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Methods 

 

 The primary methods used in this manuscript are associated with (1) the calibration of 

orbital WorldView-2 and WorldView-3 (WV2 and WV3, respectively) data to surface 

reflectance and the derivation of spectral parameters, and (2) the use of linear spectral unmixing 

techniques to estimate the contribution of different spectral endmembers to the observed spectral 

signature.  Both of these techniques are described in more detail below.  In addition, Figure S1 

shows a flowchart of the methods used in this work to help orient the reader to the steps that are 

necessary to derive our results. 

 

Dark Object Subtraction and Regression (DOS-R) Atmospheric Correction 

 The Dark Object Subtraction and Regression (DOS-R) atmospheric correction technique 

is, at the moment, the most robust atmospheric correction technique that can be performed on 

images in the absence of ground validation or synoptic atmospheric measurements.  In the 

absence of regular atmospheric observations, scene-derived atmospheric correction is most 

feasible in the McMurdo Dry Valleys (MDV), where atmospheric conditions are known to 

change on short timescales and weather forecasting is near impossible (Doran et al. 2002).  In 

addition, even if atmospheric characterization in the MDV were possible, the long solar path 

lengths through the atmosphere due to the high latitudes in the MDV create additional problems 

in trying to remove atmospheric effects.  As a result, scene-derived atmospheric correction is 

most appropriate for the MDV. 

 Dark Object Subtraction (DOS) (and minor improvements to this technique) is one of the 

most common methods of atmospheric correction used globally with multispectral remote 

sensing data (e.g., Chavez 1988).  The traditional DOS technique uses the darkest observed 

pixels (typically shadowed water) and removes that spectrum directly from all other pixels in the 

scene through simple subtraction.  The spectral signature from shadowed deep water consists 

almost entirely of contributions from atmospheric scattering, which is why this technique is an 

effective means of atmospheric removal.  In the MDV, however, where deep water is oftentimes 

not a part of the scene, the darkest pixels are typically shadowed areas of interesting geologic 

units.  These geologic units exhibit their own unique spectral signatures, and so removing this 

spectrum from every other pixel in the scene can result in overprinting each pixel with spectral 

contributions from geologic surfaces.  For this reason, traditional DOS techniques are not 

appropriate for regions like the MDV where ideal pixels for atmospheric removal do not exist. 

 Instead, the DOS-R technique uses shadowed regions to predict the atmospheric spectrum 

regardless of the nature of the shadowed surface.  This technique uses surface radiance spectra 

from a landscape under differing illumination conditions (e.g., a hillslope).  By varying the 

intensity of solar illumination across a geologically homogeneous surface, it is possible to 

observe how each spectral band varies as a function of solar illumination.  Assuming that the 

longest wavelength spectral band is not significantly influenced by Rayleigh scattering within the 

atmosphere, it is then possible to determine the relationship between the last spectral band and 

every other spectral band and to derive a mathematical regression to predict values for each 

spectral band where solar illumination is equal to zero.  Figure S2 demonstrates these regression 

lines from Salvatore et al. (2014).  Where the regression predicts that the longest wavelength 

band has a radiance value equal to zero, it is assumed that solar illumination is also equal to zero 

and, in the absence of atmospheric scattering at this longest wavelength, any predicted value in 

other bands is the result of atmospheric scattering.  These predicted values are then subtracted 



from all pixels within the image.  In this study, we used at least four locations within each image 

to derive an average atmospheric scattering spectrum that was then removed from each pixel. 

 Three primary assumptions are made when using the DOS-R atmospheric correction 

method.  First, top-of-atmosphere radiance values must be collected from a region that exhibits 

significant differences in solar illumination (e.g., topographic slopes) but one that is assumed to 

be compositionally homogeneous.  Compositional homogeneity is required to ensure that any 

observed spectral variation is due to variations in solar illumination and not the result of 

differences in surface composition.  Second, it is assumed that atmospheric scattering is 

negligible in the longest wavelength band of the orbital data (~0.91 µm).  Through this 

assumption, it is possible to fit regressions between the longest wavelength band and all other 

spectral band to derive the synthetic radiance values where the radiance in the last band is equal 

to zero.  These synthetic radiance values then serve as a prediction of the atmospheric radiance at 

each wavelength.  Rayleigh theory predicts that atmospheric scattering at 0.91 µm is 

approximately 1.1% of downwelling radiance, which suggests that our assumption is not 

perfectly satisfied.  Nonetheless, a 1.1% error in atmospheric correction is well within the limits 

of our remote sensing and spectral characterization capabilities.  The final assumption is that 

contributions from the atmosphere are uniform across the entire scene.  This assumption allows 

us to remove a single synthetic atmospheric spectrum from the entire scene.  Once subtracted 

from each band, the resultant image then represents derived surface radiance, which can be 

further calibrated to surface reflectance. 

 

Linear Spectral Unmixing 

 We utilize the linear least-squares spectral unmixing algorithm developed by Ramsey & 

Christensen (1998).  Similar linear unmixing algorithms have been previously used for 

identifying the fraction of surface endmembers using visible/near-infrared (VNIR) datasets (e.g., 

Adams et al. 1995, and references therein).  These techniques are rooted in the same fundamental 

principle that observed spectra can be modeled using a linear combination of provided library 

endmembers.  The model used here linearly combines the provided library endmembers to 

minimize the total spectral offset between the measured and modeled spectra.  Our selection of 

library endmembers is explained in detail in the main manuscript text.  

 The linear unmixing model used in our analyses utilizes two important constraints 

(Ramsey & Christensen 1998).  First, while spectra can be modeled at negative abundances in 

each pixel, negative values are interpreted to indicate their absence from the spectrum.  Second, 

we utilize a unity constraint in our unmixing model, which requires the model to sum to 100% 

abundances.  The result of the unmixing model is an image cube containing 6 bands, five bands 

corresponding to the modeled percentages of each spectral endmember and one corresponding to 

the calculated root mean square (RMS) error indicating the “goodness of fit” of the model to the 

input spectrum.  A good model fit does not necessarily indicate an accurate modeled surface 

composition, but instead that the spectral shape can be accurately determine using the provided 

endmembers. 

 The primary reason why good model fits cannot be directly related to areal surface 

abundance is because of the non-linear properties of VNIR reflectance data.  In the thermal 

infrared (TIR), where linear spectral unmixing models are commonly used, the absorption 

coefficients of most geologically relevant materials are substantially higher than in the VNIR 

spectral region.  This dictates that observed radiation is sourced from interactions with only the 

uppermost surface and not from underlying materials.  As a result, the observed spectrum is 



representative of the areal mixture of endmembers in the scene and can, therefore, be linearly 

unmixed.  At VNIR wavelengths where absorption coefficients are low relative to in the TIR, 

radiation is able to interact with materials below the uppermost surface as a result of increased 

refraction and scattering.  Take a mixture of cinnamon and refined sugar as an example.  

Mixtures of 50% cinnamon and 50% sugar appear to be dominated by the cinnamon component, 

as cinnamon has a much higher absorption coefficient relative to refined sugar.  The result is that 

radiation is able to non-linearly pass through the sugar to observe the underlying cinnamon, 

resulting in a darker appearance than the even 50%-50% mixture would suggest. 

 Fortunately, where care is taken to select optically opaque endmembers, it can generally 

be assumed that linear unmixing provides a first-order approximation of the relative areal 

abundance of the different endmembers.  For example, our endmember library consists of a black 

microbial mat spectrum and two soil spectra.  These spectral components are relatively opaque 

and, where mats are widespread across the surface, are typically optically thick.  These 

assumptions allow us to use our unmixing model results to make first-order estimates of surface 

abundances.  While certainly not a perfect assumption in all locations (e.g., where thin 

photosynthetic films overly geologic materials, or potentially where photosynthetic microbial 

materials are intimately mixed with soils outside of stream channels), we are applying this 

assumption to the majority of surfaces observed in the Fryxell basin for the purposes of this 

investigation. 

 The requirement for optically opaque endmembers is why water was not included in our 

endmember library.  Unless the water is optically thick (e.g., greater than several meters), 

shallow water has nonlinear influences on the observed spectral signature.  For example, when 

viewed from above, clear water that is only a few centimeters deep more closely resembles the 

substrate than it does optically thick water.  Fortunately, shallow water is not completely 

transparent and it has significant wavelength-dependent influences on the observed spectral 

signatures.  As water becomes progressively deeper, it preferentially absorbs radiation starting 

with the longest wavelengths and encroaching into the shorter visible wavelengths.  Therefore, 

the resultant spectral signature varies when water is present at variable depths.  The influences of 

steadily increasing water depth also result in progressively poorer fits between the observed 

spectra and the resultant unmixing models, which can be observed as increases in RMS error.  It 

is possible, therefore, to identify where water of spectrally significant depth is present in an 

unmixed scene by identifying the areas within stream channels and lakes with the greatest RMS 

error. 

 RMS error is not only a valuable indicator of where the best-fit model does not 

appropriately match the measured spectrum.  It also provides useful information regarding which 

spectral endmembers have been erroneously (or purposefully) omitted from the unmixing model.  

In the preceding paragraph, we described how the influence of liquid water can increase the 

RMS error in the model results.  This is because liquid water at all depths and with all relevant 

substrates cannot be reasonably included in our unmixing model.  Similarly high RMS errors can 

be observed in areas with snow or ice, which were not modeled in our unmixing efforts because 

they were not of interest for the purposes of our investigation.  As a result, the high RMS errors 

associated with these areas indicate that an important spectral endmember is missing, resulting in 

poor model fits. 

 

Selection of Spectral Endmembers 



 Our five spectral endmembers were carefully selected for their utility in this 

investigation.  These five endmembers were (1) healthy black microbial mat, (2) representative 

soil from Taylor Valley measured using a field spectrometer, (3) a representative scene-derived 

soil spectrum from within Taylor Valley, (4) a “dark” endmember that exhibits 0% reflectance at 

all wavelengths, and (5) a “bright” endmember that exhibits 100% reflectance at all wavelengths. 

 Black mats were the only microbial communities included in our endmember library for 

several reasons.  Black mats are, by far, the most spatially and areally extensive microbial 

community in and near the ephemeral stream channels in the Fryxell basin (Alger et al. 1997; 

Kohler et al. 2015).  For this reason, black mat spectra were the only data collected in previous 

efforts to spectrally characterize microbial communities from orbit and, therefore, were the only 

microbial mat spectral data available to the authors at the time of writing this manuscript.  

Subsequent field work and spectral characterization is ongoing to identify and characterize the 

full range of microbial and moss communities throughout the Fryxell basin for more 

comprehensive spectral investigations (e.g., Borges et al. 2019).  Nonetheless, the predictable 

spectral nature of photosynthetic materials and the broad utility of the NDVI parameter allow for 

us to identify the presence of photosynthetic communities to a first order.  

 This black mat spectrum was acquired by collaborator Dr. Joseph Levy (Colgate 

University) using a contact probe attachment for an Analytical Spectral Devices (ASD) 

FieldSpec4 field spectrometer, which uses artificial illumination for better signal in the region of 

water and atmospheric absorption bands.  The spectrometer was calibrated using a Spectralon 

white reference and standard techniques to derive surface reflectance.  The mat was collected 

from Taylor Valley and shipped frozen back to the United States, where it was thawed and 

rehydrated for analyses including spectral data acquisition.  The spectrum consists of a stack of 

ten spectral scans and was then downsampled to WV2 and WV3 spectral resolutions using 

instrument bandpass filters.  The representative Taylor Valley soil was measured using the same 

FieldSpec4 field spectrometer, although it was measured under direct solar illumination using its 

bare fiber optic cable and not using the contact probe attachment.  Similar white reference 

calibration, spectral stacking, and mathematical downsampling was employed as for the black 

mat spectrum.  This soil spectrum is described in further detail in Levy et al. (2014). 
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Table and Figure Captions 
 

Figure S1: A flow chart detailing the methods used in this manuscript.  Black rounded boxes 

indicate generated products, while gray rectangles indicate procedures, processes, or additional 

input data derived from other sources.  References are superscripted and correspond to the 

following: 
A
Image metadata provided by DigitalGlobe, Inc., and the Polar Geospatial Center. 

B
Salvatore et al. (2014) 

C
Salvatore (2015) 

D
Chander et al. (2009) 

E
Updike & Comp (2010) 

F
Ramsey & Christensen (1998) 

G
Input endmembers are derived either from scene-derived spectra or laboratory spectra that are 

downsampled to WV2 or WV3 resolutions. 

 

Figure S2: Dark object subtraction and regression (DOS-R) scatterplots derived for Advanced 

Land Imager (ALI) data over the McMurdo Dry Valleys of Antarctica.  From Salvatore et al. 

(2014), Figure 4c.  Fitting linear regressions to these spectral data relative to the reflectance 

observed in the last band can be used to derive radiance associated with atmospheric scattering 

within the image and can then be removed from each pixel through simple subtraction. 
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