Supplementary Table 1: Identified possible search terms

[diet]	[target]
Ketone Ketosis	Neuro* (Neuroinflammation, Neuron, Neurotoxicity, neurodegeneration)
Ketogenic	Astrocyte
ketogenic diet	Glia
High-fat diet	Cortex
Low-carbohydrate diet	Brain
Carbohydrate-restricted diet	Mitochondria*
Medium-chain triglyceride	oxidative stress
Beta-hydroxybutyrate" [or 3-Hydroxybutyric Acid/],	anticonvulsant
Acetoacetate	Antiepileptic
metabolic therapy	Inflammation
**	Anti-inflammatory
id search strategy	·

Ovid search strategy

1. ketogenic diet.mp. [mp=ab, hw, ti, ot, sh, kw, tn, dm, mf, dv, fx, dq, nm, kf, ox, px, rx, ui, sy] 2. high-fat diet.mp. [mp=ab, hw, ti, ot, sh, kw, tn, dm, mf, dv, fx, dq, nm, kf, ox, px, rx, ui, sy]

3. low-carbohydrate diet.mp. [mp=ab, hw, ti, ot, sh, kw, tn, dm, mf, dv, fx, dq, nm, kf, ox, px, rx, ui, sy]

4. carbohydrate-restricted diet.mp. [mp=ab, hw, ti, ot, sh, kw, tn, dm, mf, dv, fx, dq, nm, kf, ox, px, rx, ui, sy]

5. medium-chain triglyceride.mp. [mp=ab, hw, ti, ot, sh, kw, tn, dm, mf, dv, fx, dq, nm, kf, ox, px, rx, ui, sy]

6. rat.mp. [mp=ab, hw, ti, ot, sh, kw, tn, dm, mf, dv, fx, dq, nm, kf, ox, px, rx, ui, sy]

7. mouse.mp. [mp=ab, hw, ti, ot, sh, kw, tn, dm, mf, dv, fx, dq, nm, kf, ox, px, rx, ui, sy]

8. mice.mp. [mp=ab, hw, ti, ot, sh, kw, tn, dm, mf, dv, fx, dq, nm, kf, ox, px, rx, ui, sy]

9. animal.mp. [mp=ab, hw, ti, ot, sh, kw, tn, dm, mf, dv, fx, dq, nm, kf, ox, px, rx, ui, sy]

10. astrocyte.mp. [mp=ab, hw, ti, ot, sh, kw, tn, dm, mf, dv, fx, dq, nm, kf, ox, px, rx, ui, sy]

11. 3-Hydroxybutyric Acid.mp. [mp=ab, hw, ti, ot, sh, kw, tn, dm, mf, dv, fx, dq, nm, kf, ox, px, rx, ui, sy]

12. Beta-hydroxybutyrate.mp. [mp=ab, hw, ti, ot, sh, kw, tn, dm, mf, dv, fx, dq, nm, kf, ox, px, rx, ui, sy]

13. acetoacetate.mp. [mp=ab, hw, ti, ot, sh, kw, tn, dm, mf, dv, fx, dq, nm, kf, ox, px, rx, ui, sy]

14. ketone.mp. [mp=ab, hw, ti, ot, sh, kw, tn, dm, mf, dv, fx, dq, nm, kf, ox, px, rx, ui, sy]

15. ketosis.mp. [mp=ab, hw, ti, ot, sh, kw, tn, dm, mf, dv, fx, dq, nm, kf, ox, px, rx, ui, sy]

16. neuroinflammation.mp. [mp=ab, hw, kw, ti, ot, sh, tn, dm, mf, dv, fx, dq, nm, kf, ox, px, rx, an, ui, sy]

17. neurone.mp. [mp=ab, hw, kw, ti, ot, sh, tn, dm, mf, dv, fx, dq, nm, kf, ox, px, rx, an, ui, sy]

18. neurotoxicity.mp. [mp=ab, hw, kw, ti, ot, sh, tn, dm, mf, dv, fx, dq, nm, kf, ox, px, rx, an, ui, sy]

19. neurotransmission.mp. [mp=ab, hw, kw, ti, ot, sh, tn, dm, mf, dv, fx, dq, nm, kf, ox, px, rx, an, ui, sy] 20. *glia/

21. 1 or 2 or 3 or 4 or 5

22. 6 or 7 or 8 or 9

23. 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20

24. 21 and 22 and 23

Supplementary Table 2: Individual study characteristics and outcomes (*Reference list in the main manuscript*)

Disease (n) [diet length]	Mechanistic theme/s presented	Positive outcome reported; (Neutral or negative outcome reported in italics)
Age-related degeneration	Cellular energetics /metabolism	Decrease glucose transporters and increased MCT (ketone) transporters ^{42,43} . Improved cerebral metabolic rate of glucose metabolism in aged brain via restored glutamate levels ⁴⁶ .
(5) [4 weeks to	Synaptic transmission	Reversal of age-related decline in hippocampal vesicular transporters for GABA and glutamate ⁴² and post synaptic excitation and plasticity ⁴⁴ .
6 months]	Neurotransmitters	Upregulated GABA(A) receptor subunits a1 in the hippocampus 45.
	Mitochondria	Increased mitochondrial mass in hippocampus and upregulated mitochondrial antioxidant defences (but impaired mitochondrial dynamics and function) ⁴⁵ .
	Structural integrity	(Accelerated atrophy, neurodegeneration, and reactive astrogliosis in the hippocampus 45).
	Epigenetic regulation	Upregulation of several genes involved in presynaptic glutamate regulation and postsynaptic excitation and plasticity in the hippocampus and dentate gyrus ⁴⁴ .
Alzheimer's (4)	Cellular energetics	Increased cerebral metabolism of glucose and ketones ⁴⁹ .
2 weeks to	Structural integrity	(<i>No effect on beta-amyloid or precursors</i> ⁴⁷), Reduced beta-amyloid ⁵⁰ .
4 months]	Signalling pathways	Reduced mTOR and increased eNOS 48.
	Vascular supply	Significant increases in cerebral blood flow ⁴⁸ .
Autism (7)	Mitochondria	Improved bioenergetic profile and improved oxygen consumption, ⁵¹ improved function and morphology with reduced phosphorylation of key protein regulators ⁵² .
[10 days to 8	Cortical / neuronal	Reduced seizure events via presynaptic mechanisms ⁵³ and balance of excitation and inhibition restored
months]	excitability Signalling pathways	towards more normal levels of inhibition ⁵⁷ . cAMP/GPR: effector substrates for glutamate, serotonin, nNOS, and dopamine ⁵⁴ , (<i>O-GlcNAc: integrates</i>
	Signannig pathways	energy supply with changes seen in the liver but not in the brain ⁵⁶).
	Structural integrity	Improved myelin formation and white matter development 54.
	Epigenetic regulation	Differences in mitochondrial gene expression 55.
Cerebral	neuroprotection	Reduced likelihood of seizure and severity of myoclonic jerks with cerebral hypoxia ⁵⁸ and elimination of
ischemia (4)	Epigenetic regulation	post ischemia hippocampal neurodegeneration ⁵⁹ . Upregulated HIF-1a/HIF-2a and HIF regulated genes ⁶¹ .
[21 days to 25 days]	Signalling pathways	K _{ATP} channels not demonstrated to be involved in neuroprotection ⁶⁰ and A1R activation which increases
	Vascular supply	phosphorylation of Akt and ERK1/2 providing neuroprotection ⁶¹ . Reduced infarct volume, increased regional cerebral blood flow and adenosine levels ⁶¹ .
CNS general (24) [1 week to 3 months]	Cellular energetics / metabolism	NAD+ elevation via efficient ketone metabolism for substrate for other neuroprotective processes ⁶³ . Increased MCT1 and GLUT1 in brain endothelial cells ⁶⁸ , increase blood-brain barrier MCT1 expression with increased AcAc and glucose uptake in brain ⁷² . Decreased neuronal glycolysis with increased astrocytic metabolism ⁷⁰ and improved metabolic efficiency in
		the brain ⁷⁴ . Increase intracellular BOHB in hippocampus ⁷⁵ , correlating with serum BOHB levels ⁸³ . Increase in brain PGC1β mRNA suggesting enhanced brain aerobic infrastructure/respiratory efficiency ⁷⁶ . Oxidative metabolism derived from AcAc, with glucose contribution to Acetyl-CoA decreased by 30% ⁸⁵ .
	Cortical excitability	Elevated blood ketone level and seizure threshold ⁶⁷ .
	Neurotransmitters	Hippocampal expression of AMPA-type GluR1 was significantly increased ⁶⁴ . Increased valine, leucine and isoleucine, <i>(no change in GABA and decreased amount of glutamate ⁷⁰)</i> . Increased GABA/glutamate ratio ⁷⁴ . GABA concentration constant but derived from ketone bodies ⁸⁵ .
	Signalling pathways	NAD+ driven increase in sirtuins with broad neuroprotective effects ⁶³ . Kynurenine (tryptophan metabolite) downregulated in hippocampus and plasma ⁶⁶ . Kynurenic acid upregulated in hippocampus and striatum but not cortex ⁸⁴ . Lipid metabolism gene expression in the hippocampus altered potentially via dietary lipid signalling ⁶⁹ . Nrf2 detoxification pathway activated via mild oxidative stress to induce glutathione synthesis ⁷¹ . <i>(BDNF reduced in the striatum)</i> but not in the hippocampus ⁸² BDNF mRNA increased in the brain and showed a 12-hour phase shift in its circadian timing ⁶⁵ .
	Synaptic transmission	(Unaltered basal synaptic transmission and long-term potentiation in the hippocampus ⁶⁷).
	Epigenetic regulation	MCT1 upregulation on blood-brain barrier ⁷² . Altered hippocampal mRNA expression of genes related to lipid and energy metabolism ⁶⁹ Increase in brain PGC1β mRNA (bioenergetic function) and decreased TNF-α mRNA (inflammation) ⁷⁶
	Redox balance	Reduced hippocampal oxidative stress markers that correlated with reduced PARP-1 requirement ⁶³ . Acute production of H ₂ O ₂ and 4-HNE activating Nrf2 and improving mitochondrial redox state ⁷¹ and lowered Oligomycin-induced ROS production ⁷⁸ . (<i>Decreased antioxidant capacity in the cerebellum, no change in the cortex</i>), 400% increase of GPx in the
	Structural integrity	hippocampus ⁸⁶ . No evidence of negative morphologic or histochemical alterations in the brain ⁷³ Variable neuroanatomical differences with prenatal exposure to ketogenic diet with altered neurobehavior in adulthood ⁷⁹ .

	Mitochondrial	(Decreased mitochondrial DNA levels) without a reduction in mass ⁷⁶ and increased maximum mitochondria respiration rates in the hippocampus ⁷⁸ .
	Neuroplasticity	No evidence of negative impact on neurogenesis in the dentate gyrus ⁷⁷ . (<i>fEPSPs paired-pulse potentiation unchanged suggesting no change in short-term plasticity</i> ⁸⁰).
	Vascular supply	Reduced capillary density linked to reduced tumour growth and prevention of epilepsy when combined with calorie restriction ⁸¹ .
Diabetes (2)	Cellular energetics	(Blunted glucagon release to hypoglycaemia and neuroglycopenia ⁸⁷).
1 to 3 weeks]	Neuroprotection	Reduced neuronal death ⁸⁸ .
r to 5 meens]		
Epilepsy / seizures (91) [1 week to 9 weeks]	Neuronal / cortical excitability	Increase threshold for seizure induction ^{89-92,94,107,115,118,142,150,154,156,167,172} and abolished correlation with firing rate ¹⁷¹ . Increased after discharge threshold ^{118,124} , and after-discharge duration ^{124,127} . (<i>No increase in after-discharge threshold ¹⁵¹</i>). Reduced incidence of convulsions ^{93,110,113,116,124,125,141,158,161-163,179} including after KD cessation ¹³⁵ . Decreased intensity and duration of seizure ^{104,110,113,114,173,177} , (<i>no reduction in severity once the seizure has commenced ¹⁵¹</i>). Increased latency to seizure ^{107,110,113,114,144,155,164,167,170,172} , (<i>no increase in latency ¹⁵⁰</i>).
		Reduction of the cortical spreading depression velocity of propagation for short-term KD ¹⁵² . Reduced pathologic neuronal activity ^{108,160} and dampened hyperactive mossy fiber synapses ¹⁶⁰ . Delayed progression of seizure stage ^{124,127,159} and increased lifespan ^{155,159} . <i>(Increased severity of seizure evoked by maximal electric shock ^{91,166,175} and kainite ⁹³).</i> <i>(No correlation between BOHB and seizure threshold ⁹² or latency to seizure ¹¹⁴).</i> Increased number of seizures required to reach status epilepticus (single seizure ⁵⁵ mins) ¹⁰⁹ . Suppression of drug-resistant manifestations ¹¹¹ . Reduced glucose levels required to maintain reduced excitability ¹²⁵ . Attenuation of cortical sensitivity induced by a variety of neurotoxins ¹²⁹ . Restoration of normal circadian rhythms ¹⁵⁸ . Alterations in the type of dietary fat affect seizure resistance ¹³¹ . <i>No change in baseline excitability</i> ¹⁷⁸ <i>or seizures</i> ¹⁴⁰ .
	Cellular energetics / metabolism	Calorie restricted KD increased seizure resistance ⁹¹ . Decreased glycogen levels and elevated glutamate levels as an energy source ⁹⁵ . Increased energy reserves ⁹⁷ and ATP levels ¹⁴² promoting neuronal stability. Increased transport capacity for ketones and lactate in cortical astrocytes ¹⁰⁸ . Improved glucose sensitivity ¹²⁵ , supplementation of glucose reduced the anticonvulsant action ¹³⁶ .
	Epigenetic regulation	Upregulation of differentially regulated transcripts encoding energy metabolism enzymes ⁹⁵ Upregulation of itranscripts encoding mitochondrial proteins ^{95,145} . and energy metabolism enzymes ⁹⁷ Upregulation of intracellular signal transduction pathways ¹⁴⁵ . Increased IGF system gene expression that regulates brain glucose utilisation ⁹⁹ . Increased expression of GAD the rate limiting enzyme in GABA production ¹⁰⁰ . Increased expression mHS mRNA, the key enzyme converting acetyl coenzyme A to ketones ¹⁰⁵ . Decreased hippocampal mRNA levels for IL-1β modulating inflammation ¹⁰⁶ . Increased MCT1 expression ¹⁰⁸ . Downregulation of cathepsin E related to neuronal apoptosis induced by KA ¹²² . Ameliorated seizure-induced DNA methylation ¹²⁷ . Abnormal expression of Scn1a and Scn3a reduced by weakening GAPDH's binding to the element ¹³² . Decreased DNA hypermethylation ¹³⁵ . Increased expression of Ca2 ⁺ binding proteins in the interneurons of the hippocampus and astrocytes ¹⁴⁶ . Decreased PENK gene expression in the hippocampus ¹⁴⁹ . Transient upregulation of GFAP (S100B) expressed by astrocytes which plays a neurotrophic role on neighbouring cells ¹⁵⁷ , <i>(no SB100 change ¹⁷⁷)</i> . Increased expression gluco for an protein phosphorylation ¹⁷⁶ . Increased expression GluR6 mRNA ¹⁷⁴ . (<i>No effect on brain expression of anticonvulsant peptides neuropeptide Y or galanin that are regulated by</i> <i>energy states ¹⁶⁵</i>).
	Mitochondria	Increased of mitochondria in neuronal processes ⁹⁷ . Improved markers of mitochondrial biogenesis, dynamics and function ¹¹⁷ Decreased percentage of damaged mitochondria post seizure with increased expression of autophagy proteins and decreased apoptosis ¹⁷³ . The mitochondrial level of UCP2 increased in the perikarya and axon terminals of hippocampus ¹¹⁷ . Improved mitochondrial redox status ¹²⁰ . Decreased cytochrome c release from mitochondria, attenuated activation of casepase-9 and caspase-3 following seizures ¹³⁴ .
	Neurotransmitters	(<i>Glutamate transporters were not changed in hippocampus, cerebral cortex, or cerebellum</i> ⁹⁶). Increased GABA levels but not glutamate ⁹⁸ . Increased dopamine activity in the motor and somatosensory cortex ¹⁰¹ . Altered gut biome resulting in systemic GABA and elevated hippocampal GABA/glutamate levels ¹⁵³ .
	Neuroinflammation	Suppression of COX-2 pathway and terminal enzyme mPGES-1. ¹²³ Reduced cytokine TNF- α levels in the hippocampus ¹²³
	Neuroplasticity	Reduced supragranular mossy fiber sprouting ^{141,143} .
	Signalling pathways	(NRSF (targets genes such as BDNF) not shown to be essential in anti-epileptic effect ¹¹⁹). (No change in cation chloride cotransporters (NKCC1 and KCC2) that regulate the polarity of GABAergic transmission in the hippocampus ¹¹²).

		Increased AMPK phosphorylation with reduced hippocampal cell apoptosis ¹²¹ . Reduced hippocampal TNF-α levels and nuclear factor (NF)-κB translocation into the nucleus ¹²³ . PPARγ upregulation / activation (via fatty acids ¹⁶¹) suppressing neuroinflammation via COX-2 pathways ¹²³
		and increased hippocampal catalase expression ¹²⁶ . Increased adenosine ¹³⁵ and purinergic pathways (such as A1R or K_{ATP} channels) enhancing glucose-based regulation of excitability ¹²⁵ and seizure reduction ¹³⁸ .
		Norepinephrine signalling partially involved in anti-seizure effects ^{137,164} . (Seizure protection does not improve with higher levels of ketosis ¹³¹).
		mTOR activation reduced in the hippocampus ¹³⁹ . Restored lipid membrane peroxidation and autophagy-associated pathway ¹⁴³ .
		Increased nNOS with increased NO in hippocampus ¹⁴⁸ . Suppresses KA-induced activation of JNK signalling pathways ¹⁴⁹ . down-regulated expression of zinc and lipid transporters in hippocampus ¹⁶⁸ and cortex ¹⁶⁹ .
	Structural integrity	Prevention of neuronal loss in ipsilateral hippocampus ¹²⁴ . (<i>Altered hippocampal development with decreased neuronal density in young rat</i> ¹²⁴). Increased proliferation rate of neuronal progenitor cells after KA-induced seizures ¹³⁰ . Prevention of hippocampal neuronal loss or change in density ¹³³ . Reduction of nuclear clusterin accumulation ¹⁴⁷ and preservation of pyramidal neurons ¹⁴⁴ from caspase-3 mediated apoptosis. Decreased neuronal death in the ipsilateral hippocampus ¹³⁴ .
	Synaptic transmission	Synaptic transmission in hippocampal slices resistant to low glucose ⁹⁵ and metabolic stress ⁹⁷ . Reduced long-term potentiation consistent with decreased excitability ¹²⁸ with concomitant maintenance of baseline excitability levels ¹⁷⁸
	Redox balance	No detected neurotoxic effects ⁹² . Increase in hippocampal mitochondrial glutathione ¹²⁰ .
	Biochemical	(Increased calcium, decreased phosphorus, potassium & zinc areas of hippocampus ^{102,103}).
Metabolic syndrome (2)	Redox balance	(No effect on brain antioxidant gene expression in short- or long-term diet ¹⁸⁰). Improved brain oxidative stress responses ¹⁸¹ .
[1 week to 8	Mitochondria	(No effect on brain mitochondrial function in short- or long-term diet ¹⁸⁰).
Months]	Epigenetic regulation	Downregulation of brain amyloid protein precursor, APOE and caspase-3 mRNA expression ¹⁸¹ .
MCI (1)	Epigenetic regulation	Upregulated MCT1 mRNA after 10-90 days KD ¹⁸² .
Multiple Sclerosis / demyelination	Structural integrity	Reversal of hippocampal atrophy and periventricular lesions ¹⁸³ . Restored oligodendrocyte integrity and increased CNS myelination, ameliorated axonal degeneration and facilitated repair ¹⁸⁴
(2) [1-12 weeks]	Mitochondria	Ameliorates mitochondrial abnormalities in axons ¹⁸⁴ .
	Neuroinflammation	Suppression of inflammatory cytokines/chemokines and ROS ¹⁸³ .
	Neuroplasticity	Hippocampal synaptic plasticity (long-term potentiation) ¹⁸³ .
Nerve Toxin (1)	Neuroprotection	Attenuated toxicity from a neurotoxin after 4 weeks of KD ¹⁸⁵ .
Optic Nerve (4) [21 days to 8	neuroinflammation	Reduced inflammation of optic nerve through inhibition of AMPK activation and stimulation of HCAR1 signalling which mediates inhibition of the NLRP3 inflammasome ¹⁸⁸ .
weeks]	Cellular energetics	Reversal of axonal metabolic decline by MCT transporter upregulation ¹⁸⁷ Reduction in chronic glaucoma driven by low energy facilitated inflammation ¹⁸⁸ .
	Mitochondria	Increased mitochondria number and surface area in optic nerve axon ¹⁸⁷ .
	Signalling pathways Redox balance	BDNF increased in the ganglion cell layer of the retina and optic nerve ¹⁸⁷ . Prevents increase in IL-1α and superoxide ¹⁸⁶ .
	Structural integrity	Preserves axons and visual evoked potentials ¹⁸⁶ and reduced retinal ganglion cell loss ¹⁸⁹ .
Pain (2) [3-11 weeks]	Nociception	Decreased thermal pain sensitivity ^{16,62} , that was not dependent on lowered glucose levels ⁶²
Parkinson's	Neuroprotection	Protected dopaminergic neurons in the substantia nigra against 6-OHDA neurotoxicity ¹⁹⁰ and degeneration
Disease (2)	Neurotransmitters	Inhibited the decrease of striatal dopamine and metabolites ¹⁹⁰
[1-2 weeks]	Neuroinflammation	Decreased glial activation and inhibition of proinflammatory cytokines ¹⁹¹
	Redox balance	Inhibited glutathione decreases in the substantia nigra and striatum from 6-OHDA ¹⁹⁰ .
Peripheral	Cellular energetics	Reduced (more efficient) oxidative respiration in sciatic nerve ¹⁹² .
nerve	Redox balance	Reduced H ₂ O ₂ emission in sciatic nerve 192 .
	Mitochondria	Reduced ROS mitochondrial production ¹⁹²
dysfunction (3)	Epigenetic regulation	Mitochondrial RNA expression for NADH dehydrogenase complex and complex IV altered potentially
[6 to 21 weeks]		reducing ROS ¹⁹² .

	Nociception	Protection from allodynia, reversal of allodynia induced by high fat + high carbohydrate diet ¹⁹³ .
	Structural integrity	Increased epidermal axon density and protection of nerve when on KD prior to injury ¹⁹³ . Improved nerve regeneration when ketogenic diet commenced pre-injury ¹⁹⁴ (Unable to improve regeneration when KD provided after injury ¹⁹⁴).
Spinal cord injury (4) [2 to 14 weeks]	Signalling pathways	 Nrf2 activation supressing oxidative stress in KD started post injury ¹⁹⁶. NF-κB suppression resulting in reduced expression of proinflammatory cytokines TNF-α, IL-1β, and IFN-γ in KD started post injury ¹⁹⁶. HDAC inhibitor which protects against oxidative stress with KD started preinjury ¹⁹⁸.
	Structural integrity	Reduced lesion size and sparing of grey matter in KD started post injury ¹⁹⁷ . (<i>No enhancement of corticospinal tract plasticity</i> ¹⁹⁷).
	Cellular energetics	Upregulation of transporters GLUT1 and MCT1 in the blood vessels adjacent to the lesion ¹⁹⁷ .
	Redox balance	Reduced oxidative stress markers ¹⁹⁶ . Downregulated NADPH, and oxidase (NOX2 and NOX4) with KD preinjury ¹⁹⁵ . Upregulated FOXO3a, MnSOD and catalyse with KD preinjury ¹⁹⁵ .
<u> </u>		
Stroke	Structural integrity	Reduced infarct size ¹⁹⁹⁻²⁰¹ , blood-brain barrier permeability and cellular apoptosis showing Improved ischemic tolerance ¹⁹⁹ .
(3) [3 weeks]	Neuroinflammation	Reduced NLRP3 inflammasome activation, capsase-1 and IL-1β ¹⁹⁹ .
	Signalling pathways	 TXNIP expression which is required for NLRP3 activation ¹⁹⁹ and HIF 1α upregulation via ketone utilisation causing the elevation of succinate ²⁰⁰. HCAR2 activated on macrophages within the brain by BOHB exerting neuroprotection ²⁰¹.
	Mitochondria	Decreased ROS production and endoplasmic reticulum stress ¹⁹⁹ .
Traumatic brain injury (9) [variable pre &	Cellular energetics / metabolism	Injury induced brain energy deficits reduced in younger rats through shift in fuel source ²⁰² . Reduction in cerebral metabolic rates for glucose while on KD after injury age-dependent with alternate substrate aiding recovery ²⁰⁷ .
post TBI]	Cortical excitability	Higher threshold to seizure ²⁰⁹ .
1 ,	Redox balance	Increased protein expression of cytosolic and mitochondrial antioxidants ²⁰³ and improved neurochemical metabolite ratios ²¹⁰ .
	Mitochondria	Preserved mitochondrial Complex II-III activity ²⁰³ and reduced cytochrome c release reducing cellular apoptosis ^{204,205} .
	Neuroinflammation	Reduced oedema ^{204,206} .
	Epigenetics	mRNA changes in expression of genes involved in neuroplasticity, neuroinflammation, mitochondrial function ²⁰⁸ .
adenosine monop Adenosine triphos nervous system, C kinase 1 and 2, fE acid decarboxylas transporter, GPR: Histone deacetyla KA: Kainic acid, cognitive impairm superoxide dismu nicotinamide ader Sodium-potassiur NF-kB: Nuclear f PARP: poly(ADP	hosphate-activated proteir sphate, BDNF: Brain deriv 20X: Cyclooxygenase, D PSP: Field excitatory pos e, GAPDH: Glyceraldehy G-coupled protein recept ses, HIF: hypoxia-inducit K _{ATP} : ATP sensitive potas itent, MCT: monocarboxy tase, mPGES-1: prostagla inine dinucleotide, NADH: n-chloride transporter, NL actor-κB, Nrf2: NF-E2 pe -ribose) polymerases, PP/ gamma coactivator 1β, R	-hydroxydopamine, A1R: Adenosine 1 receptor, AcAc : Acetoacetate, Akt: protein kinase B, AMPK: 5' h kinase, AMPA: alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, APOE: apolipoprotein E, ATP: ved neurotrophic factor, BOHB: beta hydroxybutyrate, cAMP: cyclic adenosine monophosphate, CNS: Central NA: Deoxyribonucleic acid, eNOS: endothelial nitric oxide synthase, ERK1/2: extracellular signal-regulated tsynaptic potentials, FOXO: forkhead box transcription factors, GABA: g-aminobutyric acid, GAD: Glutamic rde 3-phosphate dehydrogenase, GFAP: glial fibrillary acid protein, GluR: Glutamate receptor, GLUT: Glucose or, GPx: glutathione peroxidase, H ₂ O ₂ : Hydrogen peroxide, HCAR: Hydroxycarboxylic Acid Receptor, HDAC: le factor, IL: Interleukin, IFN: Interferon, IGF: Insulin-like growth factor, JNK: c-jun amino-terminal kinase, sium channel, KCC: Potassium-chloride transporter, KD: Ketogenic diet, KYN: kynurenic acid, MCI: Mild lic acid transporter, mHS: mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase, MnSOD: manganese ndin E ₂ synthase-1,mRNA: Messenger ribonucleic acid, mTOR: mechanistic target of rapamycin, NAD: nicotinamide adenine dinucleotide + hydrogen, NADPH: nicotinamide adenine dinucleotide phosphate, NKCC: .RP3: NOD-, LRR- and pyrin domain-containing protein 3, nNOS: neuronal NO synthase, NO: Nitric oxide, 45.related factor 2, NRSF: Neuron-Restrictive Silencer Factor, O-GlcNAc: O-linked-β-N-acetyl glucosamine, AR: Peroxisome proliferator-activated receptor, PENK: proenkephalin, PGC1β: peroxisome proliferator OS: Reactive oxygen species, Scn: Sodium voltage-gated channel, SSADH -Succinic semialdehyde redoxin Interacting Protein, UCP: Uncoupling protein ZnT: Zinc transporter,