# A lithostratigraphical and chronological study of Oligocene—Miocene sequences on eastern King George Island, South Shetland Islands (Antarctica) and correlation of glacial episodes with global isotope events

Smellie, J.L.<sup>1\*</sup>, McIntosh, W.C<sup>2</sup>, Whittle, R.<sup>3</sup>, Troedson, A.<sup>3,4</sup> and Hunt, R.J.<sup>5,6</sup>

<sup>1</sup> School of Geography, Geology & the Environment, University of Leicester, Leicester LE1 7RH, UK; \*corresponding author: [jls55@le.ac.uk]

<sup>2</sup> New Mexico Bureau of Geology and Mineral Resources, New Mexico Tech, Socorro, NM, 87801, USA; [mcintosh@nmt.edu]

<sup>3</sup> British Antarctic Survey, Cambridge CBE 0ET, UK; [roit@bas.ac.uk]

<sup>4</sup> Troedson Geosciences Consulting, Australia; [consulting@troedson.com.au]

<sup>5</sup> School of Earth Sciences, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT; [rjh138@icloud.com]

## Supplementary Information file S2 – full analytical details, spectra and isotope correlation diagrams for all new dated samples

#### <sup>40</sup>Ar/<sup>39</sup>Ar analytical methods

The argon isotopic results are listed in Tables S2-1 and S2-2. Age spectra and inverse isochron plots are shown in Figure S2-1. A summary of the <sup>40</sup>Ar/<sup>39</sup>Ar ages yielded in this study is provided in Table 4 (main paper).

#### New Mexico Geochronology Research Laboratory:

**Sample preparation and irradiation:** Hornblende separates and groundmass concentrates were prepared using standard mineral separation techniques (crushing, sieving, franzing and hand-picking). Samples were packaged and irradiated in machined Al discs for 7 hours in D-3 position, at the Nuclear Science Center, College Station, Texas. Neutron flux monitor was Fish Canyon Tuff sanidine (FC-1). Assigned age = 28.201 Ma (Kuiper et al., 2008).

**Instrumentation:** Mass Analyzer Products 215-50 mass spectrometer on line with automated all-metal extraction system. Samples step-heated in Mo double-vacuum resistance furnace. Heating duration 7 minutes. Reactive gases removed by reaction with 3 SAES GP-50 getters, 2 operated at ~450°C and 1 at 20°C, together with a W filament operated at ~2000°C.

**Analytical parameters:** Electron multiplier sensitivity averaged 1x10-16 moles/pA. Total system blank and background for the furnace averaged 350, 4.2, 0.6, 1.5, 1.9 x 10-18 moles at masses 40, 39, 38, 37, and 36, respectively for temperatures < 1300°C. J-factors determined to a precision of  $\pm$  0.1% by CO<sub>2</sub> laser-fusion of 4 single crystals from each of 4 radial positions around the irradiation tray. Correction factors for interfering nuclear reactions were determined using K-glass and CaF<sub>2</sub> and are as follows:

Texas:  $({}^{40}\text{Ar}/{}^{39}\text{Ar})\text{K} = 0.0002\pm0.0003$ ;  $({}^{36}\text{Ar}/{}^{37}\text{Ar})\text{Ca} = 0.00026\pm0.00002$ ; and  $({}^{39}\text{Ar}/{}^{37}\text{Ar})\text{Ca} = 0.00070\pm0.00005$ .

**Age calculations:** Total gas ages and errors calculated by weighting individual steps by the fraction of <sup>39</sup>Ar released. Weighted-mean ages were calculated using data from all heating steps (complete spectrum) from each of the groundmass concentrate samples by weighting by the inverse of the variance (Taylor, 1982), with weighted mean errors multiplied by the square root of the MSWD where MSWD exceeded cutoff values recommended by Mahon (1996). MSWD values were calculated for n-1 degrees of freedom for plateau and preferred ages. Isochron ages, <sup>40</sup>Ar/<sup>36</sup>Ar<sub>i</sub> and MSWD values calculated from regression results obtained by the methods of York (1969). Decay constants and isotopic abundances are after Steiger and Jäger (1977). All errors reported at  $\pm 2\sigma$  unless otherwise noted.

**Results:** Groundmass and hornblende were analyzed at by resistance-furnace incrementalheating <sup>40</sup>Ar/<sup>39</sup>Ar methods. Table 1 (main text) summarizes weighted mean ages and other results. Isochron results are listed in Table S2-1, and analytical data are detailed in Table S2-2. Figures showing age spectra and isochrons for individual samples are also provided.

All of the groundmass concentrates yielded somewhat non-flat age spectra with declining ages at highest temperatures, in some cases accompanied by older ages at low temperatures. Precision of individual steps varies markedly from sample to sample, which is at least in part a function of radiogenic yield (% Rad in Table 4 (main paper)). Sample P.2958.22 is an example of a low-yield, low-precision groundmass analysis, whereas P.2766.5 is an example of a higher yield, higher precision analysis in which the non-flat shape of the spectrum is more easily discerned. Accompanying K/Ca plots show that K/Ca ratios of the groundmass concentrates decline throughout the analysis of that sample; this is typical for basaltic groundmass, and represents lower temperature degassing of relatively K-rich plagioclase (±glass) followed by higher temperature degassing of K-poor pyroxene. As further discussed below, the shape of the spectra technically satisfy age plateau criteria (e.g. Fleck et al., 1977), it was not considered appropriate to calculate plateau ages for these flat segments within these recoil-affected spectra. Weighted mean Oligocene ages range from 24.09 ± 0.31 Ma to 27.56 ± 0.66 Ma, with a single Early Miocene age of 21.25 ± 3.14 Ma.

Two of the hornblende samples yielded relatively flat but somewhat imprecise age spectra, with low MSWD values (1.0 and 1.5) and weighted mean ages of  $24.09 \pm 0.31$  Ma (P.2800.1, MSWD=1.5) and  $26.80 \pm 0.69$  Ma (P.2767.11, MSWD=1.0). The third hornblende (P.2903.12 from Cape Melville) yielded a somewhat disturbed spectrum (MSWD=4.4) with a weighted mean age of  $21.25 \pm 3.14$  Ma, significantly younger than all other hornblende or groundmass samples.

All the data were also plotted on isochrons (Table S2-1, and see Figure S2-1, below) in an attempt to assess the possibility of initial trapped argon components with elevated  $^{40}$ Ar/ $^{36}$ Ar ratios indicative of excess  $^{40}$ Ar. Isochrons for hornblende analyses yielded moderately well-defined isochrons (MSWD = 1.0 to 4.4) with near atmospheric  $^{40}$ Ar/ $^{36}$ Ar intercepts and isochron ages in agreement with the weighted mean ages of their respective age spectra.

Isochrons for all fourteen of the groundmass samples are poorly defined with high MSWD values (2.8 to 38.9). In spite of this, intercept ages are all within  $\pm 2\sigma$  of their respective weighted mean ages (Table S2-1). Some of the <sup>40</sup>Ar/<sup>36</sup>Ar intercept differ by more than  $\pm 2\sigma$ 

of the atmospheric value of 295.5, but this is probably only an artifact of the <sup>39</sup>Ar recoil , which is also probably responsible for the disturbed shapes of the groundmass age spectra.

#### Leeds University:

The samples were crushed and sieved for the 250-500  $\mu$ m fraction, avoiding veining and weathered surfaces. The fractions were passed through a Frantz magnetic separator to concentrate plagioclase feldspar, washed in 1M HNO<sub>3</sub> for 10 minutes to remove carbonates, decanted then washed in 40% HF for a further 10 minutes to remove fines, rinsed in deionised water and then dried. The samples, weighing approximately 60 mg, were then hand-picked to remove visibly altered grains and grains with inclusions. The <sup>40</sup>Ar/<sup>39</sup>Ar analysis was carried out at the School of Earth Sciences, University of Leeds and followed the method described by Rex et al. (1993) with the following variations: Samples P. 2789.1 and P. 2792.4 were irradiated at the Riso Reactor, Roskilde Laboratory, Denmark, interference correction factors were (40/39)K = 0.048, (36/39)Ca = 0.38 and (37/39)Ca =1492. P. 2799.1 was irradiated at the McMasters Reactor, Ontario, Canada, interference correction factors were (36/39)Ca = 0.32, (37/39)Ca = 1515 and (40/39)K = 0.02. The University of Leeds internal standard is Tinto biotite (Rex and Guise, 1995) with assigned age of 409.2 Ma and biotite LP-6 (128.9 ± 1.4 Ma; Ingamells and Engels, 1976). Isotopic analyses were performed with a modified MS10 mass spectrometer, measured atmospheric <sup>40</sup>Ar/<sup>36</sup>Ar was  $287.8 \pm 0.2$  and sensitivity  $1.12 \times 10^{-7}$  cm<sup>3</sup>V<sup>-1</sup>. Gas volumes are corrected to STP.

The <sup>40</sup>Ar/<sup>39</sup>Ar ratio, age and errors for each gas fraction were calculated using formulae similar to those given by Dalrymple and Lanphere (1971). Errors in these ratios were evaluated by numerical differentiation of the equation used to determine the isotope ratios and quadratically propagating the errors in the measured ratios. J-value uncertainty is included in the errors quoted on the total gas ages but the individual step ages have analytical errors only. All errors are quoted at the  $2\sigma$  level unless otherwise stated. Ages calculated using the constants recommended by Steiger and Jäger (1977). Data for isotope correlation plots were reduced using the Isoplot/Ex program of Ludwig (1999). IsoPlot/Ex uses three separate models to regress the <sup>40</sup>Ar/<sup>39</sup>Ar versus <sup>36</sup>Ar/<sup>40</sup>Ar data on the isotope correlation plot. If the probability of fit of the initial regression is low, Isoplot attempts to use either a second or third model fit which weight the data-points using different criteria.

Potassium concentrations were measured using a Ciba-Corning 480 flame photometer incorporating a lithium internal standard. International and laboratory standards were analysed on a routine basis.

Argon was extracted in a glass vacuum line using a <sup>38</sup>Ar tracer from an aliquoting system. Special attention was given to the purity of the gas sample before it was analysed. A twostage clean-up procedure was used, stage one incorporating a Ti sponge furnace and liquid nitrogen trap. The gas was then transferred to a second stage Ti/Zr sponge furnace by absorption on activated charcoal at liquid nitrogen temperature. Argon isotopes were measured on a modified AEI MS 10 mass spectrometer fitted with computer controlled peak switching. Ion beams were detected by a VG pre-amplifier with 10<sup>11</sup> ohm resistor, digitized with a Solartron 7060 voltmeter and stored on computer disc for subsequent processing. International standards were analysed and atmospheric argon ratios determined on a regular basis. Ages were calculated using the decay constants and branching ratio agreed by the USGS Subcommission on Geochronology (Steiger and Jäger 1977).

#### Discussion

The age spectra of the hornblende samples are relatively simple, and the calculated weighted mean ages probably represent eruption ages. The relatively poor precision of the weighted-mean ages of hornblende separates probably reflect low K content coupled with low radiogenic yields related to alteration to chlorite and/or clay. Interpretation of results from the groundmass concentrates is less straightforward. The shape of the age spectra of the groundmass samples is almost certainly related to <sup>39</sup>Ar recoil, an experimental artefact of the neutron irradiation required for the <sup>40</sup>Ar/<sup>39</sup>Ar method (e.g. Lo and Onstott, 1989). Thus, during irradiation, <sup>39</sup>Ar is redistributed from K-rich to K-poor fine-grained phases, elevating the apparent ages of high-K, low-degassing temperature parts of the age spectrum, and depressing ages of high-K parts of the age spectrum, primarily highdegassing-temperature degassing pyroxene, but in some cases also probably including low-K, low-degassing-temperature alteration phases. In addition to <sup>39</sup>Ar recoil, the age spectra of groundmass concentrates may also reflect some disturbances related to alteration induced <sup>40</sup>Ar or K loss , and/or minor contributions of excess <sup>40</sup>Ar . No clear evidence of significant excess <sup>40</sup>Ar was observed, although this was considered to be a potential problem when this study was undertaken.

Calculation of accurate ages and uncertainties from sample age spectra that have suffered significant <sup>39</sup>Ar recoil is problematic. All steps for each sample were used to calculate the weighted-mean ages given in Table 4 (main text). The weighted-mean uncertainties values were calculated using the standard Taylor error, multiplied by the root of the MSWD in cases where the MSWD failed to meet the criteria of Mahon (1996). This conservative approach almost certainly results in overestimation of uncertainties. Analyses of one pair of samples from the same outcrop (Samples 2797.6A and 2797.6B) yielded similar weighted mean ages (24.99  $\pm$  1.38 Ma and 25.25  $\pm$  1.75 Ma) which agree much more closely than might be expected from the conservatively determined  $\pm 2\sigma$  uncertainty values.

#### References

- Dalrymple, G.B. and Lanphere, M.A. 1971. <sup>40</sup>Ar/<sup>39</sup>Ar technique of K-Ar dating: A comparison with the conventional technique. Earth and Planetary Science Letters, 12, 300-308.
- Fleck, R.J., Sutter, J.F. and Elliot, D.H. 1977. Interpretation of discordant <sup>40</sup>Ar/<sup>39</sup>Ar age spectra of Mesozoic tholeiites from Antarctica. Geochim. Cosmochim. Acta, 41, 15-32.
- Ingamells, C. O. and Engels, J. C. 1976. Preparation, analysis, and sampling constants for a biotite. National Bureau of Standards, Special Publication, 422, 401-419.
- Kuiper K. F., Deino A., Hilgen F. J., Krijgsman W., Renne P. R. and Wijbrans J. R. 2008. Synchronizing rock clocks of Earth history. Science, 320, 500–504.
- Lo, C.-H. and Onstott, T.C. 1989. <sup>39</sup>Ar recoil artifacts in chloritized biotite. Geoch. Cosmochim. Acta, 53, 2967-2711.
- Ludwig, K.R. 1999. Using Isoplot/EX, Version 2, a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication, 1a.

- Mahon, K.I. 1996. The New "York" regression: Application of an improved statistical method to geochemistry. International Geology Review, 38, 293-303.
- Rex, D.C., Guise, P.G. and Wartho, J.-A. 1993. Disturbed 40Ar-39Ar spectra from hornblendes: Thermal loss or contamination? Chemical Geology (Isotope Geoscience Section), 103, 271-281.
- Rex, D. C. and Guise, P. G. 1995. Evaluation of argon standards with special emphasis on time scale measurements. In: Odin, G. S. (ed.) Phanerozoic Time Scale. Bulletin of Liaison and Information of the IUGS Subcommission on Geochronology, 13, 21–23.
- Steiger, R.H. and Jäger, E. 1977. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planet. Sci. Lett., 36, 359-362.
- Taylor, J.R. 1982. An Introduction to error analysis: The study of uncertainties in physical measurements. University Science Books, Mill Valley, California, 270 pp.
- Turner, G., Miller, J.A. and Grasty, R.L. 1966. The thermal history of the Bruderheim meteorite: Earth Planet. Sci. Lett., 1, 155-157.
- York, D. 1969. Least squares fitting of a straight line with correlated errors. Earth and Planet. Sci. Lett., 5, 320-324.

**Table S2-1.** Summary of new <sup>40</sup>Ar/<sup>39</sup>Ar step heating data for samples analysed at the New Mexico Geochronology Research Laboratory. Individual analyses show analytical error only; mean age errors also include error in J and irradiation parameters. hbl = hornblende separate; wr = whole rock; n = number of heating steps used to calculate plateau age.

| ID                | Temp              | <sup>40</sup> Ar/ <sup>39</sup><br>Ar | <sup>37</sup> Ar/ <sup>39</sup> Ar | <sup>36</sup> Ar/ <sup>39</sup> Ar | <sup>39</sup> Агк      | K/Ca     | <sup>40</sup> Ar* | <sup>39</sup> Ar | Age    | ±2s    |
|-------------------|-------------------|---------------------------------------|------------------------------------|------------------------------------|------------------------|----------|-------------------|------------------|--------|--------|
|                   | (°C)              |                                       |                                    | (x 10 <sup>-3</sup> )              | (x 10 <sup>-15</sup> m | ol)      | (%)               | (%)              | (Ma)   | (Ma)   |
| P.290             | <b>3.12,</b> C3:: | 115 <i>,</i> 3.6 m                    | g hbl, J=0.00                      | 0815218±0.09%                      | %, D=1.0064            | 14±0.000 | 91, NM-           | 115,             |        |        |
| Lab#=             | 50694-01          |                                       |                                    |                                    |                        |          |                   |                  |        |        |
| А                 | 3                 | 159.4                                 | 0.3299                             | 173.6                              | 0.001                  | 1.5      | 67.8              | 0.3              | 154.37 | 128.96 |
| В                 | 8                 | 432.7                                 | 6.280                              | 1327.9                             | 0.007                  | 0.081    | 9.4               | 2.0              | 60.15  | 85.93  |
| С                 | 12                | 55.09                                 | 19.83                              | 137.0                              | 0.046                  | 0.026    | 29.5              | 13.5             | 24.47  | 3.54   |
| D                 | 16                | 29.07                                 | 20.88                              | 54.41                              | 0.137                  | 0.024    | 50.6              | 47.8             | 22.21  | 1.18   |
| Е                 | 20                | 26.12                                 | 21.99                              | 49.21                              | 0.095                  | 0.023    | 51.3              | 71.4             | 20.24  | 1.67   |
| F                 | 25                | 31.29                                 | 21.86                              | 71.63                              | 0.063                  | 0.023    | 38.1              | 87.2             | 18.03  | 2.52   |
| G                 | 30                | 33.68                                 | 21.26                              | 82.63                              | 0.029                  | 0.024    | 32.7              | 94.6             | 16.66  | 5.41   |
| Н                 | 40                | 68.52                                 | 20.33                              | 174.3                              | 0.022                  | 0.025    | 27.3              | 100.0            | 28.16  | 9.10   |
| isochr            | ron age           |                                       |                                    |                                    |                        |          |                   |                  | 19.02  | 3.68   |
| total gas age n=3 |                   |                                       | n=8                                |                                    |                        |          |                   |                  | 22.34  | 4.37   |
| weighted-mean age |                   |                                       | n=8                                | steps A-H                          |                        |          |                   |                  | 21.25  | 3.14   |

## P.2767.11, C2:115, 8.36 mg hbl, J=0.000815312±0.09%, D=1.00468±0.00093, NM-115, Lab#=50693-01 A 800 695.0 2.207 2269.5 0.055 0.23 3.5 4.7 36.26 45.90

0.009

0.42

17.4

5.5

90.42

1001.2

В

850

357.9

1.211

68.19

| С       | 950       | 215.4 | 2.692 | 679.3     | 0.011 | 0.19  | 6.9  | 6.5   | 22.11 | 45.73 |
|---------|-----------|-------|-------|-----------|-------|-------|------|-------|-------|-------|
| D       | 1020      | 163.5 | 3.069 | 511.7     | 0.016 | 0.17  | 7.7  | 7.8   | 18.67 | 28.48 |
| E       | 1080      | 147.2 | 6.915 | 412.5     | 0.024 | 0.074 | 17.6 | 9.9   | 38.33 | 19.87 |
| F       | 1120      | 52.04 | 16.28 | 114.1     | 0.109 | 0.031 | 37.8 | 19.2  | 29.48 | 3.46  |
| G       | 1160      | 33.84 | 19.27 | 60.60     | 0.588 | 0.026 | 51.8 | 69.8  | 26.38 | 0.83  |
| Н       | 1200      | 30.35 | 17.88 | 45.88     | 0.118 | 0.029 | 60.2 | 79.9  | 27.45 | 2.23  |
| I       | 1300      | 33.33 | 19.27 | 56.77     | 0.203 | 0.026 | 54.5 | 97.3  | 27.31 | 1.65  |
| J       | 1400      | 133.6 | 157.0 | 435.3     | 0.010 | 0.003 | 13.4 | 98.2  | 30.82 | 36.48 |
| К       | 1650      | 309.4 | 38.76 | 961.1     | 0.021 | 0.013 | 9.2  | 100.0 | 43.64 | 32.81 |
| isochr  | on age    |       |       |           |       |       |      |       | 26.03 | 1.04  |
| total g | gas age   |       | n=11  |           | 1.16  | 0.044 |      |       | 28.36 | 6.12  |
| weigh   | ited-mear | n age | n=11  | steps A-K | 1.16  | 0.044 | 46.4 | 100.0 | 26.80 | 0.69  |

**P.2766.5,** A5:115, 23.77 mg wr, J=0.000808835±0.09%, D=1.00468±0.00093, NM-115, Lab#=50685-01

Smellie et al

| weig  | hted-mean | age   | n=9    | steps A-I |       |       |      |       | 25.23 | 0.97 |
|-------|-----------|-------|--------|-----------|-------|-------|------|-------|-------|------|
| total | gas age   |       | n=9    |           |       |       |      |       | 24.72 | 0.40 |
| isoch | ron age   |       |        |           |       |       |      |       | 25.71 | 0.36 |
| I     | 1650      | 52.47 | 7.114  | 126.2     | 2.28  | 0.072 | 30.1 | 100.0 | 23.32 | 0.69 |
| Н     | 1250      | 28.15 | 1.944  | 39.93     | 4.56  | 0.26  | 58.6 | 89.1  | 24.28 | 0.25 |
| G     | 1075      | 21.85 | 0.9934 | 16.29     | 3.81  | 0.51  | 78.3 | 67.2  | 25.15 | 0.22 |
| F     | 975       | 20.10 | 1.046  | 8.875     | 4.75  | 0.49  | 87.4 | 49.0  | 25.80 | 0.17 |
| Е     | 875       | 20.98 | 1.173  | 12.66     | 2.76  | 0.43  | 82.6 | 26.3  | 25.47 | 0.21 |
| D     | 800       | 46.52 | 1.098  | 100.6     | 2.05  | 0.46  | 36.3 | 13.1  | 24.79 | 0.63 |
| С     | 750       | 63.59 | 1.126  | 161.8     | 0.179 | 0.45  | 25.0 | 3.2   | 23.35 | 2.55 |
| В     | 700       | 101.8 | 1.119  | 301.1     | 0.313 | 0.46  | 12.7 | 2.4   | 18.99 | 2.76 |
| А     | 625       | 121.0 | 1.022  | 374.2     | 0.186 | 0.50  | 8.7  | 0.9   | 15.54 | 4.13 |
| Lubii | 30003 01  |       |        |           |       |       |      |       |       |      |

## **P.2958.22,** A1:115, 22.28 mg wr, J=0.000806369±0.09%, D=1.00468±0.00093, NM-115, Lab#=50681-01

|       | 00002 02  |        |       |           |       |       |      |       |        |        |
|-------|-----------|--------|-------|-----------|-------|-------|------|-------|--------|--------|
| В     | 700       | 3200.4 | 2.159 | 10549.6   | 0.251 | 0.24  | 2.6  | 4.5   | 118.88 | 280.70 |
| С     | 750       | 617.2  | 2.401 | 1925.5    | 0.028 | 0.21  | 7.8  | 5.0   | 70.20  | 114.03 |
| D     | 800       | 399.1  | 3.565 | 1283.3    | 0.418 | 0.14  | 5.1  | 12.5  | 29.64  | 8.49   |
| Е     | 875       | 338.1  | 7.083 | 1072.7    | 0.642 | 0.072 | 6.4  | 23.9  | 31.91  | 6.13   |
| F     | 975       | 191.5  | 9.141 | 581.3     | 1.51  | 0.056 | 10.7 | 50.9  | 30.13  | 2.40   |
| G     | 1075      | 52.36  | 6.613 | 115.2     | 0.718 | 0.077 | 36.0 | 63.7  | 27.75  | 1.28   |
| Н     | 1250      | 58.45  | 5.668 | 138.6     | 1.24  | 0.090 | 30.7 | 85.9  | 26.43  | 0.88   |
| I     | 1650      | 38.43  | 33.76 | 85.26     | 0.789 | 0.015 | 41.7 | 100.0 | 24.20  | 1.06   |
| isoch | iron age  |        |       |           |       |       |      |       | 24.88  | 1.40   |
| total | gas age   |        | n=8   |           | 5.60  | 0.078 |      |       | 32.52  | 15.67  |
| weig  | hted-meai | n age  | n=8   | steps B-I | 5.60  | 0.078 | 21.5 | 100.0 | 26.38  | 2.59   |
|       |           |        |       |           |       |       |      |       |        |        |

### **P.2960.22**, B3:115, 22.53 mg wr, J=0.00080965±0.09%, D=1.00468±0.00093, NM-115, Lab#=50689-01

| Labi | 50005 01 |        |       |        |       |       |      |      |        |        |
|------|----------|--------|-------|--------|-------|-------|------|------|--------|--------|
| В    | 700      | 1423.9 | 10.64 | 4765.2 | 0.041 | 0.048 | 1.2  | 1.7  | 24.71  | 154.58 |
| С    | 750      | 1207.1 | 11.89 | 3682.5 | 0.005 | 0.043 | 9.9  | 1.9  | 170.99 | 521.07 |
| D    | 800      | 816.3  | 19.68 | 2744.7 | 0.114 | 0.026 | 0.8  | 6.6  | 10.35  | 35.69  |
| Е    | 875      | 362.6  | 19.41 | 1181.9 | 0.305 | 0.026 | 4.1  | 19.3 | 22.39  | 9.29   |
| F    | 975      | 76.06  | 13.49 | 197.6  | 0.905 | 0.038 | 24.7 | 56.6 | 27.92  | 1.10   |
| G    | 1075     | 47.32  | 10.48 | 100.5  | 0.489 | 0.049 | 39.1 | 76.8 | 27.41  | 1.07   |
|      |          |        |       |        |       |       |      |      |        |        |

| Н        | 1250    | 51.42 | 22.95 | 115.5     | 0.285 | 0.022 | 37.3 | 88.6  | 28.76 | 1.65 |
|----------|---------|-------|-------|-----------|-------|-------|------|-------|-------|------|
| I        | 1650    | 69.10 | 91.75 | 208.1     | 0.276 | 0.006 | 22.0 | 100.0 | 24.30 | 2.23 |
| isochro  | n age   |       |       |           |       |       |      |       | 28.25 | 1.81 |
| total ga | is age  |       | n=8   |           |       |       |      |       | 26.24 | 7.74 |
| weighte  | ed-mean | age   | n=8   | steps B-I |       |       |      |       | 27.56 | 0.66 |

### **P.2007.2,** A3:115, 21.38 mg wr, J=0.000804986±0.09%, D=1.00468±0.00093, NM-115, Lab#=50683-01

| LdD#-             | -20002-01 | -      |           |        |       |       |      |       |       |        |
|-------------------|-----------|--------|-----------|--------|-------|-------|------|-------|-------|--------|
| А                 | 625       | 1967.7 | 3.485     | 6644.3 | 0.103 | 0.15  | 0.2  | 1.7   | 6.73  | 109.86 |
| В                 | 700       | 372.5  | 4.879     | 1218.6 | 0.132 | 0.10  | 3.4  | 3.9   | 18.84 | 13.81  |
| С                 | 750       | 192.9  | 4.545     | 607.3  | 0.031 | 0.11  | 7.2  | 4.4   | 20.37 | 18.43  |
| D                 | 800       | 216.5  | 5.923     | 666.7  | 0.362 | 0.086 | 9.2  | 10.4  | 29.30 | 4.38   |
| Е                 | 875       | 101.7  | 6.641     | 277.6  | 0.521 | 0.077 | 19.9 | 19.1  | 29.72 | 2.11   |
| F                 | 975       | 35.14  | 4.641     | 56.84  | 1.68  | 0.11  | 53.3 | 46.9  | 27.46 | 0.54   |
| G                 | 1075      | 25.37  | 3.957     | 24.93  | 1.40  | 0.13  | 72.2 | 70.1  | 26.86 | 0.44   |
| Н                 | 1250      | 27.91  | 6.723     | 36.68  | 1.29  | 0.076 | 63.2 | 91.6  | 25.90 | 0.52   |
| I                 | 1650      | 42.31  | 55.95     | 104.3  | 0.509 | 0.009 | 38.1 | 100.0 | 24.79 | 1.25   |
| isoch             | ron age   |        |           |        |       |       |      |       | 26.51 | 0.85   |
| total gas age     |           |        | n=9       |        |       |       |      |       | 26.49 | 3.20   |
| weighted-mean age |           | n=9    | steps A-I |        |       |       |      | 26.73 | 1.19  |        |
|                   |           |        |           |        |       |       |      |       |       |        |

### **P.2962.1**, B2:115, 24.41mg wr, J=0.000809025±0.09%, D=1.00468±0.00093, NM-115, Lab#=50688-01

| Lab#=   | 20688-01 | <u>.</u> |       |           |       |       |      |       |       |        |
|---------|----------|----------|-------|-----------|-------|-------|------|-------|-------|--------|
| Α       | 625      | 3274.3   | 3.937 | 10967.9   | 0.102 | 0.13  | 1.0  | 2.2   | 49.21 | 225.96 |
| В       | 700      | 388.7    | 3.980 | 1258.5    | 0.124 | 0.13  | 4.4  | 4.9   | 25.23 | 16.59  |
| С       | 750      | 199.9    | 4.599 | 654.3     | 0.030 | 0.11  | 3.5  | 5.5   | 10.33 | 24.88  |
| D       | 800      | 316.9    | 5.997 | 999.3     | 0.311 | 0.085 | 7.0  | 12.2  | 32.53 | 7.13   |
| E       | 875      | 239.7    | 9.903 | 743.7     | 0.415 | 0.052 | 8.6  | 21.1  | 30.62 | 5.45   |
| F       | 975      | 70.47    | 10.99 | 179.9     | 1.24  | 0.046 | 25.8 | 47.8  | 26.98 | 0.99   |
| G       | 1075     | 31.10    | 7.357 | 47.26     | 1.05  | 0.069 | 57.1 | 70.4  | 26.22 | 0.49   |
| Н       | 1250     | 39.73    | 10.74 | 80.47     | 0.773 | 0.048 | 42.4 | 87.0  | 24.96 | 0.71   |
| I       | 1650     | 55.43    | 43.71 | 145.8     | 0.602 | 0.012 | 28.8 | 100.0 | 24.39 | 1.25   |
| isochr  | ron age  |          |       |           |       |       |      |       | 25.57 | 0.94   |
| total g | gas age  |          | n=9   |           |       |       |      |       | 27.17 | 7.22   |
| weigh   | ited-mea | n age    | n=9   | steps A-I |       |       |      |       | 25.90 | 1.30   |
|         |          |          |       |           |       |       |      |       |       |        |

### **P.2774.10B,** B1:115, 22.24mg wr, J=0.000809495±0.09%, D=1.00468±0.00093, NM-115, Lab#=50687-01

| 20001-01      | •                                                                                         |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 700           | 1288.5                                                                                    | 2.448                                                                                                                                                                                                                                            | 4279.9                                                                                                                                                                                                                                                                                                                                               | 0.132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 750           | 865.0                                                                                     | 1.811                                                                                                                                                                                                                                            | 2778.2                                                                                                                                                                                                                                                                                                                                               | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 64.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 174.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 800           | 578.7                                                                                     | 2.460                                                                                                                                                                                                                                            | 1875.3                                                                                                                                                                                                                                                                                                                                               | 0.856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 875           | 137.3                                                                                     | 2.624                                                                                                                                                                                                                                            | 396.9                                                                                                                                                                                                                                                                                                                                                | 1.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 975           | 47.44                                                                                     | 3.079                                                                                                                                                                                                                                            | 103.1                                                                                                                                                                                                                                                                                                                                                | 3.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1075          | 23.48                                                                                     | 2.768                                                                                                                                                                                                                                            | 22.47                                                                                                                                                                                                                                                                                                                                                | 1.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 71.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1250          | 22.76                                                                                     | 3.615                                                                                                                                                                                                                                            | 21.49                                                                                                                                                                                                                                                                                                                                                | 1.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 73.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 84.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1650          | 29.25                                                                                     | 11.92                                                                                                                                                                                                                                            | 47.81                                                                                                                                                                                                                                                                                                                                                | 1.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| on age        |                                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| total gas age |                                                                                           | n=8                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ted-mea       | n age                                                                                     | n=8                                                                                                                                                                                                                                              | steps B-I                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | 700<br>750<br>800<br>875<br>975<br>1075<br>1250<br>1650<br>ron age<br>gas age<br>ted-mean | 700       1288.5         750       865.0         800       578.7         875       137.3         975       47.44         1075       23.48         1250       22.76         1650       29.25         ron age         gas age         ted-mean age | 700       1288.5       2.448         750       865.0       1.811         800       578.7       2.460         875       137.3       2.624         975       47.44       3.079         1075       23.48       2.768         1250       22.76       3.615         1650       29.25       11.92         ron age       m=8         ted-mean age       n=8 | 700       1288.5       2.448       4279.9         750       865.0       1.811       2778.2         800       578.7       2.460       1875.3         875       137.3       2.624       396.9         975       47.44       3.079       103.1         1075       23.48       2.768       22.47         1250       22.76       3.615       21.49         1650       29.25       11.92       47.81         con age       gas age       n=8         ted-mean age       n=8       steps B-I | 700       1288.5       2.448       4279.9       0.132         750       865.0       1.811       2778.2       0.012         800       578.7       2.460       1875.3       0.856         875       137.3       2.624       396.9       1.32         975       47.44       3.079       103.1       3.71         1075       23.48       2.768       22.47       1.96         1250       22.76       3.615       21.49       1.44         1650       29.25       11.92       47.81       1.71         ron age       gas age       n=8         rted-mean age       n=8       steps B-I | 700       1288.5       2.448       4279.9       0.132       0.21         750       865.0       1.811       2778.2       0.012       0.28         800       578.7       2.460       1875.3       0.856       0.21         875       137.3       2.624       396.9       1.32       0.19         975       47.44       3.079       103.1       3.71       0.17         1075       23.48       2.768       22.47       1.96       0.18         1250       22.76       3.615       21.49       1.44       0.14         1650       29.25       11.92       47.81       1.71       0.043         con age       gas age       n=8         sted-mean age       n=8       steps B-I       5 | 700       1288.5       2.448       4279.9       0.132       0.21       1.9         750       865.0       1.811       2778.2       0.012       0.28       5.1         800       578.7       2.460       1875.3       0.856       0.21       4.3         875       137.3       2.624       396.9       1.32       0.19       14.8         975       47.44       3.079       103.1       3.71       0.17       36.3         1075       23.48       2.768       22.47       1.96       0.18       72.7         1250       22.76       3.615       21.49       1.44       0.14       73.4         1650       29.25       11.92       47.81       1.71       0.043       55.1         con age       gas age       n=8         red-mean age       n=8       steps B-I       5 | 700       1288.5       2.448       4279.9       0.132       0.21       1.9       1.2         750       865.0       1.811       2778.2       0.012       0.28       5.1       1.3         800       578.7       2.460       1875.3       0.856       0.21       4.3       9.0         875       137.3       2.624       396.9       1.32       0.19       14.8       20.9         975       47.44       3.079       103.1       3.71       0.17       36.3       54.1         1075       23.48       2.768       22.47       1.96       0.18       72.7       71.7         1250       22.76       3.615       21.49       1.44       0.14       73.4       84.6         1650       29.25       11.92       47.81       1.71       0.043       55.1       100.0         con age       gas age       n=8       steps B-I       steps B-I       164       1650       1650       1650       1650       1650       1650       1650       1650       1650       1650       1650       1650       1650       1650       1650       1650       1650       1650       1650       1650       1650       1650 <th>700       1288.5       2.448       4279.9       0.132       0.21       1.9       1.2       35.20         750       865.0       1.811       2778.2       0.012       0.28       5.1       1.3       64.32         800       578.7       2.460       1875.3       0.856       0.21       4.3       9.0       36.34         875       137.3       2.624       396.9       1.32       0.19       14.8       20.9       29.84         975       47.44       3.079       103.1       3.71       0.17       36.3       54.1       25.36         1075       23.48       2.768       22.47       1.96       0.18       72.7       71.7       25.14         1250       22.76       3.615       21.49       1.44       0.14       73.4       84.6       24.63         1650       29.25       11.92       47.81       1.71       0.043       55.1       100.0       23.92         con age       24.48         gas age       n=8       steps B-I       24.88</th> | 700       1288.5       2.448       4279.9       0.132       0.21       1.9       1.2       35.20         750       865.0       1.811       2778.2       0.012       0.28       5.1       1.3       64.32         800       578.7       2.460       1875.3       0.856       0.21       4.3       9.0       36.34         875       137.3       2.624       396.9       1.32       0.19       14.8       20.9       29.84         975       47.44       3.079       103.1       3.71       0.17       36.3       54.1       25.36         1075       23.48       2.768       22.47       1.96       0.18       72.7       71.7       25.14         1250       22.76       3.615       21.49       1.44       0.14       73.4       84.6       24.63         1650       29.25       11.92       47.81       1.71       0.043       55.1       100.0       23.92         con age       24.48         gas age       n=8       steps B-I       24.88 |

| Lab#=                 | 50686-01 |        | -     |           |       |       |      |       |       |       |
|-----------------------|----------|--------|-------|-----------|-------|-------|------|-------|-------|-------|
| А                     | 625      | 1412.0 | 2.552 | 4744.2    | 0.295 | 0.20  | 0.7  | 1.3   | 15.16 | 39.68 |
| В                     | 700      | 342.3  | 1.971 | 1106.3    | 0.492 | 0.26  | 4.5  | 3.4   | 22.86 | 6.81  |
| С                     | 750      | 99.97  | 1.886 | 269.4     | 0.097 | 0.27  | 20.5 | 3.8   | 30.11 | 5.28  |
| D                     | 800      | 77.73  | 1.927 | 201.5     | 2.11  | 0.26  | 23.6 | 12.9  | 26.94 | 0.99  |
| E                     | 875      | 31.35  | 2.322 | 48.47     | 3.39  | 0.22  | 54.9 | 27.5  | 25.32 | 0.33  |
| F                     | 975      | 19.63  | 2.064 | 7.408     | 5.52  | 0.25  | 89.7 | 51.2  | 25.89 | 0.13  |
| G                     | 1075     | 20.76  | 1.671 | 11.42     | 3.95  | 0.31  | 84.4 | 68.3  | 25.74 | 0.18  |
| Н                     | 1250     | 21.54  | 1.916 | 17.13     | 4.49  | 0.27  | 77.2 | 87.6  | 24.46 | 0.18  |
| I                     | 1650     | 30.30  | 8.114 | 48.82     | 2.89  | 0.063 | 54.6 | 100.0 | 24.47 | 0.37  |
| isochr                | on age   |        |       |           |       |       |      |       | 25.53 | 0.54  |
| total g               | as age   |        | n=9   |           |       |       |      |       | 25.24 | 0.96  |
| weighted-mean age n=9 |          |        | n=9   | steps A-I |       |       |      |       | 25.42 | 0.88  |

**P.2780.1,** A6:115, 28.96 mg wr, J=0.000808474±0.09%, D=1.00468±0.00093, NM-115, Lab#=50686-01

Smellie et al

**P.2800.1,** C1:115, 19.35 mg hbl, J=0.000815613±0.09%, D=1.00468±0.00093, NM-115, Lab#=50692-01

| Lau#- | -20032-01 | •      |       |           |       |       |      |       |        |        |
|-------|-----------|--------|-------|-----------|-------|-------|------|-------|--------|--------|
| Α     | 800       | 1539.9 | 2.194 | 5109.0    | 0.027 | 0.23  | 2.0  | 1.0   | 44.88  | 135.69 |
| В     | 850       | 427.0  | 1.713 | 1424.5    | 0.028 | 0.30  | 1.5  | 2.1   | 9.26   | 35.62  |
| С     | 950       | 349.6  | 3.478 | 949.8     | 0.008 | 0.15  | 19.8 | 2.4   | 100.62 | 73.18  |
| D     | 1020      | 179.8  | 6.339 | 544.1     | 0.020 | 0.080 | 10.9 | 3.2   | 29.03  | 23.32  |
| Е     | 1080      | 91.25  | 13.21 | 266.9     | 0.030 | 0.039 | 14.8 | 4.3   | 20.21  | 9.86   |
| F     | 1120      | 50.60  | 24.37 | 121.0     | 0.198 | 0.021 | 33.3 | 12.0  | 25.51  | 2.00   |
| G     | 1160      | 25.16  | 23.45 | 37.09     | 1.32  | 0.022 | 64.1 | 62.7  | 24.40  | 0.41   |
| Н     | 1200      | 19.89  | 15.10 | 18.18     | 0.489 | 0.034 | 79.3 | 81.5  | 23.67  | 0.62   |
| I     | 1300      | 22.97  | 19.15 | 29.94     | 0.382 | 0.027 | 68.4 | 96.2  | 23.66  | 0.91   |
| J     | 1400      | 62.18  | 29.47 | 172.5     | 0.069 | 0.017 | 21.9 | 98.8  | 20.77  | 4.33   |
| К     | 1650      | 321.3  | 17.36 | 1059.2    | 0.030 | 0.029 | 3.0  | 100.0 | 14.63  | 32.03  |
| isoch | ron age   |        |       |           |       |       |      |       | 23.98  | 0.54   |
| total | gas age   |        | n=11  |           |       |       |      |       | 24.30  | 3.43   |
| weigł | nted-mea  | n age  | n=11  | steps A-K |       |       |      |       | 24.09  | 0.31   |
|       |           |        |       |           |       |       |      | -     |        |        |

**P.2801.4,** A4:115, 19.41 mg wr, J=0.000807091±0.09%, D=1.00468±0.00093, NM-115, Lab#=50684-01

| А     | 625       | 596.5 | 2.888 | 1971.5    | 0.069 | 0.18  | 2.4  | 0.6   | 20.85 | 38.75 |
|-------|-----------|-------|-------|-----------|-------|-------|------|-------|-------|-------|
| В     | 700       | 78.36 | 2.210 | 204.6     | 0.187 | 0.23  | 23.1 | 2.2   | 26.56 | 2.80  |
| С     | 750       | 35.16 | 2.148 | 58.24     | 0.074 | 0.24  | 51.6 | 2.8   | 26.59 | 3.76  |
| D     | 800       | 31.87 | 2.159 | 48.10     | 1.20  | 0.24  | 56.0 | 13.2  | 26.17 | 0.53  |
| E     | 875       | 20.36 | 2.438 | 11.50     | 2.02  | 0.21  | 84.3 | 30.6  | 25.19 | 0.27  |
| F     | 975       | 18.01 | 2.159 | 3.672     | 3.41  | 0.24  | 95.0 | 59.9  | 25.11 | 0.16  |
| G     | 1075      | 18.35 | 2.036 | 4.170     | 1.93  | 0.25  | 94.2 | 76.4  | 25.36 | 0.21  |
| Н     | 1250      | 21.07 | 3.245 | 16.00     | 1.60  | 0.16  | 78.8 | 90.2  | 24.40 | 0.32  |
| I     | 1650      | 34.43 | 11.80 | 67.47     | 1.15  | 0.043 | 44.9 | 100.0 | 22.92 | 0.57  |
| isoch | ron age   |       |       |           |       |       |      |       | 25.19 | 0.40  |
| total | gas age   |       | n=9   |           |       |       |      |       | 24.97 | 0.58  |
| weigl | hted-mean | n age | n=9   | steps A-I |       |       |      |       | 25.08 | 0.73  |
|       |           |       |       |           |       |       |      |       |       |       |

| P.2797 | <b>7.6A,</b> B4:1 | 115, 20.38 n | ng wr, J=0.000 | 810745±0.09 | %, D=1.004 | 468±0.00 | 093, NM | -115, |       |      |
|--------|-------------------|--------------|----------------|-------------|------------|----------|---------|-------|-------|------|
| Lab#=  | 50690-01          |              |                |             |            |          |         |       |       |      |
| А      | 625               | 201.4        | 1.743          | 641.7       | 0.127      | 0.29     | 5.9     | 0.9   | 17.63 | 6.72 |

| В                 | 700  | 70.77 | 1.737 | 180.1     | 0.235 | 0.29 | 25.0 | 2.6   | 26.06 | 2.32 |
|-------------------|------|-------|-------|-----------|-------|------|------|-------|-------|------|
| С                 | 750  | 34.97 | 1.721 | 54.00     | 0.110 | 0.30 | 54.8 | 3.5   | 28.21 | 2.37 |
| D                 | 800  | 32.06 | 1.804 | 47.23     | 1.55  | 0.28 | 56.9 | 14.8  | 26.89 | 0.42 |
| E                 | 875  | 23.29 | 2.598 | 19.20     | 2.03  | 0.20 | 76.6 | 29.7  | 26.29 | 0.29 |
| F                 | 975  | 23.89 | 3.526 | 23.31     | 1.69  | 0.14 | 72.4 | 42.0  | 25.52 | 0.31 |
| G                 | 1075 | 28.07 | 2.935 | 38.22     | 1.40  | 0.17 | 60.6 | 52.3  | 25.11 | 0.41 |
| Н                 | 1250 | 32.03 | 2.095 | 53.74     | 4.53  | 0.24 | 51.0 | 85.4  | 24.07 | 0.32 |
| I                 | 1650 | 33.99 | 4.435 | 64.11     | 1.99  | 0.12 | 45.3 | 100.0 | 22.78 | 0.43 |
| isochron age      |      |       |       |           |       |      |      |       | 26.29 | 1.49 |
| total gas age n=9 |      |       | n=9   |           |       |      |      |       | 24.82 | 0.46 |
| weighted-mean age |      |       | n=9   | steps A-I |       |      |      |       | 25.25 | 1.75 |

**P.2797.6B**, A2:115, 21.67 mg wr, J=0.000804625±0.09%, D=1.00468±0.00093, NM-115, Lab#=50682-01

Smellie et al

| Lab#-             | -00002-01 |       |        |           |       |       |      |       |       |      |
|-------------------|-----------|-------|--------|-----------|-------|-------|------|-------|-------|------|
| Α                 | 625       | 64.23 | 1.147  | 179.7     | 0.224 | 0.44  | 17.5 | 1.3   | 16.43 | 3.00 |
| В                 | 700       | 29.70 | 1.070  | 44.24     | 0.582 | 0.48  | 56.3 | 4.8   | 24.43 | 0.95 |
| С                 | 750       | 22.90 | 0.9509 | 11.98     | 0.252 | 0.54  | 84.9 | 6.3   | 28.38 | 1.19 |
| D                 | 800       | 21.23 | 1.121  | 11.32     | 2.07  | 0.46  | 84.7 | 18.5  | 26.27 | 0.26 |
| E                 | 875       | 19.23 | 1.785  | 8.209     | 2.64  | 0.29  | 88.2 | 34.2  | 24.80 | 0.23 |
| F                 | 975       | 18.64 | 2.453  | 4.535     | 3.21  | 0.21  | 93.9 | 53.2  | 25.62 | 0.17 |
| G                 | 1075      | 20.59 | 2.342  | 13.70     | 1.99  | 0.22  | 81.3 | 65.0  | 24.50 | 0.26 |
| Н                 | 1250      | 26.17 | 2.250  | 34.51     | 3.93  | 0.23  | 61.7 | 88.3  | 23.66 | 0.24 |
| I                 | 1650      | 37.58 | 5.798  | 75.79     | 1.97  | 0.088 | 41.7 | 100.0 | 23.00 | 0.51 |
| isochron age      |           |       |        |           |       |       |      |       | 25.66 | 0.59 |
| total gas age     |           |       | n=9    |           |       |       |      |       | 24.55 | 0.34 |
| weighted-mean age |           |       | n=9    | steps A-I |       |       |      |       | 24.99 | 1.38 |

## **P.2797.10,** B5:115, 22.18 mg wr, J=0.000811215±0.09%, D=1.00468±0.00093, NM-115, Lab#=50691-01

| Lab#-             | -20021-01 |       |           |       |       |       |      |       |       |      |
|-------------------|-----------|-------|-----------|-------|-------|-------|------|-------|-------|------|
| А                 | 625       | 122.8 | 1.204     | 358.1 | 0.096 | 0.42  | 13.9 | 0.6   | 25.15 | 5.69 |
| В                 | 700       | 40.29 | 1.296     | 80.67 | 0.385 | 0.39  | 41.1 | 3.0   | 24.42 | 1.20 |
| С                 | 750       | 26.00 | 1.470     | 26.58 | 0.156 | 0.35  | 70.3 | 3.9   | 26.92 | 1.54 |
| D                 | 800       | 24.67 | 1.555     | 22.30 | 2.20  | 0.33  | 73.8 | 17.5  | 26.84 | 0.28 |
| Е                 | 875       | 20.11 | 1.995     | 9.365 | 2.74  | 0.26  | 87.1 | 34.3  | 25.82 | 0.21 |
| F                 | 975       | 20.67 | 2.297     | 12.33 | 2.86  | 0.22  | 83.3 | 51.9  | 25.40 | 0.19 |
| G                 | 1075      | 27.82 | 2.354     | 38.79 | 1.65  | 0.22  | 59.5 | 62.0  | 24.43 | 0.35 |
| Н                 | 1250      | 38.34 | 2.198     | 75.56 | 4.82  | 0.23  | 42.2 | 91.6  | 23.90 | 0.32 |
| I                 | 1650      | 51.38 | 7.195     | 127.9 | 1.36  | 0.071 | 27.6 | 100.0 | 21.04 | 0.66 |
| isochron age      |           |       |           |       |       |       |      | 26.13 | 0.66  |      |
| total gas age n=9 |           | n=9   |           |       |       |       |      | 24.75 | 0.37  |      |
| weighted-mean age |           | n=9   | steps A-I |       |       |       |      | 25.34 | 1.54  |      |
|                   |           |       |           |       |       |       |      | L     |       |      |

**Table S2-2.** Summary of new  ${}^{40}$ Ar/ ${}^{39}$ Ar step heating data for samples analysed by Leeds University; J-value = 0.00592; n = number of heating steps used to calculate plateau age.

| Sample                               | Temp            | <sup>40</sup> Ar/ <sup>39</sup> Ar | <sup>37</sup> Ar/ <sup>39</sup> Aı | r <sup>36</sup> Ar/ <sup>39</sup> Aı | r <sup>39</sup> Ar <sub>κ</sub> | K/Ca   | <sup>40</sup> Ar* | <sup>39</sup> Ar | Age   | ±2s  |
|--------------------------------------|-----------------|------------------------------------|------------------------------------|--------------------------------------|---------------------------------|--------|-------------------|------------------|-------|------|
|                                      | (°C)            |                                    |                                    | (x 10 <sup>-3</sup> )                | ) (x 10 <sup>-15</sup>          | mol/g) | (%)               | (%)              | (Ma)  | (Ma) |
| P2788.6                              | 88.6 whole rock |                                    |                                    |                                      |                                 |        |                   |                  |       |      |
|                                      | 535             | 0.63                               | 9.20                               | 8.60                                 | 282.8                           | 0.054  | 99.1              | 3.7              | 9.8   | 16.1 |
|                                      | 635             | 2.24                               | 3.77                               | 837.4                                | 870.9                           | 0.135  | 77.7              | 15.4             | 24.6  | 3.5  |
|                                      | 700             | 2.60                               | 2.50                               | 279.7                                | 814.4                           | 0.200  | 90.7              | 26.4             | 27.9  | 4.5  |
|                                      | 765             | 2.35                               | 3.42                               | 982.0                                | 825.7                           | 0.145  | 73.8              | 37.5             | 25.6  | 5.4  |
|                                      | 820             | ) 2.82                             | 4.78                               | 1756.8                               | 1017.9                          | 0.105  | 66                | 51.2             | 29.9  | 2.5  |
|                                      | 880             | 2.59                               | 6.62                               | 944.6                                | 837.0                           | 0.075  | 74.8              | 62.5             | 27.8  | 4.6  |
|                                      | 950             | 2.23                               | 7.18                               | 1178.1                               | 882.2                           | 0.070  | 71.5              | 74.4             | 24.5  | 3.9  |
|                                      | 1015            | 2.39                               | 8.97                               | 814.3                                | 882.2                           | 0.056  | 78.4              | 86.2             | 26.0  | 3.7  |
|                                      | 1100            | 3.84                               | 12.0                               | 1056.9                               | 667.3                           | 0.042  | 67.9              | 95.2             | 39.1  | 6.1  |
|                                      | 1285            | 5 13.1                             | 50.0                               | 321.7                                | 350.6                           | 0.010  | 78.5              | 100              | 121.1 | 8.8  |
| total gas a                          | ge              |                                    | n= 10                              |                                      |                                 |        |                   |                  | 31.6  | 1.6  |
| weighted-mean age n = 10             |                 | n = 10                             |                                    |                                      |                                 |        |                   | 27.0             | 5.0   |      |
| Plateau age (82.5% 39Ar; MSWD = 1.6) |                 |                                    | ) = 1.6)                           | Steps B-H                            |                                 |        |                   |                  | 27.1  | 1.4  |
|                                      |                 |                                    |                                    |                                      |                                 |        |                   |                  |       |      |

## Figure S2-1. Age spectra and isochron plots for King George Island samples



























Smellie et al Oligocene-Miocene sequences on eastern King George Island Antarctic Science