
Supplemental Materials: Description of Model

The model predicts η(x, y, t), the ice-shelf’s vertical displacement field, in response to F (x, y, t), a specified
surface load, using the following equations:
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where x, y, and t are horizontal spatial coordinates and time, respectively, g is the acceleration of gravity,
ρsw is the density of sea water, M is a vector of bending moment components (see below), Φ is a temporary
vector-valued variable defined by the third of the above equations, H is a vector containing the components
of displacement curvature, and D−1 and V−1 represent elastic and viscous material property operators,
respectively:
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where E is the Young modulus, µ is the Poisson ratio, H is ice thickness and ν is the Newtonian viscosity.
Modifying the above treatment of viscoelastic ice-shelf flexure to account for the non-Newtonian creep

behavior of ice presents a challenge. According to the above treatment, horizontal strain and strain rate
components vary linearly with vertical distance through the ice shelf. Under the assumption of linear elas-
ticity and viscous flow, this implies that variation of horizontal stress components within the ice shelf (i.e.,
Txx, Tyy and Txy = Tyx) is also linear in vertical distance through the ice shelf. With Glen’s flow law, the
assumed linear variation of horizontal strain rates with vertical distance then implies that stress varies non-
linearly. This may seem like an insurmountable dilemma. Its resolution, however, comes from the thin-plate
assumption. According to the assumption, the bending moment M and η are the principle variables of the
problem. We thus proceed with the analysis of viscoelastic creep flexure by eliminating stress as a variable
in favor of the bending moment M.

Glen’s law is expressed using a viscosity ν that is a function of the second invariant of the strain rate
tensor ė:

T ′ij = 2νėij (7)

where T′ is the deviatoric stress tensor. The viscosity is a function of the second invariant of the strain rate
ėII :
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where B(ζ) is the flow rate constant, n is the flow-law exponent, and

ė2II = ė2xx + ė2yy + ėxxėyy + ė2xy (9)
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Adhering to the simplification associated with the thin-plate approximation, and taking B(ζ) = B̄ to be a
constant, where ζ is the vertical distance coordinate taken to be zero at the ice-shelf’s mid plane (alternative
expressions when B is a function of ζ require evaluation of an integral), we obtain the relation between M
and the time-derivative of H:  Mxx
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where, the effective viscosity, ν̄, is
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With the definition for M given by eqn. (10) substituted into eqn. (1), the expression for V becomes:
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which reduces to the expression for constant viscosity given when n = 1.
The viscoelastic flexure problem considered in this study is axisymmetric and thus uses polar coordinates

r and θ instead of x and y. The study further assumes that θ derivatives of η are zero, thus rendering η a
function of r and t only. The expressions given above in Cartesian coordinates reduce to the following:
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in the case of constant viscosity. Treatment of Glen’s law requires,
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