Title: Microsatellite locus development in the seaweed Plocamium sp.

Authors: Sabrina Heiser*, Charles D. Amsler, Stacy A. Krueger-Hadfield

Affiliations: University of Alabama at Birmingham, Department of Biology, 1300 University Blvd., Birmingham, AL 35233, USA

Correspondence to: heiser@uab.edu (S. Heiser)

Supplemental Material

Methods

Sample collection

We collected Plocamium sp. thalli along transects perpendicular to the shore at 3 m depth intervals using SCUBA in April 2017 at "East Litchfield" Island, the unofficial name of a small islet off the northeast corner of Litchfield Island, and in May to June 2018 at Laggard Island, both near Palmer Station on Anvers Island ($64^{\circ} 46^{\prime} \mathrm{S}, 64^{\circ} 03^{\prime} \mathrm{W}$; see supplement to Shilling et al. 2021 for map). Upon return to station, thalli were inspected for reproductive structures (Figure S 1). Tetrasporangial sori and carposporophytes were easily identified, but male gametophytes were not observed. All thalli were photographed, and a small piece was preserved in silica. We removed carposporophytes from the female gametophytes before preservation in silica as the carposporophytes contain the diploid carpospores.

Figure S1. Reproductive structures on Antarctic Plocamium sp. Left: Arrow points at tetrasporangial sorus found on a tetrasporophyte. Right: Arrow points at a cystocarp which consists of haploid female tissue covering the diploid carposporophyte generation and is found on female gametophytes.

Microsatellite library enrichment and identification of putative loci

Four samples collected between February and April 2016 from different sites within 3.5 km of Palmer Station were used to develop microsatellite loci commercially at Ecogenics GmbH (Balgach, Switzerland). We identified putative loci from the SSR-enriched library and followed Schoebel et al. (2013). We used MSATCOMMANDER 1.0.8-beta (Faircloth 2008) to design primers for dinucleotide and trinucleotide repeat motifs separately. A minimum of eight repeats was selected and the following primer melting temperatures $\left(\mathrm{T}_{\mathrm{m}}\right)$: minimum of $50^{\circ} \mathrm{C}$, optimum of $55^{\circ} \mathrm{C}$, and maximum of $60^{\circ} \mathrm{C}$. We also searched for tetranucleotides, but since we identified enough loci with di- and trinucleotides, these were not used. For dinucleotides, we identified 802 sequences with eight or more repeats, 351 of those had primers assigned, and 119 were potentially duplicated in the library. For trinucleotides, we identified 516 sequences with eight or more repeats, 270 of those had primers assigned, and 75 were potentially duplicated in the library. We had 232 potential loci with dinucleotide repeat units and 195 potential loci with trinucleotide repeat units.

We used the R code provided by Schoebel et al. (2013) in R version 3.5.2 (R Core Team 2019) to combine the primer and microsatellite sequences into one file. For the dinucleotides, after merging the files we had 222 unique reads left. After removing duplicated forward and reverse primer sequences, we had 169 unique reads left. For trinucleotides, after merging the files we had 189 unique reads left. After removing duplicated forward and reverse primer sequences, we had 147 unique reads left. We, then, combined the files with unique reads.

We calculated the absolute difference between the forward and reverse T_{m} for each primer pair and sorted from smallest $\left(0^{\circ} \mathrm{C}\right)$ to largest $\left(3.58^{\circ} \mathrm{C}\right)$. We, then, sorted the putative loci by the forward penalty score, reverse penalty score, and by the pair penalty score. Lastly, we
calculated and sorted the ratio (absolute difference between penalty scores divided by the pair penalty) from smallest to largest to ensure that the difference between the forward and reverse penalties was as small as possible. We chose the top 60 loci from each of those five categories and combined them in one file. We ranked the 182 loci through the combined score from all five categories.

Finally, before ordering primers, we conducted a BLAST search in Geneious Prime 2020.0.5 (Biomatters, Ltd., Auckland, New Zealand) using the SSR-enriched library to ensure that only one primer pair was binding to the same locus, no primer pair was binding to more than one locus, and repeat regions were not within the primers. A total of 50 putative loci were screened using four female gametophytes and three tetrasporophytes. For 10 loci that produced bands for all samples on agarose gels and produced reliable patterns on the capillary sequencer, we performed fragment analysis of all samples at the Heflin Center for Genomic Sciences at UAB.

DNA extraction

The 2016 Plocamium sp. samples were all previously identified as tetrasporophytes through the presence of tetrasporangial sori. Total genomic DNA was extracted from $10-15 \mathrm{mg}$ of dried thallus using the Qiagen DNeasy® Plant Mini kit. We followed the manufacturer's protocols except the final elution in which we used $50 \mu \mathrm{~L}$ of autoclaved Milli-Q water. For the 2017 and 2018 Plocamium sp. samples, we extracted total genomic DNA using the MacheryNagel Nucleospin® Plant II kit. We followed the manufacturer's protocol except for the lysis step which was done at room temperature for one hour and the final elution where we used 100 $\mu \mathrm{L}$ of autoclaved Milli-Q water (see Krueger-Hadfield et al. 2013).

Protocol for PCR amplification using unlabeled primers

PCRs were performed with a total volume of $20 \mu \mathrm{~L}: 2 \mu \mathrm{~L}$ of DNA, 250 nM of each primer, 1 X Promega green GoTaq® ${ }^{\circledR}$ Flexi buffer, 2 mM of $\mathrm{MgCl}_{2}, 250 \mu \mathrm{M}$ of each $\mathrm{dNTP}, 0.5$ units of Promega GoTaq ${ }^{\circledR}$ Flexi DNA Polymerase, and the remaining volume using autoclaved Milli-Q water with the following program: $95^{\circ} \mathrm{C}$ for 2 min , followed by 40 cycles of $95^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, \mathrm{~T}_{\mathrm{m}}$ for 30 s , and $72{ }^{\circ} \mathrm{C}$ for 30 s , with a final extension at $72^{\circ} \mathrm{C}$ for 5 min (see Table S 1 for the T_{m}). PCR products were visualized by gel electrophoresis in 1.5% agarose gels stained with GelRed (Biotium, Fremont, CA, USA). Only primer pairs which produced 1 band in all gametophytes or 1-2 bands in all tetrasporophytes in the expected size range were retained.

Protocol for PCR amplification using labeled primers

We used the same PCR program, but with a PCR mix of a final total volume of $10 \mu \mathrm{~L}: 2$ $\mu \mathrm{L}$ of DNA, 100 nM of labeled forward primer, 150 nM of unlabeled forward primer, and 250 nM of unlabeled reverse primer, 1X Promega clear GoTaq ${ }^{\circledR}$ Flexi buffer, 2 mM of MgCl_{2}, 250 $\mu \mathrm{M}$ of each dNTP, 0.5 units of Promega GoTaq ${ }^{\circledR}$ Flexi DNA Polymerase, and the remaining volume using autoclaved Milli-Q water. When samples had low amplification, the PCR protocol was further adjusted by adding $0.02 \mu \mathrm{~g} / \mu \mathrm{L}$ of bovine serum albumin (BSA) and 400 nM each of labeled forward and unlabeled reverse primers.

Protocol for duplex and multiplex PCR amplification

We combined the following loci into multiplexes using the same concentrations as outlined above without BSA: Multiplex 1 - Pc_16 (NED, 250 nM labeled forward and unlabeled
reverse), Pc_21 (6FAM, 300 nM labeled forward and unlabeled reverse), and Pc_36 (VIC/HEX, 350 nM labeled forward and unlabeled reverse); Duplex 1 - Pc_27 (VIC/HEX, 350 nM labeled forward and unlabeled reverse) and Pc_29 (6FAM, 350 nM labeled forward and unlabeled reverse); and Duplex 2 - Pc_47 (6FAM, 350 nM labeled forward and unlabeled reverse) and Pc_49 (VIC, 350 nM labeled forward and unlabeled reverse).

Fragment analysis

We used two ladders to perform fragment analysis (see Ladder calibration below). When using GeneScan 500 LIZ (Applied Biosystems, Foster City, CA, USA), $1 \mu \mathrm{~L}$ of PCR product was added to $9.7 \mu \mathrm{~L}$ of HiDi formamide (Applied Biosystems) and $0.35 \mu \mathrm{~L}$ of GS 500 LIZ . When using SM594 (Mauger et al. 2012), we added $1 \mu \mathrm{~L}$ of PCR product to $9.5 \mu \mathrm{~L}$ of HiDi formamide and $0.5 \mu \mathrm{~L}$ of SM594. We used Geneious Prime (Biomatters, Ltd., Auckland, New Zealand) to score raw allele sizes and TANDEM (Matschiner \& Salzburger 2009) to assign bins (see also Krueger-Hadfield et al. 2013). Pc_05 and Pc_09 were amplified in simplex (due to their different T_{m}) and submitted as a poolplex for fragment analysis. Multiplex 1 and duplex 1 were each submitted for fragment analysis without the addition of further loci. Duplex 2 and Pc_40 which was amplified in simplex (since it did not work in a multiplex with Pc_47 and Pc_49) were submitted as a poolplex for fragment analysis.

Marker calibration

Applied Biosystems fluorescent dyes (6-FAM, VIC, NED) were initially ordered from ThermoFisher Scientific (USA), but subsequent replacements were ordered from Eurofins Genomics (Louiseville, KY, USA) for 6-FAM and HEX (replacement of Applied Biosystems

VIS dye). Forward primers with the 6-FAM dye showed no shift in fragment length on the capillary sequencer. For loci Pc_27 and Pc_36, there was a 0.7 and 0.8 base pair (bp) shift, respectively. All subsequent allele calls were shifted by 0.7 and 0.8 when scoring using HEX.

Ladder calibration

For the ladder calibration, 140 samples across all markers encompassing the entire allelic range were used to determine differences between GS500 LIZ and SM549. There were shifts from 3-4.3bp when using SM594. Generally, smaller fragment lengths had a larger difference between the two ladders, whereas larger fragment lengths had a smaller difference. Samples analyzed with GeneScan 500 LIZ (Applied Biosystems, Foster City, CA, USA) were adjusted by subtracting an average of 3.6 bp for subsequent analyses.

Null allele frequencies

For the gametophytes, null allele frequencies were determined from thalli that did not amplify at a given locus after several amplification attempts to ensure there were no technical errors during PCR. For tetrasporophytes, the maximum likelihood estimator as implemented in ML-NullFreq (Kalinowski \& Taper 2006) was used.

Short allele dominance

Short allele dominance was tested following Wattier et al. (1998). We included tetrasporphytes identified through reproductive structures and through multilocus genotypes (MLGs) by having at least one heterozygous locus to encompass a larger allelic range for each locus. For each locus, allelic size classes were determined, and their respective $F_{I S}$ values were
calculated in GenAlEx 6.5 (Peakall \& Smouse 2006, Peakall \& Smouse 2012). We tested for short allele dominance using linear regression in base R. However, for five loci, there were either not enough size classes due to a small allelic range or some of the size classes were monomorphic from which $F_{I S}$ could not be calculated (Table S3).

Gametophyte to tetrasporophyte ratios

The binomial law was used to estimate the probability of detecting gametophyte to tetrasporophyte ratios deviating from the null hypothesis of $\sqrt{ }$ 2:1. If all life cycle stages had equivalent survival and fecundity rates, we would expect a gametophyte to tetrasporophyte ratio of $\sqrt{ } 2: 1$ (Destombe et al. 1989, Thornber \& Gaines 2004). This ratio is driven by a difference in costs for producing spores and gametes and by the inherent cost to tetrasporophytes of producing males as only females produce offspring (Thornber \& Gaines 2004).

Population genetic summary statistics

We calculated ploidy diversity $\left(P_{H D}\right)$ following Krueger-Hadfield et al. (2019) using $\frac{1-x}{0.59}$. As $P_{H D}$ approaches 1, the ratio of gametophytes to tetrasporophytes is closer to $\sqrt{2}: 1$. As $P_{H D}$ approaches 0 , one stage dominates a population. In Plocamium sp., this indicates a tetrasporophytic bias.

Next, we created a gametophyte (haploid) and a tetrasporophyte (diploid) data set for each site for all subsequent analyses (Table S4). We investigated the likelihood of a repeated multilocus genotype (MLG) to originate from a separate sexual event by calculating $P_{\text {sex }}$ using GenClone 2.0 (Arnaud-Haond \& Belkhir 2007). If $p>0.05$, repeated MLGs are from separate sexual events and if $p<0.05$, repeated MLGs are ramets of the same genet. We then calculated
genotypic richness (R) following Dorken \& Eckert (2001). We used rarefaction to estimate allelic richness $\left(A_{E}\right)$ and private allelic richness $\left(P_{A}\right)$ on the smallest sample size in gametophytes ($\mathrm{N}=9$ alleles, or genes) using HP-RARE (Kalinowski 2005). We used A_{E} for each locus to rank them from most to least polymorphic and plotted this against the proportion of unique genotypes (Figure S2) using ggplot2 (Wickham 2016) in R. We calculated unbiased expected heterozygosity $\left(H_{E}\right)$ in GenAlEx. For gametophytes, we adjusted the unbiased H_{E} by a factor of (2N-1)/(2N-2) (Engel et al. 2004). For tetrasporophytes, we calculated observed heterozygosity $\left(H_{O}\right)$ in GenAlEx and the inbreeding coefficient $\left(F_{I S}\right)$ using FSTAT 2.9.4 (Goudet 1995). We tested for significance using 1000 permutations.

Results

Summary of locus characteristics

We tested a total of 50 loci of which 34 did not amplify across all seven individuals on the initial test on agarose gel. For 16 loci that amplified well on agarose, we ordered a labeled forward primer. Five loci had multi-peak profiles following fragment analysis and were removed from subsequent analyses (Table S1). While Pc_04 looked promising, alleles were often separated by 1 bp , suggesting problems with amplification or scoring. Pc_04 was removed from subsequent analyses. Ten polymorphic microsatellite loci were ultimately retained and used for further analyses.

Null allele frequencies

Overall null alleles were not detected (Table S2). One locus, Pc_21, had one thallus that did not amplify in the gametophytes after repeated attempts. There were three loci in the
tetrasporophytes that showed evidence of null alleles based on maximum likelihood. The maximum likelihood estimator used by Kalinowski \& Taper (2006) assumes random mating and previous studies have found similar discrepancies between direct estimates in gametophytes and those using maximum likelihood in the tetrasporophytes when populations are not mating at random (e.g., Krueger-Hadfield et al. 2013, Kollars et al. 2015).

Repeated MLGs

Repeated MLGs were found at both sites for tetrasporophytes (one at Laggard which was repeated twice, and two at "East Litchfield" which were each repeated once) and gametophytes (three at Laggard of which two were repeated once and one which was repeated three times, and two at "East Litchfield" which were each repeated once). The p-value for $P_{\text {sex }}$ was larger than 0.05 for all repeated MLGs except for one tetrasporophyte pair at Laggard which had a p-value of 0.003 . Therefore, this was the only repeated MLG that was considered as a ramet of the same genet.

Supplemental Figures and Table from Main Text and Supplemental Materials

Figure S2. The proportion of unique genotypes identified in gametophytes and tetrasporophytes of Plocamium sp. when adding microsatellite loci from most polymorphic to least polymorphic (based on allelic richness in tetrasporophytes).

Supplemental Table S1 Microsatellite locus information for Antarctic Plocamium sp. Locus name, motif, and primer sequences are given for all loci tested. The fluorescent dye and annealing temperature $\left(T_{m}\right)$ are given for 16 labeled primers tested. The allele size range and total number of unique alleles are reported for samples from "East Litchfield" ($\mathrm{N}=149$) and Laggard ($\mathrm{N}=47$) identified as tetrasporophytes either through reproductive structures (tetrasporangial sori) or, if thalli were vegetative, by having a multilocus genotype with at least one heterozygous locus (the latter were included in this table to better represent the full allele range of the markers). (a) Loci used for fragment analysis. (b) 1 bp difference between alleles - locus removed. (c) Multipeak profiles observed during fragment analysis - loci removed. (d) No amplification in initial amplification tests using agarose gels.

(a)						
Locus	Motif	Primer Sequence	Dye	Tm(${ }^{\text {a }}$ C $)$	Allele size range (bp)	Total alleles
Pc_05	GCT	F: GTCGTTGATGTCTAGCGTGC	VIC	53	225-240	3
		R: ATGGATGTGGAGTCCGATCG				
Pc_09	CT	F: GGTCTAACGGCCTTGTGTTG	NED	59	151-185	8
		R: CCGGTTGTGAGTAAGTTGCC				
Pc_16	GA	F: CGATGCCGCAAAGACTACAG	NED	56	266-276	4
		R: TACAAGACCTGGTAGTGGCG				
Pc_21	TC	F: ATTCATAGGCCCACTCGTCC	6-FAM	56	283-303	2
		R: CAGGCACCGACAAAGCTTAC				
Pc_27	ACC	F: TCCACTACCACCGCTGATG	VIC or HEX	56	281-290	3
		R: TCACGTCGGCTAAGGGTAAG				
Pc_29	AC	F: CCTCCATCCCTTAACCTACCG	6-FAM	56	210-220	3
		R: GGAAGCGGGAGAATTTGGTG				
Pc_36	ACC	F: ACCATCACGCTATCATTGCG	VIC or HEX	56	193-247	7
		R: AGCGAAACATGAACGGGAAG				
Pc_40	AC	F: GAAAGCGGGAGATGTGAAGG	NED	56	148-210	5
		R: ACCTGCAACGAACAAACCTG				

Pc_47	AGC	F: ATCAACGGGTGCTGTCAAAG R: CTGACAAGTGTGCCAAACCG F: TTGAAACGTGCCCACTTGTC R: AACGAGTACTGGCGGAAGTG	6-FAM	56
Pc_49	GTC	VIC	56	
(b)				232
Locus	Motif	Primer Sequence	Dye	$\mathbf{T}_{\mathbf{m}}\left({ }^{\circ} \mathbf{C}\right.$)
Pc_04	CTC	F: AACAACACAGCAGCCAAGTC R: CGGAACATGACGGAACAAGG	6-FAM	53
(c)				
Locus	Motif	Primer Sequence	Dye	$\mathbf{T}_{\mathbf{m}}\left({ }^{\circ} \mathbf{C}\right)$
Pc_02	CTT	F: CTCCAGGTCAGCTCTACGTC R: TGGTGGAAGTGGAGGATTGG	NED	53
Pc_25	AT	F: TGGGCATAGTCGGGATGATG R: GAAAGATTGCGGGTGTGTCC	VIC	56
Pc_38	CT	F: GTAGTTCGGATGGTGTTGGC R: GTAGGCAGCTTTCACACACC F: TGCCTCTCGGTAGCCTTATG R: AGCCAAACTACCCACCTTCC Pc_39	CT	NED
Pc_44	AT	F: CGCCATGAAATCAACGTTCTC R: AACACTGCTGCTGTATGAGG	NED	56

(d)

Locus	Motif	Primer Sequence
Pc_01	AGG	F: AGGTTGATACGGGAAGAGGC
		R: CCTCCTCCTGAACTCTACGC
Pc_03	GAC	F: CAGATTCCGACGATGGCAAC R: ATCGGAGCAGGGTCATGATC
		F: GTTTAGCCGTCGTTGTAGGC Pc_06
ACC		R: TGTGAGAGTGGAAAGAGGCC
Pc_07	ACG	F: GAGATACCCGGACGTAGAGC R: AAACTTTCGCACGGGTTCTG
		R:

Pc_08	AGC	F: AACTGGACGAGACCTCCAAC
		R: AGGACTGTGATGGAGGCATC
Pc_10	AC	F: GCTCCTGTTTCACACCTTCG
		R: TCCAACACTGCCTTGCTTTG
Pc_11	AC	F: GATACACCAGAGTTGCACGC
		R: CACCAGGTGCGTTTATGTCC
Pc_12	TTG	F: TCAGTCACTCAGCGGCTATC
		R: TTGACTACCTCCTTCACCGC
Pc_13	CCG	F: TATCTCTGCTCGACATGGCC
		R: GGCTTTCAGAATGGCTCGAC
Pc_14	AT	F: GCAACACACGACTCTGACTG
		R: GAGCCTTCCATGTTTCAGGC
Pc_15	TG	F: GTTCCTTGCCATGAGATGCC
		R: TGCCAAAGATGTCCAAAGCG
Pc_17	GT	F: TGCTGTCTCCTCTCGTGATG
		R: TGGAGAGGAGAGCGATGTTC
Pc_18	AGG	F: ATAGACACGCACCTTCCTCC
		R: CATGCAGTGTCTCCTCAACG
Pc_19	AT	F: ACGAGGGTGCACTACTAAGG
		R: ACATTAGTGCGCAACGTCAG
Pc_20	CTT	F: AGCAGTCGATCCTTGGTCTG
		R: ACGACGAAGCATGCAAGAAG
Pc_22	TA	F: AGTGTAGAGTGCAGCGACAG
		R: TAGATGGCCCGACTGTTAGC
Pc_23	AGG	F: GATCTCGGCGTGTACACAAC
		R: CTTCCGAAGAGCTGTGCAAG
Pc_24	CT	F: GGCTTCGAATCAAGTCAGGC
		R: GTCCAAGAAGTTCACGTCGG
Pc_26	TTG	F: AGAATGTGATGCTCGAACGC
		R: CCGTGGGCTGCAATGAATAG
Pc_28	TCTA	F: AGCTCGGTGTACTGATGGAG
		R: ATCCAGGCTCCTTAACCCTG

Pc_30	AC	F: CACGTACTTGTAGCGCCTTC
		R: CTCTTGTGATGGTGCTCAGC
Pc_31	GT	F: TGTGCGATAACCTGTCATGC
		R: TACTGCTGCTGTACAATGCG
Pc_32	ACC	F: GGTTGGGTTGCTTGTCTTCG
		R: TCATGGTTTGTGGCGTTTCG
Pc_33	AAC	F: CATGGGATTCGAACCACAGC
		R: GTGACAATACGATCACTGCAC
Pc_34	CCT	F: GGAACTGCAACACCAAGCC
		R: AAGAAGCGTGCGATGTTGAG
Pc_35	TTG	F: GATCAGCAACACGACGAAGG
		R: TGTCAGCTTTCAATCCACGG
Pc_37	TTG	F: ACAAATTCGAGTTGGTGCCG
		R: GTCTTTGAGCTGACGACGTC
Pc_41	ACGC	F: CGCTTGCTTACAACCTCAGG
		R: TCCACGCGAGATACTAACAAAC
Pc_42	TG	F: TGGAGGCAGAGTCACCTTTC
		R: AAAGCACACGTCTCACCTTG
Pc_43	GGT	F: CCTTTCGCTCAAACCACG
		R: TGTTGGTGAAGTGTGCGAAC
Pc_45	AC	F: CACATATCCACTCGCACTCG
		R: TGAGAGGAGTGAATGGGTGG
Pc_46	CTG	F: GTCAGCCTCTACCCACGTC
		R: TGGACTACATAGAACCGCCG
Pc_48	GA	F: TACAAGACCTGGTAGTGGCG
		R: TCCCGATTCTTCAGCACCTC
Pc_50	AGG	F: TTTCGGAGCAGTTGTAGTGG
		R: CTCAATCTCCACCCTCTCCG

Supplemental Table S2 Null allele frequencies for ten microsatellite loci in the Antarctic Plocamium sp . We calculated them directly for gametophytes and we used a maximum likelihood estimator for tetrasporophytes (Kalinowski \& Taper 2006).

Locus	"East Litchfield"		Laggard	
	Gametophytes $(\mathrm{N}=9)$	Tetrasporophytes $(\mathrm{N}=12)$	Gametophytes $(\mathrm{N}=21)$	Tetrasporophytes $(\mathrm{N}=17)$
Pc_05	0	0	0	0
Pc_09	0	0	0	0
Pc_16	0	0.281	0	0.218
Pc_21	0	0	0.048	0.394
Pc_27	0	0	0	0
Pc_29	0	0	0	0
Pc_36	0	0	0	0
Pc_40	0	0	0	0
Pc_47	0	0	0	0
Pc_49	0	0.275	0	0.190

Supplemental Table S3 Results for short allele dominance of microsatellite markers developed for the Antarctic Plocamium sp. for samples from "East Litchfield" (N=149) and Laggard $(\mathrm{N}=47)$ identified as tetrasporophytes either through reproductive structures (tetrasporangial sori) or, if thalli were vegetative, by having a multilocus genotype which was heterozygous for one or more loci. The latter were included in this table to better represent the full allele range of the markers. Results of linear regression analysis of size class specific $F_{I S}$ values are shown.

Locus	\mathbf{N} of size classes	$\boldsymbol{R}^{\mathbf{2}}$	$\boldsymbol{F}(\mathbf{D F})$	\boldsymbol{p}-value
$\mathbf{P c _ 0 5}$	3	$N A-$ some size classes were	monomorphic	
Pc_09	4	-0.3561	$0.2122(1,2)$	0.6903
Pc_16	3	0.531	$3.264(1,1)$	0.3218
Pc_21	NA	NA - not enough size classes		
Pc_27	3	$N A-$ some size classes were monomorphic		
Pc_29	3	$N A-$ some size classes were monomorphic		
Pc_36	3	0.6906	$5.463(1,1)$	0.2574
Pc_40	3	0.2394	$1.63(1,1)$	0.423
Pc_47	6	0.0319	$1.165(1,4)$	0.3412
Pc_49	3	$N A-$ some size classes were monomorphic		

241 Supplemental Table S4 Multilocus genotypes (MLGs) using ten microsatellite markers for gametophytes and tetrasporophytes of the
242 Antarctic Plocamium sp. identified through reproductive structures. Samples were collected from different transects at different
243 depths.

Transect	Depth (m)	Pc_05		Pc_09		Pc_16		Pc_21		Pc_27		Pc_29		Pc_36		Pc_40		Pc_47		Pc_49	
Tetrasporophytes at "East Litchfield" (N=12)																					
2	5	240	240	151	151	270	270	303	303	281	281	218	218	214	214	154	154	268	271	275	275
2	8	240	240	151	151	270	270	303	303	281	281	218	218	193	214	154	154	271	313	275	275
2	14	240	240	151	151	270	270	303	303	281	290	218	218	193	214	154	154	271	310	275	275
2	17	240	240	151	151	270	270	303	303	281	281	218	218	193	193	154	154	271	271	275	275
2	17	240	240	151	151	270	270	303	303	281	281	218	220	193	193	154	154	271	271	000	000
2	20	240	240	151	151	270	270	303	303	281	281	218	218	193	193	154	154	271	319	275	275
3	8	240	240	151	151	000	000	303	303	281	281	218	218	214	214	154	154	271	313	275	275
3	11	240	240	151	151	270	270	303	303	281	281	218	218	193	214	154	154	271	313	275	275
3	11	240	240	151	151	270	270	303	303	281	281	218	218	193	214	154	154	271	271	275	275
3	11	240	240	151	151	270	270	303	303	281	281	218	218	193	193	154	154	271	271	275	275
3	11	240	240	151	151	270	270	303	303	290	290	220	220	193	214	154	154	271	271	275	275
3	14	240	240	151	151	270	270	303	303	281	290	218	220	193	214	154	154	271	271	275	275
Gametophytes at "East Litchfield" ($\mathrm{N}=9$)																					
1	11	240		157		270		283		281		218		199		154		271		275	
2	11	240		151		270		303		281		218		193		154		271		275	
2	11	240		151		270		303		281		220		193		154		271		275	
2	14	240		151		270		303		290		218		193		154		271		275	
2	14	240		151		270		303		281		218		193		154		271		275	
3	8	237		151		270		303		281		220		193		154		310		275	
3	8	240		151		270		303		281		220		193		154		271		275	
3	8	240		151		270		303		290		220		193		154		271		275	
3	17	240		151		270		303		281		218		193		154		295		275	

Tetrasporophytes at Laggard ($\mathrm{N}=17$)

1	14	240	240	151	151	270	270	303	303	281	281	218	218	193	193	154	154	271	271	275	275
1	17	240	240	151	151	270	270	303	303	281	281	218	218	193	193	154	154	271	271	275	275
1	20	237	240	151	151	270	270	303	303	281	290	218	220	193	193	154	154	271	310	275	275
1	23	240	240	151	151	270	270	303	303	281	281	218	218	193	193	154	154	271	271	263	275
1	29	225	225	159	185	268	268	303	303	284	284	210	210	232	232	208	208	343	343	263	263
2	11	240	240	151	151	270	270	000	000	281	290	218	220	193	214	154	154	271	271	275	275
2	11	237	240	151	151	270	270	303	303	281	281	218	218	193	214	154	154	271	271	275	275
2	14	240	240	151	151	270	270	283	283	281	281	218	218	193	214	154	154	307	310	275	275
2	14	240	240	151	151	270	270	303	303	281	281	218	218	193	193	148	154	271	271	275	275
2	14	240	240	151	151	270	270	303	303	281	281	218	218	193	193	154	154	271	271	275	275
2	20	240	240	151	151	270	270	283	283	281	281	218	218	193	193	154	154	271	295	275	275
2	26	237	240	151	157	270	270	303	303	281	281	218	220	193	214	154	154	271	271	275	275
3	11	240	240	151	151	270	270	303	303	281	281	218	218	193	193	154	154	295	310	275	275
3	20	240	240	151	151	270	270	283	283	281	281	218	220	193	193	154	154	271	271	275	275
3	23	240	240	151	151	270	270	283	283	281	281	218	218	193	193	154	154	271	271	275	275
3	23	240	240	151	157	270	270	283	283	281	281	218	218	193	214	154	154	271	271	275	275
3	26	225	225	159	183	268	268	283	283	284	284	210	210	232	232	204	208	343	343	263	263
Gametophytes at Laggard ($\mathrm{N}=21$)																					
1	11	240		157		270		303		281		218		193		154		310		275	
1	14	240		151		270		303		281		218		193		154		271		275	
1	14	240		151		270		283		281		220		193		154		310		275	
1	17	240		151		270		283		281		218		214		154		271		275	
1	17	240		151		270		303		281		218		193		154		271		275	
1	23	240		157		270		303		281		218		193		154		271		275	
1	26	225		151		270		303		281		218		193		154		271		275	
1	29	240		151		270		303		281		218		193		154		310		275	
2	11	240		151		270		303		281		218		193		154		271		275	
2	20	240		151		270		303		281		218		214		154		295		275	
2	20	240		151		270		283		281		218		193		154		271		275	
2	23	240		151		270		0		281		218		214		154		310		275	
2	23	240		151		270		303		281		218		214		154		271		275	
3	11	237		151		270		303		281		218		214		154		271		275	

3	20	240	151	270	303	281	218	193	154	271	275
3	20	225	171	268	303	284	210	232	204	346	263
3	20	240	151	270	283	281	218	193	154	307	275
3	23	240	151	270	303	281	220	193	154	271	275
3	23	240	151	270	303	281	218	214	154	271	275
3	26	225	159	268	303	284	210	232	204	349	263
3	26	240	151	270	283	281	218	193	154	271	275

Supplemental Table S5 Summary statistics for ten polymorphic microsatellite loci developed in the Antarctic Plocamium sp. and analyzed in the gametophytic and tetarsporophytic subpopulations of two sites along the WAP. N , number of samples; A_{E} and P_{A}, mean and private allelic richness (using smallest sample size in gametophytes -9); H_{E}^{A}, unbiased expected heterozygosity in gametophytes adjusted by a factor of $(2 \mathrm{~N}-1) /(2 \mathrm{~N}-2) ; H_{E}$, unbiased expected heterozygosity; H_{O}, observed heterozygosity $F_{I S}$, inbreeding coefficient. $* p<0.0025$ (with p-adjusted to 0.0025 for significance)

Locus	"East Litchfield"								Laggard							
	Gametophytes$(\mathrm{N}=9)$			Tetrasporophytes$(\mathrm{N}=12)$					Gametophytes$(\mathrm{N}=21)$			Tetrasporophytes$(\mathrm{N}=17)$				
	A_{E}	\boldsymbol{P}_{A}	\boldsymbol{H}_{E}^{A}	A_{E}	A_{P}	$\boldsymbol{H}_{\boldsymbol{E}}$	Ho	$F_{\text {IS }}$	A_{E}	A_{P}	$\boldsymbol{H}_{\boldsymbol{E}}^{\boldsymbol{A}}$	A_{E}	A_{P}	$\boldsymbol{H}_{\boldsymbol{E}}$	Ho	$F_{\text {IS }}$
Pc_05	2.0	0.6	0.236	1.0	0.0	-	-	-	2.3	0.8	0.347	2.3	1.3	0.358	0.176	0.515
Pc_09	2.0	0.3	0.236	1.0	0.0	-	-	-	2.5	0.9	0.356	2.5	1.5	0.323	0.235	0.277
Pc_16	1.0	0.0	-	1.0	0.0	-	-	-	1.7	0.7	0.185	1.7	0.7	0.214	-	1.000
Pc_21	2.0	0.0	0.236	1.0	0.0	-	-	-	2.0	0.0	0.404	2.0	1.0	0.484	-	1.000*
Pc_27	2.0	1.0	0.413	1.9	0.5	0.290	0.167	0.436	1.7	0.7	0.185	2.2	0.8	0.314	0.118	0.632
Pc_29	2.0	0.3	0.590	1.9	0.2	0.290	0.167	0.436	2.4	0.7	0.351	2.5	0.8	0.399	0.235	0.418
Pc_36	2.0	1.0	0.236	2.0	0.2	0.507	0.500	0.015	2.7	1.7	0.566	2.5	0.7	0.437	0.294	0.333
Pc_40	1.0	0.0	-	1.0	0.0	-	-	-	1.7	0.7	0.185	2.1	1.1	0.271	0.118	0.573
Pc_47	3.0	0.7	0.443	2.9	1.7	0.435	0.500	-0.158	3.6	1.3	0.615	3.1	1.8	0.490	0.235	0.528
Pc_49	1.0	0.0	-	1.0	0.0	-	-	-	1.7	0.7	0.185	1.8	0.8	0.258	0.059	0.778

References

Arnaud-Haond, S. \& Belkhir, K. 2007. GENCLONE: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Molecular Ecology Notes, 7, 15-17, https://doi.org/10.1111/j.1471-8286.2006.01522.x.

Destombe, C., Valero, M., Vernet, P. \& Couvet, D. 1989. What controls haploid-diploid ratio in the red alga, Gracilaria verrucosa? Journal of Evolutionary Biology, 2, 317-338, https://doi.org/10.1046/j.1420-9101.1989.2050317.x.

Dorken, M.E. \& Eckert, C.G. 2001. Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae). Journal of Ecology, 89, 339-350, https://doi.org/10.1046/j.1365-2745.2001.00558.x.

Engel, C.R., Destombe, C. \& Valero, M. 2004. Mating system and gene flow in the red seaweed Gracilaria gracilis: effect of haploid-diploid life history and intertidal rocky shore landscape on fine-scale genetic structure. Heredity, 92, 289-298, https://doi.org/10.1038/sj.hdy. 6800407.

FAIRCLOTH, B.C. 2008. MSATCOMMANDER: Detection of microsatellite repeat arrays and automated, locus-specific primer design. Molecular Ecology Resources, 8, 92-94, https://doi.org/10.1111/j.1471-8286.2007.01884.x.

Goudet, J. 1995. FSTAT (Version 1.2): a computer program to calculate F-statistics. Journal of Heredity, 86, 485-486, https://doi.org/10.1093/oxfordjournals.jhered.a111627.

KALINOWSKI, S.T. 2005. HP-RARE 1.0: A computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes, 5, 187-189, https://doi.org/10.1111/j.1471-8286.2004.00845.x.

KALINOWSKI, S.T. \& TAPER, M.L. 2006. Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. Conservation Genetics, 7, 991-995, https://doi.org/10.1007/s10592-006-9134-9.

Kollars, N.M., Krueger-Hadfield, S.A., Byers, J.E., Greig, T.W., Strand, A.E., Weinberger, F. \& SotKa, E.E. 2015. Development and characterization of microsatellite loci for the haploid-diploid red seaweed Gracilaria vermiculophylla. PeerJ, 3, e1159, 10.7717/peerj.1159.

Krueger-Hadfield, S.A., Blakeslee, A.M.H. \& Fowler, A.E. 2019. Incorporating ploidy diversity into ecological and community genetics. Journal of Phycology, 55, 1198-1207, https://doi-org.ezproxy3.lhl.uab.edu/10.1111/jpy.12906.

Krueger-Hadfield, S.A., Roze, D., Mauger, S. \& Valero, M. 2013. Intergametophytic selfing and microgeographic genetic structure shape populations of the intertidal red seaweed Chondrus crispus. Molecular Ecology, 22, 3242-3260, https://doi.org/10.1111/mec. 12191.

MATSCHINER, M. \& SALZBURGER, W. 2009. TANDEM: Integrating automated allele binning into genetics and genomics workflows. Bioinformatics, 25, 1982-1983, https://doi.org/10.1093/bioinformatics/btp303.

Mauger, S., Couceiro, L. \& Valero, M. 2012. A simple and cost-effective method to synthesize an internal size standard amenable to use with a 5-dye system. Prime Research on Biotechnology, 2, 40-46.

Peakall, R. \& Smouse, P.E. 2006. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288-295, https://doi.org/10.1111/j.1471-8286.2005.01155.x.

Peakall, R. \& Smouse, P.E. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28, 2537-2539, https://doi.org/10.1093/bioinformatics/bts460.

R CORE TEAM. 2019. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/

Schoebel, C.N., Brodbeck, S., Buehler, D., Cornejo, C., Gajurel, J., Hartikainen, H., KeLLER, D., et al. 2013. Lessons learned from microsatellite development for nonmodel organisms using 454 pyrosequencing. Journal of Evolutionary Biology, 26, 600-611, https://doi.org/10.1111/jeb. 12077.

Shilling, A.J., Heiser, S., Amsler, C.D., McClintock, J.B. \& Baker, B.J. 2021. Hidden diversity in an Antarctic algal forest: metabolomic profiling linked to patterns of genetic diversification in the Antarctic red alga Plocamium sp. Marine Drugs, 19, 113. https://doi.org/10.3390/md19110607.

Thornber, C.S. \& Gaines, S.D. 2004. Population demographics in species with biphasic life cycles. Ecology, 85, 1661-1674, https://doi.org/10.1890/02-4101.

Wattier, R., Engel, C.R., Saumitou-Laprade, P. \& Valero, M. 1998. Short allele dominance as a source of heterozygote deficiency at microsatellite loci: experimental evidence at the dinucleotide locus Gv1CT in Gracilaria gracilis (Rhodophyta). Molecular Ecology, 7, 1569-1573, https://doi.org/10.1046/j.1365-294x.1998.00477.x.

Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. New York, USA: SpringerVerlag.

