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1 Modelling errors
We estimated parameter values by Maximum Likelihood Estimation, i.e.
our estimates are the values that maximise the probability of the data, given
the model. To assign probabilities to data it is necessary to make assumptions
about the probability of observing deviations from the model predictions,
i.e. errors. We assume that errors in L, H and M are normally distributed,
but not necessarily independent. For example, greater error in modelling
H might tend to be accompanied by greater error in modelling L. In a
model of a single variable with normally distributed errors, the maximum-
likelihood parameter estimates minimise the sum of the squared errors in
the fitted values (Myung 2003: 95). The current approach is similar, but
the squared errors are weighted according to the variances and covariances
of the errors in the three variables being modelled.

More precisely, the ith data point is a vector yi of the values of L, H and
M from a single utterance, and the model predicts a vector ¡i of fitted L,
H and M values based on the observed segment durations. The deviations
from these predictions, yi®¡i, are modelled as being distributed according
to a multivariate normal distribution with mean equal to 0 on all three
dimensions. The shape of the multivariate normal distribution is specified
by its covariance matrix, S, a 3X3 matrix specifying the variances of the
errors on each of the three dimensions, L, H and M, and the covariances
between errors on di‰erent dimensions.

If we change the parameters of the model then the fitted values ¡i change,
and consequently so does the joint probability density of the data. The
function that maps model parameter values onto the joint probability density
for a fixed set of data is referred to as the likelihood function. The maximum-
likelihood estimate of the parameter values is the set of values that maximises
the likelihood function.

2 Estimating the error covariance matrix
However, the model parameter values are not su"cient to calculate likeli-
hoods using (8) – we also need to know the error covariance matrix, S. But
S is not known, and thus must be estimated from the data as well. To
estimate both S and the other model parameters, we adopted the iterative
procedure in (9), as in Iteratively Reweighted Least Squares (Goldstein
1986, Carroll & Ruppert 1988: 13‰).

3 Optimisation algorithm for maximising the likelihood function
With a preliminary estimate of S in place, numerical optimisation algorithms
were used to search for the parameter values that maximise the likelihood
of the data (step (a) of the iterative procedure in (9) above). In fact, we
maximise the log of the data likelihood, because this is equivalent but
computationally simpler. Maximising log-likelihood is not easy, because
there are local maxima in the likelihood function (cf. Myung 2003: 94). We
tried several optimisation algorithms, but the most successful was Generalised
Simulated Annealing, a stochastic optimisation algorithm implemented in
the R package GenSA (Xiang et al. 2013).

All numerical optimisation algorithms depend on good starting values
for parameters in order to converge on optimal values (at least in a reasonable
amount of time). Starting values were obtained by deriving expressions
from the tone model that specify predicted relationships between L, H and
M, and fitting those expressions to the data using non-linear least squares
(nls; R Core Team 2016). These expressions are derived by taking partial
derivatives of the cost function in (6) with respect to each variable (L, H,
M), and setting them equal to zero, since the gradient of the cost function
is zero at its minimum (cf. Flemming 2001: 20‰). For example, this
procedure derives the expression in (7a), relating M to rise duration, H®L.

These expressions cannot be used directly to estimate the model para-
meters, because they relate predicted variables (e.g. L, H and M in (7a) are
all outputs of the tone model), and because the same model parameters
show up in more than one expression (e.g. TM appears in the expressions
for each of L, H and M), so fitting them separately would yield multiple
estimates of the same parameter. However, fitting these expressions to the
data provides good starting values for the parameters, averaging the multiple
estimates of TM.

The resulting starting values were:
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The probability density of one error vector, yi®¡i, is then given by the

multivariate normal density function with mean 0 and covariance S (e.g.
Johnson & Wichern 2007: 150). We refer to probability density rather than
probability because L, H and M are continuous variables, and can thus
take on an infinite range of values, so the probability of any specific value
is zero. However, the probability of the value of a variable falling in a
specified interval is non-zero, and is given by the area under the probability
density function of that variable over that interval. Given the simplifying
assumption that the observations are independent, the joint probability
density of the whole data set is then the product of these individual probability
densities, as shown in (8) (Johnson & Wichern 2007: 168), where yi is the
ith of n observation vectors, ¡i is the corresponding fitted value derived
from the model, given the observed segment durations, and p is the number
of variables, i.e. 3.

calculating the variances and covariances of the errors of these models.
Syllable and interval durations are the only external (or ‘exogenous’)
variables in the tone model, so they provide the only basis for preliminary
models of L, H and M from which to estimate errors and thus error
covariances. Linear models provide good estimates of L and H, and a linear
model of M is adequate for present purposes.

4 Edward Flemming and Hyesun Cho

(8)

Starting from an initial estimate of S:

To obtain an initial estimate of S, we need preliminary estimates of the
errors in fitted values ¡i, but we obviously cannot use the tone model to
derive these estimates, since the estimate of S is needed first in order to fit
the tone model. Instead we derive an initial estimate of S by fitting linear
models to predict L, H and M from syllable and interval duration, and

(9)
find model parameters that maximise likelihood, given S;
calculate an improved estimate of S from the residuals of the fitted
values derived from those model parameters;
iterate steps (a)–(b) until the parameter estimates converge.

a.
b.

c.

GenSA was used to search in the ranges in (11) through 27,000 steps.

AL 53% of syllable duration
AH 80% of V-to-V interval duration
TM 75 Hz
wS 30,526
TS 0.37 Hz/ms
wH 0.5
wL 0.19

(10)

AL 40–70% of syllable duration
AH 70–100% of V-to-V interval duration
TM 60–90 Hz
wS 1000–70,000
TS 0.1–0.5 Hz/ms
wH 0.1–1
wL 0.1–1

The procedure was then iterated with an improved estimate of S (steps (b)
and (c) of the procedure described in (9) above), but this resulted in no
change in parameter estimates (the largest change was less than 0.005%).

Fitting the expanded model with pitch-range parameters, reported in
§4.5, required three iterations between estimation of parameters and the
covariance matrix to converge. The Nelder-Mead algorithm (implemented
in the R function Optim) was used to estimate model parameters after the
first iteration because the optimum was close to the starting point, and
Nelder-Mead was much faster than GenSA under these conditions.
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1 Modelling errors
We estimated parameter values by Maximum Likelihood Estimation, i.e.
our estimates are the values that maximise the probability of the data, given
the model. To assign probabilities to data it is necessary to make assumptions
about the probability of observing deviations from the model predictions,
i.e. errors. We assume that errors in L, H and M are normally distributed,
but not necessarily independent. For example, greater error in modelling
H might tend to be accompanied by greater error in modelling L. In a
model of a single variable with normally distributed errors, the maximum-
likelihood parameter estimates minimise the sum of the squared errors in
the fitted values (Myung 2003: 95). The current approach is similar, but
the squared errors are weighted according to the variances and covariances
of the errors in the three variables being modelled.

More precisely, the ith data point is a vector yi of the values of L, H and
M from a single utterance, and the model predicts a vector ¡i of fitted L,
H and M values based on the observed segment durations. The deviations
from these predictions, yi®¡i, are modelled as being distributed according
to a multivariate normal distribution with mean equal to 0 on all three
dimensions. The shape of the multivariate normal distribution is specified
by its covariance matrix, S, a 3X3 matrix specifying the variances of the
errors on each of the three dimensions, L, H and M, and the covariances
between errors on di‰erent dimensions.

If we change the parameters of the model then the fitted values ¡i change,
and consequently so does the joint probability density of the data. The
function that maps model parameter values onto the joint probability density
for a fixed set of data is referred to as the likelihood function. The maximum-
likelihood estimate of the parameter values is the set of values that maximises
the likelihood function.

2 Estimating the error covariance matrix
However, the model parameter values are not su"cient to calculate likeli-
hoods using (8) – we also need to know the error covariance matrix, S. But
S is not known, and thus must be estimated from the data as well. To
estimate both S and the other model parameters, we adopted the iterative
procedure in (9), as in Iteratively Reweighted Least Squares (Goldstein
1986, Carroll & Ruppert 1988: 13‰).

3 Optimisation algorithm for maximising the likelihood function
With a preliminary estimate of S in place, numerical optimisation algorithms
were used to search for the parameter values that maximise the likelihood
of the data (step (a) of the iterative procedure in (9) above). In fact, we
maximise the log of the data likelihood, because this is equivalent but
computationally simpler. Maximising log-likelihood is not easy, because
there are local maxima in the likelihood function (cf. Myung 2003: 94). We
tried several optimisation algorithms, but the most successful was Generalised
Simulated Annealing, a stochastic optimisation algorithm implemented in
the R package GenSA (Xiang et al. 2013).

All numerical optimisation algorithms depend on good starting values
for parameters in order to converge on optimal values (at least in a reasonable
amount of time). Starting values were obtained by deriving expressions
from the tone model that specify predicted relationships between L, H and
M, and fitting those expressions to the data using non-linear least squares
(nls; R Core Team 2016). These expressions are derived by taking partial
derivatives of the cost function in (6) with respect to each variable (L, H,
M), and setting them equal to zero, since the gradient of the cost function
is zero at its minimum (cf. Flemming 2001: 20‰). For example, this
procedure derives the expression in (7a), relating M to rise duration, H®L.

These expressions cannot be used directly to estimate the model para-
meters, because they relate predicted variables (e.g. L, H and M in (7a) are
all outputs of the tone model), and because the same model parameters
show up in more than one expression (e.g. TM appears in the expressions
for each of L, H and M), so fitting them separately would yield multiple
estimates of the same parameter. However, fitting these expressions to the
data provides good starting values for the parameters, averaging the multiple
estimates of TM.

The resulting starting values were:
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calculating the variances and covariances of the errors of these models.
Syllable and interval durations are the only external (or ‘exogenous’)
variables in the tone model, so they provide the only basis for preliminary
models of L, H and M from which to estimate errors and thus error
covariances. Linear models provide good estimates of L and H, and a linear
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(2p)p/2|S|1/2

n

i=1

Starting from an initial estimate of S:

To obtain an initial estimate of S, we need preliminary estimates of the
errors in fitted values ¡i, but we obviously cannot use the tone model to
derive these estimates, since the estimate of S is needed first in order to fit
the tone model. Instead we derive an initial estimate of S by fitting linear
models to predict L, H and M from syllable and interval duration, and

(9)
find model parameters that maximise likelihood, given S;
calculate an improved estimate of S from the residuals of the fitted
values derived from those model parameters;
iterate steps (a)–(b) until the parameter estimates converge.

a.
b.

c.

GenSA was used to search in the ranges in (11) through 27,000 steps.

AL 53% of syllable duration
AH 80% of V-to-V interval duration
TM 75 Hz
wS 30,526
TS 0.37 Hz/ms
wH 0.5
wL 0.19

(10)

AL 40–70% of syllable duration
AH 70–100% of V-to-V interval duration
TM 60–90 Hz
wS 1000–70,000
TS 0.1–0.5 Hz/ms
wH 0.1–1
wL 0.1–1

The procedure was then iterated with an improved estimate of S (steps (b)
and (c) of the procedure described in (9) above), but this resulted in no
change in parameter estimates (the largest change was less than 0.005%).

Fitting the expanded model with pitch-range parameters, reported in
§4.5, required three iterations between estimation of parameters and the
covariance matrix to converge. The Nelder-Mead algorithm (implemented
in the R function Optim) was used to estimate model parameters after the
first iteration because the optimum was close to the starting point, and
Nelder-Mead was much faster than GenSA under these conditions.
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1 Modelling errors
We estimated parameter values by Maximum Likelihood Estimation, i.e.
our estimates are the values that maximise the probability of the data, given
the model. To assign probabilities to data it is necessary to make assumptions
about the probability of observing deviations from the model predictions,
i.e. errors. We assume that errors in L, H and M are normally distributed,
but not necessarily independent. For example, greater error in modelling
H might tend to be accompanied by greater error in modelling L. In a
model of a single variable with normally distributed errors, the maximum-
likelihood parameter estimates minimise the sum of the squared errors in
the fitted values (Myung 2003: 95). The current approach is similar, but
the squared errors are weighted according to the variances and covariances
of the errors in the three variables being modelled.

More precisely, the ith data point is a vector yi of the values of L, H and
M from a single utterance, and the model predicts a vector ¡i of fitted L,
H and M values based on the observed segment durations. The deviations
from these predictions, yi®¡i, are modelled as being distributed according
to a multivariate normal distribution with mean equal to 0 on all three
dimensions. The shape of the multivariate normal distribution is specified
by its covariance matrix, S, a 3X3 matrix specifying the variances of the
errors on each of the three dimensions, L, H and M, and the covariances
between errors on di‰erent dimensions.

If we change the parameters of the model then the fitted values ¡i change,
and consequently so does the joint probability density of the data. The
function that maps model parameter values onto the joint probability density
for a fixed set of data is referred to as the likelihood function. The maximum-
likelihood estimate of the parameter values is the set of values that maximises
the likelihood function.

2 Estimating the error covariance matrix
However, the model parameter values are not su"cient to calculate likeli-
hoods using (8) – we also need to know the error covariance matrix, S. But
S is not known, and thus must be estimated from the data as well. To
estimate both S and the other model parameters, we adopted the iterative
procedure in (9), as in Iteratively Reweighted Least Squares (Goldstein
1986, Carroll & Ruppert 1988: 13‰).

3 Optimisation algorithm for maximising the likelihood function
With a preliminary estimate of S in place, numerical optimisation algorithms
were used to search for the parameter values that maximise the likelihood
of the data (step (a) of the iterative procedure in (9) above). In fact, we
maximise the log of the data likelihood, because this is equivalent but
computationally simpler. Maximising log-likelihood is not easy, because
there are local maxima in the likelihood function (cf. Myung 2003: 94). We
tried several optimisation algorithms, but the most successful was Generalised
Simulated Annealing, a stochastic optimisation algorithm implemented in
the R package GenSA (Xiang et al. 2013).

All numerical optimisation algorithms depend on good starting values
for parameters in order to converge on optimal values (at least in a reasonable
amount of time). Starting values were obtained by deriving expressions
from the tone model that specify predicted relationships between L, H and
M, and fitting those expressions to the data using non-linear least squares
(nls; R Core Team 2016). These expressions are derived by taking partial
derivatives of the cost function in (6) with respect to each variable (L, H,
M), and setting them equal to zero, since the gradient of the cost function
is zero at its minimum (cf. Flemming 2001: 20‰). For example, this
procedure derives the expression in (7a), relating M to rise duration, H®L.

These expressions cannot be used directly to estimate the model para-
meters, because they relate predicted variables (e.g. L, H and M in (7a) are
all outputs of the tone model), and because the same model parameters
show up in more than one expression (e.g. TM appears in the expressions
for each of L, H and M), so fitting them separately would yield multiple
estimates of the same parameter. However, fitting these expressions to the
data provides good starting values for the parameters, averaging the multiple
estimates of TM.

The resulting starting values were:
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calculating the variances and covariances of the errors of these models.
Syllable and interval durations are the only external (or ‘exogenous’)
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covariances. Linear models provide good estimates of L and H, and a linear
model of M is adequate for present purposes.
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Starting from an initial estimate of S:

To obtain an initial estimate of S, we need preliminary estimates of the
errors in fitted values ¡i, but we obviously cannot use the tone model to
derive these estimates, since the estimate of S is needed first in order to fit
the tone model. Instead we derive an initial estimate of S by fitting linear
models to predict L, H and M from syllable and interval duration, and

(9)
find model parameters that maximise likelihood, given S;
calculate an improved estimate of S from the residuals of the fitted
values derived from those model parameters;
iterate steps (a)–(b) until the parameter estimates converge.

a.
b.

c.

GenSA was used to search in the ranges in (11) through 27,000 steps.

AL 53% of syllable duration
AH 80% of V-to-V interval duration
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wS 30,526
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The procedure was then iterated with an improved estimate of S (steps (b)
and (c) of the procedure described in (9) above), but this resulted in no
change in parameter estimates (the largest change was less than 0.005%).

Fitting the expanded model with pitch-range parameters, reported in
§4.5, required three iterations between estimation of parameters and the
covariance matrix to converge. The Nelder-Mead algorithm (implemented
in the R function Optim) was used to estimate model parameters after the
first iteration because the optimum was close to the starting point, and
Nelder-Mead was much faster than GenSA under these conditions.
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1 Modelling errors
We estimated parameter values by Maximum Likelihood Estimation, i.e.
our estimates are the values that maximise the probability of the data, given
the model. To assign probabilities to data it is necessary to make assumptions
about the probability of observing deviations from the model predictions,
i.e. errors. We assume that errors in L, H and M are normally distributed,
but not necessarily independent. For example, greater error in modelling
H might tend to be accompanied by greater error in modelling L. In a
model of a single variable with normally distributed errors, the maximum-
likelihood parameter estimates minimise the sum of the squared errors in
the fitted values (Myung 2003: 95). The current approach is similar, but
the squared errors are weighted according to the variances and covariances
of the errors in the three variables being modelled.

More precisely, the ith data point is a vector yi of the values of L, H and
M from a single utterance, and the model predicts a vector ¡i of fitted L,
H and M values based on the observed segment durations. The deviations
from these predictions, yi®¡i, are modelled as being distributed according
to a multivariate normal distribution with mean equal to 0 on all three
dimensions. The shape of the multivariate normal distribution is specified
by its covariance matrix, S, a 3X3 matrix specifying the variances of the
errors on each of the three dimensions, L, H and M, and the covariances
between errors on di‰erent dimensions.

If we change the parameters of the model then the fitted values ¡i change,
and consequently so does the joint probability density of the data. The
function that maps model parameter values onto the joint probability density
for a fixed set of data is referred to as the likelihood function. The maximum-
likelihood estimate of the parameter values is the set of values that maximises
the likelihood function.

2 Estimating the error covariance matrix
However, the model parameter values are not su"cient to calculate likeli-
hoods using (8) – we also need to know the error covariance matrix, S. But
S is not known, and thus must be estimated from the data as well. To
estimate both S and the other model parameters, we adopted the iterative
procedure in (9), as in Iteratively Reweighted Least Squares (Goldstein
1986, Carroll & Ruppert 1988: 13‰).

3 Optimisation algorithm for maximising the likelihood function
With a preliminary estimate of S in place, numerical optimisation algorithms
were used to search for the parameter values that maximise the likelihood
of the data (step (a) of the iterative procedure in (9) above). In fact, we
maximise the log of the data likelihood, because this is equivalent but
computationally simpler. Maximising log-likelihood is not easy, because
there are local maxima in the likelihood function (cf. Myung 2003: 94). We
tried several optimisation algorithms, but the most successful was Generalised
Simulated Annealing, a stochastic optimisation algorithm implemented in
the R package GenSA (Xiang et al. 2013).

All numerical optimisation algorithms depend on good starting values
for parameters in order to converge on optimal values (at least in a reasonable
amount of time). Starting values were obtained by deriving expressions
from the tone model that specify predicted relationships between L, H and
M, and fitting those expressions to the data using non-linear least squares
(nls; R Core Team 2016). These expressions are derived by taking partial
derivatives of the cost function in (6) with respect to each variable (L, H,
M), and setting them equal to zero, since the gradient of the cost function
is zero at its minimum (cf. Flemmi ng 2001: 20‰). For example, this
procedure derives the expression in (7a), relating M to rise duration, H®L.

These expressions cannot be used directly to estimate the model para-
meters, because they relate predicted variables (e.g. L, H and M in (7a) are
all outputs of the tone model), and because the same model parameters
show up in more than one expression (e.g. TM appears in the expressions
for each of L, H and M), so fitting them separately would yield multiple
estimates of the same parameter. However, fitting these expressions to the
data provides good starting values for the parameters, averaging the multiple
estimates of TM.

The resulting starting values were:
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Starting from an initial estimate of S:

To obtain an initial estimate of S, we need preliminary estimates of the
errors in fitted values ¡i, but we obviously cannot use the tone model to
derive these estimates, since the estimate of S is needed first in order to fit
the tone model. Instead we derive an initial estimate of S by fitting linear
models to predict L, H and M from syllable and interval duration, and

(9)
find model parameters that maximise likelihood, given S;
calculate an improved estimate of S from the residuals of the fitted
values derived from those model parameters;
iterate steps (a)–(b) until the parameter estimates converge.
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GenSA was used to search in the ranges in (11) through 27,000 steps.
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The procedure was then iterated with an improved estimate of S (steps (b)
and (c) of the procedure described in (9) above), but this resulted in no
change in parameter estimates (the largest change was less than 0.005%).

Fitting the expanded model with pitch-range parameters, reported in
§4.5, required three iterations between estimation of parameters and the
covariance matrix to converge. The Nelder-Mead algorithm (implemented
in the R function Optim) was used to estimate model parameters after the
first iteration because the optimum was close to the starting point, and
Nelder-Mead was much faster than GenSA under these conditions.

(11)


