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Supplementary materials

1 Alternative frequency measures and scales
This section of the supplementary materials considers two alternative ways
of analysing the input and the SSP scale respectively.

1.1 Token frequency
For completeness, this section demonstrates that relying on token frequency
instead of type frequency does not provide a way out for the lexicalist
hypothesis. Figure 7 shows the association between accuracy and token-
frequency measures, analogous to the figures above for the type-frequency
measures. The results are similar, albeit less promising: token segmental
bigram frequency is not positively associated with accuracy.
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Figure 7
Association between accuracy and token frequency.
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A summary of model comparisons analogous to those in Table IV above
is shown for token frequencies in Table VI. The pattern of results is similar,
except that token segmental bigram frequency is not predictive of production
accuracy. Just like the corresponding type frequencies, sonority-profile
(b=—0.328, z=—4.54, p<0.0001) and sonority-rise (b=—0.569, z=—5.07,
p<0.0001) token frequencies are predictive of production accuracy, but in
the wrong direction. The superset models with SSP are superior in all
cases, and SSP is retained as a predictor in all but one of 200 backwards
elimination bootstrap samples. Thus token frequencies do not provide a
way to capture the developmental SSP e‰ect.

Table VI
Summary of statistical tests for type frequencies.

Dxy

LR
c2(1)

p

0.425
357.4

+freq

segmental bigram

base

0.425
357.7
0.366
0.545

+freq
+SSP

0.458
410.2
º52.5

<0.0001

+freq

sonority profile

0.445
380.1
º22.7

<0.0001

+freq
+SSP

0.459
412.5
º32.4

<0.0001

+freq

sonority rise

0.452
385.6
º28.2

<0.0001

+freq
+SSP

0.458
410.0
º24.4

<0.0001

1.2 Finer-grained SSP
The analyses above follow prior modelling studies in assuming the coarse-
grained sonority scale that worked well for generating sonority projection
in other languages. The granularity of the sonority scale is often debated,
however. Could it be that the coarse sonority scale is working against the
lexicalist hypothesis by lumping all the obstruents together? This section
first demonstrates that the same conclusions about children’s sensitivity to
the SSP are reached when a finer-grained sonority scale that separates
plosives (including a‰ricates) from fricatives is used (Selkirk 1984). Inter-
estingly, the finer-grained sonority scale turns out to be a better predictor
of children’s production accuracy than the coarse scale. This is unexpected,
given that formal analyses of Polish phonology explicitly argue for the
coarse-grained scale. It is consistent, however, with recent findings suggesting
that sonority-projection e‰ects di‰erentiate fricatives and stops (Tamási
& Berent 2014, Lennertz & Berent 2015). The section then shows that the
frequency predictions calculated on a finer-grained scale yield qualitatively
similar patterns of results to the coarse-grained scale examined above.

Figure 8
Accuracy by (a) finer-grained sonority profile; (b) finer-grained sonority rise.
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Figures 8a and b show the relationship between accuracy and finer-grained
sonority profiles and rises respectively (F=fricative, P=plosive). The main
di‰erences from before are that finer-grained sonority treats FP as a mild
sonority fall, PF as a mild rise like FN, PG as a larger rise than FG or PL,
and PL as a larger rise than FL. Inspection of Fig. 8 reveals that most of
these di‰erence align well with accuracy: FP is the least accurate cluster
type, PF is close in accuracy to FN and children are less accurate on FL
than PL. PG does not appear to be favoured by children relative to FG,
however. Nonetheless, a nested model comparison shows that a predictor
based on the finer-grained SSP (fSSP) is highly significantly predictive of
production accuracy after controlling for the various potential confounding
variables discussed earlier (c2(1)=64.7; p<0.0001). As expected, the
association is positive: higher fSSP is associated with higher accuracy
(b=0.24, z=7.95, p<0.0001). Out of 200 bootstrap validation samples
with backward elimination, fSSP is retained in the model 200 times. Overall,
the model shows a small amount of shrinkage: the original Dxy is 46.7, the
optimism is 0.014 and the corrected Dxy is 45.3.

As mentioned earlier, an unexpected finding is that fSSP is a better
predictor of children’s accuracy than SSP. This is verified by evaluating
a superset model that adds SSP. The superset model is not superior to the
model with just fSSP (c2(1)=0.059; p>0.8), indicating that SSP is
superfluous once fSSP is in the model. Accordingly, the opposite nested
model comparison reveals that fSSP makes a significant contribution to a
model that already has SSP (c2(1)=12.1; p<0.001). Note that this is not
a matter of degrees of freedom, since both SSP and fSSP are continuous
predictors with one degree of freedom: this just means that the additional
distinctions made on the finer-grained sonority scale are reflected in the
children’s production accuracy. As further verification of this result, the
backwards elimination validation procedure retains fSSP and not SSP.

To conclude this discussion, Table VII shows that calculating frequen-
cy along the finer-grained sonority scale does not rescue the lexicalist
approach. Just like the corresponding coarse-grained type frequencies, fine-
grained sonority-profile (b=—0.143, z=—2.32, p<0.05) and sonority-rise
(b=—0.2725, z=2.93, p<0.01) type frequencies are predictive of production
accuracy. The only di‰erence is that sonority-rise frequency is associated
in the right direction with accuracy. Just as with coarse-grained frequency,
the superset models with SSP are superior in both cases, and SSP is retained
as a predictor in all 200 backwards elimination bootstrap samples. (These
are the numbers using the weaker SSP predictor – results are similar when
fSSP is used.) Thus coarse-grained frequencies do not provide a way to
capture the developmental SSP e‰ect.

As mentioned earlier, an unexpected finding is that fSSP is a better
predictor of children’s accuracy than SSP. This is verified by evaluating
a superset model that adds SSP. The superset model is not superior to the
model with just fSSP (c2(1)=0.059; p>0.8), indicating that SSP is
superfluous once fSSP is in the model. Accordingly, the opposite nested
model comparison reveals that fSSP makes a significant contribution to a
model that already has SSP (c2(1)=12.1; p<0.001). Note that this is not
a matter of degrees of freedom, since both SSP and fSSP are continuous
predictors with one degree of freedom: this just means that the additional
distinctions made on the finer-grained sonority scale are reflected in the
children’s production accuracy. As further verification of this result, the
backwards elimination validation procedure retains fSSP and not SSP.

To conclude this discussion, Table VII shows that calculating frequen-
cy along the finer-grained sonority scale does not rescue the lexicalist
approach. Just like the corresponding coarse-grained type frequencies, fine-
grained sonority-profile (b=—0.143, z=—2.32, p<0.05) and sonority-rise
(b=—0.2725, z=2.93, p<0.01) type frequencies are predictive of production
accuracy. The only di‰erence is that sonority-rise frequency is associated
in the right direction with accuracy. Just as with coarse-grained frequency,
the superset models with SSP are superior in both cases, and SSP is retained
as a predictor in all 200 backwards elimination bootstrap samples. (These
are the numbers using the weaker SSP predictor – results are similar when
fSSP is used.) Thus coarse-grained frequencies do not provide a way to
capture the developmental SSP e‰ect.

Table VII
Summary of statistical tests for type frequencies using finer-grained sonority scale.

Dxy

LR
c2(1)

p

0.425
357.4

base +freq

sonority profile

0.428
362.9
ºº5.5
0.019

+freq
+SSP

0.471
429.4
º66.6

<0.0001

+freq

sonority rise

0.434
365.9
ºº8.5
0.003

+freq
+SSP

0.469
422.3
º56.4

<0.0001
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Figure 9
Error types by (a) finer-grained; (b) coarser-grained sonority.
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Table VIII
Initial segment bigram type frequency in the Polish CDS dictionary.

p»
st
kr
sp
pj
vj
pr
tr
sk
gr
mj
sw
br
kl
dr
pw
pl
vw
zw
bj
gw
k»
zd
g^
zm
»Ú
zn
sm
kw
t»
ç!
çl

1522
427
411
370
365
344
340
266
257
249
248
227
206
196
190
175
172
146
140
133
121
121
119
118
117
116
107
106
102

99
94
89

zb
zg
vr
zr
zj
zv
kjj
kç
bl
fr
sx
fp
dv
ps
bw
b^
xw
»p
z¿
xr
tw
kf
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çr
tf
mw
xl
dw
v^
sf
fl
g¿
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Figure 9 presents children’s error rates, broken down by sonority profile
(see §3 of the paper), and Table VIII provides a list of Polish initial clusters.
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1 Alternative frequency measures and scales
This section of the supplementary materials considers two alternative ways
of analysing the input and the SSP scale respectively.

1.1 Token frequency
For completeness, this section demonstrates that relying on token frequency
instead of type frequency does not provide a way out for the lexicalist
hypothesis. Figure 7 shows the association between accuracy and token-
frequency measures, analogous to the figures above for the type-frequency
measures. The results are similar, albeit less promising: token segmental
bigram frequency is not positively associated with accuracy.

segment bigram sonority profile sonority rise

Figure 7
Association between accuracy and token frequency.
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A summary of model comparisons analogous to those in Table IV above
is shown for token frequencies in Table VI. The pattern of results is similar,
except that token segmental bigram frequency is not predictive of production
accuracy. Just like the corresponding type frequencies, sonority-profile
(b=—0.328, z=—4.54, p<0.0001) and sonority-rise (b=—0.569, z=—5.07,
p<0.0001) token frequencies are predictive of production accuracy, but in
the wrong direction. The superset models with SSP are superior in all
cases, and SSP is retained as a predictor in all but one of 200 backwards
elimination bootstrap samples. Thus token frequencies do not provide a
way to capture the developmental SSP e‰ect.

Table VI
Summary of statistical tests for type frequencies.

Dxy

LR
c2(1)

p

0.425
357.4

+freq

segmental bigram

base

0.425
357.7
0.366
0.545

+freq
+SSP

0.458
410.2
º52.5

<0.0001

+freq

sonority profile

0.445
380.1
º22.7

<0.0001

+freq
+SSP

0.459
412.5
º32.4

<0.0001

+freq

sonority rise

0.452
385.6
º28.2

<0.0001

+freq
+SSP

0.458
410.0
º24.4

<0.0001

1.2 Finer-grained SSP
The analyses above follow prior modelling studies in assuming the coarse-
grained sonority scale that worked well for generating sonority projection
in other languages. The granularity of the sonority scale is often debated,
however. Could it be that the coarse sonority scale is working against the
lexicalist hypothesis by lumping all the obstruents together? This section
first demonstrates that the same conclusions about children’s sensitivity to
the SSP are reached when a finer-grained sonority scale that separates
plosives (including a‰ricates) from fricatives is used (Selkirk 1984). Inter-
estingly, the finer-grained sonority scale turns out to be a better predictor
of children’s production accuracy than the coarse scale. This is unexpected,
given that formal analyses of Polish phonology explicitly argue for the
coarse-grained scale. It is consistent, however, with recent findings suggesting
that sonority-projection e‰ects di‰erentiate fricatives and stops (Tamási
& Berent 2014, Lennertz & Berent 2015). The section then shows that the
frequency predictions calculated on a finer-grained scale yield qualitatively
similar patterns of results to the coarse-grained scale examined above.

Figure 8
Accuracy by (a) finer-grained sonority profile; (b) finer-grained sonority rise.
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Figures 8a and b show the relationship between accuracy and finer-grained
sonority profiles and rises respectively (F=fricative, P=plosive). The main
di‰erences from before are that finer-grained sonority treats FP as a mild
sonority fall, PF as a mild rise like FN, PG as a larger rise than FG or PL,
and PL as a larger rise than FL. Inspection of Fig. 8 reveals that most of
these di‰erence align well with accuracy: FP is the least accurate cluster
type, PF is close in accuracy to FN and children are less accurate on FL
than PL. PG does not appear to be favoured by children relative to FG,
however. Nonetheless, a nested model comparison shows that a predictor
based on the finer-grained SSP (fSSP) is highly significantly predictive of
production accuracy after controlling for the various potential confounding
variables discussed earlier (c2(1)=64.7; p<0.0001). As expected, the
association is positive: higher fSSP is associated with higher accuracy
(b=0.24, z=7.95, p<0.0001). Out of 200 bootstrap validation samples
with backward elimination, fSSP is retained in the model 200 times. Overall,
the model shows a small amount of shrinkage: the original Dxy is 46.7, the
optimism is 0.014 and the corrected Dxy is 45.3.

As mentioned earlier, an unexpected finding is that fSSP is a better
predictor of children’s accuracy than SSP. This is verified by evaluating
a superset model that adds SSP. The superset model is not superior to the
model with just fSSP (c2(1)=0.059; p>0.8), indicating that SSP is
superfluous once fSSP is in the model. Accordingly, the opposite nested
model comparison reveals that fSSP makes a significant contribution to a
model that already has SSP (c2(1)=12.1; p<0.001). Note that this is not
a matter of degrees of freedom, since both SSP and fSSP are continuous
predictors with one degree of freedom: this just means that the additional
distinctions made on the finer-grained sonority scale are reflected in the
children’s production accuracy. As further verification of this result, the
backwards elimination validation procedure retains fSSP and not SSP.

To conclude this discussion, Table VII shows that calculating frequen-
cy along the finer-grained sonority scale does not rescue the lexicalist
approach. Just like the corresponding coarse-grained type frequencies, fine-
grained sonority-profile (b=—0.143, z=—2.32, p<0.05) and sonority-rise
(b=—0.2725, z=2.93, p<0.01) type frequencies are predictive of production
accuracy. The only di‰erence is that sonority-rise frequency is associated
in the right direction with accuracy. Just as with coarse-grained frequency,
the superset models with SSP are superior in both cases, and SSP is retained
as a predictor in all 200 backwards elimination bootstrap samples. (These
are the numbers using the weaker SSP predictor – results are similar when
fSSP is used.) Thus coarse-grained frequencies do not provide a way to
capture the developmental SSP e‰ect.

As mentioned earlier, an unexpected finding is that fSSP is a better
predictor of children’s accuracy than SSP. This is verified by evaluating
a superset model that adds SSP. The superset model is not superior to the
model with just fSSP (c2(1)=0.059; p>0.8), indicating that SSP is
superfluous once fSSP is in the model. Accordingly, the opposite nested
model comparison reveals that fSSP makes a significant contribution to a
model that already has SSP (c2(1)=12.1; p<0.001). Note that this is not
a matter of degrees of freedom, since both SSP and fSSP are continuous
predictors with one degree of freedom: this just means that the additional
distinctions made on the finer-grained sonority scale are reflected in the
children’s production accuracy. As further verification of this result, the
backwards elimination validation procedure retains fSSP and not SSP.

To conclude this discussion, Table VII shows that calculating frequen-
cy along the finer-grained sonority scale does not rescue the lexicalist
approach. Just like the corresponding coarse-grained type frequencies, fine-
grained sonority-profile (b=—0.143, z=—2.32, p<0.05) and sonority-rise
(b=—0.2725, z=2.93, p<0.01) type frequencies are predictive of production
accuracy. The only di‰erence is that sonority-rise frequency is associated
in the right direction with accuracy. Just as with coarse-grained frequency,
the superset models with SSP are superior in both cases, and SSP is retained
as a predictor in all 200 backwards elimination bootstrap samples. (These
are the numbers using the weaker SSP predictor – results are similar when
fSSP is used.) Thus coarse-grained frequencies do not provide a way to
capture the developmental SSP e‰ect.

Table VII
Summary of statistical tests for type frequencies using finer-grained sonority scale.

Dxy

LR
c2(1)

p

0.425
357.4

base +freq

sonority profile

0.428
362.9
ºº5.5
0.019

+freq
+SSP

0.471
429.4
º66.6

<0.0001

+freq

sonority rise

0.434
365.9
ºº8.5
0.003

+freq
+SSP

0.469
422.3
º56.4

<0.0001
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Figure 9
Error types by (a) finer-grained; (b) coarser-grained sonority.
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Table VIII
Initial segment bigram type frequency in the Polish CDS dictionary.

p»
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Figure 9 presents children’s error rates, broken down by sonority profile
(see §3 of the paper), and Table VIII provides a list of Polish initial clusters.
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1 Alternative frequency measures and scales
This section of the supplementary materials considers two alternative ways
of analysing the input and the SSP scale respectively.

1.1 Token frequency
For completeness, this section demonstrates that relying on token frequency
instead of type frequency does not provide a way out for the lexicalist
hypothesis. Figure 7 shows the association between accuracy and token-
frequency measures, analogous to the figures above for the type-frequency
measures. The results are similar, albeit less promising: token segmental
bigram frequency is not positively associated with accuracy.

segment bigram sonority profile sonority rise

Figure 7
Association between accuracy and token frequency.
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A summary of model comparisons analogous to those in Table IV above
is shown for token frequencies in Table VI. The pattern of results is similar,
except that token segmental bigram frequency is not predictive of production
accuracy. Just like the corresponding type frequencies, sonority-profile
(b=—0.328, z=—4.54, p<0.0001) and sonority-rise (b=—0.569, z=—5.07,
p<0.0001) token frequencies are predictive of production accuracy, but in
the wrong direction. The superset models with SSP are superior in all
cases, and SSP is retained as a predictor in all but one of 200 backwards
elimination bootstrap samples. Thus token frequencies do not provide a
way to capture the developmental SSP e‰ect.

Table VI
Summary of statistical tests for type frequencies.

Dxy

LR
c2(1)

p

0.425
357.4

+freq

segmental bigram

base

0.425
357.7
0.366
0.545

+freq
+SSP

0.458
410.2
º52.5

<0.0001

+freq

sonority profile

0.445
380.1
º22.7

<0.0001

+freq
+SSP

0.459
412.5
º32.4

<0.0001

+freq

sonority rise

0.452
385.6
º28.2

<0.0001

+freq
+SSP

0.458
410.0
º24.4

<0.0001

1.2 Finer-grained SSP
The analyses above follow prior modelling studies in assuming the coarse-
grained sonority scale that worked well for generating sonority projection
in other languages. The granularity of the sonority scale is often debated,
however. Could it be that the coarse sonority scale is working against the
lexicalist hypothesis by lumping all the obstruents together? This section
first demonstrates that the same conclusions about children’s sensitivity to
the SSP are reached when a finer-grained sonority scale that separates
plosives (including a‰ricates) from fricatives is used (Selkirk 1984). Inter-
estingly, the finer-grained sonority scale turns out to be a better predictor
of children’s production accuracy than the coarse scale. This is unexpected,
given that formal analyses of Polish phonology explicitly argue for the
coarse-grained scale. It is consistent, however, with recent findings suggesting
that sonority-projection e‰ects di‰erentiate fricatives and stops (Tamási
& Berent 2014, Lennertz & Berent 2015). The section then shows that the
frequency predictions calculated on a finer-grained scale yield qualitatively
similar patterns of results to the coarse-grained scale examined above.

Figure 8
Accuracy by (a) finer-grained sonority profile; (b) finer-grained sonority rise.
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Figures 8a and b show the relationship between accuracy and finer-grained
sonority profiles and rises respectively (F=fricative, P=plosive). The main
di‰erences from before are that finer-grained sonority treats FP as a mild
sonority fall, PF as a mild rise like FN, PG as a larger rise than FG or PL,
and PL as a larger rise than FL. Inspection of Fig. 8 reveals that most of
these di‰erence align well with accuracy: FP is the least accurate cluster
type, PF is close in accuracy to FN and children are less accurate on FL
than PL. PG does not appear to be favoured by children relative to FG,
however. Nonetheless, a nested model comparison shows that a predictor
based on the finer-grained SSP (fSSP) is highly significantly predictive of
production accuracy after controlling for the various potential confounding
variables discussed earlier (c2(1)=64.7; p<0.0001). As expected, the
association is positive: higher fSSP is associated with higher accuracy
(b=0.24, z=7.95, p<0.0001). Out of 200 bootstrap validation samples
with backward elimination, fSSP is retained in the model 200 times. Overall,
the model shows a small amount of shrinkage: the original Dxy is 46.7, the
optimism is 0.014 and the corrected Dxy is 45.3.

As mentioned earlier, an unexpected finding is that fSSP is a better
predictor of children’s accuracy than SSP. This is verified by evaluating
a superset model that adds SSP. The superset model is not superior to the
model with just fSSP (c2(1)=0.059; p>0.8), indicating that SSP is
superfluous once fSSP is in the model. Accordingly, the opposite nested
model comparison reveals that fSSP makes a significant contribution to a
model that already has SSP (c2(1)=12.1; p<0.001). Note that this is not
a matter of degrees of freedom, since both SSP and fSSP are continuous
predictors with one degree of freedom: this just means that the additional
distinctions made on the finer-grained sonority scale are reflected in the
children’s production accuracy. As further verification of this result, the
backwards elimination validation procedure retains fSSP and not SSP.

To conclude this discussion, Table VII shows that calculating frequen-
cy along the finer-grained sonority scale does not rescue the lexicalist
approach. Just like the corresponding coarse-grained type frequencies, fine-
grained sonority-profile (b=—0.143, z=—2.32, p<0.05) and sonority-rise
(b=—0.2725, z=2.93, p<0.01) type frequencies are predictive of production
accuracy. The only di‰erence is that sonority-rise frequency is associated
in the right direction with accuracy. Just as with coarse-grained frequency,
the superset models with SSP are superior in both cases, and SSP is retained
as a predictor in all 200 backwards elimination bootstrap samples. (These
are the numbers using the weaker SSP predictor – results are similar when
fSSP is used.) Thus coarse-grained frequencies do not provide a way to
capture the developmental SSP e‰ect.

As mentioned earlier, an unexpected finding is that fSSP is a better
predictor of children’s accuracy than SSP. This is verified by evaluating
a superset model that adds SSP. The superset model is not superior to the
model with just fSSP (c2(1)=0.059; p>0.8), indicating that SSP is
superfluous once fSSP is in the model. Accordingly, the opposite nested
model comparison reveals that fSSP makes a significant contribution to a
model that already has SSP (c2(1)=12.1; p<0.001). Note that this is not
a matter of degrees of freedom, since both SSP and fSSP are continuous
predictors with one degree of freedom: this just means that the additional
distinctions made on the finer-grained sonority scale are reflected in the
children’s production accuracy. As further verification of this result, the
backwards elimination validation procedure retains fSSP and not SSP.

To conclude this discussion, Table VII shows that calculating frequen-
cy along the finer-grained sonority scale does not rescue the lexicalist
approach. Just like the corresponding coarse-grained type frequencies, fine-
grained sonority-profile (b=—0.143, z=—2.32, p<0.05) and sonority-rise
(b=—0.2725, z=2.93, p<0.01) type frequencies are predictive of production
accuracy. The only di‰erence is that sonority-rise frequency is associated
in the right direction with accuracy. Just as with coarse-grained frequency,
the superset models with SSP are superior in both cases, and SSP is retained
as a predictor in all 200 backwards elimination bootstrap samples. (These
are the numbers using the weaker SSP predictor – results are similar when
fSSP is used.) Thus coarse-grained frequencies do not provide a way to
capture the developmental SSP e‰ect.

Table VII
Summary of statistical tests for type frequencies using finer-grained sonority scale.

Dxy

LR
c2(1)

p

0.425
357.4

base +freq

sonority profile

0.428
362.9
ºº5.5
0.019

+freq
+SSP

0.471
429.4
º66.6

<0.0001

+freq

sonority rise

0.434
365.9
ºº8.5
0.003

+freq
+SSP

0.469
422.3
º56.4

<0.0001
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Figure 9
Error types by (a) finer-grained; (b) coarser-grained sonority.
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Table VIII
Initial segment bigram type frequency in the Polish CDS dictionary.

p»
st
kr
sp
pj
vj
pr
tr
sk
gr
mj
sw
br
kl
dr
pw
pl
vw
zw
bj
gw
k»
zd
g^
zm
»Ú
zn
sm
kw
t»
ç!
çl

1522
427
411
370
365
344
340
266
257
249
248
227
206
196
190
175
172
146
140
133
121
121
119
118
117
116
107
106
102

99
94
89

zb
zg
vr
zr
zj
zv
kjj
kç
bl
fr
sx
fp
dv
ps
bw
b^
xw
»p
z¿
xr
tw
kf
ç¿
çr
tf
mw
xl
dw
v^
sf
fl
g¿

88
86
86
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78
78
75
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59
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52
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47
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44
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29
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px
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11
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9
9
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7
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6
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5
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4
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zz
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p!
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vv
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3
3
3
2
2
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2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
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1
1

Figure 9 presents children’s error rates, broken down by sonority profile
(see §3 of the paper), and Table VIII provides a list of Polish initial clusters.
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1 Alternative frequency measures and scales
This section of the supplementary materials considers two alternative ways
of analysing the input and the SSP scale respectively.

1.1 Token frequency
For completeness, this section demonstrates that relying on token frequency
instead of type frequency does not provide a way out for the lexicalist
hypothesis. Figure 7 shows the association between accuracy and token-
frequency measures, analogous to the figures above for the type-frequency
measures. The results are similar, albeit less promising: token segmental
bigram frequency is not positively associated with accuracy.

segment bigram sonority profile sonority rise

Figure 7
Association between accuracy and token frequency.
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A summary of model comparisons analogous to those in Table IV above
is shown for token frequencies in Table VI. The pattern of results is similar,
except that token segmental bigram frequency is not predictive of production
accuracy. Just like the corresponding type frequencies, sonority-profile
(b=—0.328, z=—4.54, p<0.0001) and sonority-rise (b=—0.569, z=—5.07,
p<0.0001) token frequencies are predictive of production accuracy, but in
the wrong direction. The superset models with SSP are superior in all
cases, and SSP is retained as a predictor in all but one of 200 backwards
elimination bootstrap samples. Thus token frequencies do not provide a
way to capture the developmental SSP e‰ect.

Table VI
Summary of statistical tests for type frequencies.

Dxy

LR
c2(1)

p

0.425
357.4

+freq

segmental bigram

base

0.425
357.7
0.366
0.545

+freq
+SSP

0.458
410.2
º52.5

<0.0001

+freq

sonority profile

0.445
380.1
º22.7

<0.0001

+freq
+SSP

0.459
412.5
º32.4

<0.0001

+freq

sonority rise

0.452
385.6
º28.2

<0.0001

+freq
+SSP

0.458
410.0
º24.4

<0.0001

1.2 Finer-grained SSP
The analyses above follow prior modelling studies in assuming the coarse-
grained sonority scale that worked well for generating sonority projection
in other languages. The granularity of the sonority scale is often debated,
however. Could it be that the coarse sonority scale is working against the
lexicalist hypothesis by lumping all the obstruents together? This section
first demonstrates that the same conclusions about children’s sensitivity to
the SSP are reached when a finer-grained sonority scale that separates
plosives (including a‰ricates) from fricatives is used (Selkirk 1984). Inter-
estingly, the finer-grained sonority scale turns out to be a better predictor
of children’s production accuracy than the coarse scale. This is unexpected,
given that formal analyses of Polish phonology explicitly argue for the
coarse-grained scale. It is consistent, however, with recent findings suggesting
that sonority-projection e‰ects di‰erentiate fricatives and stops (Tamási
& Berent 2014, Lennertz & Berent 2015). The section then shows that the
frequency predictions calculated on a finer-grained scale yield qualitatively
similar patterns of results to the coarse-grained scale examined above.

Figure 8
Accuracy by (a) finer-grained sonority profile; (b) finer-grained sonority rise.
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Figures 8a and b show the relationship between accuracy and finer-grained
sonority profiles and rises respectively (F=fricative, P=plosive). The main
di‰erences from before are that finer-grained sonority treats FP as a mild
sonority fall, PF as a mild rise like FN, PG as a larger rise than FG or PL,
and PL as a larger rise than FL. Inspection of Fig. 8 reveals that most of
these di‰erence align well with accuracy: FP is the least accurate cluster
type, PF is close in accuracy to FN and children are less accurate on FL
than PL. PG does not appear to be favoured by children relative to FG,
however. Nonetheless, a nested model comparison shows that a predictor
based on the finer-grained SSP (fSSP) is highly significantly predictive of
production accuracy after controlling for the various potential confounding
variables discuss ed earlier (c2(1)= 64.7; p<0.0001).  As expected, the
association is positive: higher fSSP is associated with higher accuracy
(b=0.24, z=7.95, p<0.0001). Out of 200 bootstrap validation samples
with backward elimination, fSSP is retained in the model 200 times. Overall,
the model shows a small amount of shrinkage: the original Dxy is 46.7, the
optimism is 0.014 and the corrected Dxy is 45.3.

As mentioned earlier, an unexpected finding is that fSSP is a better
predictor of children’s accuracy than SSP. This is verified by evaluating
a superset model that adds SSP. The superset model is not superior to the
model with just fSSP (c2(1)=0.059; p>0.8), indicating that SSP is
superfluous once fSSP is in the model. Accordingly, the opposite nested
model comparison reveals that fSSP makes a significant contribution to a
model that already has SSP (c2(1)=12.1; p<0.001). Note that this is not
a matter of degrees of freedom, since both SSP and fSSP are continuous
predictors with one degree of freedom: this just means that the additional
distinctions made on the finer-grained sonority scale are reflected in the
children’s production accuracy. As further verification of this result, the
backwards elimination validation procedure retains fSSP and not SSP.

To conclude this discussion, Table VII shows that calculating frequen-
cy along the finer-grained sonority scale does not rescue the lexicalist
approach. Just like the corresponding coarse-grained type frequencies, fine-
grained sonority-profile (b=—0.143, z=—2.32, p<0.05) and sonority-rise
(b=—0.2725, z=2.93, p<0.01) type frequencies are predictive of production
accuracy. The only di‰erence is that sonority-rise frequency is associated
in the right direction with accuracy. Just as with coarse-grained frequency,
the superset models with SSP are superior in both cases, and SSP is retained
as a predictor in all 200 backwards elimination bootstrap samples. (These
are the numbers using the weaker SSP predictor – results are similar when
fSSP is used.) Thus coarse-grained frequencies do not provide a way to
capture the developmental SSP e‰ect.

As mentioned earlier, an unexpected finding is that fSSP is a better
predictor of children’s accuracy than SSP. This is verified by evaluating
a superset model that adds SSP. The superset model is not superior to the
model with just fSSP (c2(1)=0.059; p>0.8), indicating that SSP is
superfluous once fSSP is in the model. Accordingly, the opposite nested
model comparison reveals that fSSP makes a significant contribution to a
model that already has SSP (c2(1)=12.1; p<0.001). Note that this is not
a matter of degrees of freedom, since both SSP and fSSP are continuous
predictors with one degree of freedom: this just means that the additional
distinctions made on the finer-grained sonority scale are reflected in the
children’s production accuracy. As further verification of this result, the
backwards elimination validation procedure retains fSSP and not SSP.

To conclude this discussion, Table VII shows that calculating frequen-
cy along the finer-grained sonority scale does not rescue the lexicalist
approach. Just like the corresponding coarse-grained type frequencies, fine-
grained sonority-profile (b=—0.143, z=—2.32, p<0.05) and sonority-rise
(b=—0.2725, z=2.93, p<0.01) type frequencies are predictive of production
accuracy. The only di‰erence is that sonority-rise frequency is associated
in the right direction with accuracy. Just as with coarse-grained frequency,
the superset models with SSP are superior in both cases, and SSP is retained
as a predictor in all 200 backwards elimination bootstrap samples. (These
are the numbers using the weaker SSP predictor – results are similar when
fSSP is used.) Thus coarse-grained frequencies do not provide a way to
capture the developmental SSP e‰ect.

Table VII
Summary of statistical tests for type frequencies using finer-grained sonority scale.

Dxy

LR
c2(1)

p

0.425
357.4

base +freq

sonority profile

0.428
362.9
ºº5.5
0.019

+freq
+SSP

0.471
429.4
º66.6

<0.0001

+freq

sonority rise

0.434
365.9
ºº8.5
0.003

+freq
+SSP

0.469
422.3
º56.4

<0.0001
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Figure 9
Error types by (a) finer-grained; (b) coarser-grained sonority.
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Table VIII
Initial segment bigram type frequency in the Polish CDS dictionary.

p»
st
kr
sp
pj
vj
pr
tr
sk
gr
mj
sw
br
kl
dr
pw
pl
vw
zw
bj
gw
k»
zd
g^
zm
»Ú
zn
sm
kw
t»
ç!
çl

1522
427
411
370
365
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266
257
249
248
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206
196
190
175
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121
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102
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89
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Figure 9 presents children’s error rates, broken down by sonority profile
(see §3 of the paper), and Table VIII provides a list of Polish initial clusters.
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1 Alternative frequency measures and scales
This section of the supplementary materials considers two alternative ways
of analysing the input and the SSP scale respectively.

1.1 Token frequency
For completeness, this section demonstrates that relying on token frequency
instead of type frequency does not provide a way out for the lexicalist
hypothesis. Figure 7 shows the association between accuracy and token-
frequency measures, analogous to the figures above for the type-frequency
measures. The results are similar, albeit less promising: token segmental
bigram frequency is not positively associated with accuracy.

segment bigram sonority profile sonority rise

Figure 7
Association between accuracy and token frequency.
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A summary of model comparisons analogous to those in Table IV above
is shown for token frequencies in Table VI. The pattern of results is similar,
except that token segmental bigram frequency is not predictive of production
accuracy. Just like the corresponding type frequencies, sonority-profile
(b=—0.328, z=—4.54, p<0.0001) and sonority-rise (b=—0.569, z=—5.07,
p<0.0001) token frequencies are predictive of production accuracy, but in
the wrong direction. The superset models with SSP are superior in all
cases, and SSP is retained as a predictor in all but one of 200 backwards
elimination bootstrap samples. Thus token frequencies do not provide a
way to capture the developmental SSP e‰ect.

Table VI
Summary of statistical tests for type frequencies.

Dxy

LR
c2(1)

p

0.425
357.4

+freq

segmental bigram

base

0.425
357.7
0.366
0.545

+freq
+SSP

0.458
410.2
º52.5

<0.0001

+freq

sonority profile

0.445
380.1
º22.7

<0.0001

+freq
+SSP

0.459
412.5
º32.4

<0.0001

+freq

sonority rise

0.452
385.6
º28.2

<0.0001

+freq
+SSP

0.458
410.0
º24.4

<0.0001

1.2 Finer-grained SSP
The analyses above follow prior modelling studies in assuming the coarse-
grained sonority scale that worked well for generating sonority projection
in other languages. The granularity of the sonority scale is often debated,
however. Could it be that the coarse sonority scale is working against the
lexicalist hypothesis by lumping all the obstruents together? This section
first demonstrates that the same conclusions about children’s sensitivity to
the SSP are reached when a finer-grained sonority scale that separates
plosives (including a‰ricates) from fricatives is used (Selkirk 1984). Inter-
estingly, the finer-grained sonority scale turns out to be a better predictor
of children’s production accuracy than the coarse scale. This is unexpected,
given that formal analyses of Polish phonology explicitly argue for the
coarse-grained scale. It is consistent, however, with recent findings suggesting
that sonority-projection e‰ects di‰erentiate fricatives and stops (Tamási
& Berent 2014, Lennertz & Berent 2015). The section then shows that the
frequency predictions calculated on a finer-grained scale yield qualitatively
similar patterns of results to the coarse-grained scale examined above.

Figure 8
Accuracy by (a) finer-grained sonority profile; (b) finer-grained sonority rise.
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Figures 8a and b show the relationship between accuracy and finer-grained
sonority profiles and rises respectively (F=fricative, P=plosive). The main
di‰erences from before are that finer-grained sonority treats FP as a mild
sonority fall, PF as a mild rise like FN, PG as a larger rise than FG or PL,
and PL as a larger rise than FL. Inspection of Fig. 8 reveals that most of
these di‰erence align well with accuracy: FP is the least accurate cluster
type, PF is close in accuracy to FN and children are less accurate on FL
than PL. PG does not appear to be favoured by children relative to FG,
however. Nonetheless, a nested model comparison shows that a predictor
based on the finer-grained SSP (fSSP) is highly significantly predictive of
production accuracy after controlling for the various potential confounding
variables discuss ed earlier (c2(1)= 64.7; p<0.0001).  As expected, the
association is positive: higher fSSP is associated with higher accuracy
(b=0.24, z=7.95, p<0.0001). Out of 200 bootstrap validation samples
with backward elimination, fSSP is retained in the model 200 times. Overall,
the model shows a small amount of shrinkage: the original Dxy is 46.7, the
optimism is 0.014 and the corrected Dxy is 45.3.

As mentioned earlier, an unexpected finding is that fSSP is a better
predictor of children’s accuracy than SSP. This is verified by evaluating
a superset model that adds SSP. The superset model is not superior to the
model with  just fSSP (c2(1) =0.059; p>0.8), indic ating that SSP is
superfluous once fSSP is in the model. Accordingly, the opposite nested
model comparison reveals that fSSP makes a significant contribution to a
model that already has SSP (c2(1)=12.1; p<0.001). Note that this is not
a matter of degrees of freedom, since both SSP and fSSP are continuous
predictors with one degree of freedom: this just means that the additional
distinctions made on the finer-grained sonority scale are reflected in the
children’s production accuracy. As further verification of this result, the
backwards elimination validation procedure retains fSSP and not SSP.

To conclude this discussion, Table VII shows that calculating frequen-
cy along the finer-grained sonority scale does not rescue the lexicalist
approach. Just like the corresponding coarse-grained type frequencies, fine-
grained sonority-profile (b=—0.143, z=—2.32, p<0.05) and sonority-rise
(b=—0.2725, z=2.93, p<0.01) type frequencies are predictive of production
accuracy. The only di‰erence is that sonority-rise frequency is associated
in the right direction with accuracy. Just as with coarse-grained frequency,
the superset models with SSP are superior in both cases, and SSP is retained
as a predictor in all 200 backwards elimination bootstrap samples. (These
are the numbers using the weaker SSP predictor – results are similar when
fSSP is used.) Thus coarse-grained frequencies do not provide a way to
capture the developmental SSP e‰ect.

As mentioned earlier, an unexpected finding is that fSSP is a better
predictor of children’s accuracy than SSP. This is verified by evaluating
a superset model that adds SSP. The superset model is not superior to the
model with  just fSSP (c2(1) =0.059; p>0.8), indic ating that SSP is
superfluous once fSSP is in the model. Accordingly, the opposite nested
model comparison reveals that fSSP makes a significant contribution to a
model that already has SSP (c2(1)=12.1; p<0.001). Note that this is not
a matter of degrees of freedom, since both SSP and fSSP are continuous
predictors with one degree of freedom: this just means that the additional
distinctions made on the finer-grained sonority scale are reflected in the
children’s production accuracy. As further verification of this result, the
backwards elimination validation procedure retains fSSP and not SSP.

To conclude this discussion, Table VII shows that calculating frequen-
cy along the finer-grained sonority scale does not rescue the lexicalist
approach. Just like the corresponding coarse-grained type frequencies, fine-
grained sonority-profile (b=—0.143, z=—2.32, p<0.05) and sonority-rise
(b=—0.2725, z=2.93, p<0.01) type frequencies are predictive of production
accuracy. The only di‰erence is that sonority-rise frequency is associated
in the right direction with accuracy. Just as with coarse-grained frequency,
the superset models with SSP are superior in both cases, and SSP is retained
as a predictor in all 200 backwards elimination bootstrap samples. (These
are the numbers using the weaker SSP predictor – results are similar when
fSSP is used.) Thus coarse-grained frequencies do not provide a way to
capture the developmental SSP e‰ect.

Table VII
Summary of statistical tests for type frequencies using finer-grained sonority scale.

Dxy

LR
c2(1)

p

0.425
357.4

base +freq

sonority profile

0.428
362.9
ºº5.5
0.019

+freq
+SSP

0.471
429.4
º66.6

<0.0001

+freq

sonority rise

0.434
365.9
ºº8.5
0.003

+freq
+SSP

0.469
422.3
º56.4

<0.0001
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Figure 9
Error types by (a) finer-grained; (b) coarser-grained sonority.
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Table VIII
Initial segment bigram type frequency in the Polish CDS dictionary.

p»
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vj
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gr
mj
sw
br
kl
dr
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vw
zw
bj
gw
k»
zd
g^
zm
»Ú
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t»
ç!
çl

1522
427
411
370
365
344
340
266
257
249
248
227
206
196
190
175
172
146
140
133
121
121
119
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117
116
107
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89
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Figure 9 presents children’s error rates, broken down by sonority profile
(see §3 of the paper), and Table VIII provides a list of Polish initial clusters.
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1 Alternative frequency measures and scales
This section of the supplementary materials considers two alternative ways
of analysing the input and the SSP scale respectively.

1.1 Token frequency
For completeness, this section demonstrates that relying on token frequency
instead of type frequency does not provide a way out for the lexicalist
hypothesis. Figure 7 shows the association between accuracy and token-
frequency measures, analogous to the figures above for the type-frequency
measures. The results are similar, albeit less promising: token segmental
bigram frequency is not positively associated with accuracy.

segment bigram sonority profile sonority rise

Figure 7
Association between accuracy and token frequency.
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A summary of model comparisons analogous to those in Table IV above
is shown for token frequencies in Table VI. The pattern of results is similar,
except that token segmental bigram frequency is not predictive of production
accuracy. Just like the corresponding type frequencies, sonority-profile
(b=—0.328, z=—4.54, p<0.0001) and sonority-rise (b=—0.569, z=—5.07,
p<0.0001) token frequencies are predictive of production accuracy, but in
the wrong direction. The superset models with SSP are superior in all
cases, and SSP is retained as a predictor in all but one of 200 backwards
elimination bootstrap samples. Thus token frequencies do not provide a
way to capture the developmental SSP e‰ect.

Table VI
Summary of statistical tests for type frequencies.

Dxy

LR
c2(1)

p

0.425
357.4

+freq

segmental bigram

base

0.425
357.7
0.366
0.545

+freq
+SSP

0.458
410.2
º52.5

<0.0001

+freq

sonority profile

0.445
380.1
º22.7

<0.0001

+freq
+SSP

0.459
412.5
º32.4

<0.0001

+freq

sonority rise

0.452
385.6
º28.2

<0.0001

+freq
+SSP

0.458
410.0
º24.4

<0.0001

1.2 Finer-grained SSP
The analyses above follow prior modelling studies in assuming the coarse-
grained sonority scale that worked well for generating sonority projection
in other languages. The granularity of the sonority scale is often debated,
however. Could it be that the coarse sonority scale is working against the
lexicalist hypothesis by lumping all the obstruents together? This section
first demonstrates that the same conclusions about children’s sensitivity to
the SSP are reached when a finer-grained sonority scale that separates
plosives (including a‰ricates) from fricatives is used (Selkirk 1984). Inter-
estingly, the finer-grained sonority scale turns out to be a better predictor
of children’s production accuracy than the coarse scale. This is unexpected,
given that formal analyses of Polish phonology explicitly argue for the
coarse-grained scale. It is consistent, however, with recent findings suggesting
that sonority-projection e‰ects di‰erentiate fricatives and stops (Tamási
& Berent 2014, Lennertz & Berent 2015). The section then shows that the
frequency predictions calculated on a finer-grained scale yield qualitatively
similar patterns of results to the coarse-grained scale examined above.

Figure 8
Accuracy by (a) finer-grained sonority profile; (b) finer-grained sonority rise.
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Figures 8a and b show the relationship between accuracy and finer-grained
sonority profiles and rises respectively (F=fricative, P=plosive). The main
di‰erences from before are that finer-grained sonority treats FP as a mild
sonority fall, PF as a mild rise like FN, PG as a larger rise than FG or PL,
and PL as a larger rise than FL. Inspection of Fig. 8 reveals that most of
these di‰erence align well with accuracy: FP is the least accurate cluster
type, PF is close in accuracy to FN and children are less accurate on FL
than PL. PG does not appear to be favoured by children relative to FG,
however. Nonetheless, a nested model comparison shows that a predictor
based on the finer-grained SSP (fSSP) is highly significantly predictive of
production accuracy after controlling for the various potential confounding
variables discuss ed earlier (c2(1)= 64.7; p<0.0001).  As expected, the
association is positive: higher fSSP is associated with higher accuracy
(b=0.24, z=7.95, p<0.0001). Out of 200 bootstrap validation samples
with backward elimination, fSSP is retained in the model 200 times. Overall,
the model shows a small amount of shrinkage: the original Dxy is 46.7, the
optimism is 0.014 and the corrected Dxy is 45.3.

As mentioned earlier, an unexpected finding is that fSSP is a better
predictor of children’s accuracy than SSP. This is verified by evaluating
a superset model that adds SSP. The superset model is not superior to the
model with  just fSSP (c2(1) =0.059; p>0.8), indic ating that SSP is
superfluous once fSSP is in the model. Accordingly, the opposite nested
model comparison reveals that fSSP makes a significant contribution to a
model that already has SSP (c2(1)=12.1; p<0.001). Note that this is not
a matter of degrees of freedom, since both SSP and fSSP are continuous
predictors with one degree of freedom: this just means that the additional
distinctions made on the finer-grained sonority scale are reflected in the
children’s production accuracy. As further verification of this result, the
backwards elimination validation procedure retains fSSP and not SSP.

To conclude this discussion, Table VII shows that calculating frequen-
cy along the finer-grained sonority scale does not rescue the lexicalist
approach. Just like the corresponding coarse-grained type frequencies, fine-
grained sonority-profile (b=—0.143, z=—2.32, p<0.05) and sonority-rise
(b=—0.2725, z=2.93, p<0.01) type frequencies are predictive of production
accuracy. The only di‰erence is that sonority-rise frequency is associated
in the right direction with accuracy. Just as with coarse-grained frequency,
the superset models with SSP are superior in both cases, and SSP is retained
as a predictor in all 200 backwards elimination bootstrap samples. (These
are the numbers using the weaker SSP predictor – results are similar when
fSSP is used.) Thus coarse-grained frequencies do not provide a way to
capture the developmental SSP e‰ect.

As mentioned earlier, an unexpected finding is that fSSP is a better
predictor of children’s accuracy than SSP. This is verified by evaluating
a superset model that adds SSP. The superset model is not superior to the
model with  just fSSP (c2(1) =0.059; p>0.8), indic ating that SSP is
superfluous once fSSP is in the model. Accordingly, the opposite nested
model comparison reveals that fSSP makes a significant contribution to a
model that already has SSP (c2(1)=12.1; p<0.001). Note that this is not
a matter of degrees of freedom, since both SSP and fSSP are continuous
predictors with one degree of freedom: this just means that the additional
distinctions made on the finer-grained sonority scale are reflected in the
children’s production accuracy. As further verification of this result, the
backwards elimination validation procedure retains fSSP and not SSP.

To conclude this discussion, Table VII shows that calculating frequen-
cy along the finer-grained sonority scale does not rescue the lexicalist
approach. Just like the corresponding coarse-grained type frequencies, fine-
grained sonority-profile (b=—0.143, z=—2.32, p<0.05) and sonority-rise
(b=—0.2725, z=2.93, p<0.01) type frequencies are predictive of production
accuracy. The only di‰erence is that sonority-rise frequency is associated
in the right direction with accuracy. Just as with coarse-grained frequency,
the superset models with SSP are superior in both cases, and SSP is retained
as a predictor in all 200 backwards elimination bootstrap samples. (These
are the numbers using the weaker SSP predictor – results are similar when
fSSP is used.) Thus coarse-grained frequencies do not provide a way to
capture the developmental SSP e‰ect.

Table VII
Summary of statistical tests for type frequencies using finer-grained sonority scale.

Dxy

LR
c2(1)

p

0.425
357.4

base +freq

sonority profile

0.428
362.9
ºº5.5
0.019

+freq
+SSP

0.471
429.4
º66.6

<0.0001

+freq

sonority rise

0.434
365.9
ºº8.5
0.003

+freq
+SSP

0.469
422.3
º56.4

<0.0001
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Figure 9
Error types by (a) finer-grained; (b) coarser-grained sonority.
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Table VIII
Initial segment bigram type frequency in the Polish CDS dictionary.
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Figure 9 presents children’s error rates, broken down by sonority profile
(see §3 of the paper), and Table VIII provides a list of Polish initial clusters.


