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Appendix A: Process transductions

1
Graph models of separated and bundled representations – such as those in
(14) and (13) – are defined over model signatures, zs and zb respectively.
These signatures comprise the relations and functions which define label
nodes (features) and edges (association, dominance and immediate successor)
in each model.

Preliminaries

(51) zs={PS, PT, Pc, P+u, P—u, Ph, Pl ; a, d, s}
zb={PS, P+u, P—u, Ph, Pl ; a, d, s}

I define two QF predicate logical languages, Ls and Lb, from these signatures.
Such a logical language contains atomic predicates of the form P(t) for each
unary relation in the signature, which is true when a term t is in that relation
for a given interpretation. Terms are either members x of a set of variables
(which are assigned to a value in a domain D) or any of the unary functions!–
a, d, s – applied to a term. Atomic predicates of unary functions are of the
form f(t) ª t, where ª denotes a special identity relation; thus these predicates
are true when the two terms denote the same value.

Each of these predicates is a well-formed formula (WFF) in the logical
language. We may recurse over the atomic predicates to define the full set
of WFFs in each logical language using Boolean connectives (negation ~,
conjunction W, disjunction V and material implication √). For WFFs j and
y, we also have the WFFs ~j, j W y, j V y and j √ y. For example, Pl(x)
V Ph(x) is a WFF in Ls and Lb, as is a(s(x)) ª y.

Mappings from input to output are defined as logical transductions,
denoted t. These are logical interpretations of an output signature (com-
prising unary relations and functions) in the logical language of the input
signature. Crucially, we may allow transductions which are interpreta-
tions!over a finite ordered copy set C={1, …, n}. A set of formulae of the
form Pc(x) are defined with one free variable (x) for each unary relation in
the output signature and for copy c M C. Similarly, formulae of the form
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(52) lst(x)=s(x) ª xa. c.

fn,m(x) ª y are defined with two free variables (x and y) for all unary functions
in the output signature and for all logically possible pairings of copies n, m
M C. Thus, for a copy set of size two, the number of formulae for each
function matches the four possible pairings of {1,1}, {1,2}, {2,1} and {2,2}.

The semantics of these transductions follows Engelfriet & Hoogeboom
(2001). Given an input graph model M defined over an input signature zI
and a domain of elements D, the output t(M) is a graph model M¢ over an
output signature zO and a domain of elements D¢. For each element in the
input domain D, there is a corresponding output element in D¢ for a given
copy c which belongs to a unary relation in zO provided that the following
conditions are met: the input model satisfies the logical formula Pc(x) for
an assignment of x to a domain element d, it does so for exactly one unary
relation in the output signature, and it does so for exactly one copy c M C.

I define the following set of auxiliary relations. The first identifies the
final string position on a tier (i.e. the position which is its own successor),
the second identifies the penultimate string position on a tier. The third is
a general ‘register node’ relation (i.e. labelled either +u or —u), and the
fourth is a general ‘terminal tonal node’ relation (i.e. labelled either h or l).

Pr(x)=P+u(x) V P—u(x)
d.pnlt(x)=s(x) ª lst(x)b. Pt(x)=Ph(x) V Pl(x)

This definition preserves the following input labels via identity, i.e. definitions
of the form P1(x)=P(x) for unary relations: syllable nodes, T root nodes,
c contour nodes and terminal tonal nodes labelled h and l. The definitions
of P+u and P—u preserve labels on the final register node only (and therefore
penultimate register nodes are unlabelled). Association (a1,1(x) ª y) and
successor (s1,1(x) ª y) functions maintain input specifications, as these edges
do not vary between input and output.

2
tps denotes a transduction over a separated representation model signature,
and models register assimilation in Pingyao. It is defined over a copy set of
size one. A brief explanation of this definition and how it is satisfied by the
graph mapping in (22) is provided in (53).

Pingyao: separated model

(53) PS
PT(x)=PT(x) 1

P c(x)=Pc(x)1

Ph(x)=Ph(x)
P l(x)=Pl(x)P+u(x)=P+u(x) W lst(x)1

P—u(x)=P—u(x) W lst(x)
a1,1(x) ª y=a(x) ª y
d1,1(x) ª y=(Pt(x) W Pc(y) W d(x) ª y) V (Pc(x) W PT(y) W d(x) ª y) V

(Pr(x) W PT(y) W lst(x) W d(x) ª y) V (Pr(x) W PT(y) W lst(x) W
d(x)!ª!s(y))

s1,1(x) ª y=s(x) ª y

1

(x)=PS(x)1

1
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The definition of output d edges over graph structures crucially modifies
input edges and thus models the assimilatory pattern. It does so in the
following way. The first two disjuncts of the d1,1(x) ª y definition evaluate
to true for graph structures maintaining input d edges between tonal terminal
nodes and c nodes as well as between c and T nodes. Disjunct three preserves
dominance between the final register node and its tautosyllabic T node
(guaranteed by the conjunct d(x) ª y), and the final disjunct defines domi-
nance between the final register node and a T node whose successor shares
a d edge with that node in the input (d(x) ª s(y)); that is, the penultimate
T root.

An output graph structure which satisfies this definition is therefore one
for which all nodes and edges are preserved from the input, with the exception
of an additional d edge between the final register node and penultimate T
root node. The mapping in (22) (repeated as (54)) represents such a structure.

(54)

3
tpb denotes a transduction over a bundled representation model signature,
and models register assimilation in Pingyao. It is defined over a copy set of
size two. Formulae defined as F (‘False’) below and in subsequent definitions
indicate no labels/edges in the output structure for the given unary rela-
tion/function and copy.

Pingyao: bundled model

(55)

s1,1(x) ª y=s(x) ª y

1

PS

1Ph(x)=Ph(x)
P l(x)=Pl(x)

P+u(x)=P+u(x) W lst(x)1

P—u(x)=P—u(x) W lst(x)

(x)=PS(x)1

1

P+u(x)=P+u(x) W lst(x)2

P—u(x)=P—u(x) W lst(x)2

PS(x)=F2

2

2Ph(x)=F
P l(x)=F

a1,1(x) ª y=PS(x) W Pr(y) W lst(x) W lst(y)
a1,2(x) ª y=PS(x) W Pr(y) W lst(y)W a(s(x)) ª y

a2,1(x) ª y=F
a2,2(x) ª y=F

d1,1(x) ª y=Pt(x) W Pr(y) W lst(d(x)) W lst(y)
d1,2(x) ª y=Pt(x) W Pr(y) W pnlt(d(x)) W s(d(x)) ª y

d2,1(x) ª y=F
d2,2(x) ª y=F

Graph mappings such as those in (26) satisfy this definition.
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4
tzs denotes a transduction over a separated representation model signature,
and models contour assimilation in Zhenjiang. It is defined over a copy set
of size two.

Zhenjiang: separated model

(56)

s1,1(x) ª y=s(x) ª y

1

PS

1Ph(x)=Ph(x) W lst(d(x))
P l(x)=F

P+u(x)=P+u(x)1

P—u(x)=P—u(x)

(x)=PS(x)1

1

P+u(x)=F2

P—u(x)=F2

PS(x)=F2

2P l(x)=F
a1,1(x) ª y=a(x) ª y
a1,2(x) ª y=F
d1,1(x) ª y=d(x) ª y
d1,2(x) ª y=F

a2,1(x) ª y=F
a2,2(x) ª y=F
d2,1(x) ª y=Pc(x) W PT(y) W lst(x) W d(x) ª s(y)
d2,2(x) ª y=Ph(x) W Pc(y) W lst(d(x)) W lst(y)

Graph mappings such as those in (27) satisfy this definition.

PT(x)=PT(x)1

P c(x)=Pc(x) W lst(x)1

PT(x)=F2

P c(x)=Pc(x) W lst(x)2

2Ph(x)=Ph(x) W lst(d(x))

5
tzb denotes a transduction over a bundled representation model signature,
and models contour assimilation in Zhenjiang. It is defined over a copy set
of size two.

Zhenjiang: bundled model

(56)

s1,1(x) ª y=s(x) ª y

PS

1

1Ph(x)=Ph(x) W lst(d(x))
P l(x)=F

P+u(x)=P+u(x)1

P—u(x)=P—u(x)

(x)=PS(x)1

1

a1,1(x) ª y=a(x) ª y
a1,2(x) ª y=F
d1,1(x) ª y=Pt(x) W Pr(y) W

lst(d(x)) W lst(y)
d1,2(x) ª y=F

a2,1(x) ª y=F
a2,2(x) ª y=F
d2,1(x) ª y=Pt(x) W Pr(y) W

lst(d(x)) W d(x) ª s(y)
d2,2(x) ª y=F

Graph mappings such as those in (35) satisfy this definition.

PS(x)=F2

P+u(x)=F2

P—u(x)=F2

2

2Ph(x)=Ph(x) W lst(d(x))
P l(x)=F
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Appendix B: Translation transductions
The transductions Osb and Obs below satisfy the first component of the bi-
interpretability definition. Osb is an interpretation of separated models in
terms of bundled models, while Obs is an interpretation of bundled models
in terms of separated models.

1
Osb is a transduction defined over a bundled representation model signature
which translates any separated model into an equivalent bundled model. It
is defined over a copy set of size one.

Separated to bundled: fusion

s1,1(x) ª y=s(x) ª y

1P l(x)=Pt(x)P+u(x)=Pr(x)1

1Ph(x)=Pt(x)(57) PS(x)=PS(x)1

P—u(x)=Pr(x)1

a1,1(x) ª y=PS(x) W Pr(y) W a(x) ª d(y)
d1,1(x) ª y=Pt(x) W Pr(y) W d(d(x)) ª d(y)

Graph mappings such as those in (38) satisfy this definition.

2
Osb is a transduction defined over a separated representation model signature
which translates any bundled model into an equivalent separated model. It
is defined over a copy set of size three.

Bundled to separated: expansion

(58)

s1,1(x) ª y=s(x) ª y

PS

P+u(x)=F1

P—u(x)=F

(x)=PS(x)1

1

2

2

PS(x)=F2

a1,1(x) ª y=a(x) ª y
a2,1(x) ª y=F

d2,1(x) ª y=Pr(x) W
Pr(y) W x ª y

s2,1(x) ª y=F

PT(x)=Pr(x)1 PT(x)=F2

P+u(x)=Pr(x)
P—u(x)=Pr(x)

1

1Ph(x)=F
P l(x)=F 2P l(x)=F

P c(x)=F1 P c(x)=F2

2Ph(x)=F

3

3

PS(x)=F3

PT(x)=F3

P+u(x)=F
P—u(x)=F

3P l(x)=Pt(x)

P c(x)=Pr(x)3

3Ph(x)=Pt(x)

a3,1(x) ª y=F
d1,1(x) ª y=F

d3,1(x) ª y=Pr(x) W
 Pr(y) W x ª y

s3,1(x) ª y=F

a1,2(x) ª y=F
a2,2(x) ª y=F
a3,2(x) ª y=F
d1,2(x) ª y=F
d2,2(x) ª y=F

d3,2(x) ª y=F

s1,2(x) ª y=F
s2,2(x) ª y=s(x) ª y
s3,2(x) ª y=F

a1,3(x) ª y=F
a2,3(x) ª y=F
a3,3(x) ª y=F
d1,3(x) ª y=F
d2,3(x) ª y=F

d3,3(x) ª y=d(x) ª y

s1,3(x) ª y=F
s2,3(x) ª y=F
s3,3(x) ª y=s(x) ª y
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Graph mappings such as those in (43) satisfy this definition.

The second main part of the bi-interpretability definition requires that the
composition Obs on Osb (Obs ° Osb) is isomorphic to the identity map on separated
models (ids). Similarly, it requires the composition Osb ° Obs to be isomorphic
to the identity map on bundled models (idb). Thus applying Osb to any
separated model and then applying Obs to its output is the same mapping as
a map from the separated model to itself. Additionally, the reverse application
over any bundled model is the same mapping as a map from the bundled
model to itself.

Below, I illustrate this with generalised graph structures, in which register
nodes are labelled r and binary branching terminals t. This shows that this
component of bi-interpretability holds for any contour tones representable
in either representation. This also generalises to any level tone!– by replacing
the binary branching graphs below with unary branching ones – and thus
holds for the full extent of tonal contrasts formalisable in the two models.

3 Isomorphism

3.1 Separated model. First, apply Osb to any separated model to generate
an equivalent bundled model. In (59), r indicates register nodes and t indicates
terminal tonal nodes, regardless of specification; the transduction preserves
register and tonal node features. As before, primes denote output nodes,
and superscripts output edges within a single copy set.

(59)
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The resulting graph becomes the input structure to which Obs is applied, as
shown in (60). Here, output copies are denoted with subscripted primes
indicating copy set (e.g. 1¢ for the first copy, 1§ for the second copy, 1© for
the third), and output edges are denoted with subscripts in the same manner.
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(60)
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Taken together, the mappings in (59) and (60) illustrate the composition
Obs!° Osb, shown in (61).
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Now consider the identity map (ids) which maps every separated structure
to itself, as when applied to the generalised separated structure in (62).
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The composition Obs ° Osb in (61) is isomorphic to ids in (62); their respective
outputs comprise structures with the same set of elements (nodes) and the
same relations between those elements (edges). This extends from the gen-
eralised graph above to any tonal structure describable in separated repre-
sentation.
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3.2 Bundled model. In a similar manner to the above, first apply Obs to any
bundled model to generate an equivalent separated model, as in (63).

(63)
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The resulting graph becomes the input structure to which Osb is applied, as
illustrated in (64). This yields a bundled structure.

(64)
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Taken together, the mappings in (63) and (64) illustrate the composition
Osb!° Obs, shown in (65).

Now consider the identity map (idb) which maps every bundled structure
to itself, as when applied to the generalised bundled structure in (66).

>
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(66)
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The composition Osb!° Obs in (65) is isomorphic to idb in (66); their respective
outputs comprise structures with the same set of elements (nodes) and the
same relations between those elements (edges). This extends from the gen-
eralised graph above to any tonal structure describable in bundled represen-
tation.

>
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