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Replicator dynamics (Hofbauer & Sigmund 1998: 67f, Nowak 2006: 45f)
model frequency-dependent selection (Heino et al. 1998) as a dynamical
system in continuous time. The rates of change of the frequencies x and y,
i.e. their increase or decrease per time unit, are given in (18).

Here, f1(x,y)=a11x+a12y and f2(x,y)=a21x+a22y denote the fitness of S1

players and S2 players respectively, and j(x,y)=xf1(x,y)+yf1(x,y) denotes
the average fitness for a given composition of frequencies (x,y). The growth
rates of both player types are determined by (a) the frequency of individuals
adopting a strategy and (b) the di‰erence between strategy-specific fitness
and average fitness.

Since y=1®x, it is su!cient to restrict the model to the frequency of
S1 players. For a 2X2 payo‰ matrix A=(aij) the two-dimensional system
above can be reduced to (19).

(18) +=x(f1(x,y)®j(x,y))a.
%=y(f2(x,y)®j(x,y))b.

Appendix A: Replicator dynamics

(19) +=x(1®x)((a11+a22®a12®a21)x+a12®a22)

In this configuration, some words take initial stress and others final stress.
If population is at equilibrium, its composition will not change unless it is
perturbed by some system-external factor. Whether or not the population
returns to the equilibrium depends on its ‘stability’. In replicator dynamics,
stable equilibria are referred to as ‘evolutionarily stable strategies’.

Assessing the stability of =1, =2 and =int is simple: if a11>a21 and a12>a22,
then =1 is stable, =2 is unstable and there is no internal equilibrium =int.
That is, if initially stressed words (S1) do better than finally stressed ones
(S2) both when they combine with other initially stressed words (S1) and
when they combine with finally stressed ones (S2), then the lexicon will
eventually contain only initially stressed words. In other words, the dynamics
result in a population of S1 players only. The opposite is true if a11<a21
and a12<a22. Then =1 is unstable while =2 is stable, and this leads to a
population consisting exclusively of S2 players (i.e. final stress throughout
the lexicon).

If a11>a21 and a12<a22, then both =1 and =2 are stable, and an internal
equilibrium (representing a specific mix of initially stressed words and
finally stressed ones) does exist. However, it is unstable. This means that
if initially stressed words do better than finally stressed ones when they
combine with initially stressed words, but worse when they combine with
finally stressed ones, the lexicon will eventually also come to contain only
one of the two types.

The only system in which an internal equilibrium =int will be stable is
one in which a11<a21 and a12>a22. In that case, it is always better for both
players to have opposing strategies, i.e. initially stressed words do better
than finally stressed ones when combining with finally stressed words, but
worse when combing with initially stressed ones. Under such conditions,
the dynamics will inevitably result in a stable mix of S1 and S2 players, i.e.
the lexicon will turn out as a historically stable mix of initially stressed
words and finally stressed ones. The proportion of words with initial stress
(technically: the fraction of S1 players) in a stable equilibrium depends on
the quotient above. Note that the long-term dynamics of an evolutionary
game are fully determined by the entries in the pay-o‰ matrix.

Dynamical equilibria, i.e. situations in which the distribution of strategies
among players does not change in one or the other direction, are of particular
interest. Mathematically, this is the case if +=0. Then the population is in
an equilibrium, denoted by =. For the equation above, there are three
potential equilibria: two ‘pure’ ones =1=1 (all players play strategy S1, e.g.
all words take initial stress) and =2=0 (all players play strategy S2, e.g. all
words take final stress), as well as an ‘internal equilibrium’, shown in (20),
as long as =int is positive.

(20) =int=
a22®a12

a11+a22®a12®a21

Probability distributions p=(p1, … , pn) among nŒÄ+ disjoint categories
C1, … , Cn can be visualised as single points in a so-called simplex, or more
precisely, a (n®1)-simplex, where all points p fulfil 0{p1, … , pn{1 and
p1+…+pn=1, since all entries of p are probabilities distributed among n
categories. In the case of three categories, i.e. n=3, the set of all possible
probability distributions thus defines a two-dimensional surface, the 2-
simplex, embedded in three-dimensional space (Fig. 5). The closer one
moves towards, say, the corner defined by p1=1, or equivalently p=(1, 0, 0),
the more dominant category C1 becomes.

Appendix B: Discrete probability distributions: the 2-simplex

Figure 5
The 2-simplex (grey) as a two-dimensional surface in three-

dimensional space. The coordinates of all points p=(p1, p2, p3)
in the 2-simplex are non-negative and sum to 1.

Since the pay-o‰s for all entries in the matrix Ap,j,a are determined in the
same way, we demonstrate the procedure for only one of them. For that
purpose we chose a‚, which represents the pay-o‰s for an encounter of
two initially stressed words [’ss]A and [’ss]B.

In context C1, the sequences [’ss]A[s][’ss]B and [’ss]B[s][’ss]A are
formed. Both produce a single violation (a lapse) and incur a rhythmicity
score of j(1)=jmax®Bjmax. In the first sequence, [’ss]A receives a pay-o‰
of a(jmax®Bjmax), while [’ss]B gets (1®a)(jmax®Bjmax). In the second
sequence, [’ss]A gets (1®a)(jmax®Bjmax), while [’ss]B gets a(jmax®Bjmax).
In total, [’ss]A receives a(jmax®Bjmax)+(1®a)(jmax®Bjmax)=jmax®Bjmax.
The same holds for [’ss]B.

In context C2, the sequences [’ss]A[’s][’ss]B and [’ss]B[’s][’ss]A are
formed. Again, both produce a single violation (in this case a clash) and
incur a rhythmicity score of j(1)=jmax®Bjmax. As above, both [’ss]A and
[’ss]B get jmax®Bjmax.

In context C3, the sequences [’ss]A[’ss]B and [’ss]B[’ss]A are formed.
Neither produces a violation, so that both incur scores of j(0)=jmax. Hence
both [’ss]A and [’ss]B get ajmax+(1®a)jmax=jmax.

Since the proportion of encounters in each of the three contexts reflects
distribution p, the entry of the pay-o‰ matrix can be expressed as in (21).

Appendix C: Derivation of the pay-o‰ matrix

(21) a‚=p1(jmax®Bjmax)+p2(jmax®Bjmax)+p3jmax
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formed. Again, both produce a single violation (in this case a clash) and
incur a rhythmicity score of j(1)=jmax®Bjmax. As above, both [’ss]A and
[’ss]B get jmax®Bjmax.

In context C3, the sequences [’ss]A[’ss]B and [’ss]B[’ss]A are formed.
Neither produces a violation, so that both incur scores of j(0)=jmax. Hence
both [’ss]A and [’ss]B get ajmax+(1®a)jmax=jmax.

Since the proportion of encounters in each of the three contexts reflects
distribution p, the entry of the pay-o‰ matrix can be expressed as in (21).

Appendix C: Derivation of the pay-o‰ matrix

(21) a‚=p1(jmax®Bjmax)+p2(jmax®Bjmax)+p3jmax
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