Supplemental Materials: Description of Model

The model predicts 7(x, y, t), the ice-shelf’s vertical displacement field, in response to F'(z, y, t), a specified
surface load, using the following equations:
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where x, y, and ¢ are horizontal spatial coordinates and time, respectively, g is the acceleration of gravity,
psw 18 the density of sea water, M is a vector of bending moment components (see below), ® is a temporary
vector-valued variable defined by the third of the above equations, H is a vector containing the components
of displacement curvature, and D~! and V! represent elastic and viscous material property operators,
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where E is the Young modulus, p is the Poisson ratio, H is ice thickness and v is the Newtonian viscosity.

Modifying the above treatment of viscoelastic ice-shelf flexure to account for the non-Newtonian creep
behavior of ice presents a challenge. According to the above treatment, horizontal strain and strain rate
components vary linearly with vertical distance through the ice shelf. Under the assumption of linear elas-
ticity and viscous flow, this implies that variation of horizontal stress components within the ice shelf (i.e.,
Tyz, Tyy and Ty = T);) is also linear in vertical distance through the ice shelf. With Glen’s flow law, the
assumed linear variation of horizontal strain rates with vertical distance then implies that stress varies non-
linearly. This may seem like an insurmountable dilemma. Its resolution, however, comes from the thin-plate
assumption. According to the assumption, the bending moment M and 7 are the principle variables of the
problem. We thus proceed with the analysis of viscoelastic creep flexure by eliminating stress as a variable
in favor of the bending moment M.

Glen’s law is expressed using a viscosity v that is a function of the second invariant of the strain rate
tensor é:

where T' is the deviatoric stress tensor. The viscosity is a function of the second invariant of the strain rate
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where B(() is the flow rate constant, n is the flow-law exponent, and
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Adhering to the simplification associated with the thin-plate approximation, and taking B(¢) = B to be a
constant, where ( is the vertical distance coordinate taken to be zero at the ice-shelf’s mid plane (alternative
expressions when B is a function of { require evaluation of an integral), we obtain the relation between M
and the time-derivative of H:
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With the definition for M given by eqn. (10) substituted into eqn. (1), the expression for V becomes:
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which reduces to the expression for constant viscosity given when n = 1.

The viscoelastic flexure problem considered in this study is axisymmetric and thus uses polar coordinates
r and 0 instead of x and y. The study further assumes that 6 derivatives of 7) are zero, thus rendering 7 a
function of r and ¢ only. The expressions given above in Cartesian coordinates reduce to the following:
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in the case of constant viscosity. Treatment of Glen’s law requires,
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