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The data corpus and model calculations can be found in the following 
Excel files: 

data corpus 
 calculations for the maxent model 
 calculations for the domain indexation model 
 calculations for the exponential model 
 calculations for the morpheme indexation model 
 calculations for the noisy harmonic grammar model 
 
The following text files are called in the Monte Carlo simulation in 
Appendix C: §4: 
 Monte Carlo simulation data 
 Monte Carlo simulation results 
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Appendix A: The math 

1 Background and starting point 

1.1 Goal of this document 
• Explain and justify all of the math in our article. 
• Intended audience: people who vaguely remember their math 

training from long ago. 
• Why not in the article itself? 

Ø Takes a huge amount of space. 
Ø This isn’t research, just standard math. 
Ø We couldn’t find a textbook source that covers this 

completely or clearly. 
Ø By writing this out ourselves we can show every single step – 

much as one would in a traditional phonological derivation. 
• Caveat to people who do math all the time: 

Ø The degree of detail included here is likely to be irritating! 
We recommend you stop reading after §2.3 and work out the 
results yourself as an exercise. 

 

1.2 Substantive points to be established 
1.2.1 Our system of constraints derives sigmoids 

• If you apply the principles of maxent grammar to the system we 
described, with one scalar markedness constraint and one non-
scalar faithfulness constraint, then you predict a sigmoid curve, 
described by the equation: 

y=
1

1+eF®Mx
 

y = predicted application rate of phonological process 
F = weight of faithfulness 
M = weight of applicable scalar markedness constraint 
x = value on scale (for us: ‘distance’ from root along the mor-

phological scale we define); higher values=closer 
 
1.2.2 Properties of the sigmoid function 

• It asymptotes at 1 for large values of x. 
• It asymptotes at 0 for small values of x. 
• It crosses 50% probability at x=M/F. 
• It is symmetrical about this point. 
• The maximum slope occurs at this point and is equal to M/4. 

 



 Supplementary materials 3 

 

1.2.3 A schematic sigmoid showing all these properties 
• Following the article, we chose a scale for x ranging from 1 to 7. 
• For Fig. 1 below, we picked F=8 and M=2. 
• So, F/M=4, which is where the sigmoid curve crosses 0.5 

(vertical blue line shows this). 
• Symmetry about this point, and asymptotes at zero and one, are 

visually evident. 
• The diagonal red line is the tangent to the sigmoid at the point of 

maximum slope. The slope of this line can be seen to be 0.5 (line 
rises by 1 in an interval of 2), which is equal to M/4, i.e. 2/4. 

 
 

 

 

 

 

 

 

 

 

 Figure 1 
 

2 Math you need to remember 

2.1 Algebraic identities 
a. Multiplying exponentiated numbers is the same as adding their ex-

ponents 

axXay=a(x+y) 

b. Anything to the zeroth power is one. 

a0=1 

c. Distribution of multiplication over addition 

aX(b+c)=(aXb)+(aXc) 
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d. Product of two sums 

 We can invoke the distributive property repeatedly to get this: 

(a+b)(c+d) =((a+b)Xc)+((a+b)Xd) 

 =(cX(a+b))+(dX(a+b)) (commute) 

 =ca+cb+da+db (distribute again, twice) 

 =ac+bc+ad+bd (commute) 

 

3 Our system of constraints derives sigmoids 

3.1 Starting point 
• Let us assume a generic phonological process; in informal terms 

we think of the process as ‘applying’ or ‘not applying.’ 
• We assume that the two essential conflicting constraints are a 

scalar markedness constraint and an opposing non-scalar 
faithfulness constraint. 

 

3.2 Variables 
• Let the weight of the scalar markedness constraint be M. 
• Let the weight of the non-scalar faithfulness constraint be F. 
• Let there be a variable x expressing the relevant scale. In our 

article this is root-closeness, so 
Ø 7=root-internal 
Ø 1=the farthest away affix. 

 

3.3 Applying maxent 
• Assume we’re trying to decide the phonological outcome for an 

input whose value along the scale is x. 
 
3.3.1 Calculate harmony 

• The candidate that has undergone the phonological process 
violates (just) FAITH, so its harmony is F. 

• The candidate that has not undergone the phonological process 
violates (just) the scalar markedness constraint, so its harmony is 
Mx. 

• We assume that all other candidates are ruled out by very strong 
constraints – super-high weights, and so need not be taken into 
account. 
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3.3.2 Negate and exponentiate 
• As our article notes, the next step in maxent is to take e to the 

power of the negative harmony, for each candidate. 
Candidate that has undergone phonology: e—F 
Candidate that has not undergone phonology: e—Mx 

All other candidates: e—(some very large value) 
Ø e to some very large value is close enough to zero that we can 

justifiably treat these candidates as receiving the value zero. 
 
3.3.3 Calculate the denominator (‘Z’) 

• Z is the sum of what you got for all candidates. 
• As noted above, most of these get vanishing small values, which 

we will ignore. 
• So really, we just have two candidates to worry about, and their 

values sum to: 

 Z=e—F+e—Mx 

 
3.3.4 Find the probabilities of the candidates 

• In maxent, this is the result of step 3.3.2 above, divided by Z. 

a. Probability of ‘undergoing’ candidate =
e—F

Z  

b. Probability of ‘non-undergoing’ candidate =
e—Mx

Z  

 

3.4 Deriving the sigmoid curve 
• We want to see how the probability of the ‘undergoing’ candidate 

varies with x, its value along the scale. 
 
3.4.1 The algebra 

• Start with the probability that we just derived for the probability 
of the ‘undergoing’ candidate (3.3.4a): 

Probability of undergoing candidate=
e—F

Z  

• Substitute in the formula for Z (3.3.3): 

Probability of undergoing candidate=
e—F

e—F+e—Mx
 

• Multiply top and bottom by eF: 

Probability of undergoing candidate=
eFXe—F

eFX(e—F+e—Mx) 
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• On the bottom, distribute multiplication over addition (2.1c): 

Probability of undergoing candidate =
eFXe—F

(eFXe—F)+(eFXe—Mx) 

• Multiplication of exponentiated terms is the same as exponentia-
tion by the sum of the exponents (2.1a). 

Probability of undergoing candidate=
e(F+—F)

e(F+—F)+eF®Mx
 

• Summing: 

Probability of undergoing candidate=
e(0)

e(0)+eF®Mx
 

• Any positive number to the zeroth power is 1 (2.1b): 

Probability of undergoing candidate=
1

1+eF®Mx
 

 
3.4.2 Result 

• We are done! What we have is a version of the standard logistic 
function, which plots as a sigmoid (see 1.2.3 above). 

• The function derives a probability of the phonology-undergoing 
candidate from its value on the markedness scale, x. 

• Next, let us provide mathematical demonstrations of the 
properties of this function laid out in 1.2.2 above. 

 

4 First two properties of the sigmoid: limits as x is made 
high or low 

4.1 Asymptotes to 1 as x becomes large 
• We consider our sigmoid function, using y to mean ‘probability 

of undergoing candidate’: 

y=
1

1+eF®Mx
 

• The informal reasoning behind the asymptotes: 
Ø If x is very large, then Mx is very large too (we use positive 

weights). 
Ø Then F®Mx is very large and negative. 
Ø Then eF®Mx is very small. 

Ø Then 
1

1+eF®Mx
 approaches 1. 

• Compare Tommo So, with near-obligatory root harmony. 
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4.2 Asymptotes to zero as x gets low 
• Here, by ‘small’ we will include even negative numbers. 
• Reasoning: 

Ø If x is very negative, then Mx is very negative too (we use 
positive weights). 

Ø Then F®Mx is very large and positive. 
Ø Then eF®Mx is very large. 

Ø Then 
1

1+eF®Mx
 approaches zero. 

• Compare Tommo So, with zero harmony in the ‘outermost’ in-
flectional levels. 

 

5 Second property of the sigmoid: crosses 50% at x=F/M 

5.1 Demonstration 
• We plug the value F/M into our formula for the sigmoid, 

replacing x: 

y=
1

1+eF®Mx
 

 =
1

1+eF®(MXF/M)
 

• The M terms cancel each other out and can therefore be 
removed: 

 =
1

1+e(F®F)
 

• The F terms disappear: 

 =
1

1+e0
 

• Anything to the zero is one (2.1b): 

 =
1

1+1 

• And so: 

 y=
1
2 

• This is 50%, the probability of undergoing phonology at the 
point F/M. 
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6 Third property of the sigmoid: symmetrical about x=F/M 

6.1 What we want to establish 
• We know that at x=F/M the value of the function is 0.5 (see 5.1). 
• Let us consider two points with values of x symmetric about 

F/M. Call them x+Bx and x®Bx. 
• The amount that the function computed at x+Bx exceeds 0.5 

should be the same as the amount that the function at point x®Bx 
falls below 0.5. This is what is meant here by symmetry. 

 

6.2 The algebra that demonstrates symmetry 
• Start with an equality that looks arbitrary but is chosen with fore-

thought and is obviously true: 

1+eMBx+e—MBx+1=1+eMBx+e—MBx+1 

• Replace the last instance of 1 with its equal, e0 (2.1b). 

1+eMBx+e—MBx+1=1+eMBx+e—MBx+e0 

• Since MBx+—MBx=0, we can replace the zero with this expres-
sion: 

1+eMBx+e—MBx+1=1+eMBx+e—MBx+e MBx+—MBx 

• Since ea+b=eaXeb (2.1a), we can rewrite the eMBx+—MBx term like 
this: 

1+eMBx+e—MBx+1=1+eMBx+e—MBx+e MBxXe—MBx 

• Since (a+b)(c+d)=ac+ad+bc+bd (see 2.1d above), we can 
rewrite the right side like this: 

1+eMBx+e—MBx+1=(1+eMBx)X(1+e—MBx) 

To check this, observe that the right side of the new version, 
when multiplied out, yields the right side of the old version. 

 
• Divide both sides by (1+eMBx): 

1+eMBx+e—MBx+1
1+eMBx

=
(1+eMBx)X(1+e—MBx)

1+eMBx
 

• Simplify on the right side by dividing top and bottom by 
1+eMBx: 

1+eMBx+e—MBx+1
1+eMBx

=1+e—MBx 

• Split up the left side, giving each term the same denominator: 

1+eMBx

1+eMBx
+

e—MBx+1
1+eMBx

=1+e—MBx 
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• Simplify the fraction on the left side: 

1+
e—MBx+1
1+eMBx

=1+e—MBx 

• Divide both sides by 1+e—MBx: 

1
1+e—MBx

+
1

1+eMBx
=1 

• Subtract 0.5 from both sides: 

1
1+e—MBx

+
1

1+eMBx
®0.5=0.5 

• Subtract 1/1+e—MBx from both sides: 

1
1+eMBx

®0.5=0.5®
1

1+e—MBx
 

• Zero may be added without change: 

1
1+eMBx+0

®0.5=0.5®
1

1+e—MBx+0
 

• Replace zero by F®F: 
1

1+eMBx+F®F
®0.5=0.5®

1
1+e—MBx+F®F

 

• Rearranging order of addends in the exponent on both sides: 

1
1+e—F+MBx+F

®0.5=0.5®
1

1+e—F®MBx+F
 

• Substitute in MX—F/M for —F (it’s the same thing, since the 
multiplication and division cancel each other out): 

1
1+e(MX— F/M)+MBx+F

®0.5=0.5®
1

1+e(MX—F/M)®MBx+F
 

• Extract the common factor M (2.1c): 
1

1+eMX(—F/M+Bx)+F
®0.5=0.5®

1
1+eMX(—F/M®Bx)+F

 

• Put negative signs on the outside: 
1

1+e—MX(F/M®Bx)+F
®0.5=0.5®

1
1+e—MX(F/M+Bx)+F

 

• Swap order: 
1

1+eF®MX(F/M®Bx)
®0.5=0.5®

1
1+eF®MX(F/M+Bx)
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• This is just what we want. Recall that the formula deriving 
predicted probability of phonological application is: 

1
1+eF®MXx

 

On the left side, we evaluate the function for the value 
x=F/M®Bx, which is Bx below the 0.5 crossover value of F/M; 
and we compute how much this is above the crossover value of 
0.5. On the right side, we evaluate the function for the value 
x=F/M+Bx, which is Bx above the crossover value; and we 
compute how much this is below the crossover value of 0.5. Since 
these turn out always to be equal, the function is symmetrical 
about the value F/M. 

 

7 Fourth property of the sigmoids: slope at F/M=M/4 

7.1 Finding the slope at the symmetry point 
• In calculus the steepness of a curve at any given point is 

expressed as its derivative. 
• Figure 2 is the logistic curve plotted earlier as Fig. 1, this time 

plotted together with its derivative. The derivative has a 
symmetrical hump peaking at M/F (which you will remember is 
8/2=4), where (as we expected) it has the value 0.5, since this is 
M/4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 2 
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• Calculating the derivative of 

y=
1

1+eF®Mx
 

 (see §9 below for how this can be done), it turns out to be: 

dy
dx=

MeF—Mx

(1+eF—Mx)2
 

This is indeed the function that was used in plotting the 
derivative curve in the figure above. 

 
• We can now profitably ask what the slope is at the symmetry 

point, which it will be recalled, is at x=F/M. We substitute F/M 
into the formula for the derivative, and obtain: 

dy
dx(F/M) =

MeF®MXF/M

(1+eF®MXF/M)2
 

 =
MeF®F

(1+eF®F)2
 

 =
Me0

(1+e0)2
 

 =
MX1

(1+1)2
 

 =
M

(2)2
 

 =
M
4  

• So, we’ve established that the slope at the symmetry point is the 
markedness weight divided by 4. 

 

8 Fifth property of the sigmoids: M/4 is the maximum slope 

8.1 The last detail 
• We’ve found that the slope at F/M is indeed M/4, but we haven’t 

shown that that is the steepest slope of the logistic curve. 
• In calculus, the way to find a maximum of a function is to find the 

spot where its derivative levels out. For example, if we look again 
at (a pristine version of) the derivative of the logistic function that 
we plotted earlier, it appears like this: 
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Figure 3 
It would appear (and we’ll nail this down shortly) that the 
maximum is indeed at x=4, with the value 0.5. To verify this, we 
would want to know that a line tangent to the derivative function 
at this point would be level; i.e. would have slope zero. (Con-
veniently, the vertical scale line at y=0.5 actually happens to be 
this tangent line.) 

• So what we do is compute the second derivative; i.e. the 
derivative of the derivative, and find where it goes to zero. 

 

8.2 The second derivative 
• We’ll examine the equation for the second derivative in a 

moment. But first, it would be useful just to look at the graph for 
it (plotted along with the first derivative): 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 
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• The second derivative has an intriguing symmetrical pattern: just 
a little bit above zero coming up from negative infinity, peaking, 
then plunging rapidly to its lowest value, and lastly edging 
upward to remain just a little bit below zero out to positive 
infinity. The point at which the plunge reaches zero looks to be at 
x=4; let us confirm. 

 
• The second derivative of our logistic function: 

1
1+eF®Mx

 

turns out to be: 

d2y
dx2

=
M2eF®Mx(eF®Mx®1)

(1+eF®Mx)3
 

Again, see §9 for how this can be calculated. 
 

• The last step is to plug the symmetry point, x=F/M, into our 
formula for the second derivative. If F/M is a maximum (or 
minimum, really, but as you can see it turned out to be a 
maximum) this ought to yield zero. 

d2y
dx2

(F/M) =
M2eF®MXF/M(eF®MXF/M®1)

(1+eF®MXF/M)3
 

 =
M2eF®F(eF®F®1)

(1+eF®F)3
 

 =
M2e0(e0®1)

(1+e0)3
 

 =
M21(1®1)

(1+1)3
 

 =
M21(0)

(2)3
 

 =0 

Sure enough. 
 

• Summarising: the second derivative of the logistic function 

y=
1

1+eF®Mx
 is 

M2eF®Mx(eF®Mx®1)
(1+eF®Mx)3

 

This reaches zero at M/F, the symmetry point of the logistic 
function. This means that the first derivative, representing the 
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slope of the logistic function, reaches an extreme at M/F, which 
by inspection we see is the maximum. The maximum slope 
occurs at M/F. 

 

9  Finding the derivatives 

9.1 Reviewing the rules for di‰erentiation in calculus 
9.1.1 Derivative of a constant 
If y(x)=c, where c is some constant, then 

dy
dx=0 

9.1.2 Derivative of a linear equation 
If y(x)=mx+b, where m and b are constants, then 

dy
dx=m 

 
9.1.3 Di‰erentiating a power 
If y=xn, then 

dy
dx=nxn—1 

It’s fine for n to be negative, since 1/xn is the same as x—n. We will see this 
below. 
 
9.1.4 Di‰erentiating exponentials 
If y=ex, then, amazingly, 

dy
dx=ex 

 
9.1.5 Sum Rule 
The derivative of the sum of two functions is the sum of their 
derivatives. 
 
9.1.6 Product Rule 
If y=f(x)Xg(x), then 

dy
dx=(f(x)X

dg
dx)+(g(x)X

df
dx) 

 
9.1.7 Chain Rule 
If y=f(g(x)), then 

dy
dx=

df
dgX

dg
dx 
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This can be applied more than once, so if y=f(g(h(x))), then 

dy
dx=

df
dgX

dg
dhX

dh
dx 

 

9.2 Finding the first derivative of the logistic function 
9.2.1 Setting up the problem for solution with the Chain Rule 

• We seek to diÔerentiate our logistic function, which is: 

y=
1

1+eF®Mx
 

• This is facilitated if we rewrite it as a ‘function of a function of a 
function’, with intermediate steps. 

y=f(g)=
1
g 

g(h)=1+eh 

h(x)=F®Mx 

• In other words, we work through the formula and re-express its 
content step-by-step. The functions h(x), g(h) and f(g) re-express 
the formula going ‘from the inside out’. We can put the functions 
back together as follows: 

y=f(g(h(x))) 

• The Chain Rule (9.1.7) tells us to take the derivative of each ‘sub-
function’, then multiply the derivatives out to get the whole 
derivative. 

 
9.2.2 Di‰erentiating f(g), g(h) and h(x) 

• If 

f(g)=
1
g 

then 

df
dg=

—1
g2

 

This applies (9.1.3), treating 1/g as its equivalent g—1. 
 

• If g(h)=1+eh, then we have a sum of two functions; a trivial one 
(the constant 1) and eh. 

 
Ø We diÔerentiate them separately, then add (9.1.5). 
Ø The derivative of the constant one is zero (9.1.1). 
Ø The derivative of eh is itself (9.1.4). 
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Ø so: 

 
dg
dh=eh 

• If h(x)=F®Mx then by 9.1.2 we have 

 
dh
dx=—M 

9.2.3 Applying the Chain Rule 
• Now that we have our three derivatives, we can substitute them 

back into the formula of the Chain Rule: 

dy
dx =

df
dg X

dg
dhX

dh
dx 

 =
—1
g2

XehX—M 

• And we know what g and h are (9.2.1, second bullet point), so we 
can substitute their definitions back in to the formula: 

dy
dx=

—1
(1+eh)2

XeF®MxX—M 

 And once again, filling in the definition of h(x): 

 =
—1

(1+eF®Mx)2
XeF®MxX—M 

• Clean-up: the two minus signs cancel each other, and we re-
arrange prettily into a single fraction: 

dy
dx=

MeF®Mx

(1+eF®Mx)2
 

• This is the correct answer, and is indeed the derivative assumed 
in 7.1, second bullet point. 

 
9.2.4 Checking the answer 

• Are we sure we’re right? A check comes from the process of 
making the actual graphs displayed above. These are made (in 
Excel) by plotting one dot at every interval of 0.01 along the x 
axis. The fraction 

y(xn+1)®y(xn)
xn+1®xn  

where xn is the nth value along the x axis, is a close approximation 
to the derivative when the interval between dots is small. We find 
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that the values thus obtained closely match those calculated with 
the true derivative 

MeF®Mx

(1+eF®Mx)2
 

thus confirming that we haven’t made a mistake. 
 

9.3 Finding the second derivative of the logistic function 
9.3.1 Defining the task 

• To obtain the second derivative, we need to diÔerentiate the first 
derivative we just obtained, i.e. we want dy/dx, where y(x) is now 
redefined as 

y(x)=
MeF®Mx

(1+eF®Mx)2
 

• This derivative has two appearances of x in it, so we can’t follow 
the same method we used for the first derivative. Rather, our 
strategy is to treat 

MeF®Mx

(1+eF®Mx)2
 

as a product, and use the Product Rule (9.1.6). 
 
9.3.2 Setting up for the Product Rule 
The product is this: 

y(x)=MeF®MxX
1

(1+eF®Mx)2
 

• We’ll give the multiplicands names, so we can refer to them. 

f(x)=MeF®Mx 

g(x)=
1

(1+eF®Mx)2
 

• The Product Rule tells us that we will get our derivative if we 
compute the derivatives of f(x) and g(x) and plug them into the 
formula 

dy
dx=(f(x)X

dg
dx)+(g(x)X

df
dx) 

• This requires that we diÔerentiate both f(x) and g(x). 
 
9.3.3 Di‰erentiating f(x) 

• We have 

f(x)=MeF—Mx 
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• This can be set up for application of the Chain Rule again, with 
functions h(k), k(m), m(x). 

h(k)=Mk 

k(m)=em 

m(x)=F®Mx 

• The derivatives are: 

dh
dk=M (by 9.1.2, where the b in 9.1.2 is taken to be zero) 

dk
dm=em (by 9.1.4) 

dm
dx =—M (by 9.1.2) 

• Multiplying it out, following the Chain Rule: 

df
dx =

dh
dkX

dk
dmX

dm
dx  

 =MXemX—M 

 =—M2em 

• Substituting in the definition of m(x): 

 =—M2eF®Mx 

This is the derivative of f(x). 
 
9.3.4 Di‰erentiating g(x) 

• We have: 

g(x)=
1

(1+eF—Mx)2
 

• This can be set up for application of the Chain Rule again, with 
functions h(k), k(m), m(x) (we are recycling some letters here). 

h(k)=
1
k2

 

k(m)=1+em 

m(x)=F®Mx 

• The derivatives: 

dh
dk=

—2
k3

 (by 9.1.3, where the power in question is —2) 
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 dk
dm=em (sum of the derivatives of the constant 1 and of em; see 

9.1.5, 9.1.1 and 9.1.4) 

dm
dx =—M (by 9.1.2) 

• Multiplying it out, following the Chain Rule: 

df
dx =

dh
dkX

dk
dmX

dm
dx  

 =
—2
k3

XemX—M 

 =
2Mem

k3
 

• Substituting in the definition of k(x): 

 =
2Mem

(1+em)3
 

• Substituting in the definition of m(x): 

dg
dx=

2MeF®Mx

(1+eF®Mx)3
 

This is the derivative of g(x). 
 
9.3.5 Applying the Product Rule 

• We now have the functions and derivatives we need to plug into 
the Product Rule formula: 

dy
dx=(f(x)X

dg
dx)+(g(x)X

df
dx) 

• All four expressions we need appear above. Hunting them down 
and plugging them in, we get: 

dy
dx=(MeF—MxX

2MeF®Mx

(1+eF®Mx)3
)+( 1

(1+eF®Mx)2
X—M2eF®Mx) 

This is indeed the derivative, but it looks like a mess. 
 

• Let us clean it up a bit. Factor out M2 (2.1c): 

dy
dx=M2X((eF—MxX

2eF®Mx

(1+eF®Mx)3
)+(

1
(1+eF®Mx)2

X—eF®Mx)) 

• Factor out 1/(1+eF®Mx)2: 

dy
dx=M2X

1
(1+eF®Mx)2

X((eF®MxX
2eF®Mx

1+eF®Mx
)+—eF®Mx) 
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• Make a pretty fraction: 

dy
dx=

M2

(1+eF®Mx)2
X((eF®MxX

2eF®Mx

1+eF®Mx
)+—eF®Mx) 

• Factor out eF®Mx: 

dy
dx=

M2

(1+eF®Mx)2
XeF®MxX(

2eF®Mx

1+eF®Mx
®1) 

• Make a pretty fraction: 

dy
dx=

M2eF®Mx

(1+eF®Mx)2
X(

2eF®Mx

1+eF®Mx
®1) 

• Replace the 1 by the equivalent (1+eF®Mx)/(1+eF®Mx): 

dy
dx=

M2eF®Mx

(1+eF®Mx)2
X(

2eF®Mx

1+eF®Mx
®

1+eF®Mx

1+eF®Mx
) 

• Gather the terms with the same denominator: 

dy
dx=

M2eF®Mx

(1+eF®Mx)2
X(

2eF®Mx®(1+eF®Mx)
1+eF®Mx

) 

• Subtract: 

dy
dx=

M2eF®Mx

(1+eF®Mx)2
X

eF®Mx®1
1+eF®Mx

 

• Multiply out the whole thing so we get a single fraction: 

dy
dx=

M2eF®Mx(eF®Mx®1)
(1+eF®Mx)3

 

• This is about as clean as we can make it. This is the second 
derivative of our logistic function, as employed in 8.2 above to 
verify the location of maximum slope. 

 
• It checks by the same method we used for the first derivative. 
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Appendix B: Three hypothetical curves fittable using 
domain-indexed constraints, but ill-fitted by the scalar 
model 

These graphs are meant to demonstrate the excess descriptive power of 
the domain-indexation theory discussed in §7.2 of the paper. In all three 
graphs, the black line labelled ‘observed’ represents a hypothetical data 
pattern that, like all monotonic patterns, can be derived under the 
domain-indexation theory. The grey line is the best-fit curve under our 
scalar model. It can be seen that in each case the scalar model performs 
poorly – as we believe it should – in fitting the hypothetical data. 
 

 

Figure 5 
Starts at one, asymptotes at 0.5. 
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Figure 6 
Starts with asymptote at 0.5, descends to zero. 

 
 

 

Figure 7 
Linear descent from one to zero.   
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Appendix C: Testing type vs. token variation in 
Tommo So vowel harmony 

1.1 Predictions of theories 
• Pure type-variation theory 

Ø Every stem+suÓx combination has an invariant outcome, 
reflecting lexical listing (or some mechanism, like diacritics, 
with comparable function). 

• Pure token-variation theory 
Ø Every stem+suÓx combination, if we were able to get 

speakers to say it many times, would vary, harmonising at a 
rate corresponding to the base rate for harmony with the 
particular vowels and suÓx it contains. 

• Mixed theories 
Ø There is some lexical listing, and some online generation. 

 

1.2 The data that could bear on the token vs. type issue 
• We need stem+suÓx combinations that: 

Ø appear more than once in the data (otherwise variation is not 
detectible) 

Ø involve a particular instance of harmony with a probability 
greater than zero and less than one (otherwise variation not 
possible). 

 

1.3 The data 
• We found 155 stem+suÓx combinations that fit this description. 
• They form 723 tokens in total. 
• For each, we have three numbers: 

Ø Total tokens 
Ø Of these, how many harmonise 
Ø The theoretical rate of vowel harmony, estimated from the 

full data set 
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token 
count 

harmo
-nised 

p(har-
mony) 

token 
count 

harmo
-nised 

p(har-
mony) 

token 
count 

harmo
-nised 

p(har-
mony) 

token 
count 

harmo
-nised 

p(har-
mony) 

48 48 0.990 5 0 0.440 3 0 0.440 2 0 0.440 
30 10 0.136 5 0 0.214 3 0 0.440 2 0 0.440 
24 20 0.851 5 0 0.197 3 0 0.214 2 0 0.440 
24 11 0.690 4 4 0.909 3 0 0.181 2 0 0.440 
17 8 0.440 4 4 0.690 3 0 0.181 2 0 0.440 
16 2 0.136 4 4 0.440 3 0 0.136 2 0 0.440 
16 0 0.214 4 4 0.440 2 2 0.990 2 0 0.440 
15 2 0.197 4 4 0.197 2 2 0.990 2 0 0.440 
13 13 0.440 4 3 0.990 2 2 0.990 2 0 0.440 
12 10 0.851 4 3 0.909 2 2 0.990 2 0 0.440 
11 7 0.851 4 3 0.690 2 2 0.909 2 0 0.440 
11 4 0.440 4 3 0.440 2 2 0.909 2 0 0.440 
11 0 0.214 4 2 0.440 2 2 0.909 2 0 0.440 
10 10 0.851 4 0 0.440 2 2 0.909 2 0 0.440 
10 4 0.214 4 0 0.440 2 2 0.851 2 0 0.440 
10 3 0.136 4 0 0.214 2 2 0.851 2 0 0.214 
10 0 0.214 4 0 0.181 2 2 0.690 2 0 0.214 
8 8 0.990 4 0 0.136 2 2 0.690 2 0 0.214 
8 0 0.136 4 0 0.136 2 2 0.440 2 0 0.197 
7 7 0.990 3 3 0.990 2 2 0.440 2 0 0.197 
7 7 0.440 3 3 0.990 2 2 0.440 2 0 0.197 
7 6 0.440 3 3 0.990 2 2 0.214 2 0 0.197 
7 3 0.136 3 3 0.990 2 2 0.214 2 0 0.197 
7 2 0.136 3 3 0.909 2 2 0.181 2 0 0.197 
7 1 0.136 3 3 0.851 2 1 0.690 2 0 0.197 
6 6 0.909 3 3 0.690 2 1 0.690 2 0 0.181 
6 6 0.440 3 3 0.690 2 1 0.690 2 0 0.181 
6 5 0.214 3 3 0.440 2 1 0.440 2 0 0.181 
6 3 0.440 3 3 0.440 2 1 0.440 2 0 0.181 
6 1 0.214 3 3 0.440 2 1 0.440 2 0 0.181 
6 0 0.214 3 3 0.197 2 1 0.440 2 0 0.136 
6 0 0.197 3 3 0.185 2 1 0.440 2 0 0.136 
6 0 0.062 3 3 0.185 2 1 0.440 2 0 0.136 
5 5 0.990 3 2 0.181 2 1 0.440 2 0 0.136 
5 5 0.440 3 1 0.440 2 1 0.197 2 0 0.136 
5 5 0.214 3 1 0.440 2 1 0.181 2 0 0.136 
5 4 0.440 3 1 0.181 2 0 0.440 2 0 0.136 
5 1 0.440 3 0 0.440 2 0 0.440 2 0 0.136 
5 0 0.440 3 0 0.440 2 0 0.440    
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2 Test I: Monte Carlo simulation 

2.1 Procedure 
• Take all the 723 data in 1.3. 
• For each datum, use a random number generator to perform a 

random trial, deriving a ‘harmony’ or ‘non-harmony’ outcome 
according to the probability of harmony for this suÓx/stem vowel 
combination. 

• Count how many ‘always harmonising’ words show up. 
• Count how many ‘never harmonising’ words show up 
• Repeat above 100,000 times to obtain an estimated probability 

distribution. 
• Then see where the real values fit into this distribution. This 

yields a p-value. 
• We programmed this procedure in software (code below). 

 
2.2 Result 

number of 
cases of no-

harmony 

number in 
Monte Carlo 
simulation real value 

number of 
cases of all-

harmony 

number in 
Monte Carlo 

simulation real value 

16 0  16 0  
17 0  17 0  
18 0  18 0  
19 0  19 6  
20 0  20 17  
21 0  21 53  
22 0  22 136  
23 1  23 346  
24 4  24 807  
25 7  25 1565  
26 8  26 2799  
27 17  27 4541  
28 44  28 6649  
29 99  29 8764  
30 171  30 10571  
31 288  31 11531  
32 544  32 11698  
33 897  33 10756  
34 1339  34 8951  
35 2097  35 7145  
36 3092  36 5216  
37 3860  37 3496  
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38 5085  38 2308  
39 6367  39 1268  
40 7329  40 708  
41 8022  41 377  
42 8407  42 161  
43 8532  43 83  
44 8333  44 36  
45 7616  45 6  
46 6737  46 3  
47 5693  47 3  
48 4555  48 0 actual value: 48 

49 3457  49 0  
50 2538  50 0  
51 1759  51 0  
52 1169  52 0  
53 788  53 0  
54 514  54 0  
55 295  55 0  
56 147  56 0  
57 100  57 0  
58 61  58 0  
59 16  59 0  
60 7  60 0  
61 3  61 0  
62 2  62 0  
63 0  63 0  
64 0  64 0  
65 0  65 0  
66 0 actual value: 66 66 0  
67 0  67 0  
68 0  68 0  
69 0  69 0  
70 0  70 0  
71+ 0  71+ 0  

 
• For both all-harmony and no-harmony, the actual value falls 

beyond all outcomes obtained in 100,000 Monte Carlo trials. 
Therefore, p < 0.00001. 

• This looks like a very powerful type eÔect. 
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2.3 An alternative hypothesis to explain the e‰ect 
• Many of the data are just two tokens – perhaps consultants ‘self-

prime’ when repeating a word in short time interval? 
• This would in itself produce more unanimous ‘all harmony’ or 

‘no harmony’ forms than we would expect by chance. 
 

3 Test II: binomial test 

3.1 Rationale 
• Suppose there really are individual stem+suÓx combinations 

that are lexically listed (perhaps with some particular level of 
‘strength’) to come out all-harmony or no-harmony. 

• Then we should be able to detect these cases: they will typically 
have far more (or far fewer) cases of harmony than we would 
expect from the baseline probability of harmony in their category 
(i.e. their vowels and suÓx). 

• Such disparities can be submitted to significance testing. 
 

3.2 Testing for candidate listed items 
• We have n tokens, of which m are harmonised, in a harmony 

condition with probability p. 
• The odds of getting m or fewer are given by the cumulative 

binomial distribution, which in Excel is: 
 

=BINOMDIST(m, n, p, true), where ‘true’ means ‘cumulative’ 
 

• And the probability of getting m or more is 
 

=1®BINOMDIST(m®1, n, p, true) 
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3.3 Top ten forms for ‘surprisingly infrequent harmony’ 

Form p(harmony) n m 
p(observing 

this few) 

ög-trans 0.690 24 11 0.015 

gòó-perf 0.214 16 0 0.021 

jöbô-fact 0.990 4 3 0.039 

nôgômô-mediopass 0.440 5 0 0.055 

mùnnô-mediopass 0.440 5 0 0.055 

jáá-fact 0.851 11 7 0.068 

yóó-perf 0.214 11 0 0.071 

sôô-perf 0.214 10 0 0.090 

möömbô-mediopass 0.440 4 0 0.098 

ùsú-fact.mediopass 0.440 4 0 0.098 

 
• This seems very unimpressive, given that we didn’t correct for 

‘fishing’. 
 

3.4 Top ten forms for ‘surprisingly frequent harmony’ 

Form p(harmony) n m 
p(observing 
this many) 

+jó-mediopass 0.440 13 13 2.32e-05 

párá-revers 0.197 4 4 0.002 

súgó-perf 0.214 6 5 0.002 

dùyô-mediopass 0.440 7 7 0.003 

óbó-perf 0.136 30 10 0.005 

têmê-caus 0.185 3 3 0.006 

yë-caus 0.185 3 3 0.006 

dùló-mediopass 0.440 6 6 0.007 

nárá-revers 0.197 3 3 0.008 

wòró-mediopass.caus 0.440 5 5 0.016 

 
• This looks a little more impressive. 
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3.5 Our surmise: the ‘treat as if one word’ theory 
• Often in phonology a word of multiple parts gets pronounced as 

if one: cupboard ≠ cup+board 
• More subtly, English high school is durationally one word; pie 

school is durationally two. 
• We suspect that the words in §3.4 are ‘treated as one word’ — this 

explains their harmony, because simple unsuÓxed polysyllabic 
words in Tommo So always obey harmony. 

 

3.6 Upshot 
• We think the most likely explanation of what is going on would 

follow three hypotheses: 
Ø As a first approximation, Tommo So vowel harmony 

involves token variation; the dice are rolled anew at each 
utterance. This explains why we find so few cases of words 
whose harmony distribution deviates significantly from 
random. 

Ø There is, however, a self-priming eÔect, which led to greater 
agreement across elicitations for any given word than would 
be expected by chance (Monte Carlo simulation). 

Ø Lastly, there is a small number of words that are lexically 
listed as single entries, essentially as stems, as in English high 
school; as such, these emerge with unanimous harmony, 
testing as significant in Test 2. 
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)
 
=
 
V
a
l
(
s
.
C
h
o
m
p
(
M
y
L
i
n
e
)
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
'
G
r
a
b
 
t
h
e
 
n
u
m
b
e
r
 
o
f
 
h
i
t
s
.
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
L
e
t
 
M
y
L
i
n
e
 
=
 
s
.
R
e
s
i
d
u
e
(
M
y
L
i
n
e
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
L
e
t
 
N
u
m
b
e
r
O
f
H
i
t
s
(
N
u
m
b
e
r
O
f
E
n
t
r
i
e
s
)
 
=
 
V
a
l
(
s
.
C
h
o
m
p
(
M
y
L
i
n
e
)
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
'
T
h
e
 
r
e
s
t
 
o
f
 
t
h
e
 
l
i
n
e
 
i
s
 
t
h
e
 
p
r
o
b
a
b
i
l
i
t
y
.
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
L
e
t
 
P
r
o
b
a
b
i
l
i
t
y
(
N
u
m
b
e
r
O
f
E
n
t
r
i
e
s
)
 
=
 
V
a
l
(
s
.
R
e
s
i
d
u
e
(
M
y
L
i
n
e
)
)
 

 
 
 
 
 
 
 
 
 
 
L
o
o
p
 

 
 
 
 
 
 
 

 
 
'
C
a
l
c
u
l
a
t
e
 
f
o
r
 
r
e
a
l
 
l
i
f
e
 
t
h
e
 
n
u
m
b
e
r
 
o
f
 
n
o
-
h
a
r
m
o
n
y
 
a
n
d
 
a
l
l
-
h
a
r
m
o
n
y
 
o
u
t
c
o
m
e
s
.
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F
o
r
 
E
n
t
r
y
I
n
d
e
x
 
=
 
1
 
T
o
 
N
u
m
b
e
r
O
f
E
n
t
r
i
e
s
 

 
 
 
 
 
 
 
 
 
 
I
f
 
N
u
m
b
e
r
O
f
H
i
t
s
(
E
n
t
r
y
I
n
d
e
x
)
 
=
 
N
u
m
b
e
r
O
f
T
o
k
e
n
s
(
E
n
t
r
y
I
n
d
e
x
)
 
T
h
e
n
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
L
e
t
 
N
u
m
b
e
r
O
f
R
e
a
l
A
l
l
H
a
r
m
o
n
y
C
a
s
e
s
 
=
 
N
u
m
b
e
r
O
f
R
e
a
l
A
l
l
H
a
r
m
o
n
y
C
a
s
e
s
 
+
 
1
 

 
 
 
 
 
 
 
 
 
 
E
l
s
e
I
f
 
N
u
m
b
e
r
O
f
H
i
t
s
(
E
n
t
r
y
I
n
d
e
x
)
 
=
 
0
 
T
h
e
n
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
L
e
t
 
N
u
m
b
e
r
O
f
R
e
a
l
N
o
H
a
r
m
o
n
y
C
a
s
e
s
 
=
 
N
u
m
b
e
r
O
f
R
e
a
l
N
o
H
a
r
m
o
n
y
C
a
s
e
s
 
+
 
1
 

 
 
 
 
 
 
 
 
 
 
E
n
d
 
I
f
 

 
 
 
 
 
 
N
e
x
t
 
E
n
t
r
y
I
n
d
e
x
 

 
 
 

 
 
'
D
o
 
1
0
0
,
0
0
0
 
s
i
m
u
l
a
t
i
o
n
s
.
 

 
 
 
 
 
 
F
o
r
 
T
r
i
a
l
I
n
d
e
x
 
=
 
1
 
T
o
 
1
0
0
0
0
0
 

 
 
 
 
 
 
 
 
 
 
'
R
e
p
o
r
t
 
p
r
o
g
r
e
s
s
 
s
o
 
u
s
e
r
 
w
i
l
l
 
k
n
o
w
 
t
h
e
 
p
r
o
g
r
a
m
 
i
s
 
r
u
n
n
i
n
g
.
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
I
f
 
T
r
i
a
l
I
n
d
e
x
 
M
o
d
 
1
0
0
0
0
 
=
 
0
 
T
h
e
n
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
L
e
t
 
S
t
a
r
t
B
u
t
t
o
n
.
C
a
p
t
i
o
n
 
=
 
"
C
o
m
p
l
e
t
e
d
 
"
 
+
 
S
t
r
(
T
r
i
a
l
I
n
d
e
x
)
 
+
 
"
 
t
r
i
a
l
s
"
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
E
n
d
 
I
f
 

 
 
 
 
 
 
 
 
 
 
'
I
n
i
t
i
a
l
i
z
e
 
t
h
e
 
v
a
r
i
a
b
l
e
s
 
t
h
e
 
r
e
c
o
r
d
 
t
h
e
 
n
u
m
b
e
r
 
o
f
 
a
l
l
-
h
a
r
m
o
n
y
 
a
n
d
 
n
o
-
h
a
r
m
o
n
y
 
o
u
t
c
o
m
e
s
.
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
L
e
t
 
N
u
m
b
e
r
A
l
l
H
a
r
m
o
n
y
 
=
 
0
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
L
e
t
 
N
u
m
b
e
r
N
o
H
a
r
m
o
n
y
 
=
 
0
 

 
 
 
 
 
 
 
 
 
 
'
G
o
 
t
h
r
o
u
g
h
 
t
h
e
 
d
a
t
a
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
F
o
r
 
E
n
t
r
y
I
n
d
e
x
 
=
 
1
 
T
o
 
N
u
m
b
e
r
O
f
E
n
t
r
i
e
s
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
'
I
n
i
t
i
a
l
i
z
e
 
t
h
e
 
v
a
r
i
a
b
l
e
 
r
e
c
o
r
d
i
n
g
 
h
o
w
 
m
u
c
h
 
h
a
r
m
o
n
y
 
y
o
u
 
g
o
t
.
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
L
e
t
 
L
o
c
a
l
H
i
t
C
o
u
n
t
 
=
 
0
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
'
S
i
m
u
l
a
t
e
 
n
 
u
t
t
e
r
a
n
c
e
s
,
 
n
 
t
h
e
 
n
u
m
b
e
r
 
o
f
 
t
o
k
e
n
s
 
f
o
r
 
t
h
i
s
 
e
n
t
r
y
.
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
F
o
r
 
T
o
k
e
n
I
n
d
e
x
 
=
 
1
 
T
o
 
N
u
m
b
e
r
O
f
T
o
k
e
n
s
(
E
n
t
r
y
I
n
d
e
x
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
'
A
 
h
i
t
 
i
s
 
w
h
e
n
 
t
h
e
 
0
-
1
 
r
a
n
d
o
m
 
v
a
r
i
a
b
l
e
 
c
o
m
e
s
 
o
u
t
 
l
e
s
s
 
t
h
a
n
 
t
h
e
 
p
r
o
b
a
b
i
l
i
t
y
.
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I
f
 
R
n
d
(
)
 
<
 
P
r
o
b
a
b
i
l
i
t
y
(
E
n
t
r
y
I
n
d
e
x
)
 
T
h
e
n
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
'
A
u
g
m
e
n
t
 
n
u
m
b
e
r
 
o
f
 
h
i
t
s
.
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
L
e
t
 
L
o
c
a
l
H
i
t
C
o
u
n
t
 
=
 
L
o
c
a
l
H
i
t
C
o
u
n
t
 
+
 
1
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
E
n
d
 
I
f
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
N
e
x
t
 
T
o
k
e
n
I
n
d
e
x
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
'
D
e
t
e
r
m
i
n
e
 
i
f
 
t
h
i
s
 
w
a
s
 
u
n
a
n
i
m
o
u
s
 
(
f
o
r
,
 
o
r
 
a
g
a
i
n
s
t
,
 
h
a
r
m
o
n
y
)
,
 
a
n
d
 
a
u
g
m
e
n
t
 
t
h
e
 
c
o
u
n
t
s
 
f
o
r
 

 
 

 
 

u
n
a
n
i
m
o
u
s
 
a
n
d
 
z
e
r
o
 
c
a
s
e
s
.
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I
f
 
L
o
c
a
l
H
i
t
C
o
u
n
t
 
=
 
0
 
T
h
e
n
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
L
e
t
 
N
u
m
b
e
r
N
o
H
a
r
m
o
n
y
 
=
 
N
u
m
b
e
r
N
o
H
a
r
m
o
n
y
 
+
 
1
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
E
l
s
e
I
f
 
L
o
c
a
l
H
i
t
C
o
u
n
t
 
=
 
N
u
m
b
e
r
O
f
T
o
k
e
n
s
(
E
n
t
r
y
I
n
d
e
x
)
 
T
h
e
n
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
L
e
t
 
N
u
m
b
e
r
A
l
l
H
a
r
m
o
n
y
 
=
 
N
u
m
b
e
r
A
l
l
H
a
r
m
o
n
y
 
+
 
1
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
E
n
d
 
I
f
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N
e
x
t
 
E
n
t
r
y
I
n
d
e
x
 

 
 
 
 
 
 
 
 
 
 
'
T
h
i
s
 
c
o
m
p
l
e
t
e
s
 
a
 
t
r
i
a
l
.
 
 
R
e
c
o
r
d
 
t
h
e
 
r
e
s
u
l
t
 
b
y
 
a
u
g
m
e
n
t
i
n
g
 
t
h
e
 
e
n
t
r
i
e
s
 
f
o
r
 
n
u
m
b
e
r
 
o
f
 
a
l
l
-
h
a
r
m
o
n
y
 

a
n
d
 
n
o
-
h
a
r
m
o
n
y
.
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
L
e
t
 
O
u
t
p
u
t
D
i
s
t
r
i
b
u
t
i
o
n
A
l
l
H
a
r
m
o
n
y
(
N
u
m
b
e
r
A
l
l
H
a
r
m
o
n
y
)
 
=
 

O
u
t
p
u
t
D
i
s
t
r
i
b
u
t
i
o
n
A
l
l
H
a
r
m
o
n
y
(
N
u
m
b
e
r
A
l
l
H
a
r
m
o
n
y
)
 
+
 
1
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
L
e
t
 
O
u
t
p
u
t
D
i
s
t
r
i
b
u
t
i
o
n
N
o
H
a
r
m
o
n
y
(
N
u
m
b
e
r
N
o
H
a
r
m
o
n
y
)
 
=
 

O
u
t
p
u
t
D
i
s
t
r
i
b
u
t
i
o
n
N
o
H
a
r
m
o
n
y
(
N
u
m
b
e
r
N
o
H
a
r
m
o
n
y
)
 
+
 
1
 

 
 
 
 
 
 
N
e
x
t
 
T
r
i
a
l
I
n
d
e
x
 

  
 
'
P
r
i
n
t
 
w
h
a
t
 
y
o
u
 
l
e
a
r
n
e
d
.
 

 
 
 
 
 
 
'
H
e
a
d
e
r
:
 
 

 
 
 
 
 
 
 
 
 
 
P
r
i
n
t
 
#
2
,
 
"
N
u
m
b
e
r
"
;
 
C
h
r
(
9
)
;
 
"
N
o
 
h
a
r
m
o
n
y
"
;
 
C
h
r
(
9
)
;
 
"
A
l
l
 
h
a
r
m
o
n
y
"
 

 
 
 
 
 
 
'
G
o
 
t
h
r
o
u
g
h
 
c
a
s
e
s
:
 

 
 
 
 
 
 
 
 
 
 
F
o
r
 
E
n
t
r
y
I
n
d
e
x
 
=
 
0
 
T
o
 
1
5
5
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
P
r
i
n
t
 
#
2
,
 
E
n
t
r
y
I
n
d
e
x
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
'
N
o
t
e
 
w
h
e
r
e
 
t
h
e
 
r
e
a
l
 
c
o
u
n
t
 
l
i
e
s
:
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
P
r
i
n
t
 
#
2
,
 
C
h
r
(
9
)
;
 
O
u
t
p
u
t
D
i
s
t
r
i
b
u
t
i
o
n
N
o
H
a
r
m
o
n
y
(
E
n
t
r
y
I
n
d
e
x
)
;
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I
f
 
E
n
t
r
y
I
n
d
e
x
 
=
 
N
u
m
b
e
r
O
f
R
e
a
l
N
o
H
a
r
m
o
n
y
C
a
s
e
s
 
T
h
e
n
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
P
r
i
n
t
 
#
2
,
 
C
h
r
(
9
)
;
 
"
(
r
e
a
l
)
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
E
l
s
e
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
P
r
i
n
t
 
#
2
,
 
C
h
r
(
9
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
E
n
d
 
I
f
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
P
r
i
n
t
 
#
2
,
 
C
h
r
(
9
)
;
 
O
u
t
p
u
t
D
i
s
t
r
i
b
u
t
i
o
n
A
l
l
H
a
r
m
o
n
y
(
E
n
t
r
y
I
n
d
e
x
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
'
N
o
t
e
 
w
h
e
r
e
 
t
h
e
 
r
e
a
l
 
c
o
u
n
t
 
l
i
e
s
:
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I
f
 
E
n
t
r
y
I
n
d
e
x
 
=
 
N
u
m
b
e
r
O
f
R
e
a
l
A
l
l
H
a
r
m
o
n
y
C
a
s
e
s
 
T
h
e
n
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
P
r
i
n
t
 
#
2
,
 
C
h
r
(
9
)
;
 
"
(
r
e
a
l
)
"
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
E
n
d
 
I
f
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
'
E
n
d
 
o
f
 
l
i
n
e
:
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
P
r
i
n
t
 
#
2
,
 

 
 
 
 
 
 
 
 
 
 
N
e
x
t
 
E
n
t
r
y
I
n
d
e
x
 

 
 
 

 
 
'
F
i
n
i
s
h
 
u
p
 

 
 
 
 
 
 
C
l
o
s
e
 

 
 
 
 
 
 
E
n
d
 

 • 
E
n
d
 
S
u
b
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