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Appendix: Model details and optimisation
Model optimisations were conducted in Matlab with a multiple starting
point global optimisation procedure. The cost function was the total root
mean square error (RMSE) in LE and RE. The oscillator equation is shown
in (7a) below. For the oscillator equation in (7a), the indices i/j = 1, 2, 3
of the coupling matrix F correspond to C1, C2 and V planning oscillators
respectively. The coupling matrix F has the structure in (7b), where b is
the strength of anti-phase coupling, a1 is the strength of in-phase C1-V
coupling and a2 is the strength of in-phase C2-V coupling. The relative
phase jij is defined as in (7c). The model-predicted RE and LE shifts are
calculated as in (7d), where b is the biomechanical correction parameter.
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In all cases, the frequencies (f) of the oscillators, coupling parameters (b,

a1, a2), and biomechanical correction (b) were optimised separately for each
subject, condition and target. Because a very small temporal di‰erence
between LE and RE leads to a large frequency, the oscillator frequency
was limited to a maximum of 10 Hz, in order to maintain a behaviourally
plausible value. For all models, the mean value of a1 and a2, (â), was fixed
at 5, and the ratio of the anti-phase force to average in-phase force (b/â)
was allowed to vary from 0 to 2.

The simple, complex balanced and complex imbalanced models corre-
spond to di‰erent constraints on the coupling matrix F. In all models, the
in-phase coupling parameters are positive (a>0) and the anti-phase coupling
parameter is negative (b<0). In the simple model, a1=0 and b=—a2. Note
that it is not necessary to allow b and a2 to vary independently in a simple
model, because the system will always evolve toward a state in which C1
and C2 have maximal relative phase (p) and in which C2 and V have minimal
relative phase (0), regardless of the relative strength of b and a2. There is
also no sense in which the simplex model can be imbalanced, because there
is only one in-phase coupling parameter and because the in-phase and anti-
phase parameters do not interact with respect to the stable equilibrium of
the system. In the complex balanced model, b=—a1=a2. In the complex
imbalanced model, there are no equality constraints on the parameters. In
this case, the parameter a* was optimised, representing the di‰erence
between a1 and a2; hence a1=â+a*/2 and a2=â®a*/2. A negative value
of a* represents stronger in-phase coupling of C1 to V than that of C2 to
V. The structurally heterogeneous model was constructed by selecting
either the simple balanced or the complex balanced model on a by-subject/
by-target/by-condition basis, according to which of these two models had
a lower RMSE. For models with a biomechanical correction parameter,
the RE generated by the coupling models was adjusted by a free parameter
constrained in the range [0, 40 ms], as shown in (7d).

Each optimisation run used a 4th order Runge-Kutta algorithm to
numerically simulate the evolution of CCV phases starting from an initial
condition of qi=(0.1, —0.1, 0). The numeric simulation was conducted for
a simulation period of 2 seconds, which is sucient for stabilisation. The
tables in §3.1.2 and §3.2.2 provide the sum of the RMSE of the models for
each subject, condition and target.


