wn−i+1::R(rs)::wn−i−1:: · · · nil}, I).
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case sst rd(i), rs: TD has the form:

` H : Ψ Ψ ` R : Γ

0 6 i · ` Γ(sp) = σ1 @ σ2

Ψ; ·; Γ ` rd : ptr(σ2) · ` σ2 = τ0:: · · · ::τi::σ3

Ψ; ·; Γ ` rs : τ

Ψ; ·; Γ ` sst rd(i), rs ⇒ ·; Γ′

Ψ; ·; Γ ` sst rd(i), rs; I

` P
By Canonical Forms, R(rd) = ptr(|σ2|). By Canonical Stack Forms R(sp) =

wn:: · · · ::w1::nil where n = |Γ(sp)|. By Stack Equality |Γ(sp)| = |σ1 @ σ2|, and the

latter equals |σ1|+ |σ2|, so |σ2| 6 n. Again by Stack Equality |σ2| = |τ0:: · · · ::τi::σ3|,
and the latter equals 1 + i + |σ3|, so 0 6 i < |σ2|. By R̂ Typing, R(rs) is defined.

Hence P 7−→ (H,R{sp 7→ wn:: · · · ::w|σ2|−i+1::R(rs)::w|σ2|−i−1:: · · · ::nil}, I).
case st: TD has the form:

` H : Ψ Ψ ` R : Γ

Ψ; ·; Γ ` rd : 〈τ0, . . . , τn〉 Ψ; ·; Γ ` rs : τi 0 6 i 6 n

Ψ; ·; Γ ` st rd(i), rs ⇒ ·; Γ′

Ψ; ·; Γ ` st rd(i), rs; I

` P
By Canonical Forms, R(rd) = ` and H(`) = 〈w0, . . . , wn〉. By R̂ Typing, R(rs) is

defined. Hence P 7−→ (H{` 7→ 〈w0, . . . , wi−1, R(rs), wi+1, . . . , wn.}, R, I).
case unpack: TD has the form:

` H : Ψ Ψ ` R : Γ

Ψ; ·; Γ ` v : ∃α.τ
Ψ; ·; Γ ` unpack [α, r], v ⇒ α; Γ{r:τ} Ψ; α; Γ{r:τ} ` I

Ψ; ·; Γ ` unpack [α, r], v; I

` P
By Canonical Forms, R̂(v)=pack [τ′, w] as τ′′. Hence P 7−→ (H,R{r 7→ w}, I[τ′/α]).
q
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