Deadly mushrooms of the genus Galerina found in Antarctica have colonized the continent as early as the Pleistocene

ISAAC GARRIDO-BENAVENT ${ }^{1}$, ROBERT A. BLANCHETTE ${ }^{2} \&$ ASUNCIÓN DE LOS RÍOS ${ }^{3}$
${ }^{1}$ Departament de Botànica i Geologia, Facultat de Ciències Biològiques, Universitat de València, C/ Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain. ORCID: 0000-0002-5230-225X
${ }^{2}$ Department of Plant Pathology, 1991 Upper Buford Circle, 495 Borlaug Hall, University of Minnesota, St. Paul, Minnesota 55108-6030 U.S.A. ORCID: 0000-0003-2819-6511
${ }^{3}$ Department of Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences (MNCN), CSIC, E-28006 Madrid, Spain. ORCID: 0000-0002-0266-3516

Correspondence to: Isaac.Garrido@uv.es

Figure S1. RAxML phylogram obtained with the full, original nrITS alignment (ORG) that depicts relationships among the different Galerina species, including the sequences obtained from Antarctic material (terminals in red; newly produced sequences in bold letters). Clades corresponding to species with Antarctic representatives are variously colored. Supported nodes ($\mathrm{BS} \geq 70 \%$) are indicated with widened branches.

Figure S2. RAxML phylogram obtained with the GBlocks-trimmed nrITS alignment (GB) that depicts relationships among the different Galerina species, including the sequences obtained from Antarctic material (terminals in red; newly produced sequences in bold letters). Clades corresponding to species with Antarctic representatives are variously colored. Supported nodes ($\mathrm{BS} \geq 70 \%$) are indicated with widened branches.

Table SI. Marginal likelihood estimates (MLE) values calculated using Path Sampling and Stepping-Stone to compare BEAST models incorporating alternative clock and tree priors based on the full, original nrITS alignment (ORG). To choose among competing models, we first compared models with different tree priors (Coalescent-Constant Size; Speciation: Yule Process; Speciation: Birth-Death Process), and then models with two possible clocks (Strict clock vs Uncorrelated lognormal relaxed clock). The models used in BEAST runs are highlighted in bold.

	Path Sampling	Stepping-Stone
	Ln (Marginal Likelihood)	Ln (Marginal Likelihood)
Strict clock \& Coalescent- Constant size	-6554.1	-6554.8537
 Coalescent-Constant size	$\mathbf{- 6 5 1 7 . 6}$	$\mathbf{- 6 5 1 8 . 1 7 1 3}$
Strict clock \& Yule Process	-6619.0	-6621.2456
Relaxed clock \& Yule Process	-6551.5	-6553.7327
Strict clock \& Birth-Death Process	-6554.4	-6554.7051
Relaxed clock \& Birth- Death Process	$\mathbf{- 6 5 2 5 . 9}$	$\mathbf{- 6 5 2 8 . 1 7 7}$

Table SII. Marginal likelihood estimates (MLE) values calculated using Path Sampling and Stepping-Stone to compare BEAST models incorporating alternative clock and tree priors based on the GBlocks-trimmed nrITS alignment (GB). To choose among competing models, we first compared models with different tree priors (CoalescentConstant Size; Speciation: Yule Process; Speciation: Birth-Death Process), and then models with two possible clocks (Strict clock vs Uncorrelated lognormal relaxed clock). The models used in BEAST runs are highlighted in bold.

	Path Sampling	Stepping-Stone
	Ln (Marginal Likelihood)	Ln (Marginal Likelihood)
Strict clock \& Coalescent- Constant size	-6172.0	-6172.5859

 Coalescent-Constant size	$\mathbf{- 6 1 3 9 . 7}$	$\mathbf{- 6 1 4 0 . 4 1 3 1}$
Strict clock \& Yule Process	-6238.7	-6239.6338
Relaxed clock \& Yule Process	-6175.2	-6177.8428
Strict clock \& Birth-Death Process	-6178.0	-6178.2071
Relaxed clock \& Birth- Death Process	$\mathbf{- 6 1 4 6 . 8}$	$\mathbf{- 6 1 4 8 . 2 9 2 5}$

