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The data corpus and model calculations can be found in the following

Excel files:

data corpus
calculations for the maxent model

calculations for the domain indexation model

calculations for the exponential model

calculations for the morpheme indexation model

calculations for the noisy harmonic grammar model

The following text files are called in the Monte Carlo simulation in
Appendix C: §4:

Monte Carlo simulation data

Monte Carlo simulation results
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Appendix A: The math

1 Background and starting point

1.1 Goal of this document

Explain and justify all of the math in our article.
Intended audience: people who vaguely remember their math
training from long ago.
Why not in the article itself?
» Takes a huge amount of space.
» 'This isn’t research, just standard math.
» We couldn’t find a textbook source that covers this
completely or clearly.
» By writing this out ourselves we can show every single step —
much as one would in a traditional phonological derivation.
Caveat to people who do math all the time:
» The degree of detail included here is likely to be irritating!
We recommend you stop reading after §2.3 and work out the
results yourself as an exercise.

1.2 Substantive points to be established

1.2.1 Our system of constraints derives sigmoids

If you apply the principles of maxent grammar to the system we
described, with one scalar markedness constraint and one non-
scalar faithfulness constraint, then you predict a sigmoid curve,
described by the equation:

1
V=1 4 eF-Mx

y = predicted application rate of phonological process

F = weight of faithfulness

M = weight of applicable scalar markedness constraint

x = value on scale (for us: ‘distance’ from root along the mor-
phological scale we define); higher values = closer

1.2.2 Properties of the sigmoid function

It asymptotes at 1 for large values of x.

It asymptotes at 0 for small values of x.

It crosses 50% probability at x = M/F.

It is symmetrical about this point.

The maximum slope occurs at this point and is equal to M /4.
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1.2.3 A schematic sigmoid showing all these properties

Following the article, we chose a scale for x ranging from 1 to 7.
For Fig. 1 below, we picked F =8 and M = 2.

So, F/M =4, which is where the sigmoid curve crosses 0.5
(vertical blue line shows this).

Symmetry about this point, and asymptotes at zero and one, are
visually evident.

The diagonal red line is the tangent to the sigmoid at the point of
maximum slope. The slope of this line can be seen to be 0.5 (line
rises by 1 in an interval of 2), which is equal to M /4, i.e. 2/4.

1.00

process

> 0.50

ility of

0.00 4 |
1 2 3 4 5 6 7
Value of x for scalar constraint

Figure 1

2 Math you need to remember

2.1 Algebraic identities

a.

Multiplying exponentiated numbers is the same as adding their ex-
ponents

a¥x ay=al¥+y)

Anything to the zeroth power is one.

a%=1

Distribution of multiplication over addition

ax(b+c)=(axb)+(axc)
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d. Product of two sums
We can invoke the distributive property repeatedly to get this:
(a+b)(c+d) =((a+b)xc)+((a+Db)xd)
=(cx(a+b))+(dx(a+b)) (commute)
=ca+cb+da+db (distribute again, twice)

=ac+bc+ad+bd (commute)

3 Our system of constraints derives sigmoids

3.1 Starting point
* Let us assume a generic phonological process; in informal terms
we think of the process as ‘applying’ or ‘not applying.’
* We assume that the two essential conflicting constraints are a
scalar markedness constraint and an opposing non-scalar
faithfulness constraint.

3.2 Variables

¢ Let the weight of the scalar markedness constraint be M.
¢ Let the weight of the non-scalar faithfulness constraint be F.
* Let there be a variable x expressing the relevant scale. In our
article this is root-closeness, so
» 7 =root-internal
» 1 =the farthest away affix.

3.3 Applying maxent
* Assume we're trying to decide the phonological outcome for an
input whose value along the scale is x.

3.3.1 Calculate harmony

* The candidate that has undergone the phonological process
violates (just) FAITH, so its harmony is F.

* 'The candidate that has not undergone the phonological process
violates (just) the scalar markedness constraint, so its harmony is
M.

* We assume that all other candidates are ruled out by very strong
constraints — super-high weights, and so need not be taken into
account.
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3.3.2 Negate and exponentiate

* As our article notes, the next step in maxent is to take e to the

power of the negative harmony, for each candidate.

Candidate that has undergone phonology: e ¥

Candidate that has not undergone phonology: e Mx

All other candidates: ¢~ (some verylarge value)

> e to some very large value is close enough to zero that we can
justifiably treat these candidates as receiving the value zero.

3.3.3 Calculate the denominator (‘Z’)

* Z is the sum of what you got for all candidates.

* As noted above, most of these get vanishing small values, which
we will ignore.

So really, we just have two candidates to worry about, and their
values sum to:

Z=e T+ ¢ Mx

3.3.4 Find the probabilities of the candidates
* In maxent, this is the result of step 3.3.2 above, divided by Z.

—-F

a. Probability of ‘undergoing’ candidate = 67
e~ Mx

b. Probability of ‘non-undergoing’ candidate = 7

3.4 Deriving the sigmoid curve

We want to see how the probability of the ‘undergoing’ candidate
varies with x, its value along the scale.

3.4.1 The algebra

* Start with the probability that we just derived for the probability
of the ‘undergoing’ candidate (3.3.4a):

—-F
Probability of undergoing candidate = 67
* Substitute in the formula for Z (3.3.3):
_F
Probability of undergoing candidate = P oMy
*  Multiply top and bottom by el':
el'xe F
eF x (e F + e~Mvx)

Probability of undergoing candidate =
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On the bottom, distribute multiplication over addition (2.1c¢):

el'xe T
(el xeF) + (el x e~ M)

Probability of undergoing candidate

Multiplication of exponentiated terms is the same as exponentia-
tion by the sum of the exponents (2.1a).

o(F+—F)
Probability of undergoing candidate = o(Fr—F) 5 oF —Mx

Summing:

(0)
. . . €
Probability of undergoing candidate = 0 3 oF - Mx

Any positive number to the zeroth power is 1 (2.1b):

1
Probability of undergoing candidate = T+ oF M

Result

We are done! What we have is a version of the standard rocisTiC
FUNCTION, which plots as a sigmoid (see 1.2.3 above).

The function derives a probability of the phonology-undergoing
candidate from its value on the markedness scale, x.

Next, let us provide mathematical demonstrations of the
properties of this function laid out in 1.2.2 above.

4 First two properties of the sigmoid: limits as x is made
high or low

4.1 Asymptotes to 1 as x becomes large

We consider our sigmoid function, using y to mean ‘probability
of undergoing candidate’:

1
V=1 4 eF-Mx

The informal reasoning behind the asymptotes:
» 1If x is very large, then Mx is very large too (we use positive
weights).
» Then F — Mx is very large and negative.
» Then e ~Mxis very small.

1
» Then T4 oF Mx approaches 1.

Compare Tommo So, with near-obligatory root harmony.
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4.2 Asymptotes to zero as x gets low

Here, by ‘small’ we will include even negative numbers.
Reasoning:
» 1If x is very negative, then Mx is very negative too (we use
positive weights).
» Then F — Mux is very large and positive.
» Then e ~Mxig very large.

1
» Then 1+ oF-Mx approaches zero.

Compare Tommo So, with zero harmony in the ‘outermost’ in-
flectional levels.

5 Second property of the sigmoid: crosses 50% at x =F/M

5.1 Demonstration

We plug the value F/M into our formula for the sigmoid,
replacing x:

N S
V=1 4 eF-Mx

1
=1 + eF -(MxF/M)

The M terms cancel each other out and can therefore be
removed:

1
T14+eF-P
The F terms disappear:

1
T1+ef

Anything to the zero is one (2.1b):

And so:
1
y=5

This is 50%, the probability of undergoing phonology at the
point F/M.
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6 Third property of the sigmoid: symmetrical about x =F/M

6.1 What we want to establish

We know that at x = F/M the value of the function is 0.5 (see 5.1).
Let us consider two points with values of x symmetric about
F/M. Call them x + Ax and x — Ax.

The amount that the function computed at x+ Ax exceeds 0.5
should be the same as the amount that the function at point x — Ax
falls below 0.5. This is what is meant here by symmetry.

6.2 The algebra that demonstrates symmetry

Start with an equality that looks arbitrary but is chosen with fore-
thought and is obviously true:

1+eMAvq e~ MAxy | =1 4 eMAx 4 e-MAv 4 |

Replace the last instance of 1 with its equal, e? (2.1b).

1+eMAvq e~ MAxy | =1 4 eMAx 4 g~MAx 4 €0

Since MAx + —MAx =0, we can replace the zero with this expres-
sion:

1 + el\’le + e—)"IAx + 1 = 1 + el\"le + e—lVIAx +e MAx + —MAx

Since ea+b=eaxeb (2.1a), we can rewrite the eMAx+ -MAxterm like
this:

1 + el\’le + e—)"IAx + 1 = 1 + el\"le + e—lVIAx +e A\'leXe—l\'le

Since (a+b)(c+d)=ac+ad+bc+bd (see 2.1d above), we can
rewrite the right side like this:

14 eMAx 4 e MAxt | = (1 + eMAY) x (1 4 e~ MAY)
To check this, observe that the right side of the new version,

when multiplied out, yields the right side of the old version.

Divide both sides by (1 + eMAx):
1+ eMAx g e MAxy | (1 4 eMAx)x (1 + e MAy)
1+ eMAx - 1+ eMAx

Simplify on the right side by dividing top and bottom by
1+ eMAx,

1+ eMAvy e~MAx 4 q
1+ eMAx

=1+ MAx

Split up the left side, giving each term the same denominator:
1+eMAx  ~MAx
1+ oMbt oMAy

=1+ e My
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*  Simplify the fraction on the left side:

e~MAx 4 1
l+ T =1+ e~ MAy
e Divide both sides by 1+ e~MAx;
1 1

1+ e MA T oMA = 1

e  Subtract 0.5 from both sides:

1 -
1 + o-MAx + 1+ eMAx — 0.5=0.5

e Subtract 1/1 +e~MA¥ from both sides:

1 1
m—()S:OS—m

* Zero may be added without change:
1 1
1+ eMAx+0 ™ 0.5=0.5- 1 + e~MAx+0
* Replace zero by F - F:
N S .
1+ eMAx+F—-F 0.5=0.5- 1+ e MAx+F-F
* Rearranging order of addends in the exponent on both sides:
.t I S
1+ e F+MAx+F 0.5=0.5- 1+ e F-MAx+F
* Substitute in M x—F/M for —F (it’s the same thing, since the
multiplication and division cancel each other out):

1 1
11 O+ MavrF— 0:5=0.5 = T R D - VA + T

¢ Extract the common factor M (2.1¢):

1 1
1M CoMaan+F— 0:5=0.5 - T RicCini— a0+ F

* Put negative signs on the outside:

1 1
1 e Mxni—anrr— 0:5=0.5 - T " R+ a0+ F

* Swap order:

1 1
1+ eF— Mx(F/M-Ax) ~ 0.5=0.5- 1 4+ eF = Mx(F/M +Ax)
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This is just what we want. Recall that the formula deriving
predicted probability of phonological application is:

1

1+ eF—Mxx

On the left side, we evaluate the function for the wvalue
x=F/M — Ax, which is Ax below the 0.5 crossover value of F/M;
and we compute how much this is above the crossover value of
0.5. On the right side, we evaluate the function for the value
x=F/M+ Ax, which is Ax above the crossover value; and we
compute how much this is below the crossover value of 0.5. Since
these turn out always to be equal, the function is symmetrical

about the value F/M.

7 Fourth property of the sigmoids: slope at F/M =M/4

7.1 Finding the slope at the symmetry point

In calculus the steepness of a curve at any given point is
expressed as its DERIVATIVE.

Figure 2 is the logistic curve plotted earlier as Fig. 1, this time
plotted together with its derivative. The derivative has a
symmetrical hump peaking at M/F (which you will remember is
8/2=4), where (as we expected) it has the value 0.5, since this is
M/4.

1.00

0.50

0.00 T T T T T Y
1 2 3 4 5 6 7
Value of x for scalar constraint

Figure 2
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Calculating the derivative of
N S
V=14 eF-Mx
(see §9 below for how this can be done), it turns out to be:
dy MeF-Mx
da ™ (1 + eF-Mx)2

This is indeed the function that was used in plotting the
derivative curve in the figure above.

We can now profitably ask what the slope is at the symmetry
point, which it will be recalled, is at x = F/M. We substitute F/M
into the formula for the derivative, and obtain:

dy MeF - MxF/M
a(F/M) T (1 + eF - MxFMY2

MeF-F
T (1+eF-F)2

MeY
T (1+e0)2

Mx1
T(1+1)2

M
~(2)2

M

=%

So, we’ve established that the slope at the symmetry point is the
markedness weight divided by 4.

8 Fifth property of the sigmoids: M/4 is the maximum slope
8.1 The last detail

We’ve found that the slope at F/M is indeed M /4, but we haven’t
shown that that is the steepest slope of the logistic curve.

In calculus, the way to find a maximum of a function is to find the
spot where its derivative levels out. For example, if we look again
at (a pristine version of) the derivative of the logistic function that
we plotted earlier, it appears like this:
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1.00

0.50

0.00 T T T T T
1 2 3 4 5 6 7
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Figure 3

It would appear (and we’ll nail this down shortly) that the
maximum is indeed at x = 4, with the value 0.5. To verify this, we
would want to know that a line tangent to the derivative function
at this point would be level; i.e. would have slope zero. (Con-
veniently, the vertical scale line at y =0.5 actually happens to be
this tangent line.)

* So what we do is compute the SECOND DERIVATIVE; i.e. the
derivative of the derivative, and find where it goes to zero.

8.2 The second derivative
* We’ll examine the equation for the second derivative in a
moment. But first, it would be useful just to look at the graph for

it (plotted along with the first derivative):
1.00

0.50

0.00 4

-0.50 T T T T 1
1 2 3 4 5 6 7
Value of x for scalar constraint

Figure 4
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The second derivative has an intriguing symmetrical pattern: just
a little bit above zero coming up from negative infinity, peaking,
then plunging rapidly to its lowest value, and lastly edging
upward to remain just a little bit below zero out to positive
infinity. The point at which the plunge reaches zero looks to be at
x =4; let us confirm.

The second derivative of our logistic function:
N S

1 + eF — Mx

turns out to be:

a2y M 2eF ~ Mx(eF - Mx _ 1)

da2 ™ (1 + eF —Mx)3

Again, see §9 for how this can be calculated.

The last step is to plug the symmetry point, x= F/M, into our
formula for the second derivative. If F/M is a maximum (or
minimum, really, but as you can see it turned out to be a
maximum) this ought to yield zero.

42 M2eF~MxF/M(oF - MxF/M _ |

ao(FIM) == +6F_(WF,/M)3 :

X

_ M2eF-F(eP-F—1)
(1+ef-F)3

M2~ 1)
T (1+ef3

M21(1-1)
T (1+1)3

B M21(0)
(2)}
=0
Sure enough.

Summarising: the second derivative of the logistic function
1 M 2eF ~ Mx(eF - Mx _ 1)
Y=14eF-Mx I8 (1 + eF —~Mx)3

This reaches zero at M/F, the symmetry point of the logistic
function. This means that the first derivative, representing the
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slope of the logistic function, reaches an extreme at M/F, which
by inspection we see is the maximum. The maximum slope
occurs at M/F.

9 Finding the derivatives

9.1 Reviewing the rules for differentiation in calculus
9.1.1 Derivative of a constant
If y(x) = c, where ¢ is some constant, then

dv_

dx_o

9.1.2 Derivative of a linear equation
If y(x) = mx + b, where m and b are constants, then

dx~ ™

9.1.3 Differentiating a power

If y =« then
cl_y_ nxn-1
da™

It’s fine for n to be negative, since 1/x" is the same as x . We will see this
below.

9.1.4 Differentiating exponentials
If y = e¥, then, amazingly,

dy

dx

=eX

9.1.5 Sum Rule

The derivative of the sum of two functions is the sum of their
derivatives.

9.1.6 Product Rule
If y = f(x) x g(x), then

d d df
= () x 55 + (@) x )

9.1.7 Chain Rule

If y =1f(g(x)), then
dy_df dg
dx_dgxdx
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This can be applied more than once, so if y = f(g(h(x))), then

dy_df dg dh
dx " dg*dh ™ dx

9.2 Finding the first derivative of the logistic function
9.2.1 Setting up the problem for solution with the Chain Rule

We seek to differentiate our logistic function, which is:
N S
V=1 4 eF-Mx

This is facilitated if we rewrite it as a ‘function of a function of a
function’, with intermediate steps.

1
y="fg)=7
g(h)=1+eh
h(x)=F—-Mux

In other words, we work through the formula and re-express its
content step-by-step. The functions h(x), g(h) and f(g) re-express
the formula going ‘from the inside out’. We can put the functions
back together as follows:

v = f(g(h(x)))
The Chain Rule (9.1.7) tells us to take the derivative of each ‘sub-

function’, then multiply the derivatives out to get the whole
derivative.

9.2.2 Differentiating £(g), g(h) and h(x)

If

1
flg)=—
(2) 2
then
df -1
dg~ ¢?

This applies (9.1.3), treating 1/g as its equivalent g~!.

If g(h) =1 +eh, then we have a sum of two functions; a trivial one
(the constant 1) and eb.

» We differentiate them separately, then add (9.1.5).
» The derivative of the constant one is zero (9.1.1).

» The derivative of elis itself (9.1.4).
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> so:

— eh
dh~°
If h(x) = F — Mx then by 9.1.2 we have

dh
da ™ -M

9.2.3 Applying the Chain Rule

Now that we have our three derivatives, we can substitute them
back into the formula of the Chain Rule:

dy _df dg dh

dx Tdg “dh*dx

=—Fxehx-M
g

And we know what g and h are (9.2.1, second bullet point), so we
can substitute their definitions back in to the formula:
dy -1

de= (Trempxe o -M

And once again, filling in the definition of h(x):

-1 o

Clean-up: the two minus signs cancel each other, and we re-
arrange prettily into a single fraction:

dy  MeP-Mv
a: (1+ eF—Mx)z

This is the correct answer, and is indeed the derivative assumed
in 7.1, second bullet point.

9.2.4 Checking the answer

Are we sure we're right? A check comes from the process of
making the actual graphs displayed above. These are made (in
Excel) by plotting one dot at every interval of 0.01 along the x
axis. The fraction

Y, 4 1) — y(x,)

Xn+1~ ¥p

where x, 1s the nth value along the x axis, is a close approximation
to the derivative when the interval between dots is small. We find
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that the values thus obtained closely match those calculated with
the true derivative

MeF - Mx
(1 + eF ~Mx)2

thus confirming that we haven’t made a mistake.

9.3 Finding the second derivative of the logistic function
9.3.1 Defining the task

¢ To obtain the second derivative, we need to differentiate the first
derivative we just obtained, i.e. we want dy/dx, where y(x) is now
redefined as

MeF - Mx
y(x) = (1 + eF —~Mx)2
* 'This derivative has two appearances of x in it, so we can’t follow

the same method we used for the first derivative. Rather, our
strategy is to treat

MeF - Mx
(1 + eF ~Mx)2
as a product, and use the Product Rule (9.1.6).
9.3.2 Setting up for the Product Rule
The product is this:

1

y(x) = Mel = Mex a T

* We’ll give the multiplicands names, so we can refer to them.
f(x) = MeF — Mx

1
8(%) = oF M2

* The Product Rule tells us that we will get our derivative if we
compute the derivatives of f(x) and g(x) and plug them into the
formula

dy dg df
= () x 1) + (g) x 3
* 'This requires that we differentiate both f(x) and g(x).

9.3.3 Differentiating f(x)
* We have

f(x) = MeF-Mx
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* 'This can be set up for application of the Chain Rule again, with
functions h(k), k(m), m(x).

h(k) = Mk
k(m)=em
m(x)=F - Mx
* The derivatives are:
dh . .
T M (by 9.1.2, where the b in 9.1.2 is taken to be zero)
dk
dm = ¢ (by 9.1.4)
dm
dx = -M (by9.1.2)

* Multiplying it out, following the Chain Rule:
df _dh dk dm
dx = dk “dm™ dx
=Mxemx -M
= —M2em
* Substituting in the definition of m(x):
— —M[2eF — Mx
This is the derivative of f(x).
9.3.4 Differentiating g(x)
* We have:

1
8(%) = 1 oF-3in)2

* 'This can be set up for application of the Chain Rule again, with
functions h(k), k(m), m(x) (we are recycling some letters here).

1
h(k) =15

k(m)=1+em
m(x)=F - Mx
* The derivatives:

dh -2
K= E (by 9.1.3, where the power in question is —2)
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dk

Im = e™  (sum of the derivatives of the constant 1 and of e™; see
9.1.5,9.1.1 and 9.1.4)

d

—dr;‘ ——M (by9.1.2)

Multiplying it out, following the Chain Rule:
df _dh dk dm
dx = dk “dm™ dx
-2
=73 X emx -M

2Mem
k3

Substituting in the definition of k(x):
_ _2Mem
T (14 em)3
Substituting in the definition of m(x):
dg IMeF - Mx
dx (1 +eF~Mx)3

This is the derivative of g(x).

9.3.5 Applying the Product Rule

We now have the functions and derivatives we need to plug into
the Product Rule formula:

dy dg df

= (H() < P+ (2) < )

All four expressions we need appear above. Hunting them down
and plugging them in, we get:

Cly - 2MeF —Mx 1 -
dx - (MeF—Mx (1 + eF ~Mx)3 + ((1 + eF —Mx)2 % —M?2el - Mx)

This is indeed the derivative, but it looks like a mess.

Let us clean it up a bit. Factor out M2 (2.1c):

dy o DeF-M 1 o
qu = MZx ((eFMvx a+ eF—Mx)S) + ((1 + eF ~ Mx)2 X —el~My))

Factor out 1/(1 + eF —Mx)2;
dy 1 - 2eF - Mx -
a:szmX ((el*—)hxm)+_el*—)h)
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* Make a pretty fraction:
dy M2 o 7eF - Mx o
azmx ((eI*—Mxxm) + _eb—Mx)

e Factor out ef' ~Mx;

dy M2 o 2eF — My

da~ (1 + eF ~ M2 ™ el =My (1 +eF-Mx™ 1)
* Make a pretty fraction:

dy  MZeF-Mv 2eF — My

da” (1 + eF - M2 ™ 1+eF—Mx_1)

* Replace the 1 by the equivalent (1 + el ~Mx)/(1 + el ~Mx):
dy  M2ZeF-Ms 2eF-Mx {4 oF - Mx
da” (1+eF ~Mxy2 X\ 4 oF—Ma ™ { 4 oF -~ M

* Gather the terms with the same denominator:
dy M2eF - Mx 2eF ~Mx_ (1 4 eF - M)
-5 = ~ X ~
da ™ (1 + eF —May2 1 + eF —Mx

e  Subtract:

dy  MZeF-My  eF-Mv_

de ™ (1+eF~Mx)2 "] 4 ¢F - Mx

*  Multiply out the whole thing so we get a single fraction:
dy M 2eF ~ Mx(eF - Mx _ 1)
dx - (1 + eF —Mx)3

* 'This is about as clean as we can make it. This is the second
derivative of our logistic function, as employed in 8.2 above to
verify the location of maximum slope.

* It checks by the same method we used for the first derivative.
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Appendix B: Three hypothetical curves fittable using
domain-indexed constraints, but ill-fitted by the scalar
model

These graphs are meant to demonstrate the excess descriptive power of
the domain-indexation theory discussed in §7.2 of the paper. In all three
graphs, the black line labelled ‘observed’ represents a hypothetical data
pattern that, like all monotonic patterns, can be derived under the
domain-indexation theory. The grey line is the best-fit curve under our
scalar model. It can be seen that in each case the scalar model performs
poorly — as we believe it should — in fitting the hypothetical data.
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Starts at one, asymptotes at 0.5.
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Appendix C: Testing type vs. token variation in
Tommo So vowel harmony

1.1 Predictions of theories
* Pure type-variation theory
» Every stem + suffix combination has an invariant outcome,
reflecting lexical listing (or some mechanism, like diacritics,
with comparable function).
* Pure token-variation theory
» Every stem + suffix combination, if we were able to get
speakers to say it many times, would vary, harmonising at a
rate corresponding to the base rate for harmony with the
particular vowels and suffix it contains.
* Mixed theories
» There is some lexical listing, and some online generation.

1.2 The data that could bear on the token vs. type issue
* We need stem + suffix combinations that:
» appear more than once in the data (otherwise variation is not
detectible)
» involve a particular instance of harmony with a probability
greater than zero and less than one (otherwise variation not
possible).

1.3 The data

* We found 155 stem + suffix combinations that fit this description.
* They form 723 tokens in total.
* For each, we have three numbers:
» Total tokens
» Of these, how many harmonise
» The theoretical rate of vowel harmony, estimated from the
full data set
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token harmo  p(har- | token harmo  p(har- | token harmo  p(har- | token harmo p(har-

count -nised mony) | count -nised mony) | count -nised mony) | count -nised mony)
48 48 0990 | 5 0 0.440 3 0 0.440 | 2 0 0.440
30 10 0.136 5 0 0.214 | 3 0 0.440 | 2 0 0.440
24 20 0.851 5 0 0.197 3 0 0.214 | 2 0 0.440
24 11 0.690 | 4 4 0.909 3 0 0.181 2 0 0.440
17 8 0.440 | 4 4 0.690 3 0 0.181 2 0 0.440
16 2 0.136 | 4 4 0.440 3 0 0.136 2 0 0.440
16 0 0.214 | 4 4 0.440 | 2 2 0.990 | 2 0 0.440
15 2 0.197 | 4 4 0.197 2 2 0.990 | 2 0 0.440
13 13 0440 | 4 3 0.990 | 2 2 0.990 | 2 0 0.440
12 10 0.851 4 3 0.909 | 2 2 0.990 | 2 0 0.440
11 7 0.851 4 3 0.690 | 2 2 0.909 | 2 0 0.440
11 4 0.440 | 4 3 0.440 | 2 2 0.909 | 2 0 0.440
11 0 0.214 | 4 2 0.440 | 2 2 0.909 | 2 0 0.440
10 10 0.851 4 0 0.440 | 2 2 0.909 | 2 0 0.440
10 4 0.214 | 4 0 0.440 | 2 2 0.851 2 0 0.440
10 3 0.136 | 4 0 0.214 | 2 2 0.851 2 0 0.214
10 0 0.214 | 4 0 0.181 2 2 0.690 | 2 0 0.214
8 8 0.990 | 4 0 0.136 2 2 0.690 | 2 0 0.214
8 0 0.136 | 4 0 0.136 2 2 0.440 | 2 0 0.197
7 7 0.990 | 3 3 0.990 | 2 2 0.440 | 2 0 0.197
7 7 0.440 | 3 3 0.990 | 2 2 0.440 | 2 0 0.197
7 6 0.440 | 3 3 0.990 | 2 2 0.214 | 2 0 0.197
7 3 0.136 3 3 0.990 | 2 2 0.214 | 2 0 0.197
7 2 0.136 3 3 0.909 | 2 2 0.181 2 0 0.197
7 1 0.136 3 3 0.851 2 1 0.690 | 2 0 0.197
6 6 0.909 | 3 3 0.690 | 2 1 0.690 | 2 0 0.181
6 6 0.440 | 3 3 0.690 | 2 1 0.690 | 2 0 0.181
6 5 0.214| 3 3 0.440 | 2 1 0.440 | 2 0 0.181
6 3 0.440 | 3 3 0.440 | 2 1 0.440 | 2 0 0.181
6 1 0.214| 3 3 0.440 | 2 1 0.440 | 2 0 0.181
6 0 0.214| 3 3 0.197 2 1 0.440 | 2 0 0.136
6 0 0.197 3 3 0.185 2 1 0.440 | 2 0 0.136
6 0 0.062 | 3 3 0.185 2 1 0.440 | 2 0 0.136
5 5 0.990 | 3 2 0.181 2 1 0.440 | 2 0 0.136
5 5 0.440 | 3 1 0.440 | 2 1 0.197 2 0 0.136
5 5 0.214| 3 1 0.440 | 2 1 0.181 2 0 0.136
5 4 0.440 | 3 1 0.181 2 0 0.440 | 2 0 0.136
5 1 0.440 | 3 0 0.440 | 2 0 0.440 | 2 0 0.136
5 0 0.440 | 3 0 0.440 | 2 0 0.440
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2 Test I: Monte Carlo simulation

2.1 Procedure
[ * 'Take all the 723 data in 1.3.

* For each datum, use a random number generator to perform a
random trial, deriving a ‘harmony’ or ‘non-harmony’ outcome
according to the probability of harmony for this suffix/stem vowel
combination.

* Count how many ‘always harmonising’ words show up.

L_ * Count how many ‘never harmonising’ words show up

* Repeat above 100,000 times to obtain an estimated probability
distribution.

* 'Then see where the real values fit into this distribution. This
yields a p-value.

* We programmed this procedure in software (code below).

2.2 Result

number of number in number of number in

casesof no-  Monte Carlo casesof all-  Monte Carlo

harmony simulation real value harmony simulation real value
16 0 16 0
17 0 17 0
18 0 18 0
19 0 19 6
20 0 20 17
21 0 21 53
22 0 22 136
23 1 23 346
24 4 24 807
25 7 25 1565
26 8 26 2799
27 17 27 4541
28 44 28 6649
29 99 29 8764
30 171 30 10571
31 288 31 11531
32 544 32 11698
33 897 33 10756
34 1339 34 8951
35 2097 35 7145
36 3092 36 5216
37 3860 37 3496
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38 5085 38 2308
39 6367 39 1268
40 7329 40 708
41 8022 41 377
42 8407 42 161
43 8532 43 83
44 8333 44 36
45 7616 45 6
46 6737 46 3
47 5693 47 3
48 4555 48 0 actual value: 48
49 3457 49 0
50 2538 50 0
51 1759 51 0
52 1169 52 0
53 788 53 0
54 514 54 0
55 295 55 0
56 147 56 0
57 100 57 0
58 61 58 0
59 16 59 0
60 7 60 0
61 3 61 0
62 2 62 0
63 0 63 0
64 0 64 0
65 0 65 0
66 0 actual value: 66 66 0
67 0 67 0
68 0 68 0
69 0 69 0
70 0 70 0
71+ 0 71+ 0

* For both all-harmony and no-harmony, the actual value falls
beyond all outcomes obtained in 100,000 Monte Carlo trials.
Therefore, p < 0.00001.

* 'This looks like a very powerful type effect.
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2.3 An alternative hypothesis to explain the effect

Many of the data are just two tokens — perhaps consultants ‘self-
prime’ when repeating a word in short time interval?
This would in itself produce more unanimous ‘all harmony’ or
‘no harmony’ forms than we would expect by chance.

3 TestII: binomial test

3.1 Rationale

Suppose there really are individual stem + suffix combinations
that are lexically listed (perhaps with some particular level of
‘strength’) to come out all-harmony or no-harmony.

Then we should be able to detect these cases: they will typically
have far more (or far fewer) cases of harmony than we would
expect from the baseline probability of harmony in their category
(i.e. their vowels and suffix).

Such disparities can be submitted to significance testing.

3.2 Testing for candidate listed items

We have n tokens, of which m are harmonised, in a harmony
condition with probability p.

The odds of getting m or fewer are given by the cumulative
binomial distribution, which in Excel is:

=BINOMDIST(mn, n, p, true), where ‘true’ means ‘cumulative’

And the probability of getting m or more is

=1-BINOMDIST(m~1, n, p, true)
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3.3 Top ten forms for ‘surprisingly infrequent harmony’

p(observing
Form p(harmony) n m this few)
dg-TRANS 0.690 24 11 0.015
gOO-PERF 0.214 16 0 0.021
jdbs-FacT 0.990 4 3 0.039
njgdmaH-MEDIOPASS 0.440 5 0 0.055
munnj-MEDIOPASS 0.440 5 0 0.055
jaa-racr 0.851 11 7 0.068
yOO-PERF 0.214 11 0 0.071
$99-PERF 0.214 10 0 0.090
md>>mbj-MEDIOPASS 0.440 0 0.098
UsU-FACT.MEDIOPASS 0.440 0 0.098

* 'This seems very unimpressive, given that we didn’t correct for
‘fishing’.

3.4 Top ten forms for ‘surprisingly frequent harmony’

p(observing
Form p(harmony) n m this many)
NjO-MEDIOPASS 0.440 13 13 2.32e-05
para-REVERS 0.197 4 4 0.002
sUgO-PERF 0.214 6 5 0.002
dUy5-MEDIOPASS 0.440 7 7 0.003
ObO-PERF 0.136 30 10 0.005
témé-caus 0.185 3 3 0.006
y&£-CAUS 0.185 3 3 0.006
dulo-MEDIOPASS 0.440 6 6 0.007
Nara-REVERS 0.197 3 3 0.008
WOrO-MEDIOPASS.CAUS 0.440 5 5 0.016

® 'This looks a little more impressive.
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3.5 Our surmise: the ‘treat as if one word’ theory

* Often in phonology a word of multiple parts gets pronounced as
if one: cupboard = cup + board

* More subtly, English high school is durationally one word; pie
school is durationally two.

* We suspect that the words in §3.4 are ‘treated as one word’ — this
explains their harmony, because simple unsuffixed polysyllabic
words in Tommo So always obey harmony.

3.6 Upshot

* We think the most likely explanation of what is going on would
follow three hypotheses:

» As a first approximation, Tommo So vowel harmony
involves token variation; the dice are rolled anew at each
utterance. This explains why we find so few cases of words
whose harmony distribution deviates significantly from
random.

» There is, however, a self-priming effect, which led to greater
agreement across elicitations for any given word than would
be expected by chance (Monte Carlo simulation).

» Lastly, there is a small number of words that are lexically
listed as single entries, essentially as stems, as in English Aigh
school; as such, these emerge with unanimous harmony,
testing as significant in Test 2.
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