1	Title: Microsatellite locus development in the seaweed Plocamium sp.
2	
3	
4	Authors: Sabrina Heiser*, Charles D. Amsler, Stacy A. Krueger-Hadfield
5	
6	
7	
8	
9	
10	Affiliations: University of Alabama at Birmingham, Department of Biology, 1300 University
11	Blvd., Birmingham, AL 35233, USA
12	
13	
14	
15	
16	Correspondence to: heiser@uab.edu (S. Heiser)
17	
18	
19	
20	
21	
22	
23	

24 Supplemental Material

25 Methods

26 Sample collection

We collected *Plocamium* sp. thalli along transects perpendicular to the shore at 3m depth 27 intervals using SCUBA in April 2017 at "East Litchfield" Island, the unofficial name of a small 28 29 islet off the northeast corner of Litchfield Island, and in May to June 2018 at Laggard Island, both near Palmer Station on Anvers Island (64° 46' S, 64° 03' W; see supplement to Shilling et 30 al. 2021 for map). Upon return to station, thalli were inspected for reproductive structures 31 32 (Figure S1). Tetrasporangial sori and carposporophytes were easily identified, but male gametophytes were not observed. All thalli were photographed, and a small piece was preserved 33 in silica. We removed carposporophytes from the female gametophytes before preservation in 34 silica as the carposporophytes contain the diploid carpospores. 35

36

Figure S1. Reproductive structures on Antarctic *Plocamium* sp. Left: Arrow points at
tetrasporangial sorus found on a tetrasporophyte. Right: Arrow points at a cystocarp which
consists of haploid female tissue covering the diploid carposporophyte generation and is found
on female gametophytes.

42 *Microsatellite library enrichment and identification of putative loci*

43 Four samples collected between February and April 2016 from different sites within 44 3.5km of Palmer Station were used to develop microsatellite loci commercially at Ecogenics 45 GmbH (Balgach, Switzerland). We identified putative loci from the SSR-enriched library and 46 followed Schoebel et al. (2013). We used MSATCOMMANDER 1.0.8-beta (Faircloth 2008) to 47 design primers for dinucleotide and trinucleotide repeat motifs separately. A minimum of eight repeats was selected and the following primer melting temperatures (T_m): minimum of 50°C, 48 49 optimum of 55°C, and maximum of 60°C. We also searched for tetranucleotides, but since we identified enough loci with di- and trinucleotides, these were not used. For dinucleotides, we 50 identified 802 sequences with eight or more repeats, 351 of those had primers assigned, and 119 51 were potentially duplicated in the library. For trinucleotides, we identified 516 sequences with 52 eight or more repeats, 270 of those had primers assigned, and 75 were potentially duplicated in 53 the library. We had 232 potential loci with dinucleotide repeat units and 195 potential loci with 54 55 trinucleotide repeat units.

We used the R code provided by Schoebel *et al.* (2013) in R version 3.5.2 (R Core Team
2019) to combine the primer and microsatellite sequences into one file. For the dinucleotides,
after merging the files we had 222 unique reads left. After removing duplicated forward and
reverse primer sequences, we had 169 unique reads left. For trinucleotides, after merging the
files we had 189 unique reads left. After removing duplicated forward and reverse primer
sequences, we had 147 unique reads left. We, then, combined the files with unique reads.
We calculated the absolute difference between the forward and reverse T_m for each

primer pair and sorted from smallest (0°C) to largest (3.58°C). We, then, sorted the putative loci
by the forward penalty score, reverse penalty score, and by the pair penalty score. Lastly, we

calculated and sorted the ratio (absolute difference between penalty scores divided by the pair
penalty) from smallest to largest to ensure that the difference between the forward and reverse
penalties was as small as possible. We chose the top 60 loci from each of those five categories
and combined them in one file. We ranked the 182 loci through the combined score from all five
categories.

70 Finally, before ordering primers, we conducted a BLAST search in Geneious Prime 2020.0.5 (Biomatters, Ltd., Auckland, New Zealand) using the SSR-enriched library to ensure 71 72 that only one primer pair was binding to the same locus, no primer pair was binding to more than 73 one locus, and repeat regions were not within the primers. A total of 50 putative loci were screened using four female gametophytes and three tetrasporophytes. For 10 loci that produced 74 75 bands for all samples on agarose gels and produced reliable patterns on the capillary sequencer, we performed fragment analysis of all samples at the Heflin Center for Genomic Sciences at 76 UAB. 77

78

79 DNA extraction

The 2016 *Plocamium* sp. samples were all previously identified as tetrasporophytes 80 81 through the presence of tetrasporangial sori. Total genomic DNA was extracted from 10-15 mg 82 of dried thallus using the Qiagen DNeasy® Plant Mini kit. We followed the manufacturer's 83 protocols except the final elution in which we used 50 µL of autoclaved Milli-Q water. For the 84 2017 and 2018 *Plocamium* sp. samples, we extracted total genomic DNA using the Machery-85 Nagel Nucleospin[®] Plant II kit. We followed the manufacturer's protocol except for the lysis 86 step which was done at room temperature for one hour and the final elution where we used 100 87 µL of autoclaved Milli-Q water (see Krueger-Hadfield et al. 2013).

Protocol for PCR amplification using unlabeled primers

90	PCRs were performed with a total volume of 20 μ L: 2 μ L of DNA, 250 nM of each
91	primer, 1X Promega green GoTaq $\mbox{\ensuremath{\mathbb{R}}}$ Flexi buffer, 2 mM of MgCl ₂ , 250 $\mbox{\ensuremath{\mathbb{H}}}$ M of each dNTP, 0.5
92	units of Promega GoTaq® Flexi DNA Polymerase, and the remaining volume using autoclaved
93	Milli-Q water with the following program: 95 °C for 2 min, followed by 40 cycles of 95 °C for
94	30s, T_m for 30s, and 72 °C for 30s, with a final extension at 72 °C for 5 min (see Table S1 for the
95	T _m). PCR products were visualized by gel electrophoresis in 1.5% agarose gels stained with
96	GelRed (Biotium, Fremont, CA, USA). Only primer pairs which produced 1 band in all
97	gametophytes or 1-2 bands in all tetrasporophytes in the expected size range were retained.
98	
99	Protocol for PCR amplification using labeled primers
100	We used the same PCR program, but with a PCR mix of a final total volume of 10 $\mu L{:}2$
101	μ L of DNA, 100 nM of labeled forward primer, 150 nM of unlabeled forward primer, and 250
102	nM of unlabeled reverse primer, 1X Promega clear GoTaq® Flexi buffer, 2 mM of MgCl ₂ , 250
103	μ M of each dNTP, 0.5 units of Promega GoTaq® Flexi DNA Polymerase, and the remaining
104	volume using autoclaved Milli-Q water. When samples had low amplification, the PCR protocol
105	was further adjusted by adding 0.02 μ g/ μ L of bovine serum albumin (BSA) and 400nM each of
106	labeled forward and unlabeled reverse primers.

Protocol for duplex and multiplex PCR amplification

We combined the following loci into multiplexes using the same concentrations as
outlined above without BSA: Multiplex 1 – Pc_16 (NED, 250 nM labeled forward and unlabeled

111 reverse), Pc 21 (6FAM, 300 nM labeled forward and unlabeled reverse), and Pc 36 (VIC/HEX,

112 350 nM labeled forward and unlabeled reverse); Duplex 1 – Pc_27 (VIC/HEX, 350 nM labeled

113 forward and unlabeled reverse) and Pc_29 (6FAM, 350 nM labeled forward and unlabeled

114 reverse); and Duplex 2 – Pc_47 (6FAM, 350 nM labeled forward and unlabeled reverse) and

115 Pc_49 (VIC, 350 nM labeled forward and unlabeled reverse).

116

117 Fragment analysis

118 We used two ladders to perform fragment analysis (see Ladder calibration below). When 119 using GeneScan 500 LIZ (Applied Biosystems, Foster City, CA, USA), 1 µL of PCR product was added to 9.7 µL of HiDi formamide (Applied Biosystems) and 0.35 µL of GS 500 LIZ. 120 121 When using SM594 (Mauger et al. 2012), we added 1 µL of PCR product to 9.5 µL of HiDi 122 formamide and 0.5 µL of SM594. We used Geneious Prime (Biomatters, Ltd., Auckland, New 123 Zealand) to score raw allele sizes and TANDEM (Matschiner & Salzburger 2009) to assign bins 124 (see also Krueger-Hadfield et al. 2013). Pc 05 and Pc 09 were amplified in simplex (due to their different T_m) and submitted as a poolplex for fragment analysis. Multiplex 1 and duplex 1 were 125 126 each submitted for fragment analysis without the addition of further loci. Duplex 2 and Pc 40 127 which was amplified in simplex (since it did not work in a multiplex with Pc 47 and Pc 49) were submitted as a poolplex for fragment analysis. 128

129

130 Marker calibration

Applied Biosystems fluorescent dyes (6-FAM, VIC, NED) were initially ordered from
ThermoFisher Scientific (USA), but subsequent replacements were ordered from Eurofins
Genomics (Louiseville, KY, USA) for 6-FAM and HEX (replacement of Applied Biosystems

134	VIS dye). Forward primers with the 6-FAM dye showed no shift in fragment length on the
135	capillary sequencer. For loci Pc_27 and Pc_36, there was a 0.7 and 0.8 base pair (bp) shift,
136	respectively. All subsequent allele calls were shifted by 0.7 and 0.8 when scoring using HEX.
137	
138	Ladder calibration
139	For the ladder calibration, 140 samples across all markers encompassing the entire allelic
140	range were used to determine differences between GS500 LIZ and SM549. There were shifts
141	from $3 - 4.3$ bp when using SM594. Generally, smaller fragment lengths had a larger difference
142	between the two ladders, whereas larger fragment lengths had a smaller difference. Samples
143	analyzed with GeneScan 500 LIZ (Applied Biosystems, Foster City, CA, USA) were adjusted by
144	subtracting an average of 3.6 bp for subsequent analyses.
145	
146	Null allele frequencies
147	For the gametophytes, null allele frequencies were determined from thalli that did not
148	amplify at a given locus after several amplification attempts to ensure there were no technical
149	errors during PCR. For tetrasporophytes, the maximum likelihood estimator as implemented in
150	ML-NullFreq (Kalinowski & Taper 2006) was used.
151	
152	Short allele dominance
153	Short allele dominance was tested following Wattier et al. (1998). We included
154	tetrasporphytes identified through reproductive structures and through multilocus genotypes
155	(MLGs) by having at least one heterozygous locus to encompass a larger allelic range for each
156	locus. For each locus, allelic size classes were determined, and their respective F_{IS} values were

157	calculated in GenAlEx 6.5 (Peakall & Smouse 2006, Peakall & Smouse 2012). We tested for
158	short allele dominance using linear regression in base R. However, for five loci, there were either
159	not enough size classes due to a small allelic range or some of the size classes were
160	monomorphic from which F_{IS} could not be calculated (Table S3).
161	
162	Gametophyte to tetrasporophyte ratios
163	The binomial law was used to estimate the probability of detecting gametophyte to
164	tetrasporophyte ratios deviating from the null hypothesis of $\sqrt{2:1}$. If all life cycle stages had
165	equivalent survival and fecundity rates, we would expect a gametophyte to tetrasporophyte ratio
166	of $\sqrt{2:1}$ (Destombe <i>et al.</i> 1989, Thornber & Gaines 2004). This ratio is driven by a difference in
167	costs for producing spores and gametes and by the inherent cost to tetrasporophytes of producing
168	males as only females produce offspring (Thornber & Gaines 2004).
169	
170	Population genetic summary statistics
171	We calculated ploidy diversity (<i>P</i> _{HD}) following Krueger-Hadfield <i>et al.</i> (2019) using $\frac{1-x}{0.59}$.
172	As P_{HD} approaches 1, the ratio of gametophytes to tetrasporophytes is closer to $\sqrt{2:1}$. As P_{HD}
173	approaches 0, one stage dominates a population. In <i>Plocamium</i> sp., this indicates a
174	tetrasporophytic bias.
175	Next, we created a gametophyte (haploid) and a tetrasporophyte (diploid) data set for
176	each site for all subsequent analyses (Table S4). We investigated the likelihood of a repeated
177	multilocus genotype (MLG) to originate from a separate sexual event by calculating P_{sex} using
178	GenClone 2.0 (Arnaud-Haond & Belkhir 2007). If $p > 0.05$, repeated MLGs are from separate
179	sexual events and if $p < 0.05$, repeated MLGs are ramets of the same genet. We then calculated

180 genotypic richness (*R*) following Dorken & Eckert (2001). We used rarefaction to estimate

- allelic richness (A_E) and private allelic richness (P_A) on the smallest sample size in gametophytes
- 182 (N=9 alleles, or genes) using HP-RARE (Kalinowski 2005). We used A_E for each locus to rank
- 183 them from most to least polymorphic and plotted this against the proportion of unique genotypes
- 184 (Figure S2) using ggplot2 (Wickham 2016) in R. We calculated unbiased expected
- heterozygosity (H_E) in GenAlEx. For gametophytes, we adjusted the unbiased H_E by a factor of
- 186 (2N-1)/(2N-2) (Engel et al. 2004). For tetrasporophytes, we calculated observed heterozygosity
- 187 (H_O) in GenAlEx and the inbreeding coefficient (F_{IS}) using FSTAT 2.9.4 (Goudet 1995). We
- tested for significance using 1000 permutations.
- 189

190 **Results**

191 *Summary of locus characteristics*

We tested a total of 50 loci of which 34 did not amplify across all seven individuals on the initial test on agarose gel. For 16 loci that amplified well on agarose, we ordered a labeled forward primer. Five loci had multi-peak profiles following fragment analysis and were removed from subsequent analyses (Table S1). While Pc_04 looked promising, alleles were often separated by 1 bp, suggesting problems with amplification or scoring. Pc_04 was removed from subsequent analyses. Ten polymorphic microsatellite loci were ultimately retained and used for further analyses.

199

200 *Null allele frequencies*

Overall null alleles were not detected (Table S2). One locus, Pc_21, had one thallus thatdid not amplify in the gametophytes after repeated attempts. There were three loci in the

tetrasporophytes that showed evidence of null alleles based on maximum likelihood. The
maximum likelihood estimator used by Kalinowski & Taper (2006) assumes random mating and
previous studies have found similar discrepancies between direct estimates in gametophytes and
those using maximum likelihood in the tetrasporophytes when populations are not mating at
random (e.g., Krueger-Hadfield *et al.* 2013, Kollars *et al.* 2015).

208

209 *Repeated MLGs*

Repeated MLGs were found at both sites for tetrasporophytes (one at Laggard which was repeated twice, and two at "East Litchfield" which were each repeated once) and gametophytes (three at Laggard of which two were repeated once and one which was repeated three times, and two at "East Litchfield" which were each repeated once). The *p*-value for P_{sex} was larger than 0.05 for all repeated MLGs except for one tetrasporophyte pair at Laggard which had a *p*-value of 0.003. Therefore, this was the only repeated MLG that was considered as a ramet of the same genet.

218

Figure S2. The proportion of unique genotypes identified in gametophytes and tetrasporophytes
of *Plocamium* sp. when adding microsatellite loci from most polymorphic to least polymorphic

221 (based on allelic richness in tetrasporophytes).

222	Supplemental Table S1 Microsatellite locus information for Antarctic Plocamium sp. Locus name, motif, and primer sequences are
223	given for all loci tested. The fluorescent dye and annealing temperature (T _m) are given for 16 labeled primers tested. The allele size
224	range and total number of unique alleles are reported for samples from "East Litchfield" (N=149) and Laggard (N=47) identified as
225	tetrasporophytes either through reproductive structures (tetrasporangial sori) or, if thalli were vegetative, by having a multilocus
226	genotype with at least one heterozygous locus (the latter were included in this table to better represent the full allele range of the
227	markers). (a) Loci used for fragment analysis. (b) 1 bp difference between alleles – locus removed. (c) Multipeak profiles observed
228	during fragment analysis – loci removed. (d) No amplification in initial amplification tests using agarose gels.

(a)

Locus	Motif	Primer Sequence	Dye	T _m (°C)	Allele size range (bp)	Total alleles
Pc_05	GCT	F: GTCGTTGATGTCTAGCGTGC	VIC	53	225-240	3
		R: ATGGATGTGGAGTCCGATCG				
Pc_09	CT	F: GGTCTAACGGCCTTGTGTTG	NED	59	151-185	8
		R: CCGGTTGTGAGTAAGTTGCC				
Pc_16	GA	F: CGATGCCGCAAAGACTACAG	NED	56	266-276	4
		R: TACAAGACCTGGTAGTGGCG				
Pc_21	TC	F: ATTCATAGGCCCACTCGTCC	6-FAM	56	283-303	2
		R: CAGGCACCGACAAAGCTTAC				
Pc_27	ACC	F: TCCACTACCACCGCTGATG	VIC or HEX	56	281-290	3
		R: TCACGTCGGCTAAGGGTAAG				
Pc_29	AC	F: CCTCCATCCCTTAACCTACCG	6-FAM	56	210-220	3
		R: GGAAGCGGGAGAATTTGGTG				
Pc_36	ACC	F: ACCATCACGCTATCATTGCG	VIC or HEX	56	193-247	7
		R: AGCGAAACATGAACGGGAAG				
Pc_40	AC	F: GAAAGCGGGAGATGTGAAGG	NED	56	148-210	5
		R: ACCTGCAACGAACAAACCTG				

Pc_47	AGC	F: ATCAACGGGTGCTGTCAAAG	6-FAM	56	232-352	18
$\mathbf{P}_{\mathbf{C}}$ /0	GTC	R: CIGACAAGIGIGCCAAACCG	VIC	56	263 287	3
10_49	UIC	R: AACGAGTACTGGCGGAAGTG	VIC	50	203-207	5
(b)						
Locus	Motif	Primer Sequence	Dye	T _m (°C)		
Pc 04	CTC	F: AACAACACAGCAGCCAAGTC	6-FAM	53	-	
—		R: CGGAACATGACGGAACAAGG				
(c)					-	
Locus	Motif	Primer Sequence	Dye	T _m (°C)		
Pc_02	CTT	F: CTCCAGGTCAGCTCTACGTC	NED	53	-	
		R: TGGTGGAAGTGGAGGATTGG				
Pc_25	AT	F: TGGGCATAGTCGGGATGATG	VIC	56		
_		R: GAAAGATTGCGGGTGTGTCC				
Pc 38	CT	F: GTAGTTCGGATGGTGTTGGC	NED	56		
—		R: GTAGGCAGCTTTCACACACC				
Pc 39	CT	F: TGCCTCTCGGTAGCCTTATG	6-FAM	56		
—		R: AGCCAAACTACCCACCTTCC				
Pc 44	AT	F: CGCCATGAAATCAACGTTCTC	NED	56		
—		R: AACACTGCTGCTGTATGAGG				
(d)					-	
Locus	Motif	Primer Sequence				
Pc 01	AGG	F: AGGTTGATACGGGAAGAGGC				

• -		
—		R: CCTCCTCCTGAACTCTACGC
Pc_03	GAC	F: CAGATTCCGACGATGGCAAC
		R: ATCGGAGCAGGGTCATGATC
Pc_06	ACC	F: GTTTAGCCGTCGTTGTAGGC
_		R: TGTGAGAGTGGAAAGAGGCC
Pc_07	ACG	F: GAGATACCCGGACGTAGAGC
_		R: AAACTTTCGCACGGGTTCTG

Pc_08	AGC	F: AACTGGACGAGACCTCCAAC
		R: AGGACTGTGATGGAGGCATC
Pc_10	AC	F: GCTCCTGTTTCACACCTTCG
		R: TCCAACACTGCCTTGCTTTG
Pc_11	AC	F: GATACACCAGAGTTGCACGC
		R: CACCAGGTGCGTTTATGTCC
Pc_12	TTG	F: TCAGTCACTCAGCGGCTATC
		R: TTGACTACCTCCTTCACCGC
Pc_13	CCG	F: TATCTCTGCTCGACATGGCC
		R: GGCTTTCAGAATGGCTCGAC
Pc_14	AT	F: GCAACACACGACTCTGACTG
		R: GAGCCTTCCATGTTTCAGGC
Pc_15	TG	F: GTTCCTTGCCATGAGATGCC
		R: TGCCAAAGATGTCCAAAGCG
Pc_17	GT	F: TGCTGTCTCCTCTCGTGATG
		R: TGGAGAGGAGAGCGATGTTC
Pc_18	AGG	F: ATAGACACGCACCTTCCTCC
		R: CATGCAGTGTCTCCTCAACG
Pc_19	AT	F: ACGAGGGTGCACTACTAAGG
		R: ACATTAGTGCGCAACGTCAG
Pc_20	CTT	F: AGCAGTCGATCCTTGGTCTG
		R: ACGACGAAGCATGCAAGAAG
Pc_22	TA	F: AGTGTAGAGTGCAGCGACAG
		R: TAGATGGCCCGACTGTTAGC
Pc_23	AGG	F: GATCTCGGCGTGTACACAAC
		R: CTTCCGAAGAGCTGTGCAAG
Pc_24	CT	F: GGCTTCGAATCAAGTCAGGC
		R: GTCCAAGAAGTTCACGTCGG
Pc_26	TTG	F: AGAATGTGATGCTCGAACGC
		R: CCGTGGGCTGCAATGAATAG
Pc_28	TCTA	F: AGCTCGGTGTACTGATGGAG
		R: ATCCAGGCTCCTTAACCCTG

10_50	AC	F: CACGTACTTGTAGCGCCTTC
		R: CTCTTGTGATGGTGCTCAGC
Pc_31	GT	F: TGTGCGATAACCTGTCATGC
		R: TACTGCTGCTGTACAATGCG
Pc_32	ACC	F: GGTTGGGTTGCTTGTCTTCG
		R: TCATGGTTTGTGGCGTTTCG
Pc_33	AAC	F: CATGGGATTCGAACCACAGC
		R: GTGACAATACGATCACTGCAC
Pc_34	CCT	F: GGAACTGCAACACCAAGCC
		R: AAGAAGCGTGCGATGTTGAG
Pc_35	TTG	F: GATCAGCAACACGACGAAGG
		R: TGTCAGCTTTCAATCCACGG
Pc_37	TTG	F: ACAAATTCGAGTTGGTGCCG
		R: GTCTTTGAGCTGACGACGTC
Pc_41	ACGC	F: CGCTTGCTTACAACCTCAGG
		R: TCCACGCGAGATACTAACAAAC
Pc_42	TG	F: TGGAGGCAGAGTCACCTTTC
		R: AAAGCACACGTCTCACCTTG
Pc_43	GGT	F: CCTTTCGCTCAAACCACG
		R: TGTTGGTGAAGTGTGCGAAC
Pc_45	AC	F: CACATATCCACTCGCACTCG
		R: TGAGAGGAGTGAATGGGTGG
Pc_46	CTG	F: GTCAGCCTCTACCCACGTC
		R: TGGACTACATAGAACCGCCG
Pc_48	GA	F: TACAAGACCTGGTAGTGGCG
		R: TCCCGATTCTTCAGCACCTC
Pc_50	AGG	F: TTTCGGAGCAGTTGTAGTGG
		R: CTCAATCTCCACCCTCTCCG

230 Supplemental Table S2 Null allele frequencies for ten microsatellite loci in the Antarctic

231 *Plocamium* sp. We calculated them directly for gametophytes and we used a maximum

	"East Litchfield	"	Laggard	
Locus	Gametophytes	Tetrasporophytes	Gametophytes	Tetrasporophytes
Loeus	(N=9)	(N=12)	(N=21)	(N=17)
Pc_05	0	0	0	0
Pc_09	0	0	0	0
Pc_16	0	0.281	0	0.218
Pc_21	0	0	0.048	0.394
Pc_27	0	0	0	0
Pc_29	0	0	0	0
Pc_36	0	0	0	0
Pc_40	0	0	0	0
Pc_47	0	0	0	0
Pc_49	0	0.275	0	0.190

232 likelihood estimator for tetrasporophytes (Kalinowski & Taper 2006).

234	Supplemental Table S3 Results for short allele dominance of microsatellite markers developed
235	for the Antarctic <i>Plocamium</i> sp. for samples from "East Litchfield" (N=149) and Laggard
236	(N=47) identified as tetrasporophytes either through reproductive structures (tetrasporangial sori)
237	or, if thalli were vegetative, by having a multilocus genotype which was heterozygous for one or
238	more loci. The latter were included in this table to better represent the full allele range of the
239	markers. Results of linear regression analysis of size class specific F_{IS} values are shown.

Locus	N of size classes	R ²	<i>F</i> (DF)	p-value
Pc_05	3	NA – som	e size classes were	monomorphic
Pc_09	4	-0.3561	0.2122 (1, 2)	0.6903
Pc_16	3	0.531	3.264 (1, 1)	0.3218
Pc_21	NA	NA	– not enough size	classes
Pc_27	3	NA – som	e size classes were	monomorphic
Pc_29	3	NA – som	e size classes were	monomorphic
Pc_36	3	0.6906	5.463 (1, 1)	0.2574
Pc_40	3	0.2394	1.63 (1, 1)	0.423
Pc_47	6	0.0319	1.165 (1, 4)	0.3412
Pc_49	3	NA – som	e size classes were	monomorphic

241 Supplemental Table S4 Multilocus genotypes (MLGs) using ten microsatellite markers for gametophytes and tetrasporophytes of the

- 242 Antarctic *Plocamium* sp. identified through reproductive structures. Samples were collected from different transects at different
- 243 depths.

Transect	Depth (m)	Pc_	05	Pc_	09	Pc_	Pc_16 Pc_21			Pc_	Pc_27 Pc_29		Pc_36		Pc_40		Pc_47		Pc_49		
		Tetra	sporop	phytes	at "Ea	ast Lite	chfield	" (N=	12)												
2	5	240	240	151	151	270	270	303	303	281	281	218	218	214	214	154	154	268	271	275	275
2	8	240	240	151	151	270	270	303	303	281	281	218	218	193	214	154	154	271	313	275	275
2	14	240	240	151	151	270	270	303	303	281	290	218	218	193	214	154	154	271	310	275	275
2	17	240	240	151	151	270	270	303	303	281	281	218	218	193	193	154	154	271	271	275	275
2	17	240	240	151	151	270	270	303	303	281	281	218	220	193	193	154	154	271	271	000	000
2	20	240	240	151	151	270	270	303	303	281	281	218	218	193	193	154	154	271	319	275	275
3	8	240	240	151	151	000	000	303	303	281	281	218	218	214	214	154	154	271	313	275	275
3	11	240	240	151	151	270	270	303	303	281	281	218	218	193	214	154	154	271	313	275	275
3	11	240	240	151	151	270	270	303	303	281	281	218	218	193	214	154	154	271	271	275	275
3	11	240	240	151	151	270	270	303	303	281	281	218	218	193	193	154	154	271	271	275	275
3	11	240	240	151	151	270	270	303	303	290	290	220	220	193	214	154	154	271	271	275	275
3	14	240	240	151	151	270	270	303	303	281	290	218	220	193	214	154	154	271	271	275	275
		Gam	etophy	vtes at	"East	Litchfi	ield" (I	N=9)													
1	11	240		157		270		283		281		218		199		154		271		275	
2	11	240		151		270		303		281		218		193		154		271		275	
2	11	240		151		270		303		281		220		193		154		271		275	
2	14	240		151		270		303		290		218		193		154		271		275	
2	14	240		151		270		303		281		218		193		154		271		275	
3	8	237		151		270		303		281		220		193		154		310		275	
3	8	240		151		270		303		281		220		193		154		271		275	
3	8	240		151		270		303		290		220		193		154		271		275	
3	17	240		151		270		303		281		218		193		154		295		275	
		Tetra	sporop	ohytes	at Lag	ggard (N=17)													

1	14	240	240	151	151	270	270	303	303	281	281	218	218	193	193	154	154	271	271	275	275
1	17	240	240	151	151	270	270	303	303	281	281	218	218	193	193	154	154	271	271	275	275
1	20	237	240	151	151	270	270	303	303	281	290	218	220	193	193	154	154	271	310	275	275
1	23	240	240	151	151	270	270	303	303	281	281	218	218	193	193	154	154	271	271	263	275
1	29	225	225	159	185	268	268	303	303	284	284	210	210	232	232	208	208	343	343	263	263
2	11	240	240	151	151	270	270	000	000	281	290	218	220	193	214	154	154	271	271	275	275
2	11	237	240	151	151	270	270	303	303	281	281	218	218	193	214	154	154	271	271	275	275
2	14	240	240	151	151	270	270	283	283	281	281	218	218	193	214	154	154	307	310	275	275
2	14	240	240	151	151	270	270	303	303	281	281	218	218	193	193	148	154	271	271	275	275
2	14	240	240	151	151	270	270	303	303	281	281	218	218	193	193	154	154	271	271	275	275
2	20	240	240	151	151	270	270	283	283	281	281	218	218	193	193	154	154	271	295	275	275
2	26	237	240	151	157	270	270	303	303	281	281	218	220	193	214	154	154	271	271	275	275
3	11	240	240	151	151	270	270	303	303	281	281	218	218	193	193	154	154	295	310	275	275
3	20	240	240	151	151	270	270	283	283	281	281	218	220	193	193	154	154	271	271	275	275
3	23	240	240	151	151	270	270	283	283	281	281	218	218	193	193	154	154	271	271	275	275
3	23	240	240	151	157	270	270	283	283	281	281	218	218	193	214	154	154	271	271	275	275
3	26	225	225	159	183	268	268	283	283	284	284	210	210	232	232	204	208	343	343	263	263
		Gam	etophy	tes at	Lagga	rd (N=	21)														
1	11	240		157		270		303		281		218		193		154		310		275	
1	14	240		151		270		303		281		218		193		154		271		275	
1	14	240		151		270		283		281		220		193		154		310		275	
1	17	240		151		270		283		281		218		214		154		271		275	
1	17	240		151		270		303		281		218		193		154		271		275	
1	23	240		157		270		303		281		218		193		154		271		275	
1	26	225		151		270		303		281		218		193		154		271		275	
1	29	240		151		270		303		281		218		193		154		310		275	
2	11	240		151		270		303		281		218		193		154		271		275	
2	20	240		151		270		303		281		218		214		154		295		275	
2	20	240		151		270		283		281		218		193		154		271		275	
2	23	240		151		270		0		281		218		214		154		310		275	
2	23	240		151		270		303		281		218		214		154		271		275	
3	11	237		151		270		303		281		218		214		154		271		275	

3	20	240	151	270	303	281	218	193	154	271	275	
3	20	225	171	268	303	284	210	232	204	346	263	
3	20	240	151	270	283	281	218	193	154	307	275	
3	23	240	151	270	303	281	220	193	154	271	275	
3	23	240	151	270	303	281	218	214	154	271	275	
3	26	225	159	268	303	284	210	232	204	349	263	
3	26	240	151	270	283	281	218	193	154	271	275	

245	Supplemental Table S5 Summary statistics for ten polymorphic microsatellite loci developed in the Antarctic <i>Plocamium</i> sp. and
246	analyzed in the gametophytic and tetarsporophytic subpopulations of two sites along the WAP. N, number of samples; A_E and P_A ,
247	mean and private allelic richness (using smallest sample size in gametophytes -9); H_E^A , unbiased expected heterozygosity in
248	gametophytes adjusted by a factor of (2N-1)/(2N-2); H_E , unbiased expected heterozygosity; H_O , observed heterozygosity F_{IS} ,
249	inbreeding coefficient. * $p < 0.0025$ (with p-adjusted to 0.0025 for significance)

	"East Game (N=9)	tophyte	ïeld" es	Tetra (N=1	sporopl 2)	nytes			Lagg Game (N=2	a rd etophyt 1)	es	Tetrasporophytes (N=17)				
Locus	AE	P_A	H_E^A	A_E	Ap	HE	Ho	F _{IS}	A_E	Ap	H_E^A	A_E	Ap	HE	Ho	F _{IS}
Pc_05	2.0	0.6	0.236	1.0	0.0	-	-	-	2.3	0.8	0.347	2.3	1.3	0.358	0.176	0.515
Pc_09	2.0	0.3	0.236	1.0	0.0	-	-	-	2.5	0.9	0.356	2.5	1.5	0.323	0.235	0.277
Pc_16	1.0	0.0	-	1.0	0.0	-	-	-	1.7	0.7	0.185	1.7	0.7	0.214	-	1.000
Pc_21	2.0	0.0	0.236	1.0	0.0	-	-	-	2.0	0.0	0.404	2.0	1.0	0.484	-	1.000*
Pc_27	2.0	1.0	0.413	1.9	0.5	0.290	0.167	0.436	1.7	0.7	0.185	2.2	0.8	0.314	0.118	0.632
Pc_29	2.0	0.3	0.590	1.9	0.2	0.290	0.167	0.436	2.4	0.7	0.351	2.5	0.8	0.399	0.235	0.418
Pc_36	2.0	1.0	0.236	2.0	0.2	0.507	0.500	0.015	2.7	1.7	0.566	2.5	0.7	0.437	0.294	0.333
Pc_40	1.0	0.0	-	1.0	0.0	-	-	-	1.7	0.7	0.185	2.1	1.1	0.271	0.118	0.573
Pc_47	3.0	0.7	0.443	2.9	1.7	0.435	0.500	-0.158	3.6	1.3	0.615	3.1	1.8	0.490	0.235	0.528
Pc_49	1.0	0.0	-	1.0	0.0	-	-	-	1.7	0.7	0.185	1.8	0.8	0.258	0.059	0.778

251 **References**

- 252 ARNAUD-HAOND, S. & BELKHIR, K. 2007. GENCLONE: a computer program to analyse
- 253 genotypic data, test for clonality and describe spatial clonal organization. *Molecular*
- 254 *Ecology Notes*, **7**, 15–17, https://doi.org/10.1111/j.1471-8286.2006.01522.x.
- 255 DESTOMBE, C., VALERO, M., VERNET, P. & COUVET, D. 1989. What controls haploid—diploid
- ratio in the red alga, *Gracilaria verrucosa? Journal of Evolutionary Biology*, **2**, 317–338,
- 257 https://doi.org/10.1046/j.1420-9101.1989.2050317.x.
- 258 DORKEN, M.E. & ECKERT, C.G. 2001. Severely reduced sexual reproduction in northern
- 259 populations of a clonal plant, *Decodon verticillatus* (Lythraceae). *Journal of Ecology*, **89**,
- 260 339–350, https://doi.org/10.1046/j.1365-2745.2001.00558.x.
- 261 ENGEL, C.R., DESTOMBE, C. & VALERO, M. 2004. Mating system and gene flow in the red
- seaweed *Gracilaria gracilis*: effect of haploid-diploid life history and intertidal rocky shore
- landscape on fine-scale genetic structure. *Heredity*, **92**, 289–298,
- 264 https://doi.org/10.1038/sj.hdy.6800407.
- 265 FAIRCLOTH, B.C. 2008. MSATCOMMANDER: Detection of microsatellite repeat arrays and
- automated, locus-specific primer design. *Molecular Ecology Resources*, **8**, 92–94,
- 267 https://doi.org/10.1111/j.1471-8286.2007.01884.x.
- 268 GOUDET, J. 1995. FSTAT (Version 1.2): a computer program to calculate F-statistics. *Journal of*
- 269 *Heredity*, **86**, 485–486, https://doi.org/10.1093/oxfordjournals.jhered.a111627.
- 270 KALINOWSKI, S.T. 2005. HP-RARE 1.0: A computer program for performing rarefaction on
- 271 measures of allelic richness. *Molecular Ecology Notes*, **5**, 187–189,
- 272 https://doi.org/10.1111/j.1471-8286.2004.00845.x.

- 273 KALINOWSKI, S.T. & TAPER, M.L. 2006. Maximum likelihood estimation of the frequency of
- null alleles at microsatellite loci. *Conservation Genetics*, 7, 991–995,
- 275 https://doi.org/10.1007/s10592-006-9134-9.
- 276 KOLLARS, N.M., KRUEGER-HADFIELD, S.A., BYERS, J.E., GREIG, T.W., STRAND, A.E.,
- 277 WEINBERGER, F. & SOTKA, E.E. 2015. Development and characterization of microsatellite
- loci for the haploid–diploid red seaweed *Gracilaria vermiculophylla*. *PeerJ*, **3**, e1159,
- 279 10.7717/peerj.1159.
- 280 KRUEGER-HADFIELD, S.A., BLAKESLEE, A.M.H. & FOWLER, A.E. 2019. Incorporating ploidy
- diversity into ecological and community genetics. *Journal of Phycology*, **55**, 1198–1207,
- 282 https://doi-org.ezproxy3.lhl.uab.edu/10.1111/jpy.12906.
- 283 KRUEGER-HADFIELD, S.A., ROZE, D., MAUGER, S. & VALERO, M. 2013. Intergametophytic
- selfing and microgeographic genetic structure shape populations of the intertidal red
- seaweed *Chondrus crispus*. *Molecular Ecology*, **22**, 3242–3260,
- 286 https://doi.org/10.1111/mec.12191.
- 287 MATSCHINER, M. & SALZBURGER, W. 2009. TANDEM: Integrating automated allele binning
- into genetics and genomics workflows. *Bioinformatics*, **25**, 1982–1983,
- https://doi.org/10.1093/bioinformatics/btp303.
- 290 MAUGER, S., COUCEIRO, L. & VALERO, M. 2012. A simple and cost-effective method to
- synthesize an internal size standard amenable to use with a 5-dye system. *Prime Research on Biotechnology*, 2, 40–46.
- 293 PEAKALL, R. & SMOUSE, P.E. 2006. GENALEX 6: Genetic analysis in Excel. Population genetic
- software for teaching and research. *Molecular Ecology Notes*, **6**, 288–295,
- 295 https://doi.org/10.1111/j.1471-8286.2005.01155.x.

- PEAKALL, R. & SMOUSE, P.E. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic
 software for teaching and research-an update. *Bioinformatics*, 28, 2537–2539,
- https://doi.org/10.1093/bioinformatics/bts460.
- 299 R CORE TEAM. 2019. R: A language and environment for statistical computing. Vienna, Austria:
- 300 R Foundation for Statistical Computing. https://www.R-project.org/
- 301 SCHOEBEL, C.N., BRODBECK, S., BUEHLER, D., CORNEJO, C., GAJUREL, J., HARTIKAINEN, H.,
- 302 KELLER, D., *et al.* 2013. Lessons learned from microsatellite development for nonmodel
- 303 organisms using 454 pyrosequencing. *Journal of Evolutionary Biology*, **26**, 600–611,
- 304 https://doi.org/10.1111/jeb.12077.
- 305 SHILLING, A.J., HEISER, S., AMSLER, C.D., MCCLINTOCK, J.B. & BAKER, B.J. 2021. Hidden
- 306 diversity in an Antarctic algal forest: metabolomic profiling linked to patterns of genetic
- 307 diversification in the Antarctic red alga *Plocamium* sp. *Marine Drugs*, **19**, 1-
- 308 13. https://doi.org/10.3390/md19110607.
- 309 THORNBER, C.S. & GAINES, S.D. 2004. Population demographics in species with biphasic life
- 310 cycles. *Ecology*, **85**, 1661–1674, https://doi.org/10.1890/02-4101.
- 311 WATTIER, R., ENGEL, C.R., SAUMITOU-LAPRADE, P. & VALERO, M. 1998. Short allele
- dominance as a source of heterozygote deficiency at microsatellite loci: experimental
- evidence at the dinucleotide locus Gv1CT in *Gracilaria gracilis* (Rhodophyta). *Molecular*
- 314 *Ecology*, 7, 1569–1573, https://doi.org/10.1046/j.1365-294x.1998.00477.x.
- 315 WICKHAM, H. 2016. ggplot2: Elegant Graphics for Data Analysis. New York, USA: Springer-
- 316 Verlag.
- 317