Supplementary Material Transfer of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans (PCDD/Fs) and Polychlorinated Biphenyls (PCBs) from Oral Exposure into Cow's Milk - Part II: Toxicokinetic Predictive Models for Risk Assessment

Authors

Jan-Louis Moenning ${ }^{1}$ ORCiD 0000-0002-9457-7032
Torsten Krause ${ }^{2}$ ORCiD 0000-0002-2080-7843
Julika Lamp ${ }^{2}$ ORCiD 0000-0001-6412-4123
Ronald Maul ${ }^{2}$ ORCiD none
Hans Schenkel ${ }^{3}$ ORCiD 0000-0002-6278-0810
Peter Fürst ${ }^{4}$ ORCiD none
Robert Pieper ${ }^{1}$ ORCiD 0000-0002-0292-1482
Jorge Numata ${ }^{*}, 1$, ORCiD 0000-0002-0033-4436
${ }^{1}$ German Federal Institute for Risk Assessment (BfR), Department Safety in the Food Chain, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
${ }^{2}$ Max Rubner-Institut, Department of Safety and Quality of Milk and Fish, Hermann-WeigmannStraße 1, 24103, Kiel, Germany
${ }^{3}$ Department of Animal Nutrition, University of Hohenheim, Emil-Wolff-Str. 10, 70599 Stuttgart, Germany
${ }^{4}$ Chemical and Veterinary Analytical Institute Münsterland-Emscher-Lippe (CVUA-MEL), Joseph-König-Straße 40, 48147 Münster, Germany
${ }^{*}$ Corresponding author: jorge.numata@bfr.bund.de, +49-30-184120

Chapter S-1: 2-compartment model

The matrix form of this model is given by

$$
\begin{equation*}
\frac{d}{d t} A(t)=M A(t)+I \tag{S1}
\end{equation*}
$$

with transition matrix M given by

$$
\left(\begin{array}{cc}
-k_{\text {Cent-Fat }}-k_{\text {Milk }} & k_{\text {Fat-Cent }} \tag{S2}\\
k_{\text {Cent-Fat }} & -k_{\text {Fat-Cent }}
\end{array}\right)
$$

and the input vector

$$
\begin{equation*}
I=\binom{F_{a b s} D o s e}{0} \tag{S3}
\end{equation*}
$$

for the given quantity vector

$$
\begin{equation*}
A(t)=\binom{A_{\text {Cent }}(t)}{A_{\text {Fat }}(t)} . \tag{S4}
\end{equation*}
$$

Chapter S-2: The original model by Derks

The matrix form of this model is given by

$$
\begin{equation*}
\frac{d}{d t} A(t)=M A(t)+I \tag{S5}
\end{equation*}
$$

with transition matrix M given by

$$
\begin{aligned}
& 000
\end{aligned}
$$

and the input vector

$$
I=\left(\begin{array}{c}
0 \tag{S7}\\
0 \\
F_{a b s} \text { Dose } \\
0 \\
0 \\
0
\end{array}\right)
$$

for the given state, or "quantity", vector

$$
A(t)=\left(\begin{array}{l}
A_{\text {Blood }}(t) \tag{S8}\\
A_{\text {Fat }}(t) \\
A_{\text {Liver }}(t) \\
A_{\text {Rich }}(t) \\
A_{\text {Slow }}(t) \\
A_{U d d e r}(t)
\end{array}\right) .
$$

Chapter S-3: Derks model without udder compartment

The matrix form of this model is given by

$$
\begin{equation*}
\frac{d}{d t} A(t)=M A(t)+I \tag{S9}
\end{equation*}
$$

with transition matrix M given by

and the input vector

$$
I=\left(\begin{array}{c}
0 \tag{S11}\\
0 \\
F_{a b s} \text { Dose } \\
0 \\
0
\end{array}\right)
$$

for the given quantity vector

$$
A(t)=\left(\begin{array}{l}
A_{\text {Blood }}(t) \tag{S12}\\
A_{\text {Fat }}(t) \\
A_{\text {Liver }}(t) \\
A_{\text {Rich }}(t) \\
A_{\text {Slow }}(t)
\end{array}\right)
$$

Chapter S-4: The original fugacity model by McLachlan

As this model only contains a single differential equation it can be reformulated into the form

$$
\begin{equation*}
\frac{d}{d t}\left(f_{F a t}(t) V_{F a t} Z_{F a t}\right)=M f_{F a t}(t)+I \tag{S13}
\end{equation*}
$$

Here

$$
\begin{align*}
& M=\left(1-\frac{D_{\text {Dig-Blood }} \text { Dose }}{D_{\text {Blood }} D_{D i g}}\right)^{-1} \frac{D_{\text {Blood-Fat }}^{2}}{D_{\text {Blood }}}-D_{\text {Blood-Fat }}, \tag{S14}\\
I= & \left(1-\frac{D_{\text {Dig-Blood }} \text { Dose }}{D_{\text {Blood }} D_{D i g}}\right)^{-1}\left(\frac{D_{\text {Dig-Blood }} D_{\text {Blood-Fat }} \text { Dose }}{D_{\text {Blood }} D_{\text {Dig }}}\right) . \tag{S15}
\end{align*}
$$

with

$$
\begin{array}{rrr}
D_{\text {Blood }}:= & D_{\text {Dig-Blood }}+D_{\text {Milk }}+D_{\text {Blood-Fat }}+D_{\text {Blood-Meta }}, \\
D_{\text {Dig }}:= & D_{\text {Dig-Blood }}+D_{E x c}+D_{\text {Dig-Meta }} . \tag{S17}
\end{array}
$$

The other two fugacities can then be calculated by

$$
\begin{array}{rc}
f_{\text {Blood }}= & \left(1-\frac{D_{\text {Dig-Blood } D o s e}}{D_{\text {Blood }} D_{\text {Dig }}}\right)^{-1}\left(\frac{D_{\text {Blood-Fat }} f_{\text {Fat }}}{D_{\text {Blood }}}+\frac{D_{\text {Dig-Blood }} \text { Dose }}{D_{\text {Blood }} D_{\text {Dig }}}\right) \\
f_{\text {Dig }}= & \frac{\text { Dose }+f_{\text {Blood }} D_{\text {Blood-Dig }}}{D_{\text {Dig }}} \tag{S19}
\end{array}
$$

Chapter S-5: The fugacity model by Binelli

The matrix form of this model is given by

$$
\begin{equation*}
\frac{d}{d t} f(t)=M f(t)+I \tag{S20}
\end{equation*}
$$

with transition matrix M given by

$$
\left(\begin{array}{ccc}
-\frac{D_{E x c}+D_{D i g-M e t a}}{V_{D i g} Z_{D i g}} & \frac{D_{\text {Blood-Dig }}}{V_{\text {Dig }} Z_{\text {Dig }}} & 0 \tag{S21}\\
\frac{D_{B} l o o d-D i g}{} & -\frac{D_{\text {Blood-Dig }}+D_{\text {Blood-fat }}+D_{M i l k}+D_{\text {Blood-Meta }}}{V_{\text {Blood }} Z_{\text {Blood }}} & \frac{D_{\text {Blood-Fat }}}{V_{\text {Blood }} Z_{\text {Blood }}} \\
0 & \frac{D_{\text {Blood }}}{V_{F a t} Z_{F a t}} & -\frac{D_{\text {Blood-Fat }}}{V_{F a t} Z_{F a t}}
\end{array}\right)
$$

and the input vector

$$
I=\left(\begin{array}{c}
\frac{D_{G r a s s} f_{G r a s s}+D_{\text {Conc }} f_{\text {Conc }}+D_{\text {Soil }} f_{\text {Soil }}}{V_{\text {Dig }} Z_{\text {Dig }}} \tag{S22}\\
0 \\
0
\end{array}\right)
$$

for the given quantity vector

$$
f(t)=\left(\begin{array}{l}
f_{\text {Dig }}(t) \tag{S23}\\
f_{\text {Blood }}(t) \\
f_{\text {Fat }}(t)
\end{array}\right)
$$

Chapter S-6: MacLachlans PBPK model

The matrix form of this model is given by

$$
\begin{equation*}
\frac{d}{d t} A(t)=M A(t)+I \tag{S24}
\end{equation*}
$$

with transition matrix M given by

$$
00000000
$$

$$
000000
$$

$$
\underbrace{\frac{1}{2} 00} 0000
$$

and the input vector

$$
I=\left(\begin{array}{c}
0 \tag{S26}\\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\text { Dose }
\end{array}\right)
$$

for given quanitiy vector

$$
A(t)=\left(\begin{array}{l}
A_{\text {Blood }}(t) \tag{S27}\\
A_{\text {Fat }}(t) \\
A_{\text {Liver }}(t) \\
A_{\text {Muscle }}(t) \\
A_{\text {Kidney }}(t) \\
A_{\text {Rest }}(t) \\
A_{\text {Udder }}(t) \\
A_{\text {Rumen }}(t)
\end{array}\right) .
$$

Chapter S-7: Solving the linear differential equations

A stable linear differential equation of the form

$$
\begin{equation*}
\frac{d}{d t} A(t)=M A(t)+I \tag{S28}
\end{equation*}
$$

with a n-dimensional matrix M (stability $\Rightarrow M$ is invertible) and constant vector I has a unique solution, which is given by

$$
\begin{equation*}
A(t)=x^{*}+e^{M t}\left(x_{0}-x^{*}\right) \tag{S29}
\end{equation*}
$$

with

$$
\begin{equation*}
x^{*}=-M^{-1} I \tag{S30}
\end{equation*}
$$

and x_{0} being the starting condition. Additionally, it holds true that

$$
\begin{equation*}
A(t) \xrightarrow{t \rightarrow \infty} x^{*} \tag{S31}
\end{equation*}
$$

which means that x^{*} is the steady state of our system.
Note that the stability condition for the equation (S28) is met if and only if the real parts of all eigenvalues of M are all negative. Intuitively, this means that if the input vector $I \equiv 0$ then for any given starting contamination the systems total contamination would converge to 0 over time, which is always given for our systems due to the constant excretion via milk fat, i.e. for all here presented models the differential equation (S28) is stable.
During the depuration phase our system can be described by the following differential equation

$$
\begin{equation*}
\frac{d}{d t} A_{D}(t)=M A_{D}(t) \tag{S32}
\end{equation*}
$$

and it's solution is given by

$$
\begin{equation*}
A_{D}(t)=e^{M t} x_{0, D} \tag{S33}
\end{equation*}
$$

where $x_{0, D}$ is starting vector of the depuration phase. Note here that we do not need the stability assumption from above for this solution to be valid.

For deriving a more explicit formula using either equation (S29) or equation (S33), the most difficult part to write down explicitly is the exponential $e^{M t}$. This can be simplified if M is diagonalizable, i.e., there exists an invertible matrix S such that

$$
\begin{equation*}
M=S D S^{-1} \tag{S34}
\end{equation*}
$$

with D being diagonal matrix containing the eigenvalues of M on it's diagonal. Then

$$
\begin{equation*}
e^{M t}=S e^{D t} S^{-1}=\sum_{i=1}^{n} C_{i} e^{\lambda_{i} t} \tag{S35}
\end{equation*}
$$

where C_{i} are constant matrices and λ_{i} are the eigenvalues of M, which means that the exponential rate constants are given by the eigenvalues of M. The eigenvalues λ_{i} can be quite efficiently computed via numerical methods.
Note that the diagonalization condition is met if all eigenvalues of M are unique, i.e. we have n different eigenvalues.

