
Appendix A KNN-Subspace Prediction Model

In this supplement, we provide additional information on the process used to refine the KNN subspace model to

create our preferred machine learning classifier.

A.1 Refining Subspace KNN model

A subspace KNN model is a form of ensemble model in which the KNN method of classifying a point is preformed

over a number of ensembles consisting of a select number of dimensions (our environmental parameters). These

scores from each ensemble are then weighted against each other with the most common classification across the

ensembles being chosen as the final classification. The model may be refined by adjusting two hyperparameters:

1. the number of dimensions being used, which can range from 1, i.e., classification based on a single environ-

mental parameters, to all 6 environmental parameters used in this study—equivalent to a single KNN model;

and

2. the number of number of learners (trained classifiers) used to create the ensemble.

The number of learners is not bounded, though there is a practical limit determined by the number of dimensions

used for each classifier and the total number of training parameters. Choosing a value higher than this will result

in oversampling of combinations.

Choice of the learners and subspace dimensions was performed by varying each parameter over a range of values

and selecting the point where the L-curve flattens. For the learners, a marked improvement was observed in the

accuracy of our models in classifying the training data between 1-7 learners. However, past this point we see

minimal to no improvement in our model accuracy (Supplementary Figure 1 A). Thus, to prevent oversampling of

our learners, we will uses 7 learners in the final model. For dimensions a similar trend is observed as seen in the

learners in which accuracy improves greatly between 1-4 dimensions but little to no improvement is seen beyond

that point (Supplementary Figure 1 B) . We will uses 4 dimensions as 5 and 6 dimensions are somewhat limiting

in ensemble arrangements in comparison.

A.2 Refining Lake and Antarctica data

Establishing null locations (regions devoid) of lakes is necessary to identify regions without lakes. Doing so is

a tricky proposition as choosing regions of null from radar maps or active lake predictions may exclude regions

where melting is occurring but lakes cannot form due to infiltration of water into the bedrock, or unfavourable

topographic conditions to capture the water. Randomly assigning locations without lakes also has the potential

to exclude regions where lakes are present, but no observations exist. However, a large fraction of Antarctica has

been surveyed by radar and satellite observations that cover the entire continent. Therefore, we have opted for a

strategy based on the latter approach.
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To define null lake positions, we randomly assign grid points as null, restricted only by their proximity to known

lakes. A distance too close and one risks excluding regions where lakes are possible, a distance too far and one

risks spatially isolated and anomalous environmental regions where no lakes exist, but are not particularly helpful

to determining null regions more broadly. To determine the optimal distance for training null cells to lakes, tested

a range of minimum distances for selecting the randomized null cells. As the minimum distance to known lakes

is increased there is a decrease in the classification error (Supplementary Figure 1C). Although there is a distinct

change in the error at 300 km, we chose a value of 200 km because larger values tend to force most null points

onto the Antarctic Peninsula and portions of the eastern coast (Supplementary Figure 2). Thus, we chose to set

our minimum proximity as 200 km, which results in high accuracy while preserving a wide distribution of null cell

properties that are generally representative of the distribution of Antarctic environments (Supplementary Figure

2B).

Because geothermal heat flux is a poorly known property in Antarctica, we test the individual accuracy of the

6 proxy models used along with the combined mean (1 D). Surprisingly, we see newer proxy models preforming

more poorly in comparison to older models, which conflicts with our assumption that the newer proxy models Shen

et al. (2020) and St̊al et al. (2021) are more accurate representation of the true Antarctic geothermal heat flux.

Regardless, the mean performs better than any individual proxy model on its own, and thus we will use the mean

of all 6 proxy models as our value for heat flux.

A.3 Final Subspace KNN model’s ROC curve

Receiver operating characteristic (ROC) curves show the result of our models in identifying each classification types

(stable, active, and null) at different classification thresholds on the Subspace KNN output scores (Supplementary

Figure 3). The better the subspace KNN model is at classifying the data, the more rapidly the true positive value

(e.g. stable lake being identified as a stable lake) will approach 1. This accuracy result can be measured by the area

under the curve (AUC) with a value as close to 1 being desirable. The dots in Supplementary Figure 3 represent

the cut-off thresholds our final subspace KNN model uses when classifying the data.

For stable lakes and null cells, we see very strong ROC curves both with AUC values of 0.94 showing that

our final Subspace KNN model identify most of the training data’s stable lakes and null cells without many false

identifications. As a result, our final Subspace KNN model is, on average, able to identify 85% of null cells and

90% of stable lakes while only incorrectly identifying 5% of cells as null cells and 11% as stable lakes. While the

final Subspace KNN model is excellent at identifying stable lakes and null cells, it is not as accurate at identifying

active lakes. Our final Subspace KNN model is only able to identify 54 % of active lakes before the false positive

rate becomes too large. As addressed in the main text, poor the accuracy of our model in identify active lakes is

likely a result of the limited number of active lakes in our training data combined with the wide distribution of

active lake properties.
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A.4 Separate Basal Heat Flux Models

To test the individual geothermal heat flux models on the classifier, we preform the same hyperparameters used

to train the preferred classifier 4. The result is fairly similar for each of the heat flux models, though there are a

few differences in the details. For example, there are some differences in Dronning Maud Land, Ellsworth Land

(Pine Island Glacier), and west of the Transantarctic Mountains. There is only a minor influence on the resulting

classification accuracy as a result of these minor differences (Supplmentary Figure 1D).
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Figure 1: Tests used to develop the preferred subspace KNN classifier. Assessment is made using the error (incorrect
classified/total × 100) shown with error bars produced by the standard deviation of 11 runs for each parameter set.
Tests included (A) the number of learners, (B) the number of dimensions, (C) distance of null cells to known lakes,
and (D) geothermal heat flow model. Heavy red bars indicate the preferred value.
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Figure 2: A) Map of showing proximity to subglacial lakes. A randomized set of null lakes with a minimum distance
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Figure 4: Machine learning Classifier of lake melt sources as preformed in Figure 6 of the main text. Each map
uses a one of the 6 proxy models as its value for basal heat flux.
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