
Robert Daland
University of California, Los Angeles

Phonology 25.2: Artwork 1 of

Dep(C)
Max

Dep(V)
Dep(C)

Dep(V)Max

Supplementary materials 32 Robert Daland 4 Robert Daland
Phonology 32 (2015). Supplementary materials

Supplementary materials 5 6 Robert Daland Supplementary materials 7

Long words in maximum entropy
phonotactic grammars

Supplementary materials

8 Robert Daland 10 Robert DalandSupplementary materials 9 Supplementary materials 11 12 Robert Daland

These supplementary materials introduce three theorems which formalise
the central contributions of this paper. The general purpose of the theorems
is discussed in the paper for the lay linguist. This introduction briefly
describes the theorems for more mathematically inclined readers.

In linguistic terms, Theorem 1 demonstrates that every phonotactic
grammar can be represented by a score function mapping strings to the
non-positive integers. Here, to be ‘represented’ has the technical meaning
that if the grammar distinguishes string x as strictly less well-formed than
x, then x is mapped to a smaller (more negative) integer (whereas if they
are not di‰erent in well-formedness, they are mapped to the same integer).
The proof critically relies on the property that there cannot be an infinite
sequence of strings in which well-formedness increases. The proof uses
the notions of equivalence relation and their corresponding equivalence
classes, which may be unfamiliar to many linguists; otherwise, it largely
consists of showing that various ordering properties are preserved by
relevant mappings.

Theorem 2 gives sufficient conditions for a maxent phonotactic grammar
to have a finite partition function. This in turn means that it assigns a well-
defined probability distribution over all possible strings. (If the partition
function is not finite, string probabilities are undefined.) The proof draws
on the theory of geometric series, the laws of exponentiation/logarithms
and basic facts about cardinality/counting, but should be accessible to most
mathematically inclined linguists.

The final background material is Eisner’s (2002) notion of an expectation
semi-ring.

In natural-language processing applications – where FSTs are most
widely used – it is typical to annotate arcs with weights, expressed in either
the probability or log-probability domain. For example, the CV grammar
in Figure 3 could be expressed as a probabilistic FST by assigning the
symbol 0 a pseudo-probability of 1, while max, dpv, dpc, ons and noc would
be assigned pseudo-probabilities less than 1. Pseudo-probabilities would
then be normalised by requiring that the probability of leaving a non-final
state must sum to 1. The probability of a path is defined as the product of
the probabilities of traversing all the arcs in the path, and the probability
of an input–output pair is the sum over the probabilities of all distinct paths
that generate the pair.

1 Theorem 1

While Theorem 2 gives su!cient conditions for a finite partition function,
Theorem 3 gives necessary conditions. The starting point is previous
research from formal language theory demonstrating how constraint-based
mappings that instantiate regular relations can be represented by (weighted)
finite-state automata. This means that maxent HG grammars can be given
a convenient graphical representation. Next, the proof draws on the notion
of expectation semi-ring, formalised in Eisner (2002), which associates a
probability and a violation vector with each node. Finally, the paper draws
on the tight coupling between weighted graphs and matrices to derive a
penalty matrix P, where the entry Pij represents the change in well-
formedness incurred by transitioning from node j to node i of the finite-
state automaton, expressed as a multiplicative factor. If the principal
eigenvalue of this matrix has a magnitude greater than 1, then the partition
function is not finite.

Definition: A relation ı on a set X is a prewellordering if and only if
ı is total

– Ax, yŒX, x ı y or y ı x
– ‘every pair of strings is comparable’

ı is transitive
– Ax, zŒX, x ı y and y ı z implies x ı z
– e.g. if [lb] is worse then [bn], and [bn] is worse than [bl], then [lb]

is worse than [bl]
X is wellordered by ı

– ASàX, S≠.£EsmaxŒS˜AsŒS, s ı smax
– ‘every non-empty subset of X has a maximal element’
– in other words, there cannot be an infinite sequence of strings that

increase in well-formedness (though an infinite decreasing sequence
is allowed)

(Note that this inverts the normal direction for wellordering; it is more
typical to require a minimal element, but the formulations are completely
analogous.)

Definition: A score function f for a set X is a map from elements of X
to a totally ordered space (K, <K). A score function f represents the prewell-
ordering ı on X if

Ax, yŒX, x ı y and y ı x implies f(x)=f(y)
– ‘equally well-formed strings are assigned equal scores’

Ax, yŒX, x ¯ y implies f(x) <K f(y)
– if string x is strictly less well-formed than y, x is assigned a strictly

lower score than y

Another example in which the principal eigenvalue reflects ‘accumulation’
or ‘flow’ of some value across a graph is in Markov chains. A Markov chain
consists of an initial distribution over states and a transition matrix (Tij),
in which the value Tij indicates the probability of visiting state i next, given
that the current state is j. Since probabilities must be non-negative and
sum to 1, this enforces the condition that the sum over each column of T
must be 1. Very similarly to the adjacency matrix, (Tm)ij indicates the
probability of ending in state i after m steps, given that one started in state
j. The principal eigenvalue of the Markov chain always has the value 1,
indicating that there is a constant ‘amount’ of probability which simply
flows across the graph. Markov chains are very well-studied; for a more
thorough treatment the reader is directed to Grimstead & Snell (1997:
ch. 11).

In the present case, we wish to determine whether a given maxent HG
grammar has a finite partition function. The first step is to translate the
grammar into a weighted FST with a violation semi-ring, as in the work
of Riggle and Eisner. The next step it to use matrix multiplication to
characterise the ‘accumulation’ of well-formedness values of paths through
the FST, using a penalty matrix. It follows that the partition function is
finite if and only if the principal eigenvalue of this matrix has a magnitude
of 1 or less.

Definition: Let G=(S+, C⋲, wƒ) be a maxent phonotactic grammar, and
G¢=(S, Q, q0, F, E, r) be the associated weighted FST over V, where

– S is the output alphabet
– Q is the set of states
– q1ŒQ is the unique start state
– FàQ is the set of final states
– Eà(QXSXVXQ) is a finite set of transitions, each signifying the

traversal from a state qj to a state qi after encountering an output
symbol s, and having a violation vector c√i j indicating the constraints
that are violated in this transition

Let the states in G¢ be indexed {qi}‰, and the constraints in G be indexed
{Ck}Á. Then define an (n+1)X(n+1) penalty matrix P as follows:

Theorem 1: Let S be an alphabet, and S+ the set of finite strings over S.
Every prewellordering ıßΩ over S+ can be represented by a score function
f : S*£(Ä—, <) where Ä— is the non-positive integers and < is the normal
order on integers.

Proof: Given the prewellordering ıßΩ, define the relation ~ by x ~ y if
and only if x ıßΩ y and y ıßΩ x (the ‘equality relation’). Symmetry follows
from the definition of ~, while transitivity and reflexivity follow from the
transitivity and reflexivity of prewellorders; thus ~ is an equivalence relation.
Let K denote the set of equivalence classes of ~, and f~ the map from
elements of X (strings) to their equivalence class, f~(x)=[x]. Because S+
is countable, K must be countable. Claim: ıßΩ induces a total strict well-
ordering on K. Define [x] <K [y] if and only if EwŒ[x], zŒ[y] such that
w ıßΩ z but [x]≠[y]. Totality, transitivity, strictness and antisymmetry
follow, so <K is a strict total order. Wellordering follows from the well-
ordering of ıßΩ, so (K, <K) is totally strictly wellordered.

Now the task is to construct a map from (K, <K) to the non-positive
integers. Proceed by induction. Base case: By wellordering, there must
exist a value k0ŒK that is maximal according to <K. Then define f(k0)=0.
Induction step: Now suppose there is a sequence of values {ki}‰ such that
f(ki)=—i Ai, (0{i{n). Let Kn+1=K \ {ki}‰. Since Kn+1 is a subset of K,
by wellordering it has a maximal element kn+1. Then define f(kn+1)=…(n+1).
This completes the induction step.

Since K is countable, f must be well-defined for every kŒK, and
f : K£Ä—. Evidently, kx <K ky implies f(kx) < f(ky) Akx, kyŒK by con-
struction. It is also easy to show that f(kx) < f(ky) implies kx <K ky for all
kx, kyŒK. Observe that f(kx) < f(ky) implies that Kx is a proper subset of
Ky. Since the maximal element ky of Ky was removed to construct Kx, it
follows that k <K ky AkŒKx. Since kxŒKx, it follows that kx <K ky. In
short, f preserves all and only the order di‰erences of <K.

Two maps have been defined: f~ : S+£K maps every string to a well-
formedness equivalence class, and f : K£Ä— maps each well-formedness
equivalence class to a non-positive integer score. Then their composition
f(x)=f(f~(x)) maps every string to a non-positive score, f~ : S+£Ä— with
the following properties:

Ax, yŒS+, x ıßΩ y and y ıßΩ x›f(x)=f(y)
Ax, yŒS+, x ¯ßΩ y›f(x) < f(y)

In other words, f represents the prewellordering ıßΩ using the non-negative
integers.

2 Theorem 2
Definition: A harmonic grammar is a tuple G=(X, Y, R, C⋲, w ƒ) where

– X is a set of lexical representations
– Y is a set of surface representations
– RàXXY indicates the set of possible surface representations that a

given lexical representation can map to, called the candidates: candi-
dates(x)={yŒY|xRy}

– C⋲ is a finite set of constraint functions C ⋲={Ck}Á, where each
constraint function assigns a non-negative integer violation count to
lexical-surface pairs, Ak, Ck : R£Ä

– w ƒ is a set of real-valued, non-positive weights wƒ={wk}Á, associated
with the constraints

The harmony of a lexical–surface pair HCƒ,wƒ
(x, y) is defined as the weighted

sum of the constraint violations, H(x, y)=%Á wk·Ck(x, y). Given some
xŒX, surface representation yŒcandidates(x) is a winner if and only if
E/ zŒcandidates(x), such that H(x, z) > H(x, y), in other words if y has the
greatest harmony value among the candidates of x. We write G(x)=y in
case y is a unique winner for x. Thus G denotes a mapping from X to Y
just in case every xŒX has a unique winner G(x)ŒY.

Definition: A maxent HG grammar is a harmonic grammar G=(X, Y, R,
C⋲, w ƒ) that is augmented with a well-formedness function F : R£Z+

defined by F(x, y)=eH(x,y) (the range of the exponentiation is the non-
negative reals Z+). The partition function associated with a lexical
representation x, Z : X£Z+ U{≥} is defined as the sum of the well-
formedness values of all of x’s candidates, Z(x)=%xRy F(x, y). In case the
partition function is finite for a given x, G defines the conditional probability
distribution Pr(y|x)=F(x, y)/Z(x).

Definition: A maxent phonotactic grammar over S+ is a maxent HG
grammar G=(X, Y, R, C⋲, w ƒ) in which X is a singleton set {w}, Y=S+
where S+ is the set of finite strings over some alphabet S, and wRy AyŒS+.
Since X and R are trivial, it is convenient to omit them from the notation:
G=(S+, C⋲, w ƒ), H(y)=Á wk·Ck(y), etc.

Definition: Define the *Struct constraint *Struct : S+£Ä by
*Struct(s)=k if and only if sŒSk. In other words, the number of *Struct
violations that a string s incurs is simply the length of s.

Theorem 2: Let G=(S+, C⋲, w ƒ) be a maxent phonotactic grammar. If the
constraint set C ⋲ includes a *Struct constraint (i.e. Ei <k such that
Ci=*Struct) and w*Struct < —ln|S|, then the partition function Z of G is
finite.

Proof: The proof goes in two steps. The first step is to consider a maxent
phonotactic grammar G¢ over S+ whose constraint set includes only *Struct,
and prove that w*Struct < —ln|S| implies that Z¢ is finite. The second step
is to show that F¢(s) is an upper bound for F(s) for all sŒS*, so Z¢ is an
upper bound for Z. Finitude of Z follows from finitude of Z¢.

Part 1: Given G=(S+, C⋲, wƒ), define the maxent phonotactic grammar
G¢ over S+ to have the sole constraint C⋲={*Struct} with weight w; the
corresponding harmony and well-formedness functions are denoted H¢ and
F¢. We will abuse notation by defining F¢(X)=%SÊX F¢(s), i.e. extending
the definition of the well-formedness function so that it measures sets of
strings (rather than merely evaluating individual strings). The goal is to
compute Z¢ by partitioning S+ by the length of its strings. Let us begin by
considering the value F¢(Sk) for an arbitrary k. By definition, sŒSk implies
*Struct(s) = k, so that H¢(s) = w·*Struct(s) = w·k and F¢(s) = eH¢(ß) =
ew·k = (ew)k. The number of strings in Sk is |S|k, and each such string s has
a constant well-formedness value, F¢(s)=(ew)k. Then the total F¢(Sk) can
be expressed as the product, F¢(Sk)=|Sk|·(ew)k=(|S|·ew)k. Now it is possible
to express Z¢ as the sum over the partition by length (S+=S0US1US2U…):

F¢(S+)=%ÂF¢(Sk)
=%Â(|S|·ew)k

This latter is instantly recognisable as an infinite series with common ratio
r=|S|·ew. The theory of infinite series indicates that this value is finite
(and well-defined) if and only if |r| < 1. Since |S| and ew are positive, this
reduces to the inequality |S|·ew < 1, or ew < |S|—1. The natural logarithm
is an increasing function, which can be applied to both sides to preserve
the inequality, yielding w < —ln|S|.

Part 2: We begin by showing that AsŒS*, H(s) ≤ H¢(s). Without loss
of generality, reassign indices so that H(s)=w·*Struct(s) + %Ê· Ck(s)
and recall that H¢(s)=w·*Struct(s). Then H (s)®H¢(s)=%Ê wk·Ck(s)
for all s. Now since wk ≤ 0 Ak and Ck ≥ 0 Ak, it follows that wk·Ck(s) ≤ 0
Ak, and therefore the sum must be non-positive as well, i.e. H(s)®H¢(s)
≤ 0 AsŒS*. But this means that H¢ (s) is an upper bound for H(s) for every
s. And since exponentiation is an increasing function, this implies that F¢(s)
is an upper bound for F(s) for all s. And since Z¢ is the sum of F¢ values,
while Z is the sum of F values, this means that Z¢ is an upper bound for Z.
Thus, if Z¢ is finite, Z must be as well. This completes the proof.

3 Theorem 3
Riggle (2009) gives a technical but well-exemplified presentation of finite-
state Optimality Theory. The essence of this approach is to model constraints
as (possibly weighted) finite-state transducers. In order to understand
Theorem 3, it is necessary to understand how maxent phonotactic grammars
are implemented as finite-state transducers, and in order to understand
this, it is first necessary to understand a little about finite-state transducers.

Intuitively, a finite-state transducer (FST) is a computational device
which accepts one ‘input’ string and converts it to another ‘output’ string.
Finite-state machines are conventionally represented as directed graphs.
The nodes of the graph represent ‘states’ of the machine. Arcs represent
the transition from one state to another; normally, this is associated with
reading one symbol from the input string, and writing one symbol to the
output string. The particular mapping that an arc represents is indicated
with a label on the arc; the label x:y indicates that the arc transduces input
symbol x into output symbol y. The ‘start’ and ‘final’ nodes of the graph
are graphically indicated by one or more conventions. Here I use the
convention that the start state is indicated by an arrow from nowhere
pointing to the start node, while the end state is indicated by a double circle.
Figure 1 gives a finite-state transducer that implements an intervocalic
voicing rule. The FST in Figure 1 only accepts the input sequence /apa/,
and if it is presented with that input sequence, it yields the output sequence
[aba]. Traversing a single arc in the graph represents reading/writing one
symbol, so that the nodes/states of the graph represent the amount of the
input string that has been read. It is possible for there to be multiple arcs
emanating from or leading to a state. For example, the FST in Fig. 1 could
be augmented with an additional arc ‘b:b’ pointing from node 2 to node 3;
the modified FST would then implement two mappings, /apa/£[aba] and
/aba/£[aba].

Riggle (2009) uses simple weighted finite-state transducers to represent
individual constraints. A grammar can then be represented using an operation
known as ‘intersection’. Figure 2, which is slightly adapted from Riggle
(2009: Fig. 1), illustrates three faithfulness constraints and their intersection.
Each transition x:y is followed by a value indicating the amount or type of
violation that is incurred. For example, when an input symbol maps to
itself – symbolised by X:X - no faithfulness violation is incurred, and this
is symbolised by 0. The symbol e is a special symbol indicating the empty
string. Thus when an empty input is mapped to a V, the grammar should
record a Dep(V) violation in some way. Similarly, when a non-empty input
symbol is mapped to an empty output, the input symbol has been deleted,
and the grammar should record a Max violation. The intersection of the
three simple FSTs in Fig. 2 is represented in the rightmost FST. In that
FST, any alteration to the input is penalised except for transducing an
empty input into a syllable boundary (the . symbol).

Figure 2
Simple weighted FSTs representing Max, Dep(V)

and Dep(C), and their intersection

e:./0

X:X/0

X:e/max

e:V/dpv

e:C/dpc

e:./0

X:X/0

X:e/0

e:V/0

e:C/dpc

e:./0

X:X/0

X:e/0

e:C/0

e:V/dpv

e:./0

X:X/0

X:e/max

e:X/0

Riggle further illustrates by generating the FST for a full CV grammar,
containing the hard constraint ((C)V(C).)*, as well as the violable constraints
Onset (ons) and NoCoda (noc), and the three faithfulness constraints from
before. The full CV grammar, slightly adapted from Riggle (2009: Fig. 3),
is reproduced in Fig. 3. The reader is encouraged to consult Riggle (2009)
for additional exposition.

Figure 3
Syllable grammar. State A represents the start of a syllable. State C

represents the moment after the nucleus has been written to the output.
State B represents the moment after an onset consonant has been written to
the output, whether it was in the input or epenthesised. State D represents

the moment after a postvocalic consonant has been read from the input,
whether it was written to the output or deleted. Only state A is a final state,

and this is why the links from C and D to A contain the end-of-syllable
symbol .. Thus, an onsetless syllable [V.] is generated by the path

A£C£A, while a [CV.] syllable is generated by the path A£B£C£A.

e:./noc

X:e/max

e:C/dpc

C:C/0

X:e/max
e:V/{ons, dpv}

V:V/ons

e:./0X:e/max

X:e/max

e:C/dpc C:C/0

V:V/0
e:V/dpv

In fact, Eisner points out that most useful formulations for weighted
FSTs have a common, abstract character: the weights of paths obey the
axioms of a closed semi-ring. A closed semi-ring (K, ò, fl, *) is a mathe-
matical structure which is a slight generalisation of the natural numbers:
it consists of a set K with an ‘addition’ operation ò (associative, commutative,
identity element 0), a ‘multiplication’ operation (associative, distributes
over ò from the right and the left, identity element 1), and ‘closure’ for
infinite loops (k+”def ò‚ ki). Eisner (2002) states: ‘ordinary probabilities
fall in the semi-ring (Z≥0, +, ú, *)’.

In Riggle’s (2009) formulation, the symbols 0, max, dpv, dpc, ons and noc
are treated as unit vectors, so that the violation vector for a path may be
accumulated as the sum the unit violation vectors encountered along the
path. (Technically, Riggle construes violations as belonging to a multiset
with a semi-ring structure, but for the present purposes these are the
equivalent.) Given that multiple paths may generate the same input–output
pair, but with possibly di‰erent violation vectors, one should also define
how to calculate the violation vector for an input–output pair. From a total
ranking over constraints, Riggle defines this as the violation profile of the
path which has the minimum number of violations over the highest-ranked
constraint on which there is a di‰erence. Riggle refers to this formulation
as a ‘violation semi-ring’, and points to its similarities with the tropical
semi-ring over the real numbers.

Eisner’s expectation semi-ring combines both probabilities and violation
vectors. In Eisner’s own words:

Abstractly, let us say that each path p has not only a probability P(p)Œ[0,
1] but also a value val(p) in a vector space V, which counts the arcs,
features or coin flips encountered along path p. The value of a path is the
sum of the values assigned to its arcs... The idea is to augment the weight
data structure with expectation information, so each weight records a
probability and a vector counting the parameters that contributed to that
probability.

Eisner proceeds to define the V-expectation semi-ring (Z≥0XV, ò, fl, *)
as follows:

(p1, v1)‡(p2, v2) ”def (p1p2, p1v2+v1p2)
(p1, v1)‡(p2, v2) ”def (p1+p2, v1+v2)
if p* defined, (p, v)* ”def (p*, p*vp*)

He elaborates:
If an arc has probability p and value p, we give it the weight (p, pv) so
that our invariant (see above) holds if [the pathset] # consists of a single
length-0 or length-1 path. The above definitions are designed to preserve
our invariant as we build up larger paths and pathsets. fl lets us concatenate
(e.g.) simple paths p1, p2 to get a longer path p with P(p)=(p1)P(p2) and
val(p)=val(p1)+val(p2). The definition of fl guarantees [the invariant]
that path p’s weight will be (P(p), P(p)·val(p)). ò lets us take the union
of two disjoint pathsets, and * computes infinite unions.

Now that the expectation semi-ring has been explained, we are in position
to consider its application to maxent HG grammars. As stated in Hayes &
Wilson (2008: 389):

the properties of a very large set of strings can be computed by representing
the set as a finite state machine. We construct our machines by first
representing each constraint as a weighted finite state acceptor. Using
intersection …, we then combine the constraints into a single machine
that embodies the full grammar … Each path through this machine
corresponds to a phonological representation together with its vector of
constraint violations. We then obtain the E[Ci] values by summing over
all paths through the machine …

Theorem 3 is concerned with whether the FST associated with a maxent
phonotactic grammar has well-defined expectations, or in other words,
whether it has a finite partition function. It does this by explicitly constructing
a matrix which sums over the well-formedness values of every path
through the FST. In order to understand this, it is first necessary to
understand how matrix multiplication can represent accumulation over
paths through a matrix, and how the principal eigenvalue reflects important
aspects of the limit behaviour.

Technically, a directed graph G consists of some nodes (indexed 1 to n),
and directed edges which point from a node j to some node i. The adjacency
matrix (Aij) associated with G is an nXn matrix in which:

Aij=
1 there is an edge from j to i
0 otherwise

Clearly (A1)ij indicates the number of paths of length 1 from node j to node
i. It turns out that something much more general is true: (Am)ij indicates
the number of paths of length m from node j to node i. To see this, consider
the (i, j) entry of Am+1. Since Am+1=Am·A, (Am+1)ij must be the dot product
of the ith row of Am and the jth column of A: (Am+1)ij=%„(Am)ik·Akj.
The value (Am)ik indicates the number of paths of length exactly m from
k to i, and Akj indicates the number of paths of length exactly 1 from j to
k. Thus, (Am)ik·Akj indicates the number of paths of length m+1 that begin
at j and end at i, passing through k as the first step. Since every path from
j to i must pass through some first step, the total number of paths of length
m+1 is given by their sum across k. Therefore, (Am+1)ij indicates the total
number of paths of length m+1 from node j to node i. In this case, matrix
multiplication represents the ‘accumulation’ of the number of paths. The
principal eigenvalue represents the (limit of the) ratio by which the number
of paths grows as the path length is increased. In fully connected graphs,
this value will be n (the number of nodes); in acyclic graphs (where it is not
possible to return to any state i once it has been visited), the principal
eigenvalue of the adjacency matrix is 0.

Theorem 3: Let (Pij) be the penalty matrix for a maxent phonotactic
grammar G=(S+, C ⋲, wƒ) and its associated FST G¢=(S, Q, q0, F, E, r). G
has a finite partition function if and only if the principal eigenvalue of P
has a magnitude of 1 or less.

Proof: The proof goes in two steps. The first is to show that every accepted
string corresponds to a path beginning at q1 and being ‘absorbed’ in qn+1.
The second is to show that (Pm)ij indicates the well-formedness value of all
paths of length exactly m that begin at state j and end at state i (so that the
well-formedness of all paths will ‘accumulate’ in qn+1). It follows from this
that Z=limm√¥(Pm)(n+1)(n+1), which is finite if and only if the principal
eigenvalue has magnitude 1 or less.

Step 1: The definition of FST gives that every path begins in the start
state q1, and ends in one of a set of final states qjŒF. Then, the requirement
that P(n+1)j=dij amounts to adding a cost-free transition to the extra state
n+1, but only from pre-existing finals. The requirement that P(n+1)(n+1)=1
means that every string path which enters this state stays there without
penalty. (The cost-free self-link is necessary to preserve the well-formedness
so that it can be counted in the limit, rather than allowing it to vanish after
the path is accepted.) Since every string that is accepted by the FST must
begin at the start state and end at a final state, every terminating path of
length m®1 through the FST is counted by the matrix entry (Pm)(n+1)1
(and all subsequent values of m).

Step 2: Suppose that the violation vector e√ik is incurred by traversing a
single path from qk to qi, and e√kj is incurred by traversing a single path from
qj to qk. Then the well-formedness value associated with the k£i arc is
F(w ƒ·e√ik) = ewƒ·e√ik, and the well-formedness value associated with the j to k
arc is F(wƒ·e√kj)=ewƒ·e√kj. Their product is F(wƒ·e√ik)·F(w ƒ·e√kj) = ew ƒ·e√ik·ewƒ·e √kj =
ewƒ·e√ik+wƒ·e √kj = ewƒ·(e √ik+e √kj) = F(wƒ·(e√ik+e√kj)). In other words, the penalty is the
same whether the violations are added up and assessed all at once, or assessed
one by one. This is the same kind of ‘invariant’ as Eisner (2002) refers to.
Now, it is already true by construction that (P1)i j represents the penalty
to a string incurred by transitioning from state j to state i in exactly 1 step.
Now suppose that (Pm)ij represents the penalty incurred by transitioning
from state j to state i in exactly m steps. Then (Pm+1)ij=%„(Pm)ik·(Pkj).
Then the well-formedness of all paths of exactly length m+1 is decomposed
just as with the adjacency matrix counting paths above.

It follows from these that the value (Pm)(n+1)1 represents the sum of the
well-formedness values of all accepted strings of length m®1 or less. Since
the partition function is defined as the sum of the well-formedness values
of all terminating strings, it follows that Z=limm√¥(Pm+1)(n+1)1. Since all
of the well-formedness must eventually accumulate in this cell for finite
strings, it follows that Z is finite if and only if the principal eigenvalue of
P has magnitude less than 1.

Pij=

F(wƒ·c√i j) there is an edge from qj to qi
1 i=n+1 and qjŒF, i.e. j is final
1 i=n+1 and j=n+1
0 otherwise

The second and third rows of this definition are equivalent to adding a final
final state qn+1 and requiring all final states to have a cost-free transition to
the final final state, so that all well-formedness will accumulate in qn+1.

Robert Daland
University of California, Los Angeles

Phonology 25.2: Artwork 1 of

Dep(C)
Max

Dep(V)
Dep(C)

Dep(V)Max

Supplementary materials 32 Robert Daland 4 Robert Daland
Phonology 32 (2015). Supplementary materials

Supplementary materials 5 6 Robert Daland Supplementary materials 7

Long words in maximum entropy
phonotactic grammars

8 Robert Daland 10 Robert DalandSupplementary materials 9 Supplementary materials 11 12 Robert Daland

These supplementary materials introduce three theorems which formalise
the central contributions of this paper. The general purpose of the theorems
is discussed in the paper for the lay linguist. This introduction briefly
describes the theorems for more mathematically inclined readers.

In linguistic terms, Theorem 1 demonstrates that every phonotactic
grammar can be represented by a score function mapping strings to the
non-positive integers. Here, to be ‘represented’ has the technical meaning
that if the grammar distinguishes string x as strictly less well-formed than
x, then x is mapped to a smaller (more negative) integer (whereas if they
are not di‰erent in well-formedness, they are mapped to the same integer).
The proof critically relies on the property that there cannot be an infinite
sequence of strings in which well-formedness increases. The proof uses
the notions of equivalence relation and their corresponding equivalence
classes, which may be unfamiliar to many linguists; otherwise, it largely
consists of showing that various ordering properties are preserved by
relevant mappings.

Theorem 2 gives sufficient conditions for a maxent phonotactic grammar
to have a finite partition function. This in turn means that it assigns a well-
defined probability distribution over all possible strings. (If the partition
function is not finite, string probabilities are undefined.) The proof draws
on the theory of geometric series, the laws of exponentiation/logarithms
and basic facts about cardinality/counting, but should be accessible to most
mathematically inclined linguists.

The final background material is Eisner’s (2002) notion of an expectation
semi-ring.

In natural-language processing applications – where FSTs are most
widely used – it is typical to annotate arcs with weights, expressed in either
the probability or log-probability domain. For example, the CV grammar
in Figure 3 could be expressed as a probabilistic FST by assigning the
symbol 0 a pseudo-probability of 1, while max, dpv, dpc, ons and noc would
be assigned pseudo-probabilities less than 1. Pseudo-probabilities would
then be normalised by requiring that the probability of leaving a non-final
state must sum to 1. The probability of a path is defined as the product of
the probabilities of traversing all the arcs in the path, and the probability
of an input–output pair is the sum over the probabilities of all distinct paths
that generate the pair.

1 Theorem 1

While Theorem 2 gives su!cient conditions for a finite partition function,
Theorem 3 gives necessary conditions. The starting point is previous
research from formal language theory demonstrating how constraint-based
mappings that instantiate regular relations can be represented by (weighted)
finite-state automata. This means that maxent HG grammars can be given
a convenient graphical representation. Next, the proof draws on the notion
of expectation semi-ring, formalised in Eisner (2002), which associates a
probability and a violation vector with each node. Finally, the paper draws
on the tight coupling between weighted graphs and matrices to derive a
penalty matrix P, where the entry Pij represents the change in well-
formedness incurred by transitioning from node j to node i of the finite-
state automaton, expressed as a multiplicative factor. If the principal
eigenvalue of this matrix has a magnitude greater than 1, then the partition
function is not finite.

Definition: A relation ı on a set X is a prewellordering if and only if
ı is total

– Ax, yŒX, x ı y or y ı x
– ‘every pair of strings is comparable’

ı is transitive
– Ax, zŒX, x ı y and y ı z implies x ı z
– e.g. if [lb] is worse then [bn], and [bn] is worse than [bl], then [lb]

is worse than [bl]
X is wellordered by ı

– ASàX, S≠.£EsmaxŒS˜AsŒS, s ı smax
– ‘every non-empty subset of X has a maximal element’
– in other words, there cannot be an infinite sequence of strings that

increase in well-formedness (though an infinite decreasing sequence
is allowed)

(Note that this inverts the normal direction for wellordering; it is more
typical to require a minimal element, but the formulations are completely
analogous.)

Definition: A score function f for a set X is a map from elements of X
to a totally ordered space (K, <K). A score function f represents the prewell-
ordering ı on X if

Ax, yŒX, x ı y and y ı x implies f(x)=f(y)
– ‘equally well-formed strings are assigned equal scores’

Ax, yŒX, x ¯ y implies f(x) <K f(y)
– if string x is strictly less well-formed than y, x is assigned a strictly

lower score than y

Another example in which the principal eigenvalue reflects ‘accumulation’
or ‘flow’ of some value across a graph is in Markov chains. A Markov chain
consists of an initial distribution over states and a transition matrix (Tij),
in which the value Tij indicates the probability of visiting state i next, given
that the current state is j. Since probabilities must be non-negative and
sum to 1, this enforces the condition that the sum over each column of T
must be 1. Very similarly to the adjacency matrix, (Tm)ij indicates the
probability of ending in state i after m steps, given that one started in state
j. The principal eigenvalue of the Markov chain always has the value 1,
indicating that there is a constant ‘amount’ of probability which simply
flows across the graph. Markov chains are very well-studied; for a more
thorough treatment the reader is directed to Grimstead & Snell (1997:
ch. 11).

In the present case, we wish to determine whether a given maxent HG
grammar has a finite partition function. The first step is to translate the
grammar into a weighted FST with a violation semi-ring, as in the work
of Riggle and Eisner. The next step it to use matrix multiplication to
characterise the ‘accumulation’ of well-formedness values of paths through
the FST, using a penalty matrix. It follows that the partition function is
finite if and only if the principal eigenvalue of this matrix has a magnitude
of 1 or less.

Definition: Let G=(S+, C⋲, wƒ) be a maxent phonotactic grammar, and
G¢=(S, Q, q0, F, E, r) be the associated weighted FST over V, where

– S is the output alphabet
– Q is the set of states
– q1ŒQ is the unique start state
– FàQ is the set of final states
– Eà(QXSXVXQ) is a finite set of transitions, each signifying the

traversal from a state qj to a state qi after encountering an output
symbol s, and having a violation vector c√i j indicating the constraints
that are violated in this transition

Let the states in G¢ be indexed {qi}‰, and the constraints in G be indexed
{Ck}Á. Then define an (n+1)X(n+1) penalty matrix P as follows:

Theorem 1: Let S be an alphabet, and S+ the set of finite strings over S.
Every prewellordering ıßΩ over S+ can be represented by a score function
f : S*£(Ä—, <) where Ä— is the non-positive integers and < is the normal
order on integers.

Proof: Given the prewellordering ıßΩ, define the relation ~ by x ~ y if
and only if x ıßΩ y and y ıßΩ x (the ‘equality relation’). Symmetry follows
from the definition of ~, while transitivity and reflexivity follow from the
transitivity and reflexivity of prewellorders; thus ~ is an equivalence relation.
Let K denote the set of equivalence classes of ~, and f~ the map from
elements of X (strings) to their equivalence class, f~(x)=[x]. Because S+
is countable, K must be countable. Claim: ıßΩ induces a total strict well-
ordering on K. Define [x] <K [y] if and only if EwŒ[x], zŒ[y] such that
w ıßΩ z but [x]≠[y]. Totality, transitivity, strictness and antisymmetry
follow, so <K is a strict total order. Wellordering follows from the well-
ordering of ıßΩ, so (K, <K) is totally strictly wellordered.

Now the task is to construct a map from (K, <K) to the non-positive
integers. Proceed by induction. Base case: By wellordering, there must
exist a value k0ŒK that is maximal according to <K. Then define f(k0)=0.
Induction step: Now suppose there is a sequence of values {ki}‰ such that
f(ki)=—i Ai, (0{i{n). Let Kn+1=K \ {ki}‰. Since Kn+1 is a subset of K,
by wellordering it has a maximal element kn+1. Then define f(kn+1)=…(n+1).
This completes the induction step.

Since K is countable, f must be well-defined for every kŒK, and
f : K£Ä—. Evidently, kx <K ky implies f(kx) < f(ky) Akx, kyŒK by con-
struction. It is also easy to show that f(kx) < f(ky) implies kx <K ky for all
kx, kyŒK. Observe that f(kx) < f(ky) implies that Kx is a proper subset of
Ky. Since the maximal element ky of Ky was removed to construct Kx, it
follows that k <K ky AkŒKx. Since kxŒKx, it follows that kx <K ky. In
short, f preserves all and only the order di‰erences of <K.

Two maps have been defined: f~ : S+£K maps every string to a well-
formedness equivalence class, and f : K£Ä— maps each well-formedness
equivalence class to a non-positive integer score. Then their composition
f(x)=f(f~(x)) maps every string to a non-positive score, f~ : S+£Ä— with
the following properties:

Ax, yŒS+, x ıßΩ y and y ıßΩ x›f(x)=f(y)
Ax, yŒS+, x ¯ßΩ y›f(x) < f(y)

In other words, f represents the prewellordering ıßΩ using the non-negative
integers.

2 Theorem 2
Definition: A harmonic grammar is a tuple G=(X, Y, R, C ⋲, wƒ) where

– X is a set of lexical representations
– Y is a set of surface representations
– RàXXY indicates the set of possible surface representations that a

given lexical representation can map to, called the candidates: candi-
dates(x)={yŒY|xRy}

– C⋲ is a finite set of constraint functions C ⋲={Ck}Á, where each
constraint function assigns a non-negative integer violation count to
lexical-surface pairs, Ak, Ck : R£Ä

– wƒ is a set of real-valued, non-positive weights w ƒ={wk}Á, associated
with the constraints

The harmony of a lexical–surface pair HCƒ,wƒ
(x, y) is defined as the weighted

sum of the constraint violations, H(x, y)=%Á wk·Ck(x, y). Given some
xŒX, surface representation yŒcandidates(x) is a winner if and only if
E/ zŒcandidates(x), such that H(x, z) > H(x, y), in other words if y has the
greatest harmony value among the candidates of x. We write G(x)=y in
case y is a unique winner for x. Thus G denotes a mapping from X to Y
just in case every xŒX has a unique winner G(x)ŒY.

Definition: A maxent HG grammar is a harmonic grammar G=(X, Y, R,
C⋲, w ƒ) that is augmented with a well-formedness function F : R£Z+

defined by F(x, y)=eH(x,y) (the range of the exponentiation is the non-
negative reals Z+). The partition function associated with a lexical
representation x, Z : X£Z+ U{≥} is defined as the sum of the well-
formedness values of all of x’s candidates, Z(x)=%xRy F(x, y). In case the
partition function is finite for a given x, G defines the conditional probability
distribution Pr(y|x)=F(x, y)/Z(x).

Definition: A maxent phonotactic grammar over S+ is a maxent HG
grammar G=(X, Y, R, C⋲, wƒ) in which X is a singleton set {w}, Y=S+
where S+ is the set of finite strings over some alphabet S, and wRy AyŒS+.
Since X and R are trivial, it is convenient to omit them from the notation:
G=(S+, C⋲, wƒ), H(y)=Á wk·Ck(y), etc.

Definition: Define the *Struct constraint *Struct : S+£Ä by
*Struct(s)=k if and only if sŒSk. In other words, the number of *Struct
violations that a string s incurs is simply the length of s.

Theorem 2: Let G=(S+, C⋲, wƒ) be a maxent phonotactic grammar. If the
constraint set C ⋲ includes a *Struct constraint (i.e. Ei <k such that
Ci=*Struct) and w*Struct < —ln|S|, then the partition function Z of G is
finite.

Proof: The proof goes in two steps. The first step is to consider a maxent
phonotactic grammar G¢ over S+ whose constraint set includes only *Struct,
and prove that w*Struct < —ln|S| implies that Z¢ is finite. The second step
is to show that F¢(s) is an upper bound for F(s) for all sŒS*, so Z¢ is an
upper bound for Z. Finitude of Z follows from finitude of Z¢.

Part 1: Given G=(S+, C⋲, w ƒ), define the maxent phonotactic grammar
G¢ over S+ to have the sole constraint C⋲={*Struct} with weight w; the
corresponding harmony and well-formedness functions are denoted H¢ and
F¢. We will abuse notation by defining F¢(X)=%SÊX F¢(s), i.e. extending
the definition of the well-formedness function so that it measures sets of
strings (rather than merely evaluating individual strings). The goal is to
compute Z¢ by partitioning S+ by the length of its strings. Let us begin by
considering the value F¢(Sk) for an arbitrary k. By definition, sŒSk implies
*Struct(s) = k, so that H¢(s) = w·*Struct(s) = w·k and F¢(s) = eH¢(ß) =
ew·k = (ew)k. The number of strings in Sk is |S|k, and each such string s has
a constant well-formedness value, F¢(s)=(ew)k. Then the total F¢(Sk) can
be expressed as the product, F¢(Sk)=|Sk|·(ew)k=(|S|·ew)k. Now it is possible
to express Z¢ as the sum over the partition by length (S+=S0US1US2U…):

F¢(S+)=%ÂF¢(Sk)
=%Â(|S|·ew)k

This latter is instantly recognisable as an infinite series with common ratio
r=|S|·ew. The theory of infinite series indicates that this value is finite
(and well-defined) if and only if |r| < 1. Since |S| and ew are positive, this
reduces to the inequality |S|·ew < 1, or ew < |S|—1. The natural logarithm
is an increasing function, which can be applied to both sides to preserve
the inequality, yielding w < —ln|S|.

Part 2: We begin by showing that AsŒS*, H(s) ≤ H¢(s). Without loss
of generality, reassign indices so that H(s)=w·*Struct(s) + %Ê· Ck(s)
and recall that H¢(s)=w·*Struct(s). Then H (s)®H¢(s)=%Ê wk·Ck(s)
for all s. Now since wk ≤ 0 Ak and Ck ≥ 0 Ak, it follows that wk·Ck(s) ≤ 0
Ak, and therefore the sum must be non-positive as well, i.e. H(s)®H¢(s)
≤ 0 AsŒS*. But this means that H¢ (s) is an upper bound for H(s) for every
s. And since exponentiation is an increasing function, this implies that F¢(s)
is an upper bound for F(s) for all s. And since Z¢ is the sum of F¢ values,
while Z is the sum of F values, this means that Z¢ is an upper bound for Z.
Thus, if Z¢ is finite, Z must be as well. This completes the proof.

3 Theorem 3
Riggle (2009) gives a technical but well-exemplified presentation of finite-
state Optimality Theory. The essence of this approach is to model constraints
as (possibly weighted) finite-state transducers. In order to understand
Theorem 3, it is necessary to understand how maxent phonotactic grammars
are implemented as finite-state transducers, and in order to understand
this, it is first necessary to understand a little about finite-state transducers.

Intuitively, a finite-state transducer (FST) is a computational device
which accepts one ‘input’ string and converts it to another ‘output’ string.
Finite-state machines are conventionally represented as directed graphs.
The nodes of the graph represent ‘states’ of the machine. Arcs represent
the transition from one state to another; normally, this is associated with
reading one symbol from the input string, and writing one symbol to the
output string. The particular mapping that an arc represents is indicated
with a label on the arc; the label x:y indicates that the arc transduces input
symbol x into output symbol y. The ‘start’ and ‘final’ nodes of the graph
are graphically indicated by one or more conventions. Here I use the
convention that the start state is indicated by an arrow from nowhere
pointing to the start node, while the end state is indicated by a double circle.
Figure 1 gives a finite-state transducer that implements an intervocalic
voicing rule. The FST in Figure 1 only accepts the input sequence /apa/,
and if it is presented with that input sequence, it yields the output sequence
[aba]. Traversing a single arc in the graph represents reading/writing one
symbol, so that the nodes/states of the graph represent the amount of the
input string that has been read. It is possible for there to be multiple arcs
emanating from or leading to a state. For example, the FST in Fig. 1 could
be augmented with an additional arc ‘b:b’ pointing from node 2 to node 3;
the modified FST would then implement two mappings, /apa/£[aba] and
/aba/£[aba].

Riggle (2009) uses simple weighted finite-state transducers to represent
individual constraints. A grammar can then be represented using an operation
known as ‘intersection’. Figure 2, which is slightly adapted from Riggle
(2009: Fig. 1), illustrates three faithfulness constraints and their intersection.
Each transition x:y is followed by a value indicating the amount or type of
violation that is incurred. For example, when an input symbol maps to
itself – symbolised by X:X - no faithfulness violation is incurred, and this
is symbolised by 0. The symbol e is a special symbol indicating the empty
string. Thus when an empty input is mapped to a V, the grammar should
record a Dep(V) violation in some way. Similarly, when a non-empty input
symbol is mapped to an empty output, the input symbol has been deleted,
and the grammar should record a Max violation. The intersection of the
three simple FSTs in Fig. 2 is represented in the rightmost FST. In that
FST, any alteration to the input is penalised except for transducing an
empty input into a syllable boundary (the . symbol).

Figure 2
Simple weighted FSTs representing Max, Dep(V)

and Dep(C), and their intersection

e:./0

X:X/0

X:e/max

e:V/dpv

e:C/dpc

e:./0

X:X/0

X:e/0

e:V/0

e:C/dpc

e:./0

X:X/0

X:e/0

e:C/0

e:V/dpv

e:./0

X:X/0

X:e/max

e:X/0

Riggle further illustrates by generating the FST for a full CV grammar,
containing the hard constraint ((C)V(C).)*, as well as the violable constraints
Onset (ons) and NoCoda (noc), and the three faithfulness constraints from
before. The full CV grammar, slightly adapted from Riggle (2009: Fig. 3),
is reproduced in Fig. 3. The reader is encouraged to consult Riggle (2009)
for additional exposition.

Figure 3
Syllable grammar. State A represents the start of a syllable. State C

represents the moment after the nucleus has been written to the output.
State B represents the moment after an onset consonant has been written to
the output, whether it was in the input or epenthesised. State D represents

the moment after a postvocalic consonant has been read from the input,
whether it was written to the output or deleted. Only state A is a final state,

and this is why the links from C and D to A contain the end-of-syllable
symbol .. Thus, an onsetless syllable [V.] is generated by the path

A£C£A, while a [CV.] syllable is generated by the path A£B£C£A.

e:./noc

X:e/max

e:C/dpc

C:C/0

X:e/max
e:V/{ons, dpv}

V:V/ons

e:./0X:e/max

X:e/max

e:C/dpc C:C/0

V:V/0
e:V/dpv

In fact, Eisner points out that most useful formulations for weighted
FSTs have a common, abstract character: the weights of paths obey the
axioms of a closed semi-ring. A closed semi-ring (K, ò, fl, *) is a mathe-
matical structure which is a slight generalisation of the natural numbers:
it consists of a set K with an ‘addition’ operation ò (associative, commutative,
identity element 0), a ‘multiplication’ operation (associative, distributes
over ò from the right and the left, identity element 1), and ‘closure’ for
infinite loops (k+”def ò‚ ki). Eisner (2002) states: ‘ordinary probabilities
fall in the semi-ring (Z≥0, +, ú, *)’.

In Riggle’s (2009) formulation, the symbols 0, max, dpv, dpc, ons and noc
are treated as unit vectors, so that the violation vector for a path may be
accumulated as the sum the unit violation vectors encountered along the
path. (Technically, Riggle construes violations as belonging to a multiset
with a semi-ring structure, but for the present purposes these are the
equivalent.) Given that multiple paths may generate the same input–output
pair, but with possibly di‰erent violation vectors, one should also define
how to calculate the violation vector for an input–output pair. From a total
ranking over constraints, Riggle defines this as the violation profile of the
path which has the minimum number of violations over the highest-ranked
constraint on which there is a di‰erence. Riggle refers to this formulation
as a ‘violation semi-ring’, and points to its similarities with the tropical
semi-ring over the real numbers.

Eisner’s expectation semi-ring combines both probabilities and violation
vectors. In Eisner’s own words:

Abstractly, let us say that each path p has not only a probability P(p)Œ[0,
1] but also a value val(p) in a vector space V, which counts the arcs,
features or coin flips encountered along path p. The value of a path is the
sum of the values assigned to its arcs... The idea is to augment the weight
data structure with expectation information, so each weight records a
probability and a vector counting the parameters that contributed to that
probability.

Eisner proceeds to define the V-expectation semi-ring (Z≥0XV, ò, fl, *)
as follows:

(p1, v1)‡(p2, v2) ”def (p1p2, p1v2+v1p2)
(p1, v1)‡(p2, v2) ”def (p1+p2, v1+v2)
if p* defined, (p, v)* ”def (p*, p*vp*)

He elaborates:
If an arc has probability p and value p, we give it the weight (p, pv) so
that our invariant (see above) holds if [the pathset] # consists of a single
length-0 or length-1 path. The above definitions are designed to preserve
our invariant as we build up larger paths and pathsets. fl lets us concatenate
(e.g.) simple paths p1, p2 to get a longer path p with P(p)=(p1)P(p2) and
val(p)=val(p1)+val(p2). The definition of fl guarantees [the invariant]
that path p’s weight will be (P(p), P(p)·val(p)). ò lets us take the union
of two disjoint pathsets, and * computes infinite unions.

Now that the expectation semi-ring has been explained, we are in position
to consider its application to maxent HG grammars. As stated in Hayes &
Wilson (2008: 389):

the properties of a very large set of strings can be computed by representing
the set as a finite state machine. We construct our machines by first
representing each constraint as a weighted finite state acceptor. Using
intersection …, we then combine the constraints into a single machine
that embodies the full grammar … Each path through this machine
corresponds to a phonological representation together with its vector of
constraint violations. We then obtain the E[Ci] values by summing over
all paths through the machine …

Theorem 3 is concerned with whether the FST associated with a maxent
phonotactic grammar has well-defined expectations, or in other words,
whether it has a finite partition function. It does this by explicitly constructing
a matrix which sums over the well-formedness values of every path
through the FST. In order to understand this, it is first necessary to
understand how matrix multiplication can represent accumulation over
paths through a matrix, and how the principal eigenvalue reflects important
aspects of the limit behaviour.

Technically, a directed graph G consists of some nodes (indexed 1 to n),
and directed edges which point from a node j to some node i. The adjacency
matrix (Aij) associated with G is an nXn matrix in which:

Aij=
1 there is an edge from j to i
0 otherwise

Clearly (A1)ij indicates the number of paths of length 1 from node j to node
i. It turns out that something much more general is true: (Am)ij indicates
the number of paths of length m from node j to node i. To see this, consider
the (i, j) entry of Am+1. Since Am+1=Am·A, (Am+1)ij must be the dot product
of the ith row of Am and the jth column of A: (Am+1)ij=%„(Am)ik·Akj.
The value (Am)ik indicates the number of paths of length exactly m from
k to i, and Akj indicates the number of paths of length exactly 1 from j to
k. Thus, (Am)ik·Akj indicates the number of paths of length m+1 that begin
at j and end at i, passing through k as the first step. Since every path from
j to i must pass through some first step, the total number of paths of length
m+1 is given by their sum across k. Therefore, (Am+1)ij indicates the total
number of paths of length m+1 from node j to node i. In this case, matrix
multiplication represents the ‘accumulation’ of the number of paths. The
principal eigenvalue represents the (limit of the) ratio by which the number
of paths grows as the path length is increased. In fully connected graphs,
this value will be n (the number of nodes); in acyclic graphs (where it is not
possible to return to any state i once it has been visited), the principal
eigenvalue of the adjacency matrix is 0.

Theorem 3: Let (Pij) be the penalty matrix for a maxent phonotactic
grammar G=(S+, C⋲, wƒ) and its associated FST G¢=(S, Q, q0, F, E, r). G
has a finite partition function if and only if the principal eigenvalue of P
has a magnitude of 1 or less.

Proof: The proof goes in two steps. The first is to show that every accepted
string corresponds to a path beginning at q1 and being ‘absorbed’ in qn+1.
The second is to show that (Pm)ij indicates the well-formedness value of all
paths of length exactly m that begin at state j and end at state i (so that the
well-formedness of all paths will ‘accumulate’ in qn+1). It follows from this
that Z=limm√¥(Pm)(n+1)(n+1), which is finite if and only if the principal
eigenvalue has magnitude 1 or less.

Step 1: The definition of FST gives that every path begins in the start
state q1, and ends in one of a set of final states qjŒF. Then, the requirement
that P(n+1)j=dij amounts to adding a cost-free transition to the extra state
n+1, but only from pre-existing finals. The requirement that P(n+1)(n+1)=1
means that every string path which enters this state stays there without
penalty. (The cost-free self-link is necessary to preserve the well-formedness
so that it can be counted in the limit, rather than allowing it to vanish after
the path is accepted.) Since every string that is accepted by the FST must
begin at the start state and end at a final state, every terminating path of
length m®1 through the FST is counted by the matrix entry (Pm)(n+1)1
(and all subsequent values of m).

Step 2: Suppose that the violation vector e √ik is incurred by traversing a
single path from qk to qi, and e√kj is incurred by traversing a single path from
qj to qk. Then the well-formedness value associated with the k£i arc is
F(w ƒ·e√ik) = ewƒ·e √ik, and the well-formedness value associated with the j to k
arc is F(wƒ·e √kj)=ewƒ·e√kj. Their product is F(wƒ·e√ik)·F(wƒ·e√kj) = ewƒ·e√ik·ewƒ·e√kj =
ewƒ·e √ik+wƒ·e√kj = ewƒ·(e√ik+e√kj) = F(wƒ·(e √ik+e√kj)). In other words, the penalty is the
same whether the violations are added up and assessed all at once, or assessed
one by one. This is the same kind of ‘invariant’ as Eisner (2002) refers to.
Now, it is already true by construction that (P1)i j represents the penalty
to a string incurred by transitioning from state j to state i in exactly 1 step.
Now suppose that (Pm)ij represents the penalty incurred by transitioning
from state j to state i in exactly m steps. Then (Pm+1)ij=%„(Pm)ik·(Pkj).
Then the well-formedness of all paths of exactly length m+1 is decomposed
just as with the adjacency matrix counting paths above.

It follows from these that the value (Pm)(n+1)1 represents the sum of the
well-formedness values of all accepted strings of length m®1 or less. Since
the partition function is defined as the sum of the well-formedness values
of all terminating strings, it follows that Z=limm√¥(Pm+1)(n+1)1. Since all
of the well-formedness must eventually accumulate in this cell for finite
strings, it follows that Z is finite if and only if the principal eigenvalue of
P has magnitude less than 1.

Pij=

F(w ƒ·c √i j) there is an edge from qj to qi
1 i=n+1 and qjŒF, i.e. j is final
1 i=n+1 and j=n+1
0 otherwise

The second and third rows of this definition are equivalent to adding a final
final state qn+1 and requiring all final states to have a cost-free transition to
the final final state, so that all well-formedness will accumulate in qn+1.

Robert Daland
University of California, Los Angeles

Phonology 25.2: Artwork 1 of

Dep(C)
Max

Dep(V)
Dep(C)

Dep(V)Max

Supplementary materials 32 Robert Daland 4 Robert Daland
Phonology 32 (2015). Supplementary materials

Supplementary materials 5 6 Robert Daland Supplementary materials 7

Long words in maximum entropy
phonotactic grammars

8 Robert Daland 10 Robert DalandSupplementary materials 9 Supplementary materials 11 12 Robert Daland

These supplementary materials introduce three theorems which formalise
the central contributions of this paper. The general purpose of the theorems
is discussed in the paper for the lay linguist. This introduction briefly
describes the theorems for more mathematically inclined readers.

In linguistic terms, Theorem 1 demonstrates that every phonotactic
grammar can be represented by a score function mapping strings to the
non-positive integers. Here, to be ‘represented’ has the technical meaning
that if the grammar distinguishes string x as strictly less well-formed than
x, then x is mapped to a smaller (more negative) integer (whereas if they
are not di‰erent in well-formedness, they are mapped to the same integer).
The proof critically relies on the property that there cannot be an infinite
sequence of strings in which well-formedness increases. The proof uses
the notions of equivalence relation and their corresponding equivalence
classes, which may be unfamiliar to many linguists; otherwise, it largely
consists of showing that various ordering properties are preserved by
relevant mappings.

Theorem 2 gives sufficient conditions for a maxent phonotactic grammar
to have a finite partition function. This in turn means that it assigns a well-
defined probability distribution over all possible strings. (If the partition
function is not finite, string probabilities are undefined.) The proof draws
on the theory of geometric series, the laws of exponentiation/logarithms
and basic facts about cardinality/counting, but should be accessible to most
mathematically inclined linguists.

The final background material is Eisner’s (2002) notion of an expectation
semi-ring.

In natural-language processing applications – where FSTs are most
widely used – it is typical to annotate arcs with weights, expressed in either
the probability or log-probability domain. For example, the CV grammar
in Figure 3 could be expressed as a probabilistic FST by assigning the
symbol 0 a pseudo-probability of 1, while max, dpv, dpc, ons and noc would
be assigned pseudo-probabilities less than 1. Pseudo-probabilities would
then be normalised by requiring that the probability of leaving a non-final
state must sum to 1. The probability of a path is defined as the product of
the probabilities of traversing all the arcs in the path, and the probability
of an input–output pair is the sum over the probabilities of all distinct paths
that generate the pair.

1 Theorem 1

While Theorem 2 gives su!cient conditions for a finite partition function,
Theorem 3 gives necessary conditions. The starting point is previous
research from formal language theory demonstrating how constraint-based
mappings that instantiate regular relations can be represented by (weighted)
finite-state automata. This means that maxent HG grammars can be given
a convenient graphical representation. Next, the proof draws on the notion
of expectation semi-ring, formalised in Eisner (2002), which associates a
probability and a violation vector with each node. Finally, the paper draws
on the tight coupling between weighted graphs and matrices to derive a
penalty matrix P, where the entry Pij represents the change in well-
formedness incurred by transitioning from node j to node i of the finite-
state automaton, expres sed as a multiplicative factor. If the princi pal
eigenvalue of this matrix has a magnitude greater than 1, then the partition
function is not finite.

Definition: A relation ı on a set X is a prewellordering if and only if
ı is total

– Ax, yŒX, x ı y or y ı x
– ‘every pair of strings is comparable’

ı is transitive
– Ax, zŒX, x ı y and y ı z implies x ı z
– e.g. if [lb] is worse then [bn], and [bn] is worse than [bl], then [lb]

is worse than [bl]
X is wellordered by ı

– ASàX, S≠.£EsmaxŒS˜AsŒS, s ı smax
– ‘every non-empty subset of X has a maximal element’
– in other words, there cannot be an infinite sequence of strings that

increase in well-formedness (though an infinite decreasing sequence
is allowed)

(Note that this inverts the normal direction for wellordering; it is more
typical to require a minimal element, but the formulations are completely
analogous.)

Definition: A score function f for a set X is a map from elements of X
to a totally ordered space (K, <K). A score function f represents the prewell-
ordering ı on X if

Ax, yŒX, x ı y and y ı x implies f(x)=f(y)
– ‘equally well-formed strings are assigned equal scores’

Ax, yŒX, x ¯ y implies f(x) <K f(y)
– if string x is strictly less well-formed than y, x is assigned a strictly

lower score than y

Another example in which the principal eigenvalue reflects ‘accumulation’
or ‘flow’ of some value across a graph is in Markov chains. A Markov chain
consists of an initial distribution over states and a transition matrix (Tij),
in which the value Tij indicates the probability of visiting state i next, given
that the current state is j. Since probabilities must be non-negative and
sum to 1, this enforces the condition that the sum over each column of T
must be 1. Very similarly to the adjacency matrix, (Tm)ij indicates the
probability of ending in state i after m steps, given that one started in state
j. The principal eigenvalue of the Markov chain always has the value 1,
indicating that there is a constant ‘amount’ of probability which simply
flows across the graph. Markov chains are very well-studied; for a more
thorough treatment the reader is directed to Grimstead & Snell (1997:
ch. 11).

In the present case, we wish to determine whether a given maxent HG
grammar has a finite partition function. The first step is to translate the
grammar into a weighted FST with a violation semi-ring, as in the work
of Riggle and Eisner. The next step it to use matrix multiplication to
characterise the ‘accumulation’ of well-formedness values of paths through
the FST, using a penalty matrix. It follows that the partition function is
finite if and only if the principal eigenvalue of this matrix has a magnitude
of 1 or less.

Definition: Let G=(S+, C⋲, w ƒ) be a maxent phonotactic grammar, and
G¢=(S, Q, q0, F, E, r) be the associated weighted FST over V, where

– S is the output alphabet
– Q is the set of states
– q1ŒQ is the unique start state
– FàQ is the set of final states
– Eà(QXSXVXQ) is a finite set of transitions, each signifying the

traversal from a state qj to a state qi after encountering an output
symbol s, and having a violation vector c√i j indicating the constraints
that are violated in this transition

Let the states in G¢ be indexed {qi}‰, and the constraints in G be indexed
{Ck}Á. Then define an (n+1)X(n+1) penalty matrix P as follows:

Theorem 1: Let S be an alphabet, and S+ the set of finite strings over S.
Every prewellordering ıßΩ over S+ can be represented by a score function
f : S*£(Ä—, <) where Ä— is the non-positive integers and < is the normal
order on integers.

Proof: Given the prewellordering ıßΩ, define the relation ~ by x ~ y if
and only if x ıßΩ y and y ıßΩ x (the ‘equality relation’). Symmetry follows
from the definition of ~, while transitivity and reflexivity follow from the
transitivity and reflexivity of prewellorders; thus ~ is an equivalence relation.
Let K denote the set of equivalence classes of ~, and f~ the map from
elements of X (strings) to their equivalence class, f~(x)=[x]. Because S+
is countable, K must be countable. Claim: ıßΩ induces a total strict well-
ordering on K. Define [x] <K [y] if and only if EwŒ[x], zŒ[y] such that
w ıßΩ z but [x]≠[y]. Totality, transitivity, strictness and antisymmetry
follow, so <K is a strict total order. Wellordering follows from the well-
ordering of ıßΩ, so (K, <K) is totally strictly wellordered.

Now the task is to construct a map from (K, <K) to the non-positive
integers. Proceed by induction. Base case: By wellordering, there must
exist a value k0ŒK that is maximal according to <K. Then define f(k0)=0.
Induction step: Now suppose there is a sequence of values {ki}‰ such that
f(ki)=—i Ai, (0{i{n). Let Kn+1=K \ {ki}‰. Since Kn+1 is a subset of K,
by wellordering it has a maximal element kn+1. Then define f(kn+1)=…(n+1).
This completes the induction step.

Since K is countable, f must be well-defined for every kŒK, and
f : K£Ä—. Evidently, kx <K ky implies f(kx) < f(ky) Akx, kyŒK by con-
struction. It is also easy to show that f(kx) < f(ky) implies kx <K ky for all
kx, kyŒK. Observe that f(kx) < f(ky) implies that Kx is a proper subset of
Ky. Since the maximal element ky of Ky was removed to construct Kx, it
follows that k <K ky AkŒKx. Since kxŒKx, it follows that kx <K ky. In
short, f preserves all and only the order di‰erences of <K.

Two maps have been defined: f~ : S+£K maps every string to a well-
formedness equivalence class, and f : K£Ä— maps each well-formedness
equivalence class to a non-positive integer score. Then their composition
f(x)=f(f~(x)) maps every string to a non-positive score, f~ : S+£Ä— with
the following properties:

Ax, yŒS+, x ıßΩ y and y ıßΩ x›f(x)=f(y)
Ax, yŒS+, x ¯ßΩ y›f(x) < f(y)

In other words, f represents the prewellordering ıßΩ using the non-negative
integers.

2 Theorem 2
Definition: A harmonic grammar is a tuple G=(X, Y, R, C⋲, w ƒ) where

– X is a set of lexical representations
– Y is a set of surface representations
– RàXXY indicates the set of possible surface representations that a

given lexical representation can map to, called the candidates: candi-
dates(x)={yŒY|xRy}

– C⋲ is a finite set of constraint functions C ⋲={Ck}Á, where each
constraint function assigns a non-negative integer violation count to
lexical-surface pairs, Ak, Ck : R£Ä

– wƒ is a set of real-valued, non-positive weights wƒ={wk}Á, associated
with the constraints

The harmony of a lexical–surface pair HCƒ,wƒ
(x, y) is defined as the weighted

sum of the constraint violations, H(x, y)=%Á wk·Ck(x, y). Given some
xŒX, surface representation yŒcandidates(x) is a winner if and only if
E/ zŒcandidates(x), such that H(x, z) > H(x, y), in other words if y has the
greatest harmony value among the candidates of x. We write G(x)=y in
case y is a unique winner for x. Thus G denotes a mapping from X to Y
just in case every xŒX has a unique winner G(x)ŒY.

Definition: A maxent HG grammar is a harmonic grammar G=(X, Y, R,
C⋲, w ƒ) that is augmented with a well-formedness function F : R£Z+

defined by F(x, y)=eH(x,y) (the range of the exponentiation is the non-
negative reals Z+). The partition function associated with a lexical
representation x, Z : X£Z+ U{≥} is defined as the sum of the well-
formedness values of all of x’s candidates, Z(x)=%xRy F(x, y). In case the
partition function is finite for a given x, G defines the conditional probability
distribution Pr(y|x)=F(x, y)/Z(x).

Definition: A maxent phonotactic grammar over S+ is a maxent HG
grammar G=(X, Y, R, C⋲, w ƒ) in which X is a singleton set {w}, Y=S+
where S+ is the set of finite strings over some alphabet S, and wRy AyŒS+.
Since X and R are trivial, it is convenient to omit them from the notation:
G=(S+, C⋲, wƒ), H(y)=Á wk·Ck(y), etc.

Definition: Define the *Struct constraint *Struct : S+£Ä by
*Struct(s)=k if and only if sŒSk. In other words, the number of *Struct
violations that a string s incurs is simply the length of s.

Theorem 2: Let G=(S+, C⋲, w ƒ) be a maxent phonotactic grammar. If the
constraint set C ⋲ includes a *Struct constraint (i.e. Ei <k such that
Ci=*Struct) and w*Struct < —ln|S|, then the partition function Z of G is
finite.

Proof: The proof goes in two steps. The first step is to consider a maxent
phonotactic grammar G¢ over S+ whose constraint set includes only *Struct,
and prove that w*Struct < —ln|S| implies that Z¢ is finite. The second step
is to show that F¢(s) is an upper bound for F(s) for all sŒS*, so Z¢ is an
upper bound for Z. Finitude of Z follows from finitude of Z¢.

Part 1: Given G=(S+, C⋲, wƒ), define the maxent phonotactic grammar
G¢ over S+ to have the sole constraint C⋲={*Struct} with weight w; the
corresponding harmony and well-formedness functions are denoted H¢ and
F¢. We will abuse notation by defining F¢(X)=%SÊX F¢(s), i.e. extending
the definition of the well-formedness function so that it measures sets of
strings (rather than merely evaluating individual strings). The goal is to
compute Z¢ by partitioning S+ by the length of its strings. Let us begin by
considering the value F¢(Sk) for an arbitrary k. By definition, sŒSk implies
*Struct(s) = k, so that H¢(s) = w·*Struct(s) = w·k and F¢(s) = eH¢(ß) =
ew·k = (ew)k. The number of strings in Sk is |S|k, and each such string s has
a constant well-formedness value, F¢(s)=(ew)k. Then the total F¢(Sk) can
be expressed as the product, F¢(Sk)=|Sk|·(ew)k=(|S|·ew)k. Now it is possible
to express Z¢ as the sum over the partition by length (S+=S0US1US2U…):

F¢(S+)=%ÂF¢(Sk)
=%Â(|S|·ew)k

This latter is instantly recognisable as an infinite series with common ratio
r=|S|·ew. The theory of infinite series indicates that this value is finite
(and well-defined) if and only if |r| < 1. Since |S| and ew are positive, this
reduces to the inequality |S|·ew < 1, or ew < |S|—1. The natural logarithm
is an increasing function, which can be applied to both sides to preserve
the inequality, yielding w < —ln|S|.

Part 2: We begin by showing that AsŒS*, H(s) ≤ H¢(s). Without loss
of generality, reassign indices so that H(s)=w·*Struct(s) + %Ê· Ck(s)
and recall that H¢(s)=w·*Struct(s). Then H (s)®H¢(s)=%Ê wk·Ck(s)
for all s. Now since wk ≤ 0 Ak and Ck ≥ 0 Ak, it follows that wk·Ck(s) ≤ 0
Ak, and therefore the sum must be non-positive as well, i.e. H(s)®H¢(s)
≤ 0 AsŒS*. But this means that H¢ (s) is an upper bound for H(s) for every
s. And since exponentiation is an increasing function, this implies that F¢(s)
is an upper bound for F(s) for all s. And since Z¢ is the sum of F¢ values,
while Z is the sum of F values, this means that Z¢ is an upper bound for Z.
Thus, if Z¢ is finite, Z must be as well. This completes the proof.

3 Theorem 3
Riggle (2009) gives a technical but well-exemplified presentation of finite-
state Optimality Theory. The essence of this approach is to model constraints
as (possibly weighted) finite-state transducers. In order to understand
Theorem 3, it is necessary to understand how maxent phonotactic grammars
are implemented as finite-state transducers, and in order to understand
this, it is first necessary to understand a little about finite-state transducers.

Intuitively, a finite-state transducer (FST) is a computational device
which accepts one ‘input’ string and converts it to another ‘output’ string.
Finite-state machines are conventionally represented as directed graphs.
The nodes of the graph represent ‘states’ of the machine. Arcs represent
the transition from one state to another; normally, this is associated with
reading one symbol from the input string, and writing one symbol to the
output string. The particular mapping that an arc represents is indicated
with a label on the arc; the label x:y indicates that the arc transduces input
symbol x into output symbol y. The ‘start’ and ‘final’ nodes of the graph
are graphically indicated by one or more conventions. Here I use the
convention that the start state is indicated by an arrow from nowhere
pointing to the start node, while the end state is indicated by a double circle.
Figure 1 gives a finite-state transducer that implements an intervocalic
voicing rule. The FST in Figure 1 only accepts the input sequence /apa/,
and if it is presented with that input sequence, it yields the output sequence
[aba]. Traversing a single arc in the graph represents reading/writing one
symbol, so that the nodes/states of the graph represent the amount of the
input string that has been read. It is possible for there to be multiple arcs
emanating from or leading to a state. For example, the FST in Fig. 1 could
be augmented with an additional arc ‘b:b’ pointing from node 2 to node 3;
the modified FST would then implement two mappings, /apa/£[aba] and
/aba/£[aba].

Riggle (2009) uses simple weighted finite-state transducers to represent
individual constraints. A grammar can then be represented using an operation
known as ‘intersection’. Figure 2, which is slightly adapted from Riggle
(2009: Fig. 1), illustrates three faithfulness constraints and their intersection.
Each transition x:y is followed by a value indicating the amount or type of
violation that is incurred. For example, when an input symbol maps to
itself – symbolised by X:X - no faithfulness violation is incurred, and this
is symbolised by 0. The symbol e is a special symbol indicating the empty
string. Thus when an empty input is mapped to a V, the grammar should
record a Dep(V) violation in some way. Similarly, when a non-empty input
symbol is mapped to an empty output, the input symbol has been deleted,
and the grammar should record a Max violation. The intersection of the
three simple FSTs in Fig. 2 is represented in the rightmost FST. In that
FST, any alteration to the input is penalised except for transducing an
empty input into a syllable boundary (the . symbol).

Figure 2
Simple weighted FSTs representing Max, Dep(V)

and Dep(C), and their intersection

e:./0

X:X/0

X:e/max

e:V/dpv

e:C/dpc

e:./0

X:X/0

X:e/0

e:V/0

e:C/dpc

e:./0

X:X/0

X:e/0

e:C/0

e:V/dpv

e:./0

X:X/0

X:e/max

e:X/0

Riggle further illustrates by generating the FST for a full CV grammar,
containing the hard constraint ((C)V(C).)*, as well as the violable constraints
Onset (ons) and NoCoda (noc), and the three faithfulness constraints from
before. The full CV grammar, slightly adapted from Riggle (2009: Fig. 3),
is reproduced in Fig. 3. The reader is encouraged to consult Riggle (2009)
for additional exposition.

Figure 3
Syllable grammar. State A represents the start of a syllable. State C

represents the moment after the nucleus has been written to the output.
State B represents the moment after an onset consonant has been written to
the output, whether it was in the input or epenthesised. State D represents

the moment after a postvocalic consonant has been read from the input,
whether it was written to the output or deleted. Only state A is a final state,

and this is why the links from C and D to A contain the end-of-syllable
symbol .. Thus, an onsetless syllable [V.] is generated by the path

A£C£A, while a [CV.] syllable is generated by the path A£B£C£A.

e:./noc

X:e/max

e:C/dpc

C:C/0

X:e/max
e:V/{ons, dpv}

V:V/ons

e:./0X:e/max

X:e/max

e:C/dpc C:C/0

V:V/0
e:V/dpv

In fact, Eisner points out that most useful formulations for weighted
FSTs have a common, abstract character: the weights of paths obey the
axioms of a closed semi-ring. A closed semi-ring (K, ò, fl, *) is a mathe-
matical structure which is a slight generalisation of the natural numbers:
it consists of a set K with an ‘addition’ operation ò (associative, commutative,
identity element 0), a ‘multiplication’ operation (associative, distributes
over ò from the right and the left, identity element 1), and ‘closure’ for
infinite loops (k+”def ò‚ ki). Eisner (2002) states: ‘ordinary probabilities
fall in the semi-ring (Z≥0, +, ú, *)’.

In Riggle’s (2009) formulation, the symbols 0, max, dpv, dpc, ons and noc
are treated as unit vectors, so that the violation vector for a path may be
accumulated as the sum the unit violation vectors encountered along the
path. (Technically, Riggle construes violations as belonging to a multiset
with a semi-ring structure, but for the present purposes these are the
equivalent.) Given that multiple paths may generate the same input–output
pair, but with possibly di‰erent violation vectors, one should also define
how to calculate the violation vector for an input–output pair. From a total
ranking over constraints, Riggle defines this as the violation profile of the
path which has the minimum number of violations over the highest-ranked
constraint on which there is a di‰erence. Riggle refers to this formulation
as a ‘violation semi-ring’, and points to its similarities with the tropical
semi-ring over the real numbers.

Eisner’s expectation semi-ring combines both probabilities and violation
vectors. In Eisner’s own words:

Abstractly, let us say that each path p has not only a probability P(p)Œ[0,
1] but also a value val(p) in a vector space V, which counts the arcs,
features or coin flips encountered along path p. The value of a path is the
sum of the values assigned to its arcs... The idea is to augment the weight
data structure with expectation information, so each weight records a
probability and a vector counting the parameters that contributed to that
probability.

Eisner proceeds to define the V-expectation semi-ring (Z≥0XV, ò, fl, *)
as follows:

(p1, v1)‡(p2, v2) ”def (p1p2, p1v2+v1p2)
(p1, v1)‡(p2, v2) ”def (p1+p2, v1+v2)
if p* defined, (p, v)* ”def (p*, p*vp*)

He elaborates:
If an arc has probability p and value p, we give it the weight (p, pv) so
that our invariant (see above) holds if [the pathset] # consists of a single
length-0 or length-1 path. The above definitions are designed to preserve
our invariant as we build up larger paths and pathsets. fl lets us concatenate
(e.g.) simple paths p1, p2 to get a longer path p with P(p)=(p1)P(p2) and
val(p)=val(p1)+val(p2). The definition of fl guarantees [the invariant]
that path p’s weight will be (P(p), P(p)·val(p)). ò lets us take the union
of two disjoint pathsets, and * computes infinite unions.

Now that the expectation semi-ring has been explained, we are in position
to consider its application to maxent HG grammars. As stated in Hayes &
Wilson (2008: 389):

the properties of a very large set of strings can be computed by representing
the set as a finite state machine. We construct our machines by first
representing each constraint as a weighted finite state acceptor. Using
intersection …, we then combine the constraints into a single machine
that embodies the full grammar … Each path through this machine
corresponds to a phonological representation together with its vector of
constraint violations. We then obtain the E[Ci] values by summing over
all paths through the machine …

Theorem 3 is concerned with whether the FST associated with a maxent
phonotactic grammar has well-defined expectations, or in other words,
whether it has a finite partition function. It does this by explicitly constructing
a matrix which sums over the well-formedness values of every path
through the FST. In order to understand this, it is first necessary to
understand how matrix multiplication can represent accumulation over
paths through a matrix, and how the principal eigenvalue reflects important
aspects of the limit behaviour.

Technically, a directed graph G consists of some nodes (indexed 1 to n),
and directed edges which point from a node j to some node i. The adjacency
matrix (Aij) associated with G is an nXn matrix in which:

Aij=
1 there is an edge from j to i
0 otherwise

Clearly (A1)ij indicates the number of paths of length 1 from node j to node
i. It turns out that something much more general is true: (Am)ij indicates
the number of paths of length m from node j to node i. To see this, consider
the (i, j) entry of Am+1. Since Am+1=Am·A, (Am+1)ij must be the dot product
of the ith row of Am and the jth column of A: (Am+1)ij=%„(Am)ik·Akj.
The value (Am)ik indicates the number of paths of length exactly m from
k to i, and Akj indicates the number of paths of length exactly 1 from j to
k. Thus, (Am)ik·Akj indicates the number of paths of length m+1 that begin
at j and end at i, passing through k as the first step. Since every path from
j to i must pass through some first step, the total number of paths of length
m+1 is given by their sum across k. Therefore, (Am+1)ij indicates the total
number of paths of length m+1 from node j to node i. In this case, matrix
multiplication represents the ‘accumulation’ of the number of paths. The
principal eigenvalue represents the (limit of the) ratio by which the number
of paths grows as the path length is increased. In fully connected graphs,
this value will be n (the number of nodes); in acyclic graphs (where it is not
possible to return to any state i once it has been visited), the principal
eigenvalue of the adjacency matrix is 0.

Theorem 3: Let (Pij) be the penalty matrix for a maxent phonotactic
grammar G=(S+, C ⋲, wƒ) and its associated FST G¢=(S, Q, q0, F, E, r). G
has a finite partition function if and only if the principal eigenvalue of P
has a magnitude of 1 or less.

Proof: The proof goes in two steps. The first is to show that every accepted
string corresponds to a path beginning at q1 and being ‘absorbed’ in qn+1.
The second is to show that (Pm)ij indicates the well-formedness value of all
paths of length exactly m that begin at state j and end at state i (so that the
well-formedness of all paths will ‘accumulate’ in qn+1). It follows from this
that Z=limm√¥(Pm)(n+1)(n+1), which is finite if and only if the principal
eigenvalue has magnitude 1 or less.

Step 1: The definition of FST gives that every path begins in the start
state q1, and ends in one of a set of final states qjŒF. Then, the requirement
that P(n+1)j=dij amounts to adding a cost-free transition to the extra state
n+1, but only from pre-existing finals. The requirement that P(n+1)(n+1)=1
means that every string path which enters this state stays there without
penalty. (The cost-free self-link is necessary to preserve the well-formedness
so that it can be counted in the limit, rather than allowing it to vanish after
the path is accepted.) Since every string that is accepted by the FST must
begin at the start state and end at a final state, every terminating path of
length m®1 through the FST is counted by the matrix entry (Pm)(n+1)1
(and all subsequent values of m).

Step 2: Suppose that the violation vector e√ik is incurred by traversing a
single path from qk to qi, and e√kj is incurred by traversing a single path from
qj to qk. Then the well-formedness value associated with the k£i arc is
F(w ƒ·e√ik) = ewƒ·e√ik, and the well-formedness value associated with the j to k
arc is F(wƒ·e√kj)=ewƒ·e√kj. Their product is F(wƒ·e√ik)·F(w ƒ·e√kj) = ew ƒ·e√ik·ewƒ·e √kj =
ewƒ·e√ik+wƒ·e√kj = ewƒ·(e√ik+e √kj) = F(wƒ·(e√ik+e√kj)). In other words, the penalty is the
same whether the violations are added up and assessed all at once, or assessed
one by one. This is the same kind of ‘invariant’ as Eisner (2002) refers to.
Now, it is already true by construction that (P1)i j represents the penalty
to a string incurred by transitioning from state j to state i in exactly 1 step.
Now suppose that (Pm)ij represents the penalty incurred by transitioning
from state j to state i in exactly m steps. Then (Pm+1)ij=%„(Pm)ik·(Pkj).
Then the well-formedness of all paths of exactly length m+1 is decomposed
just as with the adjacency matrix counting paths above.

It follows from these that the value (Pm)(n+1)1 represents the sum of the
well-formedness values of all accepted strings of length m®1 or less. Since
the partition function is defined as the sum of the well-formedness values
of all terminating strings, it follows that Z=limm√¥(Pm+1)(n+1)1. Since all
of the well-formedness must eventually accumulate in this cell for finite
strings, it follows that Z is finite if and only if the principal eigenvalue of
P has magnitude less than 1.

Pij=

F(wƒ·c √i j) there is an edge from qj to qi
1 i=n+1 and qjŒF, i.e. j is final
1 i=n+1 and j=n+1
0 otherwise

The second and third rows of this definition are equivalent to adding a final
final state qn+1 and requiring all final states to have a cost-free transition to
the final final state, so that all well-formedness will accumulate in qn+1.

Robert Daland
University of California, Los Angeles

Phonology 25.2: Artwork 1 of

Dep(C)
Max

Dep(V)
Dep(C)

Dep(V)Max

Supplementary materials 32 Robert Daland 4 Robert Daland
Phonology 32 (2015). Supplementary materials

Supplementary materials 5 6 Robert Daland Supplementary materials 7

Long words in maximum entropy
phonotactic grammars

8 Robert Daland 10 Robert DalandSupplementary materials 9 Supplementary materials 11 12 Robert Daland

These supplementary materials introduce three theorems which formalise
the central contributions of this paper. The general purpose of the theorems
is discussed in the paper for the lay linguist. This introduction briefly
describes the theorems for more mathematically inclined readers.

In linguistic terms, Theorem 1 demonstrates that every phonotactic
grammar can be represented by a score function mapping strings to the
non-positive integers. Here, to be ‘represented’ has the technical meaning
that if the grammar distinguishes string x as strictly less well-formed than
x, then x is mapped to a smaller (more negative) integer (whereas if they
are not di‰erent in well-formedness, they are mapped to the same integer).
The proof critically relies on the property that there cannot be an infinite
sequence of strings in which well-formedness increases. The proof uses
the notions of equivalence relation and their corresponding equivalence
classes, which may be unfamiliar to many linguists; otherwise, it largely
consists of showing that various ordering properties are preserved by
relevant mappings.

Theorem 2 gives sufficient conditions for a maxent phonotactic grammar
to have a finite partition function. This in turn means that it assigns a well-
defined probability distribution over all possible strings. (If the partition
function is not finite, string probabilities are undefined.) The proof draws
on the theory of geometric series, the laws of exponentiation/logarithms
and basic facts about cardinality/counting, but should be accessible to most
mathematically inclined linguists.

The final background material is Eisner’s (2002) notion of an expectation
semi-ring.

In natural-language processing applications – where FSTs are most
widely used – it is typical to annotate arcs with weights, expressed in either
the probability or log-probability domain. For example, the CV grammar
in Figure 3 could be expressed as a probabilistic FST by assigning the
symbol 0 a pseudo-probability of 1, while max, dpv, dpc, ons and noc would
be assigned pseudo-probabilities less than 1. Pseudo-probabilities would
then be normalised by requiring that the probability of leaving a non-final
state must sum to 1. The probability of a path is defined as the product of
the probabilities of traversing all the arcs in the path, and the probability
of an input–output pair is the sum over the probabilities of all distinct paths
that generate the pair.

1 Theorem 1

While Theorem 2 gives su!cient conditions for a finite partition function,
Theorem 3 gives necessary conditions. The starting point is previous
research from formal language theory demonstrating how constraint-based
mappings that instantiate regular relations can be represented by (weighted)
finite-state automata. This means that maxent HG grammars can be given
a convenient graphical representation. Next, the proof draws on the notion
of expectation semi-ring, formalised in Eisner (2002), which associates a
probability and a violation vector with each node. Finally, the paper draws
on the tight coupling between weighted graphs and matrices to derive a
penalty matrix P, where the entry Pij represents the change in well-
formedness incurred by transitioning from node j to node i of the finite-
state automaton, expres sed as a multiplicative factor. If the princi pal
eigenvalue of this matrix has a magnitude greater than 1, then the partition
function is not finite.

Definition: A relation ı on a set X is a prewellordering if and only if
ı is total

– Ax, yŒX, x ı y or y ı x
– ‘every pair of strings is comparable’

ı is transitive
– Ax, zŒX, x ı y and y ı z implies x ı z
– e.g. if [lb] is worse then [bn], and [bn] is worse than [bl], then [lb]

is worse than [bl]
X is wellordered by ı

– ASàX, S≠.£EsmaxŒS˜AsŒS, s ı smax
– ‘every non-empty subset of X has a maximal element’
– in other words, there cannot be an infinite sequence of strings that

increase in well-formedness (though an infinite decreasing sequence
is allowed)

(Note that this inverts the normal direction for wellordering; it is more
typical to require a minimal element, but the formulations are completely
analogous.)

Definition: A score function f for a set X is a map from elements of X
to a totally ordered space (K, <K). A score function f represents the prewell-
ordering ı on X if

Ax, yŒX, x ı y and y ı x implies f(x)=f(y)
– ‘equally well-formed strings are assigned equal scores’

Ax, yŒX, x ¯ y implies f(x) <K f(y)
– if string x is strictly less well-formed than y, x is assigned a strictly

lower score than y

Another example in which the principal eigenvalue reflects ‘accumulation’
or ‘flow’ of some value across a graph is in Markov chains. A Markov chain
consists of an initial distribution over states and a transition matrix (Tij),
in which the value Tij indicates the probability of visiting state i next, given
that the current state is j. Since probabilities must be non-negative and
sum to 1, this enforces the condition that the sum over each column of T
must be 1. Very similarly to the adjacency matrix, (Tm)ij indicates the
probability of ending in state i after m steps, given that one started in state
j. The principal eigenvalue of the Markov chain always has the value 1,
indicating that there is a constant ‘amount’ of probability which simply
flows across the graph. Markov chains are very well-studied; for a more
thorough treatment the reader is directed to Grimstead & Snell (1997:
ch. 11).

In the present case, we wish to determine whether a given maxent HG
grammar has a finite partition function. The first step is to translate the
grammar into a weighted FST with a violation semi-ring, as in the work
of Riggle and Eisner. The next step it to use matrix multiplication to
characterise the ‘accumulation’ of well-formedness values of paths through
the FST, using a penalty matrix. It follows that the partition function is
finite if and only if the principal eigenvalue of this matrix has a magnitude
of 1 or less.

Definition: Let G=(S+, C⋲, wƒ) be a maxent phonotactic grammar, and
G¢=(S, Q, q0, F, E, r) be the associated weighted FST over V, where

– S is the output alphabet
– Q is the set of states
– q1ŒQ is the unique start state
– FàQ is the set of final states
– Eà(QXSXVXQ) is a finite set of transitions, each signifying the

traversal from a state qj to a state qi after encountering an output
symbol s, and having a violation vector c√i j indicating the constraints
that are violated in this transition

Let the states in G¢ be indexed {qi}‰, and the constraints in G be indexed
{Ck}Á. Then define an (n+1)X(n+1) penalty matrix P as follows:

Theorem 1: Let S be an alphabet, and S+ the set of finite strings over S.
Every prewellordering ıßΩ over S+ can be represented by a score function
f : S*£(Ä—, <) where Ä— is the non-positive integers and < is the normal
order on integers.

Proof: Given the prewellordering ıßΩ, define the relation ~ by x ~ y if
and only if x ıßΩ y and y ıßΩ x (the ‘equality relation’). Symmetry follows
from the definition of ~, while transitivity and reflexivity follow from the
transitivity and reflexivity of prewellorders; thus ~ is an equivalence relation.
Let K denote the set of equivalence classes of ~, and f~ the map from
elements of X (strings) to their equivalence class, f~(x)=[x]. Because S+
is countable, K must be countable. Claim: ıßΩ induces a total strict well-
ordering on K. Define [x] <K [y] if and only if EwŒ[x], zŒ[y] such that
w ıßΩ z but [x]≠[y]. Totality, transitivity, strictness and antisymmetry
follow, so <K is a strict total order. Wellordering follows from the well-
ordering of ıßΩ, so (K, <K) is totally strictly wellordered.

Now the task is to construct a map from (K, <K) to the non-positive
integers. Proceed by induction. Base case: By wellordering, there must
exist a value k0ŒK that is maximal according to <K. Then define f(k0)=0.
Induction step: Now suppose there is a sequence of values {ki}‰ such that
f(ki)=—i Ai, (0{i{n). Let Kn+1=K \ {ki}‰. Since Kn+1 is a subset of K,
by wellordering it has a maximal element kn+1. Then define f(kn+1)=…(n+1).
This completes the induction step.

Since K is countable, f must be well-defined for every kŒK, and
f : K£Ä—. Evidently, kx <K ky implies f(kx) < f(ky) Akx, kyŒK by con-
struction. It is also easy to show that f(kx) < f(ky) implies kx <K ky for all
kx, kyŒK. Observe that f(kx) < f(ky) implies that Kx is a proper subset of
Ky. Since the maximal element ky of Ky was removed to construct Kx, it
follows that k <K ky AkŒKx. Since kxŒKx, it follows that kx <K ky. In
short, f preserves all and only the order di‰erences of <K.

Two maps have been defined: f~ : S+£K maps every string to a well-
formedness equivalence class, and f : K£Ä— maps each well-formedness
equivalence class to a non-positive integer score. Then their composition
f(x)=f(f~(x)) maps every string to a non-positive score, f~ : S+£Ä— with
the following properties:

Ax, yŒS+, x ıßΩ y and y ıßΩ x›f(x)=f(y)
Ax, yŒS+, x ¯ßΩ y›f(x) < f(y)

In other words, f represents the prewellordering ıßΩ using the non-negative
integers.

2 Theorem 2
Definition: A harmonic grammar is a tuple G=(X, Y, R, C ⋲, w ƒ) where

– X is a set of lexical representations
– Y is a set of surface representations
– RàXXY indicates the set of possible surface representations that a

given lexical representation can map to, called the candidates: candi-
dates(x)={yŒY|xRy}

– C⋲ is a finite set of constraint functions C ⋲={Ck}Á, where each
constraint function assigns a non-negative integer violation count to
lexical-surface pairs, Ak, Ck : R£Ä

– wƒ is a set of real-valued, non-positive weights wƒ={wk}Á, associated
with the constraints

The harmony of a lexical–surface pair HCƒ,wƒ
(x, y) is defined as the weighted

sum of the constraint violations, H(x, y)=%Á wk·Ck(x, y). Given some
xŒX, surface representation yŒcandidates(x) is a winner if and only if
E/ zŒcandidates(x), such that H(x, z) > H(x, y), in other words if y has the
greatest harmony value among the candidates of x. We write G(x)=y in
case y is a unique winner for x. Thus G denotes a mapping from X to Y
just in case every xŒX has a unique winner G(x)ŒY.

Definition: A maxent HG grammar is a harmonic grammar G=(X, Y, R,
C⋲, w ƒ) that is augmented with a well-formedness function F : R£Z+

defined by F(x, y)=eH(x,y) (the range of the exponentiation is the non-
negative reals Z+). The partition function associated with a lexical
representation x, Z : X£Z+ U{≥} is defined as the sum of the well-
formedness values of all of x’s candidates, Z(x)=%xRy F(x, y). In case the
partition function is finite for a given x, G defines the conditional probability
distribution Pr(y|x)=F(x, y)/Z(x).

Definition: A maxent phonotactic grammar over S+ is a maxent HG
grammar G=(X, Y, R, C⋲, wƒ) in which X is a singleton set {w}, Y=S+
where S+ is the set of finite strings over some alphabet S, and wRy AyŒS+.
Since X and R are trivial, it is convenient to omit them from the notation:
G=(S+, C⋲, wƒ), H(y)=Á wk·Ck(y), etc.

Definition: Define the *Struct constraint *Struct : S+£Ä by
*Struct(s)=k if and only if sŒSk. In other words, the number of *Struct
violations that a string s incurs is simply the length of s.

Theorem 2: Let G=(S+, C⋲, wƒ) be a maxent phonotactic grammar. If the
constraint set C ⋲ includes a *Struct constraint (i.e. Ei <k such that
Ci=*Struct) and w*Struct < —ln|S|, then the partition function Z of G is
finite.

Proof: The proof goes in two steps. The first step is to consider a maxent
phonotactic grammar G¢ over S+ whose constraint set includes only *Struct,
and prove that w*Struct < —ln|S| implies that Z¢ is finite. The second step
is to show that F¢(s) is an upper bound for F(s) for all sŒS*, so Z¢ is an
upper bound for Z. Finitude of Z follows from finitude of Z¢.

Part 1: Given G=(S+, C⋲, wƒ), define the maxent phonotactic grammar
G¢ over S+ to have the sole constraint C⋲={*Struct} with weight w; the
corresponding harmony and well-formedness functions are denoted H¢ and
F¢. We will abuse notation by defining F¢(X)=%SÊX F¢(s), i.e. extending
the definition of the well-formedness function so that it measures sets of
strings (rather than merely evaluating individual strings). The goal is to
compute Z¢ by partitioning S+ by the length of its strings. Let us begin by
considering the value F¢(Sk) for an arbitrary k. By definition, sŒSk implies
*Struct(s) = k, so that H¢(s) = w·*Struct(s) = w·k and F¢(s) = eH¢(ß) =
ew·k = (ew)k. The number of strings in Sk is |S|k, and each such string s has
a constant well-formedness value, F¢(s)=(ew)k. Then the total F¢(Sk) can
be expressed as the product, F¢(Sk)=|Sk|·(ew)k=(|S|·ew)k. Now it is possible
to express Z¢ as the sum over the partition by length (S+=S0US1US2U…):

F¢(S+)=%ÂF¢(Sk)
=%Â(|S|·ew)k

This latter is instantly recognisable as an infinite series with common ratio
r=|S|·ew. The theory of infinite series indicates that this value is finite
(and well-defined) if and only if |r| < 1. Since |S| and ew are positive, this
reduces to the inequality |S|·ew < 1, or ew < |S|—1. The natural logarithm
is an increasing function, which can be applied to both sides to preserve
the inequality, yielding w < —ln|S|.

Part 2: We begin by showing that AsŒS*, H(s) ≤ H¢(s). Without loss
of generality, reassign indices so that H(s)=w·*Struct(s) + %Ê· Ck(s)
and recall that H¢(s)=w·*Struct(s). Then H (s)®H¢(s)=%Ê wk·Ck(s)
for all s. Now since wk ≤ 0 Ak and Ck ≥ 0 Ak, it follows that wk·Ck(s) ≤ 0
Ak, and therefore the sum must be non-positive as well, i.e. H(s)®H¢(s)
≤ 0 AsŒS*. But this means that H¢ (s) is an upper bound for H(s) for every
s. And since exponentiation is an increasing function, this implies that F¢(s)
is an upper bound for F(s) for all s. And since Z¢ is the sum of F¢ values,
while Z is the sum of F values, this means that Z¢ is an upper bound for Z.
Thus, if Z¢ is finite, Z must be as well. This completes the proof.

3 Theorem 3
Riggle (2009) gives a technical but well-exemplified presentation of finite-
state Optimality Theory. The essence of this approach is to model constraints
as (possibly weighted) finite-state transducers. In order to understand
Theorem 3, it is necessary to understand how maxent phonotactic grammars
are implemented as finite-state transducers, and in order to understand
this, it is first necessary to understand a little about finite-state transducers.

Intuitively, a finite-state transducer (FST) is a computational device
which accepts one ‘input’ string and converts it to another ‘output’ string.
Finite-state machines are conventionally represented as directed graphs.
The nodes of the graph represent ‘states’ of the machine. Arcs represent
the transition from one state to another; normally, this is associated with
reading one symbol from the input string, and writing one symbol to the
output string. The particular mapping that an arc represents is indicated
with a label on the arc; the label x:y indicates that the arc transduces input
symbol x into output symbol y. The ‘start’ and ‘final’ nodes of the graph
are graphically indicated by one or more conventions. Here I use the
convention that the start state is indicated by an arrow from nowhere
pointing to the start node, while the end state is indicated by a double circle.
Figure 1 gives a finite-state transducer that implements an intervocalic
voicing rule. The FST in Figure 1 only accepts the input sequence /apa/,
and if it is presented with that input sequence, it yields the output sequence
[aba]. Traversing a single arc in the graph represents reading/writing one
symbol, so that the nodes/states of the graph represent the amount of the
input string that has been read. It is possible for there to be multiple arcs
emanating from or leading to a state. For example, the FST in Fig. 1 could
be augmented with an additional arc ‘b:b’ pointing from node 2 to node 3;
the modified FST would then implement two mappings, /apa/£[aba] and
/aba/£[aba].

Riggle (2009) uses simple weighted finite-state transducers to represent
individual constraints. A grammar can then be represented using an operation
known as ‘intersection’. Figure 2, which is slightly adapted from Riggle
(2009: Fig. 1), illustrates three faithfulness constraints and their intersection.
Each transition x:y is followed by a value indicating the amount or type of
violation that is incurred. For example, when an input symbol maps to
itself – symbolised by X:X - no faithfulness violation is incurred, and this
is symbolised by 0. The symbol e is a special symbol indicating the empty
string. Thus when an empty input is mapped to a V, the grammar should
record a Dep(V) violation in some way. Similarly, when a non-empty input
symbol is mapped to an empty output, the input symbol has been deleted,
and the grammar should record a Max violation. The intersection of the
three simple FSTs in Fig. 2 is represented in the rightmost FST. In that
FST, any alteration to the input is penalised except for transducing an
empty input into a syllable boundary (the . symbol).

Figure 2
Simple weighted FSTs representing Max, Dep(V)

and Dep(C), and their intersection

e:./0

X:X/0

X:e/max

e:V/dpv

e:C/dpc

e:./0

X:X/0

X:e/0

e:V/0

e:C/dpc

e:./0

X:X/0

X:e/0

e:C/0

e:V/dpv

e:./0

X:X/0

X:e/max

e:X/0

Riggle further illustrates by generating the FST for a full CV grammar,
containing the hard constraint ((C)V(C).)*, as well as the violable constraints
Onset (ons) and NoCoda (noc), and the three faithfulness constraints from
before. The full CV grammar, slightly adapted from Riggle (2009: Fig. 3),
is reproduced in Fig. 3. The reader is encouraged to consult Riggle (2009)
for additional exposition.

Figure 3
Syllable grammar. State A represents the start of a syllable. State C

represents the moment after the nucleus has been written to the output.
State B represents the moment after an onset consonant has been written to
the output, whether it was in the input or epenthesised. State D represents

the moment after a postvocalic consonant has been read from the input,
whether it was written to the output or deleted. Only state A is a final state,

and this is why the links from C and D to A contain the end-of-syllable
symbol .. Thus, an onsetless syllable [V.] is generated by the path

A£C£A, while a [CV.] syllable is generated by the path A£B£C£A.

e:./noc

X:e/max

e:C/dpc

C:C/0

X:e/max
e:V/{ons, dpv}

V:V/ons

e:./0X:e/max

X:e/max

e:C/dpc C:C/0

V:V/0
e:V/dpv

In fact, Eisner points out that most useful formulations for weighted
FSTs have a common, abstract character: the weights of paths obey the
axioms of a closed semi-ring. A closed semi-ring (K, ò, fl, *) is a mathe-
matical structure which is a slight generalisation of the natural numbers:
it consists of a set K with an ‘addition’ operation ò (associative, commutative,
identity element 0), a ‘multiplication’ operation (associative, distributes
over ò from the right and the left, identity element 1), and ‘closure’ for
infinite loops (k+”def ò‚ ki). Eisner (2002) states: ‘ordinary probabilities
fall in the semi-ring (Z≥0, +, ú, *)’.

In Riggle’s (2009) formulation, the symbols 0, max, dpv, dpc, ons and noc
are treated as unit vectors, so that the violation vector for a path may be
accumulated as the sum the unit violation vectors encountered along the
path. (Technically, Riggle construes violations as belonging to a multiset
with a semi-ring structure, but for the present purposes these are the
equivalent.) Given that multiple paths may generate the same input–output
pair, but with possibly di‰erent violation vectors, one should also define
how to calculate the violation vector for an input–output pair. From a total
ranking over constraints, Riggle defines this as the violation profile of the
path which has the minimum number of violations over the highest-ranked
constraint on which there is a di‰erence. Riggle refers to this formulation
as a ‘violation semi-ring’, and points to its similarities with the tropical
semi-ring over the real numbers.

Eisner’s expectation semi-ring combines both probabilities and violation
vectors. In Eisner’s own words:

Abstractly, let us say that each path p has not only a probability P(p)Œ[0,
1] but also a value val(p) in a vector space V, which counts the arcs,
features or coin flips encountered along path p. The value of a path is the
sum of the values assigned to its arcs... The idea is to augment the weight
data structure with expectation information, so each weight records a
probability and a vector counting the parameters that contributed to that
probability.

Eisner proceeds to define the V-expectation semi-ring (Z≥0XV, ò, fl, *)
as follows:

(p1, v1)‡(p2, v2) ”def (p1p2, p1v2+v1p2)
(p1, v1)‡(p2, v2) ”def (p1+p2, v1+v2)
if p* defined, (p, v)* ”def (p*, p*vp*)

He elaborates:
If an arc has probability p and value p, we give it the weight (p, pv) so
that our invariant (see above) holds if [the pathset] # consists of a single
length-0 or length-1 path. The above definitions are designed to preserve
our invariant as we build up larger paths and pathsets. fl lets us concatenate
(e.g.) simple paths p1, p2 to get a longer path p with P(p)=(p1)P(p2) and
val(p)=val(p1)+val(p2). The definition of fl guarantees [the invariant]
that path p’s weight will be (P(p), P(p)·val(p)). ò lets us take the union
of two disjoint pathsets, and * computes infinite unions.

Now that the expectation semi-ring has been explained, we are in position
to consider its application to maxent HG grammars. As stated in Hayes &
Wilson (2008: 389):

the properties of a very large set of strings can be computed by representing
the set as a finite state machine. We construct our machines by first
representing each constraint as a weighted finite state acceptor. Using
intersection …, we then combine the constraints into a single machine
that embodies the full grammar … Each path through this machine
corresponds to a phonological representation together with its vector of
constraint violations. We then obtain the E[Ci] values by summing over
all paths through the machine …

Theorem 3 is concerned with whether the FST associated with a maxent
phonotactic grammar has well-defined expectations, or in other words,
whether it has a finite partition function. It does this by explicitly constructing
a matrix which sums over the well-formedness values of every path
through the FST. In order to understand this, it is first necessary to
understand how matrix multiplication can represent accumulation over
paths through a matrix, and how the principal eigenvalue reflects important
aspects of the limit behaviour.

Technically, a directed graph G consists of some nodes (indexed 1 to n),
and directed edges which point from a node j to some node i. The adjacency
matrix (Aij) associated with G is an nXn matrix in which:

Aij=
1 there is an edge from j to i
0 otherwise

Clearly (A1)ij indicates the number of paths of length 1 from node j to node
i. It turns out that something much more general is true: (Am)ij indicates
the number of paths of length m from node j to node i. To see this, consider
the (i, j) entry of Am+1. Since Am+1=Am·A, (Am+1)ij must be the dot product
of the ith row of Am and the jth column of A: (Am+1)ij=%„(Am)ik·Akj.
The value (Am)ik indicates the number of paths of length exactly m from
k to i, and Akj indicates the number of paths of length exactly 1 from j to
k. Thus, (Am)ik·Akj indicates the number of paths of length m+1 that begin
at j and end at i, passing through k as the first step. Since every path from
j to i must pass through some first step, the total number of paths of length
m+1 is given by their sum across k. Therefore, (Am+1)ij indicates the total
number of paths of length m+1 from node j to node i. In this case, matrix
multiplication represents the ‘accumulation’ of the number of paths. The
principal eigenvalue represents the (limit of the) ratio by which the number
of paths grows as the path length is increased. In fully connected graphs,
this value will be n (the number of nodes); in acyclic graphs (where it is not
possible to return to any state i once it has been visited), the principal
eigenvalue of the adjacency matrix is 0.

Theorem 3: Let (Pij) be the penalty matrix for a maxent phonotactic
grammar G=(S+, C⋲, wƒ) and its associated FST G¢=(S, Q, q0, F, E, r). G
has a finite partition function if and only if the principal eigenvalue of P
has a magnitude of 1 or less.

Proof: The proof goes in two steps. The first is to show that every accepted
string corresponds to a path beginning at q1 and being ‘absorbed’ in qn+1.
The second is to show that (Pm)ij indicates the well-formedness value of all
paths of length exactly m that begin at state j and end at state i (so that the
well-formedness of all paths will ‘accumulate’ in qn+1). It follows from this
that Z=limm√¥(Pm)(n+1)(n+1), which is finite if and only if the principal
eigenvalue has magnitude 1 or less.

Step 1: The definition of FST gives that every path begins in the start
state q1, and ends in one of a set of final states qjŒF. Then, the requirement
that P(n+1)j=dij amounts to adding a cost-free transition to the extra state
n+1, but only from pre-existing finals. The requirement that P(n+1)(n+1)=1
means that every string path which enters this state stays there without
penalty. (The cost-free self-link is necessary to preserve the well-formedness
so that it can be counted in the limit, rather than allowing it to vanish after
the path is accepted.) Since every string that is accepted by the FST must
begin at the start state and end at a final state, every terminating path of
length m®1 through the FST is counted by the matrix entry (Pm)(n+1)1
(and all subsequent values of m).

Step 2: Suppose that the violation vector e√ik is incurred by traversing a
single path from qk to qi, and e√kj is incurred by traversing a single path from
qj to qk. Then the well-formedness value associated with the k£i arc is
F(w ƒ·e√ik) = ewƒ·e√ik, and the well-formedness value associated with the j to k
arc is F(wƒ·e√kj)=ewƒ·e√kj. Their product is F(w ƒ·e√ik)·F(w ƒ·e√kj) = ew ƒ·e√ik·ewƒ·e√kj =
ewƒ·e√ik+wƒ·e√kj = ewƒ·(e√ik+e√kj) = F(wƒ·(e√ik+e√kj)). In other words, the penalty is the
same whether the violations are added up and assessed all at once, or assessed
one by one. This is the same kind of ‘invariant’ as Eisner (2002) refers to.
Now, it is already true by construction that (P1)i j represents the penalty
to a string incurred by transitioning from state j to state i in exactly 1 step.
Now suppose that (Pm)ij represents the penalty incurred by transitioning
from state j to state i in exactly m steps. Then (Pm+1)ij=%„(Pm)ik·(Pkj).
Then the well-formedness of all paths of exactly length m+1 is decomposed
just as with the adjacency matrix counting paths above.

It follows from these that the value (Pm)(n+1)1 represents the sum of the
well-formedness values of all accepted strings of length m®1 or less. Since
the partition function is defined as the sum of the well-formedness values
of all terminating strings, it follows that Z=limm√¥(Pm+1)(n+1)1. Since all
of the well-formedness must eventually accumulate in this cell for finite
strings, it follows that Z is finite if and only if the principal eigenvalue of
P has magnitude less than 1.

Pij=

F(w ƒ·c√i j) there is an edge from qj to qi
1 i=n+1 and qjŒF, i.e. j is final
1 i=n+1 and j=n+1
0 otherwise

The second and third rows of this definition are equivalent to adding a final
final state qn+1 and requiring all final states to have a cost-free transition to
the final final state, so that all well-formedness will accumulate in qn+1.

Robert Daland
University of California, Los Angeles

Phonology 25.2: Artwork 1 of

Dep(C)
Max

Dep(V)
Dep(C)

Dep(V)Max

Supplementary materials 32 Robert Daland 4 Robert Daland
Phonology 32 (2015). Supplementary materials

Supplementary materials 5 6 Robert Daland Supplementary materials 7

Long words in maximum entropy
phonotactic grammars

8 Robert Daland 10 Robert DalandSupplementary materials 9 Supplementary materials 11 12 Robert Daland

These supplementary materials introduce three theorems which formalise
the central contributions of this paper. The general purpose of the theorems
is discussed in the paper for the lay linguist. This introduction briefly
describes the theorems for more mathematically inclined readers.

In linguistic terms, Theorem 1 demonstrates that every phonotactic
grammar can be represented by a score function mapping strings to the
non-positive integers. Here, to be ‘represented’ has the technical meaning
that if the grammar distinguishes string x as strictly less well-formed than
x, then x is mapped to a smaller (more negative) integer (whereas if they
are not di‰erent in well-formedness, they are mapped to the same integer).
The proof critically relies on the property that there cannot be an infinite
sequence of strings in which well-formedness increases. The proof uses
the notions of equivalence relation and their corresponding equivalence
classes, which may be unfamiliar to many linguists; otherwise, it largely
consists of showing that various ordering properties are preserved by
relevant mappings.

Theorem 2 gives sufficient conditions for a maxent phonotactic grammar
to have a finite partition function. This in turn means that it assigns a well-
defined probability distribution over all possible strings. (If the partition
function is not finite, string probabilities are undefined.) The proof draws
on the theory of geometric series, the laws of exponentiation/logarithms
and basic facts about cardinality/counting, but should be accessible to most
mathematically inclined linguists.

The final background material is Eisner’s (2002) notion of an expectation
semi-ring.

In natural-language processing applications – where FSTs are most
widely used – it is typical to annotate arcs with weights, expressed in either
the probability or log-probability domain. For example, the CV grammar
in Figure 3 could be expressed as a probabilistic FST by assigning the
symbol 0 a pseudo-probability of 1, while max, dpv, dpc, ons and noc would
be assigned pseudo-probabilities less than 1. Pseudo-probabilities would
then be normalised by requiring that the probability of leaving a non-final
state must sum to 1. The probability of a path is defined as the product of
the probabilities of traversing all the arcs in the path, and the probability
of an input–output pair is the sum over the probabilities of all distinct paths
that generate the pair.

1 Theorem 1

While Theorem 2 gives su!cient conditions for a finite partition function,
Theorem 3 gives necessary conditions. The starting point is previous
research from formal language theory demonstrating how constraint-based
mappings that instantiate regular relations can be represented by (weighted)
finite-state automata. This means that maxent HG grammars can be given
a convenient graphical representation. Next, the proof draws on the notion
of expectation semi-ring, formalised in Eisner (2002), which associates a
probability and a violation vector with each node. Finally, the paper draws
on the tight coupling between weighted graphs and matrices to derive a
penalty matrix P, where the entry Pij represents the change in well-
formedness incurred by transitioning from node j to node i of the finite-
state automaton, expres sed as a multiplicative factor. If the princi pal
eigenvalue of this matrix has a magnitude greater than 1, then the partition
function is not finite.

Definition: A relation ı on a set X is a prewellordering if and only if
ı is total

– Ax, yŒX, x ı y or y ı x
– ‘every pair of strings is comparable’

ı is transitive
– Ax, zŒX, x ı y and y ı z implies x ı z
– e.g. if [lb] is worse then [bn], and [bn] is worse than [bl], then [lb]

is worse than [bl]
X is wellordered by ı

– ASàX, S≠.£EsmaxŒS˜AsŒS, s ı smax
– ‘every non-empty subset of X has a maximal element’
– in other words, there cannot be an infinite sequence of strings that

increase in well-formedness (though an infinite decreasing sequence
is allowed)

(Note that this inverts the normal direction for wellordering; it is more
typical to require a minimal element, but the formulations are completely
analogous.)

Definition: A score function f for a set X is a map from elements of X
to a totally ordered space (K, <K). A score function f represents the prewell-
ordering ı on X if

Ax, yŒX, x ı y and y ı x implies f(x)=f(y)
– ‘equally well-formed strings are assigned equal scores’

Ax, yŒX, x ¯ y implies f(x) <K f(y)
– if string x is strictly less well-formed than y, x is assigned a strictly

lower score than y

Another example in which the principal eigenvalue reflects ‘accumulation’
or ‘flow’ of some value across a graph is in Markov chains. A Markov chain
consists of an initial distribution over states and a transition matrix (Tij),
in which the value Tij indicates the probability of visiting state i next, given
that the current state is j. Since probabilities must be non-negative and
sum to 1, this enforces the condition that the sum over each column of T
must be 1. Very similarly to the adjacency matrix, (Tm)ij indicates the
probability of ending in state i after m steps, given that one started in state
j. The principal eigenvalue of the Markov chain always has the value 1,
indicating that there is a constant ‘amount’ of probability which simply
flows across the graph. Markov chains are very well-studied; for a more
thorough treatment the reader is directed to Grimstead & Snell (1997:
ch. 11).

In the present case, we wish to determine whether a given maxent HG
grammar has a finite partition function. The first step is to translate the
grammar into a weighted FST with a violation semi-ring, as in the work
of Riggle and Eisner. The next step it to use matrix multiplication to
characterise the ‘accumulation’ of well-formedness values of paths through
the FST, using a penalty matrix. It follows that the partition function is
finite if and only if the principal eigenvalue of this matrix has a magnitude
of 1 or less.

Definition: Let G=(S+, C⋲, w ƒ) be a maxent phonotactic grammar, and
G¢=(S, Q, q0, F, E, r) be the associated weighted FST over V, where

– S is the output alphabet
– Q is the set of states
– q1ŒQ is the unique start state
– FàQ is the set of final states
– Eà(QXSXVXQ) is a finite set of transitions, each signifying the

traversal from a state qj to a state qi after encountering an output
symbol s, and having a violation vector c√i j indicating the constraints
that are violated in this transition

Let the states in G¢ be indexed {qi}‰, and the constraints in G be indexed
{Ck}Á. Then define an (n+1)X(n+1) penalty matrix P as follows:

Theorem 1: Let S be an alphabet, and S+ the set of finite strings over S.
Every prewellordering ıßΩ over S+ can be represented by a score function
f : S*£(Ä—, <) where Ä— is the non-positive integers and < is the normal
order on integers.

Proof: Given the prewellordering ıßΩ, define the relation ~ by x ~ y if
and only if x ıßΩ y and y ıßΩ x (the ‘equality relation’). Symmetry follows
from the definition of ~, while transitivity and reflexivity follow from the
transitivity and reflexivity of prewellorders; thus ~ is an equivalence relation.
Let K denote the set of equivalence classes of ~, and f~ the map from
elements of X (strings) to their equivalence class, f~(x)=[x]. Because S+
is countable, K must be countable. Claim: ıßΩ induces a total strict well-
ordering on K. Define [x] <K [y] if and only if EwŒ[x], zŒ[y] such that
w ıßΩ z but [x]≠[y]. Totality, transitivity, strictness and antisymmetry
follow, so <K is a strict total order. Wellordering follows from the well-
ordering of ıßΩ, so (K, <K) is totally strictly wellordered.

Now the task is to construct a map from (K, <K) to the non-positive
integers. Proceed by induction. Base case: By wellordering, there must
exist a value k0ŒK that is maximal according to <K. Then define f(k0)=0.
Induction step: Now suppose there is a sequence of values {ki}‰ such that
f(ki)=—i Ai, (0{i{n). Let Kn+1=K \ {ki}‰. Since Kn+1 is a subset of K,
by wellordering it has a maximal element kn+1. Then define f(kn+1)=…(n+1).
This completes the induction step.

Since K is countable, f must be well-defined for every kŒK, and
f : K£Ä—. Evidently, kx <K ky implies f(kx) < f(ky) Akx, kyŒK by con-
struction. It is also easy to show that f(kx) < f(ky) implies kx <K ky for all
kx, kyŒK. Observe that f(kx) < f(ky) implies that Kx is a proper subset of
Ky. Since the maximal element ky of Ky was removed to construct Kx, it
follows that k <K ky AkŒKx. Since kxŒKx, it follows that kx <K ky. In
short, f preserves all and only the order di‰erences of <K.

Two maps have been defined: f~ : S+£K maps every string to a well-
formedness equivalence class, and f : K£Ä— maps each well-formedness
equivalence class to a non-positive integer score. Then their composition
f(x)=f(f~(x)) maps every string to a non-positive score, f~ : S+£Ä— with
the following properties:

Ax, yŒS+, x ıßΩ y and y ıßΩ x›f(x)=f(y)
Ax, yŒS+, x ¯ßΩ y›f(x) < f(y)

In other words, f represents the prewellordering ıßΩ using the non-negative
integers.

2 Theorem 2
Definition: A harmonic grammar is a tuple G=(X, Y, R, C ⋲, wƒ) where

– X is a set of lexical representations
– Y is a set of surface representations
– RàXXY indicates the set of possible surface representations that a

given lexical representation can map to, called the candidates: candi-
dates(x)={yŒY|xRy}

– C ⋲ is a finite set of constraint functions C⋲={Ck}Á, where each
constraint function assigns a non-negative integer violation count to
lexical-surface pairs, Ak, Ck : R£Ä

– wƒ is a set of real-valued, non-positive weights wƒ={wk}Á, associated
with the constraints

The harmony of a lexical–surface pair HCƒ,wƒ
(x, y) is defined as the weighted

sum of the constraint violations, H(x, y)=%Á wk·Ck(x, y). Given some
xŒX, surface representation yŒcandidates(x) is a winner if and only if
E/ zŒcandidates(x), such that H(x, z) > H(x, y), in other words if y has the
greatest harmony value among the candidates of x. We write G(x)=y in
case y is a unique winner for x. Thus G denotes a mapping from X to Y
just in case every xŒX has a unique winner G(x)ŒY.

Definition: A maxent HG grammar is a harmonic grammar G=(X, Y, R,
C ⋲, wƒ) that is augmented with a well-formedness function F : R£Z+

defined by F(x, y)=eH(x,y) (the range of the exponentiation is the non-
negative reals Z+). The partition function associated with a lexical
representation x, Z : X£Z+ U{≥} is defined as the sum of the well-
formedness values of all of x’s candidates, Z(x)=%xRy F(x, y). In case the
partition function is finite for a given x, G defines the conditional probability
distribution Pr(y|x)=F(x, y)/Z(x).

Definition: A maxent phonotactic grammar over S+ is a maxent HG
grammar G=(X, Y, R, C ⋲, wƒ) in which X is a singleton set {w}, Y=S+
where S+ is the set of finite strings over some alphabet S, and wRy AyŒS+.
Since X and R are trivial, it is convenient to omit them from the notation:
G=(S+, C⋲, wƒ), H(y)=Á wk·Ck(y), etc.

Definiti on: Define the *Struct const raint *Struct : S+£Ä by
*Struct(s)=k if and only if sŒSk. In other words, the number of *Struct
violations that a string s incurs is simply the length of s.

Theorem 2: Let G=(S+, C⋲, wƒ) be a maxent phonotactic grammar. If the
constraint set C ⋲ includes a *Struct constraint (i.e. Ei <k such that
Ci=*Struct) and w*Struct < —ln|S|, then the partition function Z of G is
finite.

Proof: The proof goes in two steps. The first step is to consider a maxent
phonotactic grammar G¢ over S+ whose constraint set includes only *Struct,
and prove that w*Struct < —ln|S| implies that Z¢ is finite. The second step
is to show that F¢(s) is an upper bound for F(s) for all sŒS*, so Z¢ is an
upper bound for Z. Finitude of Z follows from finitude of Z¢.

Part 1: Given G=(S+, C⋲, w ƒ), define the maxent phonotactic grammar
G¢ over S+ to have the sole constraint C⋲={*Struct} with weight w; the
corresponding harmony and well-formedness functions are denoted H¢ and
F¢. We will abuse notation by defining F¢(X)=%SÊX F¢(s), i.e. extending
the definition of the well-formedness function so that it measures sets of
strings (rather than merely evaluating individual strings). The goal is to
compute Z¢ by partitioning S+ by the length of its strings. Let us begin by
considering the value F¢(Sk) for an arbitrary k. By definition, sŒSk implies
*Struct(s) = k, so that H¢(s) = w·*Struct(s) = w·k and F¢(s) = eH¢(ß) =
ew·k = (ew)k. The number of strings in Sk is |S|k, and each such string s has
a constant well-formedness value, F¢(s)=(ew)k. Then the total F¢(Sk) can
be expressed as the product, F¢(Sk)=|Sk|·(ew)k=(|S|·ew)k. Now it is possible
to express Z¢ as the sum over the partition by length (S+=S0US1US2U…):

F¢(S+)=%ÂF¢(Sk)
=%Â(|S|·ew)k

This latter is instantly recognisable as an infinite series with common ratio
r=|S|·ew. The theory of infinite series indicates that this value is finite
(and well-defined) if and only if |r| < 1. Since |S| and ew are positive, this
reduces to the inequality |S|·ew < 1, or ew < |S|—1. The natural logarithm
is an increasing function, which can be applied to both sides to preserve
the inequality, yielding w < —ln|S|.

Part 2: We begin by showing that AsŒS*, H(s) ≤ H¢(s). Without loss
of generality, reassign indices so that H(s)=w·*Struct(s) + %Ê· Ck(s)
and recall that H¢(s)=w·*Struct(s). Then H (s)®H¢(s)=%Ê wk·Ck(s)
for all s. Now since wk ≤ 0 Ak and Ck ≥ 0 Ak, it follows that wk·Ck(s) ≤ 0
Ak, and therefore the sum must be non-positive as well, i.e. H(s)®H¢(s)
≤ 0 AsŒS*. But this means that H¢ (s) is an upper bound for H(s) for every
s. And since exponentiation is an increasing function, this implies that F¢(s)
is an upper bound for F(s) for all s. And since Z¢ is the sum of F¢ values,
while Z is the sum of F values, this means that Z¢ is an upper bound for Z.
Thus, if Z¢ is finite, Z must be as well. This completes the proof.

3 Theorem 3
Riggle (2009) gives a technical but well-exemplified presentation of finite-
state Optimality Theory. The essence of this approach is to model constraints
as (possibly weighted) finite-state transducers. In order to understand
Theorem 3, it is necessary to understand how maxent phonotactic grammars
are implemented as finite-state transducers, and in order to understand
this, it is first necessary to understand a little about finite-state transducers.

Intuitively, a finite-state transducer (FST) is a computational device
which accepts one ‘input’ string and converts it to another ‘output’ string.
Finite-state machines are conventionally represented as directed graphs.
The nodes of the graph represent ‘states’ of the machine. Arcs represent
the transition from one state to another; normally, this is associated with
reading one symbol from the input string, and writing one symbol to the
output string. The particular mapping that an arc represents is indicated
with a label on the arc; the label x:y indicates that the arc transduces input
symbol x into output symbol y. The ‘start’ and ‘final’ nodes of the graph
are graphically indicated by one or more conventions. Here I use the
convention that the start state is indicated by an arrow from nowhere
pointing to the start node, while the end state is indicated by a double circle.
Figure 1 gives a finite-state transducer that implements an intervocalic
voicing rule. The FST in Figure 1 only accepts the input sequence /apa/,
and if it is presented with that input sequence, it yields the output sequence
[aba]. Traversing a single arc in the graph represents reading/writing one
symbol, so that the nodes/states of the graph represent the amount of the
input string that has been read. It is possible for there to be multiple arcs
emanating from or leading to a state. For example, the FST in Fig. 1 could
be augmented with an additional arc ‘b:b’ pointing from node 2 to node 3;
the modified FST would then implement two mappings, /apa/£[aba] and
/aba/£[aba].

Riggle (2009) uses simple weighted finite-state transducers to represent
individual constraints. A grammar can then be represented using an operation
known as ‘intersection’. Figure 2, which is slightly adapted from Riggle
(2009: Fig. 1), illustrates three faithfulness constraints and their intersection.
Each transition x:y is followed by a value indicating the amount or type of
violation that is incurred. For example, when an input symbol maps to
itself – symbolised by X:X - no faithfulness violation is incurred, and this
is symbolised by 0. The symbol e is a special symbol indicating the empty
string. Thus when an empty input is mapped to a V, the grammar should
record a Dep(V) violation in some way. Similarly, when a non-empty input
symbol is mapped to an empty output, the input symbol has been deleted,
and the grammar should record a Max violation. The intersection of the
three simple FSTs in Fig. 2 is represented in the rightmost FST. In that
FST, any alteration to the input is penalised except for transducing an
empty input into a syllable boundary (the . symbol).

Figure 2
Simple weighted FSTs representing Max, Dep(V)

and Dep(C), and their intersection

e:./0

X:X/0

X:e/max

e:V/dpv

e:C/dpc

e:./0

X:X/0

X:e/0

e:V/0

e:C/dpc

e:./0

X:X/0

X:e/0

e:C/0

e:V/dpv

e:./0

X:X/0

X:e/max

e:X/0

Riggle further illustrates by generating the FST for a full CV grammar,
containing the hard constraint ((C)V(C).)*, as well as the violable constraints
Onset (ons) and NoCoda (noc), and the three faithfulness constraints from
before. The full CV grammar, slightly adapted from Riggle (2009: Fig. 3),
is reproduced in Fig. 3. The reader is encouraged to consult Riggle (2009)
for additional exposition.

Figure 3
Syllable grammar. State A represents the start of a syllable. State C

represents the moment after the nucleus has been written to the output.
State B represents the moment after an onset consonant has been written to
the output, whether it was in the input or epenthesised. State D represents

the moment after a postvocalic consonant has been read from the input,
whether it was written to the output or deleted. Only state A is a final state,

and this is why the links from C and D to A contain the end-of-syllable
symbol .. Thus, an onsetless syllable [V.] is generated by the path

A£C£A, while a [CV.] syllable is generated by the path A£B£C£A.

e:./noc

X:e/max

e:C/dpc

C:C/0

X:e/max
e:V/{ons, dpv}

V:V/ons

e:./0X:e/max

X:e/max

e:C/dpc C:C/0

V:V/0
e:V/dpv

In fact, Eisner points out that most useful formulations for weighted
FSTs have a common, abstract character: the weights of paths obey the
axioms of a closed semi-ring. A closed semi-ring (K, ò, fl, *) is a mathe-
matical structure which is a slight generalisation of the natural numbers:
it consists of a set K with an ‘addition’ operation ò (associative, commutative,
identity element 0), a ‘multiplication’ operation (associative, distributes
over ò from the right and the left, identity element 1), and ‘closure’ for
infinite loops (k+”def ò‚ ki). Eisner (2002) states: ‘ordinary probabilities
fall in the semi-ring (Z≥0, +, ú, *)’.

In Riggle’s (2009) formulation, the symbols 0, max, dpv, dpc, ons and noc
are treated as unit vectors, so that the violation vector for a path may be
accumulated as the sum the unit violation vectors encountered along the
path. (Technically, Riggle construes violations as belonging to a multiset
with a semi-ring structure, but for the present purposes these are the
equivalent.) Given that multiple paths may generate the same input–output
pair, but with possibly di‰erent violation vectors, one should also define
how to calculate the violation vector for an input–output pair. From a total
ranking over constraints, Riggle defines this as the violation profile of the
path which has the minimum number of violations over the highest-ranked
constraint on which there is a di‰erence. Riggle refers to this formulation
as a ‘violation semi-ring’, and points to its similarities with the tropical
semi-ring over the real numbers.

Eisner’s expectation semi-ring combines both probabilities and violation
vectors. In Eisner’s own words:

Abstractly, let us say that each path p has not only a probability P(p)Œ[0,
1] but also a value val(p) in a vector space V, which counts the arcs,
features or coin flips encountered along path p. The value of a path is the
sum of the values assigned to its arcs... The idea is to augment the weight
data structure with expectation information, so each weight records a
probability and a vector counting the parameters that contributed to that
probability.

Eisner proceeds to define the V-expectation semi-ring (Z≥0XV, ò, fl, *)
as follows:

(p1, v1)‡(p2, v2) ”def (p1p2, p1v2+v1p2)
(p1, v1)‡(p2, v2) ”def (p1+p2, v1+v2)
if p* defined, (p, v)* ”def (p*, p*vp*)

He elaborates:
If an arc has probability p and value p, we give it the weight (p, pv) so
that our invariant (see above) holds if [the pathset] # consists of a single
length-0 or length-1 path. The above definitions are designed to preserve
our invariant as we build up larger paths and pathsets. fl lets us concatenate
(e.g.) simple paths p1, p2 to get a longer path p with P(p)=(p1)P(p2) and
val(p)=val(p1)+val(p2). The definition of fl guarantees [the invariant]
that path p’s weight will be (P(p), P(p)·val(p)). ò lets us take the union
of two disjoint pathsets, and * computes infinite unions.

Now that the expectation semi-ring has been explained, we are in position
to consider its application to maxent HG grammars. As stated in Hayes &
Wilson (2008: 389):

the properties of a very large set of strings can be computed by representing
the set as a finite state machine. We construct our machines by first
representing each constraint as a weighted finite state acceptor. Using
intersection …, we then combine the constraints into a single machine
that embodies the full grammar … Each path through this machine
corresponds to a phonological representation together with its vector of
constraint violations. We then obtain the E[Ci] values by summing over
all paths through the machine …

Theorem 3 is concerned with whether the FST associated with a maxent
phonotactic grammar has well-defined expectations, or in other words,
whether it has a finite partition function. It does this by explicitly constructing
a matrix which sums over the well-formedness values of every path
through the FST. In order to understand this, it is first necessary to
understand how matrix multiplication can represent accumulation over
paths through a matrix, and how the principal eigenvalue reflects important
aspects of the limit behaviour.

Technically, a directed graph G consists of some nodes (indexed 1 to n),
and directed edges which point from a node j to some node i. The adjacency
matrix (Aij) associated with G is an nXn matrix in which:

Aij=
1 there is an edge from j to i
0 otherwise

Clearly (A1)ij indicates the number of paths of length 1 from node j to node
i. It turns out that something much more general is true: (Am)ij indicates
the number of paths of length m from node j to node i. To see this, consider
the (i, j) entry of Am+1. Since Am+1=Am·A, (Am+1)ij must be the dot product
of the ith row of Am and the jth column of A: (Am+1)ij=%„(Am)ik·Akj.
The value (Am)ik indicates the number of paths of length exactly m from
k to i, and Akj indicates the number of paths of length exactly 1 from j to
k. Thus, (Am)ik·Akj indicates the number of paths of length m+1 that begin
at j and end at i, passing through k as the first step. Since every path from
j to i must pass through some first step, the total number of paths of length
m+1 is given by their sum across k. Therefore, (Am+1)ij indicates the total
number of paths of length m+1 from node j to node i. In this case, matrix
multiplication represents the ‘accumulation’ of the number of paths. The
principal eigenvalue represents the (limit of the) ratio by which the number
of paths grows as the path length is increased. In fully connected graphs,
this value will be n (the number of nodes); in acyclic graphs (where it is not
possible to return to any state i once it has been visited), the principal
eigenvalue of the adjacency matrix is 0.

Theorem 3: Let (Pij) be the penalty matrix for a maxent phonotactic
grammar G=(S+, C⋲, wƒ) and its associated FST G¢=(S, Q, q0, F, E, r). G
has a finite partition function if and only if the principal eigenvalue of P
has a magnitude of 1 or less.

Proof: The proof goes in two steps. The first is to show that every accepted
string corresponds to a path beginning at q1 and being ‘absorbed’ in qn+1.
The second is to show that (Pm)ij indicates the well-formedness value of all
paths of length exactly m that begin at state j and end at state i (so that the
well-formedness of all paths will ‘accumulate’ in qn+1). It follows from this
that Z=limm√¥(Pm)(n+1)(n+1), which is finite if and only if the principal
eigenvalue has magnitude 1 or less.

Step 1: The definition of FST gives that every path begins in the start
state q1, and ends in one of a set of final states qjŒF. Then, the requirement
that P(n+1)j=dij amounts to adding a cost-free transition to the extra state
n+1, but only from pre-existing finals. The requirement that P(n+1)(n+1)=1
means that every string path which enters this state stays there without
penalty. (The cost-free self-link is necessary to preserve the well-formedness
so that it can be counted in the limit, rather than allowing it to vanish after
the path is accepted.) Since every string that is accepted by the FST must
begin at the start state and end at a final state, every terminating path of
length m®1 through the FST is counted by the matrix entry (Pm)(n+1)1
(and all subsequent values of m).

Step 2: Suppose that the violation vector e√ik is incurred by traversing a
single path from qk to qi, and e√kj is incurred by traversing a single path from
qj to qk. Then the well-formedness value associated with the k£i arc is
F(w ƒ·e √ik) = ewƒ·e√ik, and the well-formedness value associated with the j to k
arc is F(wƒ·e√kj)=ewƒ·e√kj. Their product is F(wƒ·e√ik)·F(w ƒ·e√kj) = ew ƒ·e√ik·ew ƒ·e√kj =
ewƒ·e √ik+wƒ·e√kj = ewƒ·(e√ik+e√kj) = F(wƒ·(e√ik+e√kj)). In other words, the penalty is the
same whether the violations are added up and assessed all at once, or assessed
one by one. This is the same kind of ‘invariant’ as Eisner (2002) refers to.
Now, it is already true by construction that (P1)i j represents the penalty
to a string incurred by transitioning from state j to state i in exactly 1 step.
Now suppose that (Pm)ij represents the penalty incurred by transitioning
from state j to state i in exactly m steps. Then (Pm+1)ij=%„(Pm)ik·(Pkj).
Then the well-formedness of all paths of exactly length m+1 is decomposed
just as with the adjacency matrix counting paths above.

It follows from these that the value (Pm)(n+1)1 represents the sum of the
well-formedness values of all accepted strings of length m®1 or less. Since
the partition function is defined as the sum of the well-formedness values
of all terminating strings, it follows that Z=limm√¥(Pm+1)(n+1)1. Since all
of the well-formedness must eventually accumulate in this cell for finite
strings, it follows that Z is finite if and only if the principal eigenvalue of
P has magnitude less than 1.

Pij=

F(w ƒ·c√i j) there is an edge from qj to qi
1 i=n+1 and qjŒF, i.e. j is final
1 i=n+1 and j=n+1
0 otherwise

The second and third rows of this definition are equivalent to adding a final
final state qn+1 and requiring all final states to have a cost-free transition to
the final final state, so that all well-formedness will accumulate in qn+1.

Robert Daland
University of California, Los Angeles

Phonology 25.2: Artwork 1 of

Dep(C)
Max

Dep(V)
Dep(C)

Dep(V)Max

Supplementary materials 32 Robert Daland 4 Robert Daland
Phonology 32 (2015). Supplementary materials

Supplementary materials 5 6 Robert Daland Supplementary materials 7

Long words in maximum entropy
phonotactic grammars

8 Robert Daland 10 Robert DalandSupplementary materials 9 Supplementary materials 11 12 Robert Daland

These supplementary materials introduce three theorems which formalise
the central contributions of this paper. The general purpose of the theorems
is discussed in the paper for the lay linguist. This introduction briefly
describes the theorems for more mathematically inclined readers.

In linguistic terms, Theorem 1 demonstrates that every phonotactic
grammar can be represented by a score function mapping strings to the
non-positive integers. Here, to be ‘represented’ has the technical meaning
that if the grammar distinguishes string x as strictly less well-formed than
x, then x is mapped to a smaller (more negative) integer (whereas if they
are not di‰erent in well-formedness, they are mapped to the same integer).
The proof critically relies on the property that there cannot be an infinite
sequence of strings in which well-formedness increases. The proof uses
the notions of equivalence relation and their corresponding equivalence
classes, which may be unfamiliar to many linguists; otherwise, it largely
consists of showing that various ordering properties are preserved by
relevant mappings.

Theorem 2 gives sufficient conditions for a maxent phonotactic grammar
to have a finite partition function. This in turn means that it assigns a well-
defined probability distribution over all possible strings. (If the partition
function is not finite, string probabilities are undefined.) The proof draws
on the theory of geometric series, the laws of exponentiation/logarithms
and basic facts about cardinality/counting, but should be accessible to most
mathematically inclined linguists.

The final background material is Eisner’s (2002) notion of an expectation
semi-ring.

In natural-language processing applications – where FSTs are most
widely used – it is typical to annotate arcs with weights, expressed in either
the probability or log-probability domain. For example, the CV grammar
in Figure 3 could be expressed as a probabilistic FST by assigning the
symbol 0 a pseudo-probability of 1, while max, dpv, dpc, ons and noc would
be assigned pseudo-probabilities less than 1. Pseudo-probabilities would
then be normalised by requiring that the probability of leaving a non-final
state must sum to 1. The probability of a path is defined as the product of
the probabilities of traversing all the arcs in the path, and the probability
of an input–output pair is the sum over the probabilities of all distinct paths
that generate the pair.

1 Theorem 1

While Theorem 2 gives su!cient conditions for a finite partition function,
Theorem 3 gives necessary conditions. The starting point is previous
research from formal language theory demonstrating how constraint-based
mappings that instantiate regular relations can be represented by (weighted)
finite-state automata. This means that maxent HG grammars can be given
a convenient graphical representation. Next, the proof draws on the notion
of expectation semi-ring, formalised in Eisner (2002), which associates a
probability and a violation vector with each node. Finally, the paper draws
on the tight coupling between weighted graphs and matrices to derive a
penalty matrix P, where the entry Pij represents the change in well-
formedness incurred by transitioning from node j to node i of the finite-
state automaton, expres sed as a multiplicative factor. If the princi pal
eigenvalue of this matrix has a magnitude greater than 1, then the partition
function is not finite.

Definition: A relation ı on a set X is a prewellordering if and only if
ı is total

– Ax, yŒX, x ı y or y ı x
– ‘every pair of strings is comparable’

ı is transitive
– Ax, zŒX, x ı y and y ı z implies x ı z
– e.g. if [lb] is worse then [bn], and [bn] is worse than [bl], then [lb]

is worse than [bl]
X is wellordered by ı

– ASàX, S≠.£EsmaxŒS˜AsŒS, s ı smax
– ‘every non-empty subset of X has a maximal element’
– in other words, there cannot be an infinite sequence of strings that

increase in well-formedness (though an infinite decreasing sequence
is allowed)

(Note that this inverts the normal direction for wellordering; it is more
typical to require a minimal element, but the formulations are completely
analogous.)

Definition: A score function f for a set X is a map from elements of X
to a totally ordered space (K, <K). A score function f represents the prewell-
ordering ı on X if

Ax, yŒX, x ı y and y ı x implies f(x)=f(y)
– ‘equally well-formed strings are assigned equal scores’

Ax, yŒX, x ¯ y implies f(x) <K f(y)
– if string x is strictly less well-formed than y, x is assigned a strictly

lower score than y

Another example in which the principal eigenvalue reflects ‘accumulation’
or ‘flow’ of some value across a graph is in Markov chains. A Markov chain
consists of an initial distribution over states and a transition matrix (Tij),
in which the value Tij indicates the probability of visiting state i next, given
that the current state is j. Since probabilities must be non-negative and
sum to 1, this enforces the condition that the sum over each column of T
must be 1. Very similarly to the adjacency matrix, (Tm)ij indicates the
probability of ending in state i after m steps, given that one started in state
j. The principal eigenvalue of the Markov chain always has the value 1,
indicating that there is a constant ‘amount’ of probability which simply
flows across the graph. Markov chains are very well-studied; for a more
thorough treatment the reader is directed to Grimstead & Snell (1997:
ch. 11).

In the present case, we wish to determine whether a given maxent HG
grammar has a finite partition function. The first step is to translate the
grammar into a weighted FST with a violation semi-ring, as in the work
of Riggle and Eisner. The next step it to use matrix multiplication to
characterise the ‘accumulation’ of well-formedness values of paths through
the FST, using a penalty matrix. It follows that the partition function is
finite if and only if the principal eigenvalue of this matrix has a magnitude
of 1 or less.

Definition: Let G=(S+, C⋲, w ƒ) be a maxent phonotactic grammar, and
G¢=(S, Q, q0, F, E, r) be the associated weighted FST over V, where

– S is the output alphabet
– Q is the set of states
– q1ŒQ is the unique start state
– FàQ is the set of final states
– Eà(QXSXVXQ) is a finite set of transitions, each signifying the

traversal from a state qj to a state qi after encountering an output
symbol s, and having a violation vector c√i j indicating the constraints
that are violated in this transition

Let the states in G¢ be indexed {qi}‰, and the constraints in G be indexed
{Ck}Á. Then define an (n+1)X(n+1) penalty matrix P as follows:

Theorem 1: Let S be an alphabet, and S+ the set of finite strings over S.
Every prewellordering ıßΩ over S+ can be represented by a score function
f : S*£(Ä—, <) where Ä— is the non-positive integers and < is the normal
order on integers.

Proof: Given the prewellordering ıßΩ, define the relation ~ by x ~ y if
and only if x ıßΩ y and y ıßΩ x (the ‘equality relation’). Symmetry follows
from the definition of ~, while transitivity and reflexivity follow from the
transitivity and reflexivity of prewellorders; thus ~ is an equivalence relation.
Let K denote the set of equivalence classes of ~, and f~ the map from
elements of X (strings) to their equivalence class, f~(x)=[x]. Because S+
is countable, K must be countable. Claim: ıßΩ induces a total strict well-
ordering on K. Define [x] <K [y] if and only if EwŒ[x], zŒ[y] such that
w ıßΩ z but [x]≠[y]. Totality, transitivity, strictness and antisymmetry
follow, so <K is a strict total order. Wellordering follows from the well-
ordering of ıßΩ, so (K, <K) is totally strictly wellordered.

Now the task is to construct a map from (K, <K) to the non-positive
integers. Proceed by induction. Base case: By wellordering, there must
exist a value k0ŒK that is maximal according to <K. Then define f(k0)=0.
Induction step: Now suppose there is a sequence of values {ki}‰ such that
f(ki)=—i Ai, (0{i{n). Let Kn+1=K \ {ki}‰. Since Kn+1 is a subset of K,
by wellordering it has a maximal element kn+1. Then define f(kn+1)=…(n+1).
This completes the induction step.

Since K is countable, f must be well-defined for every kŒK, and
f : K£Ä—. Evidently, kx <K ky implies f(kx) < f(ky) Akx, kyŒK by con-
struction. It is also easy to show that f(kx) < f(ky) implies kx <K ky for all
kx, kyŒK. Observe that f(kx) < f(ky) implies that Kx is a proper subset of
Ky. Since the maximal element ky of Ky was removed to construct Kx, it
follows that k <K ky AkŒKx. Since kxŒKx, it follows that kx <K ky. In
short, f preserves all and only the order di‰erences of <K.

Two maps have been defined: f~ : S+£K maps every string to a well-
formedness equivalence class, and f : K£Ä— maps each well-formedness
equivalence class to a non-positive integer score. Then their composition
f(x)=f(f~(x)) maps every string to a non-positive score, f~ : S+£Ä— with
the following properties:

Ax, yŒS+, x ıßΩ y and y ıßΩ x›f(x)=f(y)
Ax, yŒS+, x ¯ßΩ y›f(x) < f(y)

In other words, f represents the prewellordering ıßΩ using the non-negative
integers.

2 Theorem 2
Definition: A harmonic grammar is a tuple G=(X, Y, R, C ⋲, wƒ) where

– X is a set of lexical representations
– Y is a set of surface representations
– RàXXY indicates the set of possible surface representations that a

given lexical representation can map to, called the candidates: candi-
dates(x)={yŒY|xRy}

– C ⋲ is a finite set of constraint functions C⋲={Ck}Á, where each
constraint function assigns a non-negative integer violation count to
lexical-surface pairs, Ak, Ck : R£Ä

– wƒ is a set of real-valued, non-positive weights wƒ={wk}Á, associated
with the constraints

The harmony of a lexical–surface pair HCƒ,wƒ
(x, y) is defined as the weighted

sum of the constraint violations, H(x, y)=%Á wk·Ck(x, y). Given some
xŒX, surface representation yŒcandidates(x) is a winner if and only if
E/ zŒcandidates(x), such that H(x, z) > H(x, y), in other words if y has the
greatest harmony value among the candidates of x. We write G(x)=y in
case y is a unique winner for x. Thus G denotes a mapping from X to Y
just in case every xŒX has a unique winner G(x)ŒY.

Definition: A maxent HG grammar is a harmonic grammar G=(X, Y, R,
C ⋲, wƒ) that is augmented with a well-formedness function F : R£Z+

defined by F(x, y)=eH(x,y) (the range of the exponentiation is the non-
negative reals Z+). The partition function associated with a lexical
representation x, Z : X£Z+ U{≥} is defined as the sum of the well-
formedness values of all of x’s candidates, Z(x)=%xRy F(x, y). In case the
partition function is finite for a given x, G defines the conditional probability
distribution Pr(y|x)=F(x, y)/Z(x).

Definition: A maxent phonotactic grammar over S+ is a maxent HG
grammar G=(X, Y, R, C ⋲, wƒ) in which X is a singleton set {w}, Y=S+
where S+ is the set of finite strings over some alphabet S, and wRy AyŒS+.
Since X and R are trivial, it is convenient to omit them from the notation:
G=(S+, C⋲, wƒ), H(y)=Á wk·Ck(y), etc.

Definiti on: Define the *Struct const raint *Struct : S+£Ä by
*Struct(s)=k if and only if sŒSk. In other words, the number of *Struct
violations that a string s incurs is simply the length of s.

Theorem 2: Let G=(S+, C ⋲, wƒ) be a maxent phonotactic grammar. If the
const raint set C⋲ includ es a *Struct constrain t (i.e. Ei <k such that
Ci=*Struct) and w*Struct < —ln|S|, then the partition function Z of G is
finite.

Proof: The proof goes in two steps. The first step is to consider a maxent
phonotactic grammar G¢ over S+ whose constraint set includes only *Struct,
and prove that w*Struct < —ln|S| implies that Z¢ is finite. The second step
is to show that F¢(s) is an upper bound for F(s) for all sŒS*, so Z¢ is an
upper bound for Z. Finitude of Z follows from finitude of Z¢.

Part 1: Given G=(S+, C ⋲, w ƒ), define the maxent phonotactic grammar
G¢ over S+ to have the sole constraint C ⋲={*Struct} with weight w; the
corresponding harmony and well-formedness functions are denoted H¢ and
F¢. We will abuse notation by defining F¢(X)=%SÊX F¢(s), i.e. extending
the definition of the well-formedness function so that it measures sets of
strings (rather than merely evaluating individual strings). The goal is to
compute Z¢ by partitioning S+ by the length of its strings. Let us begin by
considering the value F¢(Sk) for an arbitrary k. By definition, sŒSk implies
*Struct(s) = k, so that H¢(s) = w·*Struct(s) = w·k and F¢(s) = eH¢(ß) =
ew·k = (ew)k. The number of strings in Sk is |S|k, and each such string s has
a constant well-formedness value, F¢(s)=(ew)k. Then the total F¢(Sk) can
be expressed as the product, F¢(Sk)=|Sk|·(ew)k=(|S|·ew)k. Now it is possible
to express Z¢ as the sum over the partition by length (S+=S0US1US2U…):

F¢(S+)=%ÂF¢(Sk)
=%Â(|S|·ew)k

This latter is instantly recognisable as an infinite series with common ratio
r=|S|·ew. The theory of infinite series indicates that this value is finite
(and well-defined) if and only if |r| < 1. Since |S| and ew are positive, this
reduces to the inequality |S|·ew < 1, or ew < |S|—1. The natural logarithm
is an increasing function, which can be applied to both sides to preserve
the inequality, yielding w < —ln|S|.

Part 2: We begin by showing that AsŒS*, H(s) ≤ H¢(s). Without loss
of generality, reassign indices so that H(s)=w·*Struct(s) + %Ê· Ck(s)
and recall that H¢(s)=w·*Struct(s). Then H (s)®H¢(s)=%Ê wk·Ck(s)
for all s. Now since wk ≤ 0 Ak and Ck ≥ 0 Ak, it follows that wk·Ck(s) ≤ 0
Ak, and therefore the sum must be non-positive as well, i.e. H(s)®H¢(s)
≤ 0 AsŒS*. But this means that H¢ (s) is an upper bound for H(s) for every
s. And since exponentiation is an increasing function, this implies that F¢(s)
is an upper bound for F(s) for all s. And since Z¢ is the sum of F¢ values,
while Z is the sum of F values, this means that Z¢ is an upper bound for Z.
Thus, if Z¢ is finite, Z must be as well. This completes the proof.

3 Theorem 3
Riggle (2009) gives a technical but well-exemplified presentation of finite-
state Optimality Theory. The essence of this approach is to model constraints
as (possibly weighted) finite-state transducers. In order to understand
Theorem 3, it is necessary to understand how maxent phonotactic grammars
are implemented as finite-state transducers, and in order to understand
this, it is first necessary to understand a little about finite-state transducers.

Intuitively, a finite-state transducer (FST) is a computational device
which accepts one ‘input’ string and converts it to another ‘output’ string.
Finite-state machines are conventionally represented as directed graphs.
The nodes of the graph represent ‘states’ of the machine. Arcs represent
the transition from one state to another; normally, this is associated with
reading one symbol from the input string, and writing one symbol to the
output string. The particular mapping that an arc represents is indicated
with a label on the arc; the label x:y indicates that the arc transduces input
symbol x into output symbol y. The ‘start’ and ‘final’ nodes of the graph
are graphically indicated by one or more conventions. Here I use the
convention that the start state is indicated by an arrow from nowhere
pointing to the start node, while the end state is indicated by a double circle.
Figure 1 gives a finite-state transducer that implements an intervocalic
voicing rule. The FST in Figure 1 only accepts the input sequence /apa/,
and if it is presented with that input sequence, it yields the output sequence
[aba]. Traversing a single arc in the graph represents reading/writing one
symbol, so that the nodes/states of the graph represent the amount of the
input string that has been read. It is possible for there to be multiple arcs
emanating from or leading to a state. For example, the FST in Fig. 1 could
be augmented with an additional arc ‘b:b’ pointing from node 2 to node 3;
the modified FST would then implement two mappings, /apa/£[aba] and
/aba/£[aba].

42
a:a

31
p:b a:a

Figure 1
FST implementing the mapping /apa/£[aba].

Riggle (2009) uses simple weighted finite-state transducers to represent
individual constraints. A grammar can then be represented using an operation
known as ‘intersection’. Figure 2, which is slightly adapted from Riggle
(2009: Fig. 1), illustrates three faithfulness constraints and their intersection.
Each transition x:y is followed by a value indicating the amount or type of
violation that is incurred. For example, when an input symbol maps to
itself – symbolised by X:X - no faithfulness violation is incurred, and this
is symbolised by 0. The symbol e is a special symbol indicating the empty
string. Thus when an empty input is mapped to a V, the grammar should
record a Dep(V) violation in some way. Similarly, when a non-empty input
symbol is mapped to an empty output, the input symbol has been deleted,
and the grammar should record a Max violation. The intersection of the
three simple FSTs in Fig. 2 is represented in the rightmost FST. In that
FST, any alteration to the input is penalised except for transducing an
empty input into a syllable boundary (the . symbol).

Figure 2
Simple weighted FSTs representing Max, Dep(V)

and Dep(C), and their intersection

e:./0

X:X/0

X:e/max

e:V/dpv

e:C/dpc

e:./0

X:X/0

X:e/0

e:V/0

e:C/dpc

e:./0

X:X/0

X:e/0

e:C/0

e:V/dpv

e:./0

X:X/0

X:e/max

e:X/0

Riggle further illustrates by generating the FST for a full CV grammar,
containing the hard constraint ((C)V(C).)*, as well as the violable constraints
Onset (ons) and NoCoda (noc), and the three faithfulness constraints from
before. The full CV grammar, slightly adapted from Riggle (2009: Fig. 3),
is reproduced in Fig. 3. The reader is encouraged to consult Riggle (2009)
for additional exposition.

Figure 3
Syllable grammar. State A represents the start of a syllable. State C

represents the moment after the nucleus has been written to the output.
State B represents the moment after an onset consonant has been written to
the output, whether it was in the input or epenthesised. State D represents

the moment after a postvocalic consonant has been read from the input,
whether it was written to the output or deleted. Only state A is a final state,

and this is why the links from C and D to A contain the end-of-syllable
symbol .. Thus, an onsetless syllable [V.] is generated by the path

A£C£A, while a [CV.] syllable is generated by the path A£B£C£A.

e:./noc

X:e/max

e:C/dpc

C:C/0

X:e/max
e:V/{ons, dpv}

V:V/ons

e:./0X:e/max

X:e/max

e:C/dpc C:C/0

V:V/0
e:V/dpv

In fact, Eisner points out that most useful formulations for weighted
FSTs have a common, abstract character: the weights of paths obey the
axioms of a closed semi-ring. A closed semi-ring (K, ò, fl, *) is a mathe-
matical structure which is a slight generalisation of the natural numbers:
it consists of a set K with an ‘addition’ operation ò (associative, commutative,
identity element 0), a ‘multiplication’ operation (associative, distributes
over ò from the right and the left, identity element 1), and ‘closure’ for
infinite loops (k+”def ò‚ ki). Eisner (2002) states: ‘ordinary probabilities
fall in the semi-ring (Z≥0, +, ú, *)’.

In Riggle’s (2009) formulation, the symbols 0, max, dpv, dpc, ons and noc
are treated as unit vectors, so that the violation vector for a path may be
accumulated as the sum the unit violation vectors encountered along the
path. (Technically, Riggle construes violations as belonging to a multiset
with a semi-ring structure, but for the present purposes these are the
equivalent.) Given that multiple paths may generate the same input–output
pair, but with possibly di‰erent violation vectors, one should also define
how to calculate the violation vector for an input–output pair. From a total
ranking over constraints, Riggle defines this as the violation profile of the
path which has the minimum number of violations over the highest-ranked
constraint on which there is a di‰erence. Riggle refers to this formulation
as a ‘violation semi-ring’, and points to its similarities with the tropical
semi-ring over the real numbers.

Eisner’s expectation semi-ring combines both probabilities and violation
vectors. In Eisner’s own words:

Abstractly, let us say that each path p has not only a probability P(p)Œ[0,
1] but also a value val(p) in a vector space V, which counts the arcs,
features or coin flips encountered along path p. The value of a path is the
sum of the values assigned to its arcs... The idea is to augment the weight
data structure with expectation information, so each weight records a
probability and a vector counting the parameters that contributed to that
probability.

Eisner proceeds to define the V-expectation semi-ring (Z≥0XV, ò, fl, *)
as follows:

(p1, v1)‡(p2, v2) ”def (p1p2, p1v2+v1p2)
(p1, v1)‡(p2, v2) ”def (p1+p2, v1+v2)
if p* defined, (p, v)* ”def (p*, p*vp*)

He elaborates:
If an arc has probability p and value p, we give it the weight (p, pv) so
that our invariant (see above) holds if [the pathset] # consists of a single
length-0 or length-1 path. The above definitions are designed to preserve
our invariant as we build up larger paths and pathsets. fl lets us concatenate
(e.g.) simple paths p1, p2 to get a longer path p with P(p)=(p1)P(p2) and
val(p)=val(p1)+val(p2). The definition of fl guarantees [the invariant]
that path p’s weight will be (P(p), P(p)·val(p)). ò lets us take the union
of two disjoint pathsets, and * computes infinite unions.

Now that the expectation semi-ring has been explained, we are in position
to consider its application to maxent HG grammars. As stated in Hayes &
Wilson (2008: 389):

the properties of a very large set of strings can be computed by representing
the set as a finite state machine. We construct our machines by first
representing each constraint as a weighted finite state acceptor. Using
intersection …, we then combine the constraints into a single machine
that embodies the full grammar … Each path through this machine
corresponds to a phonological representation together with its vector of
constraint violations. We then obtain the E[Ci] values by summing over
all paths through the machine …

Theorem 3 is concerned with whether the FST associated with a maxent
phonotactic grammar has well-defined expectations, or in other words,
whether it has a finite partition function. It does this by explicitly constructing
a matrix which sums over the well-formedness values of every path
through the FST. In order to understand this, it is first necessary to
understand how matrix multiplication can represent accumulation over
paths through a matrix, and how the principal eigenvalue reflects important
aspects of the limit behaviour.

Technically, a directed graph G consists of some nodes (indexed 1 to n),
and directed edges which point from a node j to some node i. The adjacency
matrix (Aij) associated with G is an nXn matrix in which:

Aij=
1 there is an edge from j to i
0 otherwise

Clearly (A1)ij indicates the number of paths of length 1 from node j to node
i. It turns out that something much more general is true: (Am)ij indicates
the number of paths of length m from node j to node i. To see this, consider
the (i, j) entry of Am+1. Since Am+1=Am·A, (Am+1)ij must be the dot product
of the ith row of Am and the jth column of A: (Am+1)ij=%„(Am)ik·Akj.
The value (Am)ik indicates the number of paths of length exactly m from
k to i, and Akj indicates the number of paths of length exactly 1 from j to
k. Thus, (Am)ik·Akj indicates the number of paths of length m+1 that begin
at j and end at i, passing through k as the first step. Since every path from
j to i must pass through some first step, the total number of paths of length
m+1 is given by their sum across k. Therefore, (Am+1)ij indicates the total
number of paths of length m+1 from node j to node i. In this case, matrix
multiplication represents the ‘accumulation’ of the number of paths. The
principal eigenvalue represents the (limit of the) ratio by which the number
of paths grows as the path length is increased. In fully connected graphs,
this value will be n (the number of nodes); in acyclic graphs (where it is not
possible to return to any state i once it has been visited), the principal
eigenvalue of the adjacency matrix is 0.

Theorem 3: Let (Pij) be the penalty matrix for a maxent phonotactic
grammar G=(S+, C⋲, wƒ) and its associated FST G¢=(S, Q, q0, F, E, r). G
has a finite partition function if and only if the principal eigenvalue of P
has a magnitude of 1 or less.

Proof: The proof goes in two steps. The first is to show that every accepted
string corresponds to a path beginning at q1 and being ‘absorbed’ in qn+1.
The second is to show that (Pm)ij indicates the well-formedness value of all
paths of length exactly m that begin at state j and end at state i (so that the
well-formedness of all paths will ‘accumulate’ in qn+1). It follows from this
that Z=limm√¥(Pm)(n+1)(n+1), which is finite if and only if the principal
eigenvalue has magnitude 1 or less.

Step 1: The definition of FST gives that every path begins in the start
state q1, and ends in one of a set of final states qjŒF. Then, the requirement
that P(n+1)j=dij amounts to adding a cost-free transition to the extra state
n+1, but only from pre-existing finals. The requirement that P(n+1)(n+1)=1
means that every string path which enters this state stays there without
penalty. (The cost-free self-link is necessary to preserve the well-formedness
so that it can be counted in the limit, rather than allowing it to vanish after
the path is accepted.) Since every string that is accepted by the FST must
begin at the start state and end at a final state, every terminating path of
length m®1 through the FST is counted by the matrix entry (Pm)(n+1)1
(and all subsequent values of m).

Step 2: Suppose that the violation vector e√ik is incurred by traversing a
single path from qk to qi, and e√kj is incurred by traversing a single path from
qj to qk. Then the well-formedness value associated with the k£i arc is
F(w ƒ·e√ik) = ew ƒ·e√ik, and the well-formedness value associated with the j to k
arc is F(wƒ·e√kj)=ewƒ·e√kj. Their product is F(w ƒ·e√ik)·F(w ƒ·e√kj) = ew ƒ·e√ik·ewƒ·e√kj =
ew ƒ·e√ik+wƒ·e√kj = ewƒ·(e√ik+e√kj) = F(wƒ·(e√ik+e√kj)). In other words, the penalty is the
same whether the violations are added up and assessed all at once, or assessed
one by one. This is the same kind of ‘invariant’ as Eisner (2002) refers to.
Now, it is already true by construction that (P1)i j represents the penalty
to a string incurred by transitioning from state j to state i in exactly 1 step.
Now suppose that (Pm)ij represents the penalty incurred by transitioning
from state j to state i in exactly m steps. Then (Pm+1)ij=%„(Pm)ik·(Pkj).
Then the well-formedness of all paths of exactly length m+1 is decomposed
just as with the adjacency matrix counting paths above.

It follows from these that the value (Pm)(n+1)1 represents the sum of the
well-formedness values of all accepted strings of length m®1 or less. Since
the partition function is defined as the sum of the well-formedness values
of all terminating strings, it follows that Z=limm√¥(Pm+1)(n+1)1. Since all
of the well-formedness must eventually accumulate in this cell for finite
strings, it follows that Z is finite if and only if the principal eigenvalue of
P has magnitude less than 1.

Pij=

F(wƒ·c√i j) there is an edge from qj to qi
1 i=n+1 and qjŒF, i.e. j is final
1 i=n+1 and j=n+1
0 otherwise

The second and third rows of this definition are equivalent to adding a final
final state qn+1 and requiring all final states to have a cost-free transition to
the final final state, so that all well-formedness will accumulate in qn+1.

Robert Daland
University of California, Los Angeles

Phonology 25.2: Artwork 1 of

Dep(C)
Max

Dep(V)
Dep(C)

Dep(V)Max

Supplementary materials 32 Robert Daland 4 Robert Daland
Phonology 32 (2015). Supplementary materials

Supplementary materials 5 6 Robert Daland Supplementary materials 7

Long words in maximum entropy
phonotactic grammars

8 Robert Daland 10 Robert DalandSupplementary materials 9 Supplementary materials 11 12 Robert Daland

These supplementary materials introduce three theorems which formalise
the central contributions of this paper. The general purpose of the theorems
is discussed in the paper for the lay linguist. This introduction briefly
describes the theorems for more mathematically inclined readers.

In linguistic terms, Theorem 1 demonstrates that every phonotactic
grammar can be represented by a score function mapping strings to the
non-positive integers. Here, to be ‘represented’ has the technical meaning
that if the grammar distinguishes string x as strictly less well-formed than
x, then x is mapped to a smaller (more negative) integer (whereas if they
are not di‰erent in well-formedness, they are mapped to the same integer).
The proof critically relies on the property that there cannot be an infinite
sequence of strings in which well-formedness increases. The proof uses
the notions of equivalence relation and their corresponding equivalence
classes, which may be unfamiliar to many linguists; otherwise, it largely
consists of showing that various ordering properties are preserved by
relevant mappings.

Theorem 2 gives sufficient conditions for a maxent phonotactic grammar
to have a finite partition function. This in turn means that it assigns a well-
defined probability distribution over all possible strings. (If the partition
function is not finite, string probabilities are undefined.) The proof draws
on the theory of geometric series, the laws of exponentiation/logarithms
and basic facts about cardinality/counting, but should be accessible to most
mathematically inclined linguists.

The final background material is Eisner’s (2002) notion of an expectation
semi-ring.

In natural-language processing applications – where FSTs are most
widely used – it is typical to annotate arcs with weights, expressed in either
the probability or log-probability domain. For example, the CV grammar
in Figure 3 could be expressed as a probabilistic FST by assigning the
symbol 0 a pseudo-probability of 1, while max, dpv, dpc, ons and noc would
be assigned pseudo-probabilities less than 1. Pseudo-probabilities would
then be normalised by requiring that the probability of leaving a non-final
state must sum to 1. The probability of a path is defined as the product of
the probabilities of traversing all the arcs in the path, and the probability
of an input–output pair is the sum over the probabilities of all distinct paths
that generate the pair.

1 Theorem 1

While Theorem 2 gives su!cient conditions for a finite partition function,
Theorem 3 gives necessary conditions. The starting point is previous
research from formal language theory demonstrating how constraint-based
mappings that instantiate regular relations can be represented by (weighted)
finite-state automata. This means that maxent HG grammars can be given
a convenient graphical representation. Next, the proof draws on the notion
of expectation semi-ring, formalised in Eisner (2002), which associates a
probability and a violation vector with each node. Finally, the paper draws
on the tight coupling between weighted graphs and matrices to derive a
penalty matrix P, where the entry Pij represents the change in well-
formedness incurred by transitioning from node j to node i of the finite-
state automaton, expres sed as a multiplicative factor. If the princi pal
eigenvalue of this matrix has a magnitude greater than 1, then the partition
function is not finite.

Definition: A relation ı on a set X is a prewellordering if and only if
ı is total

– Ax, yŒX, x ı y or y ı x
– ‘every pair of strings is comparable’

ı is transitive
– Ax, zŒX, x ı y and y ı z implies x ı z
– e.g. if [lb] is worse then [bn], and [bn] is worse than [bl], then [lb]

is worse than [bl]
X is wellordered by ı

– ASàX, S≠.£EsmaxŒS˜AsŒS, s ı smax
– ‘every non-empty subset of X has a maximal element’
– in other words, there cannot be an infinite sequence of strings that

increase in well-formedness (though an infinite decreasing sequence
is allowed)

(Note that this inverts the normal direction for wellordering; it is more
typical to require a minimal element, but the formulations are completely
analogous.)

Definition: A score function f for a set X is a map from elements of X
to a totally ordered space (K, <K). A score function f represents the prewell-
ordering ı on X if

Ax, yŒX, x ı y and y ı x implies f(x)=f(y)
– ‘equally well-formed strings are assigned equal scores’

Ax, yŒX, x ¯ y implies f(x) <K f(y)
– if string x is strictly less well-formed than y, x is assigned a strictly

lower score than y

Another example in which the principal eigenvalue reflects ‘accumulation’
or ‘flow’ of some value across a graph is in Markov chains. A Markov chain
consists of an initial distribution over states and a transition matrix (Tij),
in which the value Tij indicates the probability of visiting state i next, given
that the current state is j. Since probabilities must be non-negative and
sum to 1, this enforces the condition that the sum over each column of T
must be 1. Very similarly to the adjacency matrix, (Tm)ij indicates the
probability of ending in state i after m steps, given that one started in state
j. The principal eigenvalue of the Markov chain always has the value 1,
indicating that there is a constant ‘amount’ of probability which simply
flows across the graph. Markov chains are very well-studied; for a more
thorough treatment the reader is directed to Grimstead & Snell (1997:
ch. 11).

In the present case, we wish to determine whether a given maxent HG
grammar has a finite partition function. The first step is to translate the
grammar into a weighted FST with a violation semi-ring, as in the work
of Riggle and Eisner. The next step it to use matrix multiplication to
characterise the ‘accumulation’ of well-formedness values of paths through
the FST, using a penalty matrix. It follows that the partition function is
finite if and only if the principal eigenvalue of this matrix has a magnitude
of 1 or less.

Definition: Let G=(S+, C⋲, w ƒ) be a maxent phonotactic grammar, and
G¢=(S, Q, q0, F, E, r) be the associated weighted FST over V, where

– S is the output alphabet
– Q is the set of states
– q1ŒQ is the unique start state
– FàQ is the set of final states
– Eà(QXSXVXQ) is a finite set of transitions, each signifying the

traversal from a state qj to a state qi after encountering an output
symbol s, and having a violation vector c√i j indicating the constraints
that are violated in this transition

Let the states in G¢ be indexed {qi}‰, and the constraints in G be indexed
{Ck}Á. Then define an (n+1)X(n+1) penalty matrix P as follows:

Theorem 1: Let S be an alphabet, and S+ the set of finite strings over S.
Every prewellordering ıßΩ over S+ can be represented by a score function
f : S*£(Ä—, <) where Ä— is the non-positive integers and < is the normal
order on integers.

Proof: Given the prewellordering ıßΩ, define the relation ~ by x ~ y if
and only if x ıßΩ y and y ıßΩ x (the ‘equality relation’). Symmetry follows
from the definition of ~, while transitivity and reflexivity follow from the
transitivity and reflexivity of prewellorders; thus ~ is an equivalence relation.
Let K denote the set of equivalence classes of ~, and f~ the map from
elements of X (strings) to their equivalence class, f~(x)=[x]. Because S+
is countable, K must be countable. Claim: ıßΩ induces a total strict well-
ordering on K. Define [x] <K [y] if and only if EwŒ[x], zŒ[y] such that
w ıßΩ z but [x]≠[y]. Totality, transitivity, strictness and antisymmetry
follow, so <K is a strict total order. Wellordering follows from the well-
ordering of ıßΩ, so (K, <K) is totally strictly wellordered.

Now the task is to construct a map from (K, <K) to the non-positive
integers. Proceed by induction. Base case: By wellordering, there must
exist a value k0ŒK that is maximal according to <K. Then define f(k0)=0.
Induction step: Now suppose there is a sequence of values {ki}‰ such that
f(ki)=—i Ai, (0{i{n). Let Kn+1=K \ {ki}‰. Since Kn+1 is a subset of K,
by wellordering it has a maximal element kn+1. Then define f(kn+1)=…(n+1).
This completes the induction step.

Since K is countable, f must be well-defined for every kŒK, and
f : K£Ä—. Evidently, kx <K ky implies f(kx) < f(ky) Akx, kyŒK by con-
struction. It is also easy to show that f(kx) < f(ky) implies kx <K ky for all
kx, kyŒK. Observe that f(kx) < f(ky) implies that Kx is a proper subset of
Ky. Since the maximal element ky of Ky was removed to construct Kx, it
follows that k <K ky AkŒKx. Since kxŒKx, it follows that kx <K ky. In
short, f preserves all and only the order di‰erences of <K.

Two maps have been defined: f~ : S+£K maps every string to a well-
formedness equivalence class, and f : K£Ä— maps each well-formedness
equivalence class to a non-positive integer score. Then their composition
f(x)=f(f~(x)) maps every string to a non-positive score, f~ : S+£Ä— with
the following properties:

Ax, yŒS+, x ıßΩ y and y ıßΩ x›f(x)=f(y)
Ax, yŒS+, x ¯ßΩ y›f(x) < f(y)

In other words, f represents the prewellordering ıßΩ using the non-negative
integers.

2 Theorem 2
Definition: A harmonic grammar is a tuple G=(X, Y, R, C ⋲, wƒ) where

– X is a set of lexical representations
– Y is a set of surface representations
– RàXXY indicates the set of possible surface representations that a

given lexical representation can map to, called the candidates: candi-
dates(x)={yŒY|xRy}

– C ⋲ is a finite set of constraint functions C⋲={Ck}Á, where each
constraint function assigns a non-negative integer violation count to
lexical-surface pairs, Ak, Ck : R£Ä

– wƒ is a set of real-valued, non-positive weights wƒ={wk}Á, associated
with the constraints

The harmony of a lexical–surface pair HCƒ,wƒ
(x, y) is defined as the weighted

sum of the constraint violations, H(x, y)=%Á wk·Ck(x, y). Given some
xŒX, surface representation yŒcandidates(x) is a winner if and only if
E/ zŒcandidates(x), such that H(x, z) > H(x, y), in other words if y has the
greatest harmony value among the candidates of x. We write G(x)=y in
case y is a unique winner for x. Thus G denotes a mapping from X to Y
just in case every xŒX has a unique winner G(x)ŒY.

Definition: A maxent HG grammar is a harmonic grammar G=(X, Y, R,
C ⋲, w ƒ) that is augmented with a well-formedness function F : R£Z+

defined by F(x, y)=eH(x,y) (the range of the exponentiation is the non-
negative reals Z+). The partition function associated with a lexical
representation x, Z : X£Z+ U{≥} is defined as the sum of the well-
formedness values of all of x’s candidates, Z(x)=%xRy F(x, y). In case the
partition function is finite for a given x, G defines the conditional probability
distribution Pr(y|x)=F(x, y)/Z(x).

Definition: A maxent phonotactic grammar over S+ is a maxent HG
grammar G=(X, Y, R, C ⋲, wƒ) in which X is a singleton set {w}, Y=S+
where S+ is the set of finite strings over some alphabet S, and wRy AyŒS+.
Since X and R are trivial, it is convenient to omit them from the notation:
G=(S+, C⋲, wƒ), H(y)=Á wk·Ck(y), etc.

Definiti on: Define the *Struct const raint *Struct : S+£Ä by
*Struct(s)=k if and only if sŒSk. In other words, the number of *Struct
violations that a string s incurs is simply the length of s.

Theorem 2: Let G=(S+, C ⋲, wƒ) be a maxent phonotactic grammar. If the
const raint set C⋲ includ es a *Struct constrain t (i.e. Ei <k such that
Ci=*Struct) and w*Struct < —ln|S|, then the partition function Z of G is
finite.

Proof: The proof goes in two steps. The first step is to consider a maxent
phonotactic grammar G¢ over S+ whose constraint set includes only *Struct,
and prove that w*Struct < —ln|S| implies that Z¢ is finite. The second step
is to show that F¢(s) is an upper bound for F(s) for all sŒS*, so Z¢ is an
upper bound for Z. Finitude of Z follows from finitude of Z¢.

Part 1: Given G=(S+, C ⋲, w ƒ), define the maxent phonotactic grammar
G¢ over S+ to have the sole constraint C ⋲={*Struct} with weight w; the
corresponding harmony and well-formedness functions are denoted H¢ and
F¢. We will abuse notation by defining F¢(X)=%SÊX F¢(s), i.e. extending
the definition of the well-formedness function so that it measures sets of
strings (rather than merely evaluating individual strings). The goal is to
compute Z¢ by partitioning S+ by the length of its strings. Let us begin by
considering the value F¢(Sk) for an arbitrary k. By definition, sŒSk implies
*Struct(s) = k, so that H¢(s) = w·*Struct(s) = w·k and F¢(s) = eH¢(ß) =
ew·k = (ew)k. The number of strings in Sk is |S|k, and each such string s has
a constant well-formedness value, F¢(s)=(ew)k. Then the total F¢(Sk) can
be expressed as the product, F¢(Sk)=|Sk|·(ew)k=(|S|·ew)k. Now it is possible
to express Z¢ as the sum over the partition by length (S+=S0US1US2U…):

F¢(S+)=%ÂF¢(Sk)
=%Â(|S|·ew)k

This latter is instantly recognisable as an infinite series with common ratio
r=|S|·ew. The theory of infinite series indicates that this value is finite
(and well-defined) if and only if |r| < 1. Since |S| and ew are positive, this
reduces to the inequality |S|·ew < 1, or ew < |S|—1. The natural logarithm
is an increasing function, which can be applied to both sides to preserve
the inequality, yielding w < —ln|S|.

Part 2: We begin by showing that AsŒS*, H(s) ≤ H¢(s). Without loss
of generality, reassign indices so that H(s)=w·*Struct(s) + %Ê· Ck(s)
and recall that H¢(s)=w·*Struct(s). Then H (s)®H¢(s)=%Ê wk·Ck(s)
for all s. Now since wk ≤ 0 Ak and Ck ≥ 0 Ak, it follows that wk·Ck(s) ≤ 0
Ak, and therefore the sum must be non-positive as well, i.e. H(s)®H¢(s)
≤ 0 AsŒS*. But this means that H¢ (s) is an upper bound for H(s) for every
s. And since exponentiation is an increasing function, this implies that F¢(s)
is an upper bound for F(s) for all s. And since Z¢ is the sum of F¢ values,
while Z is the sum of F values, this means that Z¢ is an upper bound for Z.
Thus, if Z¢ is finite, Z must be as well. This completes the proof.

3 Theorem 3
Riggle (2009) gives a technical but well-exemplified presentation of finite-
state Optimality Theory. The essence of this approach is to model constraints
as (possibly weighted) finite-state transducers. In order to understand
Theorem 3, it is necessary to understand how maxent phonotactic grammars
are implemented as finite-state transducers, and in order to understand
this, it is first necessary to understand a little about finite-state transducers.

Intuitively, a finite-state transducer (FST) is a computational device
which accepts one ‘input’ string and converts it to another ‘output’ string.
Finite-state machines are conventionally represented as directed graphs.
The nodes of the graph represent ‘states’ of the machine. Arcs represent
the transition from one state to another; normally, this is associated with
reading one symbol from the input string, and writing one symbol to the
output string. The particular mapping that an arc represents is indicated
with a label on the arc; the label x:y indicates that the arc transduces input
symbol x into output symbol y. The ‘start’ and ‘final’ nodes of the graph
are graphically indicated by one or more conventions. Here I use the
convention that the start state is indicated by an arrow from nowhere
pointing to the start node, while the end state is indicated by a double circle.
Figure 1 gives a finite-state transducer that implements an intervocalic
voicing rule. The FST in Figure 1 only accepts the input sequence /apa/,
and if it is presented with that input sequence, it yields the output sequence
[aba]. Traversing a single arc in the graph represents reading/writing one
symbol, so that the nodes/states of the graph represent the amount of the
input string that has been read. It is possible for there to be multiple arcs
emanating from or leading to a state. For example, the FST in Fig. 1 could
be augmented with an additional arc ‘b:b’ pointing from node 2 to node 3;
the modified FST would then implement two mappings, /apa/£[aba] and
/aba/£[aba].

Riggle (2009) uses simple weighted finite-state transducers to represent
individual constraints. A grammar can then be represented using an operation
known as ‘intersection’. Figure 2, which is slightly adapted from Riggle
(2009: Fig. 1), illustrates three faithfulness constraints and their intersection.
Each transition x:y is followed by a value indicating the amount or type of
violation that is incurred. For example, when an input symbol maps to
itself – symbolised by X:X - no faithfulness violation is incurred, and this
is symbolised by 0. The symbol e is a special symbol indicating the empty
string. Thus when an empty input is mapped to a V, the grammar should
record a Dep(V) violation in some way. Similarly, when a non-empty input
symbol is mapped to an empty output, the input symbol has been deleted,
and the grammar should record a Max violation. The intersection of the
three simple FSTs in Fig. 2 is represented in the rightmost FST. In that
FST, any alteration to the input is penalised except for transducing an
empty input into a syllable boundary (the . symbol).

Figure 2
Simple weighted FSTs representing Max, Dep(V)

and Dep(C), and their intersection

e:./0

X:X/0

X:e/max

e:V/dpv

e:C/dpc

e:./0

X:X/0

X:e/0

e:V/0

e:C/dpc

e:./0

X:X/0

X:e/0

e:C/0

e:V/dpv

e:./0

X:X/0

X:e/max

e:X/0

Riggle further illustrates by generating the FST for a full CV grammar,
containing the hard constraint ((C)V(C).)*, as well as the violable constraints
Onset (ons) and NoCoda (noc), and the three faithfulness constraints from
before. The full CV grammar, slightly adapted from Riggle (2009: Fig. 3),
is reproduced in Fig. 3. The reader is encouraged to consult Riggle (2009)
for additional exposition.

Figure 3
Syllable grammar. State A represents the start of a syllable. State C

represents the moment after the nucleus has been written to the output.
State B represents the moment after an onset consonant has been written to
the output, whether it was in the input or epenthesised. State D represents

the moment after a postvocalic consonant has been read from the input,
whether it was written to the output or deleted. Only state A is a final state,

and this is why the links from C and D to A contain the end-of-syllable
symbol .. Thus, an onsetless syllable [V.] is generated by the path

A£C£A, while a [CV.] syllable is generated by the path A£B£C£A.

e:./noc

X:e/max

e:C/dpc

C:C/0

X:e/max
e:V/{ons, dpv}

V:V/ons

e:./0X:e/max

X:e/max

e:C/dpc C:C/0

V:V/0
e:V/dpv

In fact, Eisner points out that most useful formulations for weighted
FSTs have a common, abstract character: the weights of paths obey the
axioms of a closed semi-ring. A closed semi-ring (K, ò, fl, *) is a mathe-
matical structure which is a slight generalisation of the natural numbers:
it consists of a set K with an ‘addition’ operation ò (associative, commutative,
identity element 0), a ‘multiplication’ operation (associative, distributes
over ò from the right and the left, identity element 1), and ‘closure’ for
infinite loops (k+”def ò‚ ki). Eisner (2002) states: ‘ordinary probabilities
fall in the semi-ring (Z≥0, +, ú, *)’.

In Riggle’s (2009) formulation, the symbols 0, max, dpv, dpc, ons and noc
are treated as unit vectors, so that the violation vector for a path may be
accumulated as the sum the unit violation vectors encountered along the
path. (Technically, Riggle construes violations as belonging to a multiset
with a semi-ring structure, but for the present purposes these are the
equivalent.) Given that multiple paths may generate the same input–output
pair, but with possibly di‰erent violation vectors, one should also define
how to calculate the violation vector for an input–output pair. From a total
ranking over constraints, Riggle defines this as the violation profile of the
path which has the minimum number of violations over the highest-ranked
constraint on which there is a di‰erence. Riggle refers to this formulation
as a ‘violation semi-ring’, and points to its similarities with the tropical
semi-ring over the real numbers.

Eisner’s expectation semi-ring combines both probabilities and violation
vectors. In Eisner’s own words:

Abstractly, let us say that each path p has not only a probability P(p)Œ[0,
1] but also a value val(p) in a vector space V, which counts the arcs,
features or coin flips encountered along path p. The value of a path is the
sum of the values assigned to its arcs... The idea is to augment the weight
data structure with expectation information, so each weight records a
probability and a vector counting the parameters that contributed to that
probability.

Eisner proceeds to define the V-expectation semi-ring (Z≥0XV, ò, fl, *)
as follows:

(p1, v1)‡(p2, v2) ”def (p1p2, p1v2+v1p2)
(p1, v1)‡(p2, v2) ”def (p1+p2, v1+v2)
if p* defined, (p, v)* ”def (p*, p*vp*)

He elaborates:
If an arc has probability p and value p, we give it the weight (p, pv) so
that our invariant (see above) holds if [the pathset] # consists of a single
length-0 or length-1 path. The above definitions are designed to preserve
our invariant as we build up larger paths and pathsets. fl lets us concatenate
(e.g.) simple paths p1, p2 to get a longer path p with P(p)=(p1)P(p2) and
val(p)=val(p1)+val(p2). The definition of fl guarantees [the invariant]
that path p’s weight will be (P(p), P(p)·val(p)). ò lets us take the union
of two disjoint pathsets, and * computes infinite unions.

Now that the expectation semi-ring has been explained, we are in position
to consider its application to maxent HG grammars. As stated in Hayes &
Wilson (2008: 389):

the properties of a very large set of strings can be computed by representing
the set as a finite state machine. We construct our machines by first
representing each constraint as a weighted finite state acceptor. Using
intersection …, we then combine the constraints into a single machine
that embodies the full grammar … Each path through this machine
corresponds to a phonological representation together with its vector of
constraint violations. We then obtain the E[Ci] values by summing over
all paths through the machine …

Theorem 3 is concerned with whether the FST associated with a maxent
phonotactic grammar has well-defined expectations, or in other words,
whether it has a finite partition function. It does this by explicitly constructing
a matrix which sums over the well-formedness values of every path
through the FST. In order to understand this, it is first necessary to
understand how matrix multiplication can represent accumulation over
paths through a matrix, and how the principal eigenvalue reflects important
aspects of the limit behaviour.

Technically, a directed graph G consists of some nodes (indexed 1 to n),
and directed edges which point from a node j to some node i. The adjacency
matrix (Aij) associated with G is an nXn matrix in which:

Aij=
1 there is an edge from j to i
0 otherwise

Clearly (A1)ij indicates the number of paths of length 1 from node j to node
i. It turns out that something much more general is true: (Am)ij indicates
the number of paths of length m from node j to node i. To see this, consider
the (i, j) entry of Am+1. Since Am+1=Am·A, (Am+1)ij must be the dot product
of the ith row of Am and the jth column of A: (Am+1)ij=%„(Am)ik·Akj.
The value (Am)ik indicates the number of paths of length exactly m from
k to i, and Akj indicates the number of paths of length exactly 1 from j to
k. Thus, (Am)ik·Akj indicates the number of paths of length m+1 that begin
at j and end at i, passing through k as the first step. Since every path from
j to i must pass through some first step, the total number of paths of length
m+1 is given by their sum across k. Therefore, (Am+1)ij indicates the total
number of paths of length m+1 from node j to node i. In this case, matrix
multiplication represents the ‘accumulation’ of the number of paths. The
principal eigenvalue represents the (limit of the) ratio by which the number
of paths grows as the path length is increased. In fully connected graphs,
this value will be n (the number of nodes); in acyclic graphs (where it is not
possible to return to any state i once it has been visited), the principal
eigenvalue of the adjacency matrix is 0.

Theorem 3: Let (Pij) be the penalty matrix for a maxent phonotactic
grammar G=(S+, C⋲, wƒ) and its associated FST G¢=(S, Q, q0, F, E, r). G
has a finite partition function if and only if the principal eigenvalue of P
has a magnitude of 1 or less.

Proof: The proof goes in two steps. The first is to show that every accepted
string corresponds to a path beginning at q1 and being ‘absorbed’ in qn+1.
The second is to show that (Pm)ij indicates the well-formedness value of all
paths of length exactly m that begin at state j and end at state i (so that the
well-formedness of all paths will ‘accumulate’ in qn+1). It follows from this
that Z=limm√¥(Pm)(n+1)(n+1), which is finite if and only if the principal
eigenvalue has magnitude 1 or less.

Step 1: The definition of FST gives that every path begins in the start
state q1, and ends in one of a set of final states qjŒF. Then, the requirement
that P(n+1)j=dij amounts to adding a cost-free transition to the extra state
n+1, but only from pre-existing finals. The requirement that P(n+1)(n+1)=1
means that every string path which enters this state stays there without
penalty. (The cost-free self-link is necessary to preserve the well-formedness
so that it can be counted in the limit, rather than allowing it to vanish after
the path is accepted.) Since every string that is accepted by the FST must
begin at the start state and end at a final state, every terminating path of
length m®1 through the FST is counted by the matrix entry (Pm)(n+1)1
(and all subsequent values of m).

Step 2: Suppose that the violation vector e√ik is incurred by traversing a
single path from qk to qi, and e√kj is incurred by traversing a single path from
qj to qk. Then the well-formedness value associated with the k£i arc is
F(w ƒ·e√ik) = ewƒ·e√ik, and the well-formedness value associated with the j to k
arc is F(wƒ·e√kj)=ewƒ·e√kj. Their product is F(wƒ·e√ik)·F(w ƒ·e√kj) = ew ƒ·e√ik·ew ƒ·e√kj =
ewƒ·e √ik+wƒ·e√kj = ew ƒ·(e√ik+e√kj) = F(w ƒ·(e√ik+e√kj)). In other words, the penalty is the
same whether the violations are added up and assessed all at once, or assessed
one by one. This is the same kind of ‘invariant’ as Eisner (2002) refers to.
Now, it is already true by construction that (P1)i j represents the penalty
to a string incurred by transitioning from state j to state i in exactly 1 step.
Now suppose that (Pm)ij represents the penalty incurred by transitioning
from state j to state i in exactly m steps. Then (Pm+1)ij=%„(Pm)ik·(Pkj).
Then the well-formedness of all paths of exactly length m+1 is decomposed
just as with the adjacency matrix counting paths above.

It follows from these that the value (Pm)(n+1)1 represents the sum of the
well-formedness values of all accepted strings of length m®1 or less. Since
the partition function is defined as the sum of the well-formedness values
of all terminating strings, it follows that Z=limm√¥(Pm+1)(n+1)1. Since all
of the well-formedness must eventually accumulate in this cell for finite
strings, it follows that Z is finite if and only if the principal eigenvalue of
P has magnitude less than 1.

Pij=

F(w ƒ·c√i j) there is an edge from qj to qi
1 i=n+1 and qjŒF, i.e. j is final
1 i=n+1 and j=n+1
0 otherwise

The second and third rows of this definition are equivalent to adding a final
final state qn+1 and requiring all final states to have a cost-free transition to
the final final state, so that all well-formedness will accumulate in qn+1.

Robert Daland
University of California, Los Angeles

Phonology 25.2: Artwork 1 of

Dep(C)
Max

Dep(V)
Dep(C)

Dep(V)Max

D

C

A

B

Supplementary materials 32 Robert Daland 4 Robert Daland
Phonology 32 (2015). Supplementary materials

Supplementary materials 5 6 Robert Daland Supplementary materials 7

Long words in maximum entropy
phonotactic grammars

8 Robert Daland 10 Robert DalandSupplementary materials 9 Supplementary materials 11 12 Robert Daland

These supplementary materials introduce three theorems which formalise
the central contributions of this paper. The general purpose of the theorems
is discussed in the paper for the lay linguist. This introduction briefly
describes the theorems for more mathematically inclined readers.

In linguistic terms, Theorem 1 demonstrates that every phonotactic
grammar can be represented by a score function mapping strings to the
non-positive integers. Here, to be ‘represented’ has the technical meaning
that if the grammar distinguishes string x as strictly less well-formed than
x, then x is mapped to a smaller (more negative) integer (whereas if they
are not di‰erent in well-formedness, they are mapped to the same integer).
The proof critically relies on the property that there cannot be an infinite
sequence of strings in which well-formedness increases. The proof uses
the notions of equivalence relation and their corresponding equivalence
classes, which may be unfamiliar to many linguists; otherwise, it largely
consists of showing that various ordering properties are preserved by
relevant mappings.

Theorem 2 gives sufficient conditions for a maxent phonotactic grammar
to have a finite partition function. This in turn means that it assigns a well-
defined probability distribution over all possible strings. (If the partition
function is not finite, string probabilities are undefined.) The proof draws
on the theory of geometric series, the laws of exponentiation/logarithms
and basic facts about cardinality/counting, but should be accessible to most
mathematically inclined linguists.

The final background material is Eisner’s (2002) notion of an expectation
semi-ring.

In natural-language processing applications – where FSTs are most
widely used – it is typical to annotate arcs with weights, expressed in either
the probability or log-probability domain. For example, the CV grammar
in Figure 3 could be expressed as a probabilistic FST by assigning the
symbol 0 a pseudo-probability of 1, while max, dpv, dpc, ons and noc would
be assigned pseudo-probabilities less than 1. Pseudo-probabilities would
then be normalised by requiring that the probability of leaving a non-final
state must sum to 1. The probability of a path is defined as the product of
the probabilities of traversing all the arcs in the path, and the probability
of an input–output pair is the sum over the probabilities of all distinct paths
that generate the pair.

1 Theorem 1

While Theorem 2 gives su!cient conditions for a finite partition function,
Theorem 3 gives necessary conditions. The starting point is previous
research from formal language theory demonstrating how constraint-based
mappings that instantiate regular relations can be represented by (weighted)
finite-state automata. This means that maxent HG grammars can be given
a convenient graphical representation. Next, the proof draws on the notion
of expectation semi-ring, formalised in Eisner (2002), which associates a
probability and a violation vector with each node. Finally, the paper draws
on the tight coupling between weighted graphs and matrices to derive a
penalty matrix P, where the entry Pij represents the change in well-
formedness incurred by transitioning from node j to node i of the finite-
state automaton, expres sed as a multiplicative factor. If the princi pal
eigenvalue of this matrix has a magnitude greater than 1, then the partition
function is not finite.

Definition: A relation ı on a set X is a prewellordering if and only if
ı is total

– Ax, yŒX, x ı y or y ı x
– ‘every pair of strings is comparable’

ı is transitive
– Ax, zŒX, x ı y and y ı z implies x ı z
– e.g. if [lb] is worse then [bn], and [bn] is worse than [bl], then [lb]

is worse than [bl]
X is wellordered by ı

– ASàX, S≠.£EsmaxŒS˜AsŒS, s ı smax
– ‘every non-empty subset of X has a maximal element’
– in other words, there cannot be an infinite sequence of strings that

increase in well-formedness (though an infinite decreasing sequence
is allowed)

(Note that this inverts the normal direction for wellordering; it is more
typical to require a minimal element, but the formulations are completely
analogous.)

Definition: A score function f for a set X is a map from elements of X
to a totally ordered space (K, <K). A score function f represents the prewell-
ordering ı on X if

Ax, yŒX, x ı y and y ı x implies f(x)=f(y)
– ‘equally well-formed strings are assigned equal scores’

Ax, yŒX, x ¯ y implies f(x) <K f(y)
– if string x is strictly less well-formed than y, x is assigned a strictly

lower score than y

Another example in which the principal eigenvalue reflects ‘accumulation’
or ‘flow’ of some value across a graph is in Markov chains. A Markov chain
consists of an initial distribution over states and a transition matrix (Tij),
in which the value Tij indicates the probability of visiting state i next, given
that the current state is j. Since probabilities must be non-negative and
sum to 1, this enforces the condition that the sum over each column of T
must be 1. Very similarly to the adjacency matrix, (Tm)ij indicates the
probability of ending in state i after m steps, given that one started in state
j. The principal eigenvalue of the Markov chain always has the value 1,
indicating that there is a constant ‘amount’ of probability which simply
flows across the graph. Markov chains are very well-studied; for a more
thorough treatment the reader is directed to Grimstead & Snell (1997:
ch. 11).

In the present case, we wish to determine whether a given maxent HG
grammar has a finite partition function. The first step is to translate the
grammar into a weighted FST with a violation semi-ring, as in the work
of Riggle and Eisner. The next step it to use matrix multiplication to
characterise the ‘accumulation’ of well-formedness values of paths through
the FST, using a penalty matrix. It follows that the partition function is
finite if and only if the principal eigenvalue of this matrix has a magnitude
of 1 or less.

Definition: Let G=(S+, C⋲, wƒ) be a maxent phonotactic grammar, and
G¢=(S, Q, q0, F, E, r) be the associated weighted FST over V, where

– S is the output alphabet
– Q is the set of states
– q1ŒQ is the unique start state
– FàQ is the set of final states
– Eà(QXSXVXQ) is a finite set of transitions, each signifying the

traversal from a state qj to a state qi after encountering an output
symbol s, and having a violation vector c √i j indicating the constraints
that are violated in this transition

Let the states in G¢ be indexed {qi}‰, and the constraints in G be indexed
{Ck}Á. Then define an (n+1)X(n+1) penalty matrix P as follows:

Theorem 1: Let S be an alphabet, and S+ the set of finite strings over S.
Every prewellordering ıßΩ over S+ can be represented by a score function
f : S*£(Ä—, <) where Ä— is the non-positive integers and < is the normal
order on integers.

Proof: Given the prewellordering ıßΩ, define the relation ~ by x ~ y if
and only if x ıßΩ y and y ıßΩ x (the ‘equality relation’). Symmetry follows
from the definition of ~, while transitivity and reflexivity follow from the
transitivity and reflexivity of prewellorders; thus ~ is an equivalence relation.
Let K denote the set of equivalence classes of ~, and f~ the map from
elements of X (strings) to their equivalence class, f~(x)=[x]. Because S+
is countable, K must be countable. Claim: ıßΩ induces a total strict well-
ordering on K. Define [x] <K [y] if and only if EwŒ[x], zŒ[y] such that
w ıßΩ z but [x]≠[y]. Totality, transitivity, strictness and antisymmetry
follow, so <K is a strict total order. Wellordering follows from the well-
ordering of ıßΩ, so (K, <K) is totally strictly wellordered.

Now the task is to construct a map from (K, <K) to the non-positive
integers. Proceed by induction. Base case: By wellordering, there must
exist a value k0ŒK that is maximal according to <K. Then define f(k0)=0.
Induction step: Now suppose there is a sequence of values {ki}‰ such that
f(ki)=—i Ai, (0{i{n). Let Kn+1=K \ {ki}‰. Since Kn+1 is a subset of K,
by wellordering it has a maximal element kn+1. Then define f(kn+1)=…(n+1).
This completes the induction step.

Since K is countable, f must be well-defined for every kŒK, and
f : K£Ä—. Evidently, kx <K ky implies f(kx) < f(ky) Akx, kyŒK by con-
struction. It is also easy to show that f(kx) < f(ky) implies kx <K ky for all
kx, kyŒK. Observe that f(kx) < f(ky) implies that Kx is a proper subset of
Ky. Since the maximal element ky of Ky was removed to construct Kx, it
follows that k <K ky AkŒKx. Since kxŒKx, it follows that kx <K ky. In
short, f preserves all and only the order di‰erences of <K.

Two maps have been defined: f~ : S+£K maps every string to a well-
formedness equivalence class, and f : K£Ä— maps each well-formedness
equivalence class to a non-positive integer score. Then their composition
f(x)=f(f~(x)) maps every string to a non-positive score, f~ : S+£Ä— with
the following properties:

Ax, yŒS+, x ıßΩ y and y ıßΩ x›f(x)=f(y)
Ax, yŒS+, x ¯ßΩ y›f(x) < f(y)

In other words, f represents the prewellordering ıßΩ using the non-negative
integers.

2 Theorem 2
Definition: A harmonic grammar is a tuple G=(X, Y, R, C ⋲, wƒ) where

– X is a set of lexical representations
– Y is a set of surface representations
– RàXXY indicates the set of possible surface representations that a

given lexical representation can map to, called the candidates: candi-
dates(x)={yŒY|xRy}

– C ⋲ is a finite set of constraint functions C⋲={Ck}Á, where each
constraint function assigns a non-negative integer violation count to
lexical-surface pairs, Ak, Ck : R£Ä

– wƒ is a set of real-valued, non-positive weights wƒ={wk}Á, associated
with the constraints

The harmony of a lexical–surface pair HCƒ,wƒ
(x, y) is defined as the weighted

sum of the constraint violations, H(x, y)=%Á wk·Ck(x, y). Given some
xŒX, surface representation yŒcandidates(x) is a winner if and only if
E/ zŒcandidates(x), such that H(x, z) > H(x, y), in other words if y has the
greatest harmony value among the candidates of x. We write G(x)=y in
case y is a unique winner for x. Thus G denotes a mapping from X to Y
just in case every xŒX has a unique winner G(x)ŒY.

Definition: A maxent HG grammar is a harmonic grammar G=(X, Y, R,
C ⋲, wƒ) that is augmented with a well-formedness function F : R£Z+

defined by F(x, y)=eH(x,y) (the range of the exponentiation is the non-
negative reals Z+). The partition function associated with a lexical
representation x, Z : X£Z+ U{≥} is defined as the sum of the well-
formedness values of all of x’s candidates, Z(x)=%xRy F(x, y). In case the
partition function is finite for a given x, G defines the conditional probability
distribution Pr(y|x)=F(x, y)/Z(x).

Definition: A maxent phonotactic grammar over S+ is a maxent HG
grammar G=(X, Y, R, C ⋲, wƒ) in which X is a singleton set {w}, Y=S+
where S+ is the set of finite strings over some alphabet S, and wRy AyŒS+.
Since X and R are trivial, it is convenient to omit them from the notation:
G=(S+, C⋲, wƒ), H(y)=Á wk·Ck(y), etc.

Definiti on: Define the *Struct const raint *Struct : S+£Ä by
*Struct(s)=k if and only if sŒSk. In other words, the number of *Struct
violations that a string s incurs is simply the length of s.

Theorem 2: Let G=(S+, C ⋲, wƒ) be a maxent phonotactic grammar. If the
const raint set C⋲ includ es a *Struct constrain t (i.e. Ei <k such that
Ci=*Struct) and w*Struct < —ln|S|, then the partition function Z of G is
finite.

Proof: The proof goes in two steps. The first step is to consider a maxent
phonotactic grammar G¢ over S+ whose constraint set includes only *Struct,
and prove that w*Struct < —ln|S| implies that Z¢ is finite. The second step
is to show that F¢(s) is an upper bound for F(s) for all sŒS*, so Z¢ is an
upper bound for Z. Finitude of Z follows from finitude of Z¢.

Part 1: Given G=(S+, C ⋲, w ƒ), define the maxent phonotactic grammar
G¢ over S+ to have the sole constraint C ⋲={*Struct} with weight w; the
corresponding harmony and well-formedness functions are denoted H¢ and
F¢. We will abuse notation by defining F¢(X)=%SÊX F¢(s), i.e. extending
the definition of the well-formedness function so that it measures sets of
strings (rather than merely evaluating individual strings). The goal is to
compute Z¢ by partitioning S+ by the length of its strings. Let us begin by
considering the value F¢(Sk) for an arbitrary k. By definition, sŒSk implies
*Struct(s) = k, so that H¢(s) = w·*Struct(s) = w·k and F¢(s) = eH¢(ß) =
ew·k = (ew)k. The number of strings in Sk is |S|k, and each such string s has
a constant well-formedness value, F¢(s)=(ew)k. Then the total F¢(Sk) can
be expressed as the product, F¢(Sk)=|Sk|·(ew)k=(|S|·ew)k. Now it is possible
to express Z¢ as the sum over the partition by length (S+=S0US1US2U…):

F¢(S+)=%ÂF¢(Sk)
=%Â(|S|·ew)k

This latter is instantly recognisable as an infinite series with common ratio
r=|S|·ew. The theory of infinite series indicates that this value is finite
(and well-defined) if and only if |r| < 1. Since |S| and ew are positive, this
reduces to the inequality |S|·ew < 1, or ew < |S|—1. The natural logarithm
is an increasing function, which can be applied to both sides to preserve
the inequality, yielding w < —ln|S|.

Part 2: We begin by showing that AsŒS*, H(s) ≤ H¢(s). Without loss
of generality, reassign indices so that H(s)=w·*Struct(s) + %Ê· Ck(s)
and recall that H¢(s)=w·*Struct(s). Then H (s)®H¢(s)=%Ê wk·Ck(s)
for all s. Now since wk ≤ 0 Ak and Ck ≥ 0 Ak, it follows that wk·Ck(s) ≤ 0
Ak, and therefore the sum must be non-positive as well, i.e. H(s)®H¢(s)
≤ 0 AsŒS*. But this means that H¢ (s) is an upper bound for H(s) for every
s. And since exponentiation is an increasing function, this implies that F¢(s)
is an upper bound for F(s) for all s. And since Z¢ is the sum of F¢ values,
while Z is the sum of F values, this means that Z¢ is an upper bound for Z.
Thus, if Z¢ is finite, Z must be as well. This completes the proof.

3 Theorem 3
Riggle (2009) gives a technical but well-exemplified presentation of finite-
state Optimality Theory. The essence of this approach is to model constraints
as (possibly weighted) finite-state transducers. In order to understand
Theorem 3, it is necessary to understand how maxent phonotactic grammars
are implemented as finite-state transducers, and in order to understand
this, it is first necessary to understand a little about finite-state transducers.

Intuitively, a finite-state transducer (FST) is a computational device
which accepts one ‘input’ string and converts it to another ‘output’ string.
Finite-state machines are conventionally represented as directed graphs.
The nodes of the graph represent ‘states’ of the machine. Arcs represent
the transition from one state to another; normally, this is associated with
reading one symbol from the input string, and writing one symbol to the
output string. The particular mapping that an arc represents is indicated
with a label on the arc; the label x:y indicates that the arc transduces input
symbol x into output symbol y. The ‘start’ and ‘final’ nodes of the graph
are graphically indicated by one or more conventions. Here I use the
convention that the start state is indicated by an arrow from nowhere
pointing to the start node, while the end state is indicated by a double circle.
Figure 1 gives a finite-state transducer that implements an intervocalic
voicing rule. The FST in Figure 1 only accepts the input sequence /apa/,
and if it is presented with that input sequence, it yields the output sequence
[aba]. Traversing a single arc in the graph represents reading/writing one
symbol, so that the nodes/states of the graph represent the amount of the
input string that has been read. It is possible for there to be multiple arcs
emanating from or leading to a state. For example, the FST in Fig. 1 could
be augmented with an additional arc ‘b:b’ pointing from node 2 to node 3;
the modified FST would then implement two mappings, /apa/£[aba] and
/aba/£[aba].

Riggle (2009) uses simple weighted finite-state transducers to represent
individual constraints. A grammar can then be represented using an operation
known as ‘intersection’. Figure 2, which is slightly adapted from Riggle
(2009: Fig. 1), illustrates three faithfulness constraints and their intersection.
Each transition x:y is followed by a value indicating the amount or type of
violation that is incurred. For example, when an input symbol maps to
itself – symbolised by X:X - no faithfulness violation is incurred, and this
is symbolised by 0. The symbol e is a special symbol indicating the empty
string. Thus when an empty input is mapped to a V, the grammar should
record a Dep(V) violation in some way. Similarly, when a non-empty input
symbol is mapped to an empty output, the input symbol has been deleted,
and the grammar should record a Max violation. The intersection of the
three simple FSTs in Fig. 2 is represented in the rightmost FST. In that
FST, any alteration to the input is penalised except for transducing an
empty input into a syllable boundary (the . symbol).

Figure 2
Simple weighted FSTs representing Max, Dep(V)

and Dep(C), and their intersection

e:./0

X:X/0

X:e/max

e:V/dpv

e:C/dpc

e:./0

X:X/0

X:e/0

e:V/0

e:C/dpc

e:./0

X:X/0

X:e/0

e:C/0

e:V/dpv

e:./0

X:X/0

X:e/max

e:X/0

Riggle further illustrates by generating the FST for a full CV grammar,
containing the hard constraint ((C)V(C).)*, as well as the violable constraints
Onset (ons) and NoCoda (noc), and the three faithfulness constraints from
before. The full CV grammar, slightly adapted from Riggle (2009: Fig. 3),
is reproduced in Fig. 3. The reader is encouraged to consult Riggle (2009)
for additional exposition.

Figure 3
Syllable grammar. State A represents the start of a syllable. State C

represents the moment after the nucleus has been written to the output.
State B represents the moment after an onset consonant has been written to
the output, whether it was in the input or epenthesised. State D represents

the moment after a postvocalic consonant has been read from the input,
whether it was written to the output or deleted. Only state A is a final state,

and this is why the links from C and D to A contain the end-of-syllable
symbol .. Thus, an onsetless syllable [V.] is generated by the path

A£C£A, while a [CV.] syllable is generated by the path A£B£C£A.

e:./noc

X:e/max

e:C/dpc

C:C/0

X:e/max
e:V/{ons, dpv}

V:V/ons

e:./0X:e/max

X:e/max

e:C/dpc C:C/0

V:V/0
e:V/dpv

In fact, Eisner points out that most useful formulations for weighted
FSTs have a common, abstract character: the weights of paths obey the
axioms of a closed semi-ring. A closed semi-ring (K, ò, fl, *) is a mathe-
matical structure which is a slight generalisation of the natural numbers:
it consists of a set K with an ‘addition’ operation ò (associative, commutative,
identity element 0), a ‘multiplication’ operation (associative, distributes
over ò from the right and the left, identity element 1), and ‘closure’ for
infinite loops (k+”def ò‚ ki). Eisner (2002) states: ‘ordinary probabilities
fall in the semi-ring (Z≥0, +, ú, *)’.

In Riggle’s (2009) formulation, the symbols 0, max, dpv, dpc, ons and noc
are treated as unit vectors, so that the violation vector for a path may be
accumulated as the sum the unit violation vectors encountered along the
path. (Technically, Riggle construes violations as belonging to a multiset
with a semi-ring structure, but for the present purposes these are the
equivalent.) Given that multiple paths may generate the same input–output
pair, but with possibly di‰erent violation vectors, one should also define
how to calculate the violation vector for an input–output pair. From a total
ranking over constraints, Riggle defines this as the violation profile of the
path which has the minimum number of violations over the highest-ranked
constraint on which there is a di‰erence. Riggle refers to this formulation
as a ‘violation semi-ring’, and points to its similarities with the tropical
semi-ring over the real numbers.

Eisner’s expectation semi-ring combines both probabilities and violation
vectors. In Eisner’s own words:

Abstractly, let us say that each path p has not only a probability P(p)Œ[0,
1] but also a value val(p) in a vector space V, which counts the arcs,
features or coin flips encountered along path p. The value of a path is the
sum of the values assigned to its arcs... The idea is to augment the weight
data structure with expectation information, so each weight records a
probability and a vector counting the parameters that contributed to that
probability.

Eisner proceeds to define the V-expectation semi-ring (Z≥0XV, ò, fl, *)
as follows:

(p1, v1)‡(p2, v2) ”def (p1p2, p1v2+v1p2)
(p1, v1)‡(p2, v2) ”def (p1+p2, v1+v2)
if p* defined, (p, v)* ”def (p*, p*vp*)

He elaborates:
If an arc has probability p and value p, we give it the weight (p, pv) so
that our invariant (see above) holds if [the pathset] # consists of a single
length-0 or length-1 path. The above definitions are designed to preserve
our invariant as we build up larger paths and pathsets. fl lets us concatenate
(e.g.) simple paths p1, p2 to get a longer path p with P(p)=(p1)P(p2) and
val(p)=val(p1)+val(p2). The definition of fl guarantees [the invariant]
that path p’s weight will be (P(p), P(p)·val(p)). ò lets us take the union
of two disjoint pathsets, and * computes infinite unions.

Now that the expectation semi-ring has been explained, we are in position
to consider its application to maxent HG grammars. As stated in Hayes &
Wilson (2008: 389):

the properties of a very large set of strings can be computed by representing
the set as a finite state machine. We construct our machines by first
representing each constraint as a weighted finite state acceptor. Using
intersection …, we then combine the constraints into a single machine
that embodies the full grammar … Each path through this machine
corresponds to a phonological representation together with its vector of
constraint violations. We then obtain the E[Ci] values by summing over
all paths through the machine …

Theorem 3 is concerned with whether the FST associated with a maxent
phonotactic grammar has well-defined expectations, or in other words,
whether it has a finite partition function. It does this by explicitly constructing
a matrix which sums over the well-formedness values of every path
through the FST. In order to understand this, it is first necessary to
understand how matrix multiplication can represent accumulation over
paths through a matrix, and how the principal eigenvalue reflects important
aspects of the limit behaviour.

Technically, a directed graph G consists of some nodes (indexed 1 to n),
and directed edges which point from a node j to some node i. The adjacency
matrix (Aij) associated with G is an nXn matrix in which:

Aij=
1 there is an edge from j to i
0 otherwise

Clearly (A1)ij indicates the number of paths of length 1 from node j to node
i. It turns out that something much more general is true: (Am)ij indicates
the number of paths of length m from node j to node i. To see this, consider
the (i, j) entry of Am+1. Since Am+1=Am·A, (Am+1)ij must be the dot product
of the ith row of Am and the jth column of A: (Am+1)ij=%„(Am)ik·Akj.
The value (Am)ik indicates the number of paths of length exactly m from
k to i, and Akj indicates the number of paths of length exactly 1 from j to
k. Thus, (Am)ik·Akj indicates the number of paths of length m+1 that begin
at j and end at i, passing through k as the first step. Since every path from
j to i must pass through some first step, the total number of paths of length
m+1 is given by their sum across k. Therefore, (Am+1)ij indicates the total
number of paths of length m+1 from node j to node i. In this case, matrix
multiplication represents the ‘accumulation’ of the number of paths. The
principal eigenvalue represents the (limit of the) ratio by which the number
of paths grows as the path length is increased. In fully connected graphs,
this value will be n (the number of nodes); in acyclic graphs (where it is not
possible to return to any state i once it has been visited), the principal
eigenvalue of the adjacency matrix is 0.

Theorem 3: Let (Pij) be the penalty matrix for a maxent phonotactic
grammar G=(S+, C⋲, wƒ) and its associated FST G¢=(S, Q, q0, F, E, r). G
has a finite partition function if and only if the principal eigenvalue of P
has a magnitude of 1 or less.

Proof: The proof goes in two steps. The first is to show that every accepted
string corresponds to a path beginning at q1 and being ‘absorbed’ in qn+1.
The second is to show that (Pm)ij indicates the well-formedness value of all
paths of length exactly m that begin at state j and end at state i (so that the
well-formedness of all paths will ‘accumulate’ in qn+1). It follows from this
that Z=limm√¥(Pm)(n+1)(n+1), which is finite if and only if the principal
eigenvalue has magnitude 1 or less.

Step 1: The definition of FST gives that every path begins in the start
state q1, and ends in one of a set of final states qjŒF. Then, the requirement
that P(n+1)j=dij amounts to adding a cost-free transition to the extra state
n+1, but only from pre-existing finals. The requirement that P(n+1)(n+1)=1
means that every string path which enters this state stays there without
penalty. (The cost-free self-link is necessary to preserve the well-formedness
so that it can be counted in the limit, rather than allowing it to vanish after
the path is accepted.) Since every string that is accepted by the FST must
begin at the start state and end at a final state, every terminating path of
length m®1 through the FST is counted by the matrix entry (Pm)(n+1)1
(and all subsequent values of m).

Step 2: Suppose that the violation vector e √ik is incurred by traversing a
single path from qk to qi, and e√kj is incurred by traversing a single path from
qj to qk. Then the well-formedness value associated with the k£i arc is
F(w ƒ·e√ik) = ew ƒ·e √ik, and the well-formedness value associated with the j to k
arc is F(wƒ·e √kj)=ewƒ·e√kj. Their product is F(w ƒ·e√ik)·F(w ƒ·e √kj) = ew ƒ·e√ik·ew ƒ·e√kj =
ew ƒ·e √ik+wƒ·e√kj = ewƒ·(e √ik+e√kj) = F(wƒ·(e√ik+e√kj)). In other words, the penalty is the
same whether the violations are added up and assessed all at once, or assessed
one by one. This is the same kind of ‘invariant’ as Eisner (2002) refers to.
Now, it is already true by construction that (P1)i j represents the penalty
to a string incurred by transitioning from state j to state i in exactly 1 step.
Now suppose that (Pm)ij represents the penalty incurred by transitioning
from state j to state i in exactly m steps. Then (Pm+1)ij=%„(Pm)ik·(Pkj).
Then the well-formedness of all paths of exactly length m+1 is decomposed
just as with the adjacency matrix counting paths above.

It follows from these that the value (Pm)(n+1)1 represents the sum of the
well-formedness values of all accepted strings of length m®1 or less. Since
the partition function is defined as the sum of the well-formedness values
of all terminating strings, it follows that Z=limm√¥(Pm+1)(n+1)1. Since all
of the well-formedness must eventually accumulate in this cell for finite
strings, it follows that Z is finite if and only if the principal eigenvalue of
P has magnitude less than 1.

Pij=

F(wƒ·c √i j) there is an edge from qj to qi
1 i=n+1 and qjŒF, i.e. j is final
1 i=n+1 and j=n+1
0 otherwise

The second and third rows of this definition are equivalent to adding a final
final state qn+1 and requiring all final states to have a cost-free transition to
the final final state, so that all well-formedness will accumulate in qn+1.

Robert Daland
University of California, Los Angeles

Phonology 25.2: Artwork 1 of

Dep(C)
Max

Dep(V)
Dep(C)

Dep(V)Max

Supplementary materials 32 Robert Daland 4 Robert Daland
Phonology 32 (2015). Supplementary materials

Supplementary materials 5 6 Robert Daland Supplementary materials 7

Long words in maximum entropy
phonotactic grammars

8 Robert Daland 10 Robert DalandSupplementary materials 9 Supplementary materials 11 12 Robert Daland

These supplementary materials introduce three theorems which formalise
the central contributions of this paper. The general purpose of the theorems
is discussed in the paper for the lay linguist. This introduction briefly
describes the theorems for more mathematically inclined readers.

In linguistic terms, Theorem 1 demonstrates that every phonotactic
grammar can be represented by a score function mapping strings to the
non-positive integers. Here, to be ‘represented’ has the technical meaning
that if the grammar distinguishes string x as strictly less well-formed than
x, then x is mapped to a smaller (more negative) integer (whereas if they
are not di‰erent in well-formedness, they are mapped to the same integer).
The proof critically relies on the property that there cannot be an infinite
sequence of strings in which well-formedness increases. The proof uses
the notions of equivalence relation and their corresponding equivalence
classes, which may be unfamiliar to many linguists; otherwise, it largely
consists of showing that various ordering properties are preserved by
relevant mappings.

Theorem 2 gives sufficient conditions for a maxent phonotactic grammar
to have a finite partition function. This in turn means that it assigns a well-
defined probability distribution over all possible strings. (If the partition
function is not finite, string probabilities are undefined.) The proof draws
on the theory of geometric series, the laws of exponentiation/logarithms
and basic facts about cardinality/counting, but should be accessible to most
mathematically inclined linguists.

The final background material is Eisner’s (2002) notion of an expectation
semi-ring.

In natural-language processing applications – where FSTs are most
widely used – it is typical to annotate arcs with weights, expressed in either
the probability or log-probability domain. For example, the CV grammar
in Figure 3 could be expressed as a probabilistic FST by assigning the
symbol 0 a pseudo-probability of 1, while max, dpv, dpc, ons and noc would
be assigned pseudo-probabilities less than 1. Pseudo-probabilities would
then be normalised by requiring that the probability of leaving a non-final
state must sum to 1. The probability of a path is defined as the product of
the probabilities of traversing all the arcs in the path, and the probability
of an input–output pair is the sum over the probabilities of all distinct paths
that generate the pair.

1 Theorem 1

While Theorem 2 gives su!cient conditions for a finite partition function,
Theorem 3 gives necessary conditions. The starting point is previous
research from formal language theory demonstrating how constraint-based
mappings that instantiate regular relations can be represented by (weighted)
finite-state automata. This means that maxent HG grammars can be given
a convenient graphical representation. Next, the proof draws on the notion
of expectation semi-ring, formalised in Eisner (2002), which associates a
probability and a violation vector with each node. Finally, the paper draws
on the tight coupling between weighted graphs and matrices to derive a
penalty matrix P, where the entry Pij represents the change in well-
formedness incurred by transitioning from node j to node i of the finite-
state automaton, expres sed as a multiplicative factor. If the princi pal
eigenvalue of this matrix has a magnitude greater than 1, then the partition
function is not finite.

Definition: A relation ı on a set X is a prewellordering if and only if
ı is total

– Ax, yŒX, x ı y or y ı x
– ‘every pair of strings is comparable’

ı is transitive
– Ax, zŒX, x ı y and y ı z implies x ı z
– e.g. if [lb] is worse then [bn], and [bn] is worse than [bl], then [lb]

is worse than [bl]
X is wellordered by ı

– ASàX, S≠.£EsmaxŒS˜AsŒS, s ı smax
– ‘every non-empty subset of X has a maximal element’
– in other words, there cannot be an infinite sequence of strings that

increase in well-formedness (though an infinite decreasing sequence
is allowed)

(Note that this inverts the normal direction for wellordering; it is more
typical to require a minimal element, but the formulations are completely
analogous.)

Definition: A score function f for a set X is a map from elements of X
to a totally ordered space (K, <K). A score function f represents the prewell-
ordering ı on X if

Ax, yŒX, x ı y and y ı x implies f(x)=f(y)
– ‘equally well-formed strings are assigned equal scores’

Ax, yŒX, x ¯ y implies f(x) <K f(y)
– if string x is strictly less well-formed than y, x is assigned a strictly

lower score than y

Another example in which the principal eigenvalue reflects ‘accumulation’
or ‘flow’ of some value across a graph is in Markov chains. A Markov chain
consists of an initial distribution over states and a transition matrix (Tij),
in which the value Tij indicates the probability of visiting state i next, given
that the current state is j. Since probabilities must be non-negative and
sum to 1, this enforces the condition that the sum over each column of T
must be 1. Very similarly to the adjacency matrix, (Tm)ij indicates the
probability of ending in state i after m steps, given that one started in state
j. The principal eigenvalue of the Markov chain always has the value 1,
indicating that there is a constant ‘amount’ of probability which simply
flows across the graph. Markov chains are very well-studied; for a more
thorough treatment the reader is directed to Grimstead & Snell (1997:
ch. 11).

In the present case, we wish to determine whether a given maxent HG
grammar has a finite partition function. The first step is to translate the
grammar into a weighted FST with a violation semi-ring, as in the work
of Riggle and Eisner. The next step it to use matrix multiplication to
characterise the ‘accumulation’ of well-formedness values of paths through
the FST, using a penalty matrix. It follows that the partition function is
finite if and only if the principal eigenvalue of this matrix has a magnitude
of 1 or less.

Definition: Let G=(S+, C⋲, wƒ) be a maxent phonotactic grammar, and
G¢=(S, Q, q0, F, E, r) be the associated weighted FST over V, where

– S is the output alphabet
– Q is the set of states
– q1ŒQ is the unique start state
– FàQ is the set of final states
– Eà(QXSXVXQ) is a finite set of transitions, each signifying the

traversal from a state qj to a state qi after encountering an output
symbol s, and having a violation vector c √i j indicating the constraints
that are violated in this transition

Let the states in G¢ be indexed {qi}‰, and the constraints in G be indexed
{Ck}Á. Then define an (n+1)X(n+1) penalty matrix P as follows:

Theorem 1: Let S be an alphabet, and S+ the set of finite strings over S.
Every prewellordering ıßΩ over S+ can be represented by a score function
f : S*£(Ä—, <) where Ä— is the non-positive integers and < is the normal
order on integers.

Proof: Given the prewellordering ıßΩ, define the relation ~ by x ~ y if
and only if x ıßΩ y and y ıßΩ x (the ‘equality relation’). Symmetry follows
from the definition of ~, while transitivity and reflexivity follow from the
transitivity and reflexivity of prewellorders; thus ~ is an equivalence relation.
Let K denote the set of equivalence classes of ~, and f~ the map from
elements of X (strings) to their equivalence class, f~(x)=[x]. Because S+
is countable, K must be countable. Claim: ıßΩ induces a total strict well-
ordering on K. Define [x] <K [y] if and only if EwŒ[x], zŒ[y] such that
w ıßΩ z but [x]≠[y]. Totality, transitivity, strictness and antisymmetry
follow, so <K is a strict total order. Wellordering follows from the well-
ordering of ıßΩ, so (K, <K) is totally strictly wellordered.

Now the task is to construct a map from (K, <K) to the non-positive
integers. Proceed by induction. Base case: By wellordering, there must
exist a value k0ŒK that is maximal according to <K. Then define f(k0)=0.
Induction step: Now suppose there is a sequence of values {ki}‰ such that
f(ki)=—i Ai, (0{i{n). Let Kn+1=K \ {ki}‰. Since Kn+1 is a subset of K,
by wellordering it has a maximal element kn+1. Then define f(kn+1)=…(n+1).
This completes the induction step.

Since K is countable, f must be well-defined for every kŒK, and
f : K£Ä—. Evidently, kx <K ky implies f(kx) < f(ky) Akx, kyŒK by con-
struction. It is also easy to show that f(kx) < f(ky) implies kx <K ky for all
kx, kyŒK. Observe that f(kx) < f(ky) implies that Kx is a proper subset of
Ky. Since the maximal element ky of Ky was removed to construct Kx, it
follows that k <K ky AkŒKx. Since kxŒKx, it follows that kx <K ky. In
short, f preserves all and only the order di‰erences of <K.

Two maps have been defined: f~ : S+£K maps every string to a well-
formedness equivalence class, and f : K£Ä— maps each well-formedness
equivalence class to a non-positive integer score. Then their composition
f(x)=f(f~(x)) maps every string to a non-positive score, f~ : S+£Ä— with
the following properties:

Ax, yŒS+, x ıßΩ y and y ıßΩ x›f(x)=f(y)
Ax, yŒS+, x ¯ßΩ y›f(x) < f(y)

In other words, f represents the prewellordering ıßΩ using the non-negative
integers.

2 Theorem 2
Definition: A harmonic grammar is a tuple G=(X, Y, R, C ⋲, wƒ) where

– X is a set of lexical representations
– Y is a set of surface representations
– RàXXY indicates the set of possible surface representations that a

given lexical representation can map to, called the candidates: candi-
dates(x)={yŒY|xRy}

– C ⋲ is a finite set of constraint functions C⋲={Ck}Á, where each
constraint function assigns a non-negative integer violation count to
lexical-surface pairs, Ak, Ck : R£Ä

– wƒ is a set of real-valued, non-positive weights wƒ={wk}Á, associated
with the constraints

The harmony of a lexical–surface pair HCƒ,wƒ
(x, y) is defined as the weighted

sum of the constraint violations, H(x, y)=%Á wk·Ck(x, y). Given some
xŒX, surface representation yŒcandidates(x) is a winner if and only if
E/ zŒcandidates(x), such that H(x, z) > H(x, y), in other words if y has the
greatest harmony value among the candidates of x. We write G(x)=y in
case y is a unique winner for x. Thus G denotes a mapping from X to Y
just in case every xŒX has a unique winner G(x)ŒY.

Definition: A maxent HG grammar is a harmonic grammar G=(X, Y, R,
C ⋲, wƒ) that is augmented with a well-formedness function F : R£Z+

defined by F(x, y)=eH(x,y) (the range of the exponentiation is the non-
negative reals Z+). The partition function associated with a lexical
representation x, Z : X£Z+ U{≥} is defined as the sum of the well-
formedness values of all of x’s candidates, Z(x)=%xRy F(x, y). In case the
partition function is finite for a given x, G defines the conditional probability
distribution Pr(y|x)=F(x, y)/Z(x).

Definition: A maxent phonotactic grammar over S+ is a maxent HG
grammar G=(X, Y, R, C ⋲, wƒ) in which X is a singleton set {w}, Y=S+
where S+ is the set of finite strings over some alphabet S, and wRy AyŒS+.
Since X and R are trivial, it is convenient to omit them from the notation:
G=(S+, C⋲, wƒ), H(y)=Á wk·Ck(y), etc.

Definiti on: Define the *Struct const raint *Struct : S+£Ä by
*Struct(s)=k if and only if sŒSk. In other words, the number of *Struct
violations that a string s incurs is simply the length of s.

Theorem 2: Let G=(S+, C ⋲, wƒ) be a maxent phonotactic grammar. If the
const raint set C⋲ includ es a *Struct constrain t (i.e. Ei <k such that
Ci=*Struct) and w*Struct < —ln|S|, then the partition function Z of G is
finite.

Proof: The proof goes in two steps. The first step is to consider a maxent
phonotactic grammar G¢ over S+ whose constraint set includes only *Struct,
and prove that w*Struct < —ln|S| implies that Z¢ is finite. The second step
is to show that F¢(s) is an upper bound for F(s) for all sŒS*, so Z¢ is an
upper bound for Z. Finitude of Z follows from finitude of Z¢.

Part 1: Given G=(S+, C ⋲, w ƒ), define the maxent phonotactic grammar
G¢ over S+ to have the sole constraint C ⋲={*Struct} with weight w; the
corresponding harmony and well-formedness functions are denoted H¢ and
F¢. We will abuse notation by defining F¢(X)=%SÊX F¢(s), i.e. extending
the definition of the well-formedness function so that it measures sets of
strings (rather than merely evaluating individual strings). The goal is to
compute Z¢ by partitioning S+ by the length of its strings. Let us begin by
considering the value F¢(Sk) for an arbitrary k. By definition, sŒSk implies
*Struct(s) = k, so that H¢(s) = w·*Struct(s) = w·k and F¢(s) = eH¢(ß) =
ew·k = (ew)k. The number of strings in Sk is |S|k, and each such string s has
a constant well-formedness value, F¢(s)=(ew)k. Then the total F¢(Sk) can
be expressed as the product, F¢(Sk)=|Sk|·(ew)k=(|S|·ew)k. Now it is possible
to express Z¢ as the sum over the partition by length (S+=S0US1US2U…):

F¢(S+)=%ÂF¢(Sk)
=%Â(|S|·ew)k

This latter is instantly recognisable as an infinite series with common ratio
r=|S|·ew. The theory of infinite series indicates that this value is finite
(and well-defined) if and only if |r| < 1. Since |S| and ew are positive, this
reduces to the inequality |S|·ew < 1, or ew < |S|—1. The natural logarithm
is an increasing function, which can be applied to both sides to preserve
the inequality, yielding w < —ln|S|.

Part 2: We begin by showing that AsŒS*, H(s) ≤ H¢(s). Without loss
of generality, reassign indices so that H(s)=w·*Struct(s) + %Ê· Ck(s)
and recall that H¢(s)=w·*Struct(s). Then H (s)®H¢(s)=%Ê wk·Ck(s)
for all s. Now since wk ≤ 0 Ak and Ck ≥ 0 Ak, it follows that wk·Ck(s) ≤ 0
Ak, and therefore the sum must be non-positive as well, i.e. H(s)®H¢(s)
≤ 0 AsŒS*. But this means that H¢ (s) is an upper bound for H(s) for every
s. And since exponentiation is an increasing function, this implies that F¢(s)
is an upper bound for F(s) for all s. And since Z¢ is the sum of F¢ values,
while Z is the sum of F values, this means that Z¢ is an upper bound for Z.
Thus, if Z¢ is finite, Z must be as well. This completes the proof.

3 Theorem 3
Riggle (2009) gives a technical but well-exemplified presentation of finite-
state Optimality Theory. The essence of this approach is to model constraints
as (possibly weighted) finite-state transducers. In order to understand
Theorem 3, it is necessary to understand how maxent phonotactic grammars
are implemented as finite-state transducers, and in order to understand
this, it is first necessary to understand a little about finite-state transducers.

Intuitively, a finite-state transducer (FST) is a computational device
which accepts one ‘input’ string and converts it to another ‘output’ string.
Finite-state machines are conventionally represented as directed graphs.
The nodes of the graph represent ‘states’ of the machine. Arcs represent
the transition from one state to another; normally, this is associated with
reading one symbol from the input string, and writing one symbol to the
output string. The particular mapping that an arc represents is indicated
with a label on the arc; the label x:y indicates that the arc transduces input
symbol x into output symbol y. The ‘start’ and ‘final’ nodes of the graph
are graphically indicated by one or more conventions. Here I use the
convention that the start state is indicated by an arrow from nowhere
pointing to the start node, while the end state is indicated by a double circle.
Figure 1 gives a finite-state transducer that implements an intervocalic
voicing rule. The FST in Figure 1 only accepts the input sequence /apa/,
and if it is presented with that input sequence, it yields the output sequence
[aba]. Traversing a single arc in the graph represents reading/writing one
symbol, so that the nodes/states of the graph represent the amount of the
input string that has been read. It is possible for there to be multiple arcs
emanating from or leading to a state. For example, the FST in Fig. 1 could
be augmented with an additional arc ‘b:b’ pointing from node 2 to node 3;
the modified FST would then implement two mappings, /apa/£[aba] and
/aba/£[aba].

Riggle (2009) uses simple weighted finite-state transducers to represent
individual constraints. A grammar can then be represented using an operation
known as ‘intersection’. Figure 2, which is slightly adapted from Riggle
(2009: Fig. 1), illustrates three faithfulness constraints and their intersection.
Each transition x:y is followed by a value indicating the amount or type of
violation that is incurred. For example, when an input symbol maps to
itself – symbolised by X:X - no faithfulness violation is incurred, and this
is symbolised by 0. The symbol e is a special symbol indicating the empty
string. Thus when an empty input is mapped to a V, the grammar should
record a Dep(V) violation in some way. Similarly, when a non-empty input
symbol is mapped to an empty output, the input symbol has been deleted,
and the grammar should record a Max violation. The intersection of the
three simple FSTs in Fig. 2 is represented in the rightmost FST. In that
FST, any alteration to the input is penalised except for transducing an
empty input into a syllable boundary (the . symbol).

Figure 2
Simple weighted FSTs representing Max, Dep(V)

and Dep(C), and their intersection

e:./0

X:X/0

X:e/max

e:V/dpv

e:C/dpc

e:./0

X:X/0

X:e/0

e:V/0

e:C/dpc

e:./0

X:X/0

X:e/0

e:C/0

e:V/dpv

e:./0

X:X/0

X:e/max

e:X/0

Riggle further illustrates by generating the FST for a full CV grammar,
containing the hard constraint ((C)V(C).)*, as well as the violable constraints
Onset (ons) and NoCoda (noc), and the three faithfulness constraints from
before. The full CV grammar, slightly adapted from Riggle (2009: Fig. 3),
is reproduced in Fig. 3. The reader is encouraged to consult Riggle (2009)
for additional exposition.

Figure 3
Syllable grammar. State A represents the start of a syllable. State C

represents the moment after the nucleus has been written to the output.
State B represents the moment after an onset consonant has been written to
the output, whether it was in the input or epenthesised. State D represents

the moment after a postvocalic consonant has been read from the input,
whether it was written to the output or deleted. Only state A is a final state,

and this is why the links from C and D to A contain the end-of-syllable
symbol .. Thus, an onsetless syllable [V.] is generated by the path

A£C£A, while a [CV.] syllable is generated by the path A£B£C£A.

e:./noc

X:e/max

e:C/dpc

C:C/0

X:e/max
e:V/{ons, dpv}

V:V/ons

e:./0X:e/max

X:e/max

e:C/dpc C:C/0

V:V/0
e:V/dpv

In fact, Eisner points out that most useful formulations for weighted
FSTs have a common, abstract character: the weights of paths obey the
axioms of a closed semi-ring. A closed semi-ring (K, ò, fl, *) is a mathe-
matical structure which is a slight generalisation of the natural numbers:
it consists of a set K with an ‘addition’ operation ò (associative, commutative,
identity element 0), a ‘multiplication’ operation (associative, distributes
over ò from the right and the left, identity element 1), and ‘closure’ for
infinite loops (k+”def ò‚ ki). Eisner (2002) states: ‘ordinary probabilities
fall in the semi-ring (Z≥0, +, ú, *)’.

In Riggle’s (2009) formulation, the symbols 0, max, dpv, dpc, ons and noc
are treated as unit vectors, so that the violation vector for a path may be
accumulated as the sum the unit violation vectors encountered along the
path. (Technically, Riggle construes violations as belonging to a multiset
with a semi-ring structure, but for the present purposes these are the
equivalent.) Given that multiple paths may generate the same input–output
pair, but with possibly di‰erent violation vectors, one should also define
how to calculate the violation vector for an input–output pair. From a total
ranking over constraints, Riggle defines this as the violation profile of the
path which has the minimum number of violations over the highest-ranked
constraint on which there is a di‰erence. Riggle refers to this formulation
as a ‘violation semi-ring’, and points to its similarities with the tropical
semi-ring over the real numbers.

Eisner’s expectation semi-ring combines both probabilities and violation
vectors. In Eisner’s own words:

Abstractly, let us say that each path p has not only a probability P(p)Œ[0,
1] but also a value val(p) in a vector space V, which counts the arcs,
features or coin flips encountered along path p. The value of a path is the
sum of the values assigned to its arcs... The idea is to augment the weight
data structure with expectation information, so each weight records a
probability and a vector counting the parameters that contributed to that
probability.

Eisner proceeds to define the V-expectation semi-ring (Z≥0XV, ò, fl, *)
as follows:

(p1, v1)‡(p2, v2) ”def (p1p2, p1v2+v1p2)
(p1, v1)‡(p2, v2) ”def (p1+p2, v1+v2)
if p* defined, (p, v)* ”def (p*, p*vp*)

He elaborates:
If an arc has probability p and value p, we give it the weight (p, pv) so
that our invariant (see above) holds if [the pathset] # consists of a single
length-0 or length-1 path. The above definitions are designed to preserve
our invariant as we build up larger paths and pathsets. fl lets us concatenate
(e.g.) simple paths p1, p2 to get a longer path p with P(p)=(p1)P(p2) and
val(p)=val(p1)+val(p2). The definition of fl guarantees [the invariant]
that path p’s weight will be (P(p), P(p)·val(p)). ò lets us take the union
of two disjoint pathsets, and * computes infinite unions.

Now that the expectation semi-ring has been explained, we are in position
to consider its application to maxent HG grammars. As stated in Hayes &
Wilson (2008: 389):

the properties of a very large set of strings can be computed by representing
the set as a finite state machine. We construct our machines by first
representing each constraint as a weighted finite state acceptor. Using
intersection …, we then combine the constraints into a single machine
that embodies the full grammar … Each path through this machine
corresponds to a phonological representation together with its vector of
constraint violations. We then obtain the E[Ci] values by summing over
all paths through the machine …

Theorem 3 is concerned with whether the FST associated with a maxent
phonotactic grammar has well-defined expectations, or in other words,
whether it has a finite partition function. It does this by explicitly constructing
a matrix which sums over the well-formedness values of every path
through the FST. In order to understand this, it is first necessary to
understand how matrix multiplication can represent accumulation over
paths through a matrix, and how the principal eigenvalue reflects important
aspects of the limit behaviour.

Technically, a directed graph G consists of some nodes (indexed 1 to n),
and directed edges which point from a node j to some node i. The adjacency
matrix (Aij) associated with G is an nXn matrix in which:

Aij=
1 there is an edge from j to i
0 otherwise

Clearly (A1)ij indicates the number of paths of length 1 from node j to node
i. It turns out that something much more general is true: (Am)ij indicates
the number of paths of length m from node j to node i. To see this, consider
the (i, j) entry of Am+1. Since Am+1=Am·A, (Am+1)ij must be the dot product
of the ith row of Am and the jth column of A: (Am+1)ij=%„(Am)ik·Akj.
The value (Am)ik indicates the number of paths of length exactly m from
k to i, and Akj indicates the number of paths of length exactly 1 from j to
k. Thus, (Am)ik·Akj indicates the number of paths of length m+1 that begin
at j and end at i, passing through k as the first step. Since every path from
j to i must pass through some first step, the total number of paths of length
m+1 is given by their sum across k. Therefore, (Am+1)ij indicates the total
number of paths of length m+1 from node j to node i. In this case, matrix
multiplication represents the ‘accumulation’ of the number of paths. The
principal eigenvalue represents the (limit of the) ratio by which the number
of paths grows as the path length is increased. In fully connected graphs,
this value will be n (the number of nodes); in acyclic graphs (where it is not
possible to return to any state i once it has been visited), the principal
eigenvalue of the adjacency matrix is 0.

Theorem 3: Let (Pij) be the penalty matrix for a maxent phonotactic
grammar G=(S+, C⋲, w ƒ) and its associated FST G¢=(S, Q, q0, F, E, r). G
has a finite partition function if and only if the principal eigenvalue of P
has a magnitude of 1 or less.

Proof: The proof goes in two steps. The first is to show that every accepted
string corresponds to a path beginning at q1 and being ‘absorbed’ in qn+1.
The second is to show that (Pm)ij indicates the well-formedness value of all
paths of length exactly m that begin at state j and end at state i (so that the
well-formedness of all paths will ‘accumulate’ in qn+1). It follows from this
that Z=limm√¥(Pm)(n+1)(n+1), which is finite if and only if the principal
eigenvalue has magnitude 1 or less.

Step 1: The definition of FST gives that every path begins in the start
state q1, and ends in one of a set of final states qjŒF. Then, the requirement
that P(n+1)j=dij amounts to adding a cost-free transition to the extra state
n+1, but only from pre-existing finals. The requirement that P(n+1)(n+1)=1
means that every string path which enters this state stays there without
penalty. (The cost-free self-link is necessary to preserve the well-formedness
so that it can be counted in the limit, rather than allowing it to vanish after
the path is accepted.) Since every string that is accepted by the FST must
begin at the start state and end at a final state, every terminating path of
length m®1 through the FST is counted by the matrix entry (Pm)(n+1)1
(and all subsequent values of m).

Step 2: Suppose that the violation vector e√ik is incurred by traversing a
single path from qk to qi, and e√kj is incurred by traversing a single path from
qj to qk. Then the well-formedness value associated with the k£i arc is
F(w ƒ·e √ik) = ew ƒ·e√ik, and the well-formedness value associated with the j to k
arc is F(wƒ·e√kj)=ewƒ·e√kj. Their product is F(wƒ·e√ik)·F(wƒ·e√kj) = ew ƒ·e √ik·ew ƒ·e √kj =
ew ƒ·e√ik+wƒ·e √kj = ew ƒ·(e√ik+e√kj) = F(w ƒ·(e √ik+e√kj)). In other words, the penalty is the
same whether the violations are added up and assessed all at once, or assessed
one by one. This is the same kind of ‘invariant’ as Eisner (2002) refers to.
Now, it is already true by construction that (P1)i j represents the penalty
to a string incurred by transitioning from state j to state i in exactly 1 step.
Now suppose that (Pm)ij represents the penalty incurred by transitioning
from state j to state i in exactly m steps. Then (Pm+1)ij=%„(Pm)ik·(Pkj).
Then the well-formedness of all paths of exactly length m+1 is decomposed
just as with the adjacency matrix counting paths above.

It follows from these that the value (Pm)(n+1)1 represents the sum of the
well-formedness values of all accepted strings of length m®1 or less. Since
the partition function is defined as the sum of the well-formedness values
of all terminating strings, it follows that Z=limm√¥(Pm+1)(n+1)1. Since all
of the well-formedness must eventually accumulate in this cell for finite
strings, it follows that Z is finite if and only if the principal eigenvalue of
P has magnitude less than 1.

Pij=

F(w ƒ·c√i j) there is an edge from qj to qi
1 i=n+1 and qjŒF, i.e. j is final
1 i=n+1 and j=n+1
0 otherwise

The second and third rows of this definition are equivalent to adding a final
final state qn+1 and requiring all final states to have a cost-free transition to
the final final state, so that all well-formedness will accumulate in qn+1.

Robert Daland
University of California, Los Angeles

Phonology 25.2: Artwork 1 of

Dep(C)
Max

Dep(V)
Dep(C)

Dep(V)Max

Supplementary materials 32 Robert Daland 4 Robert Daland
Phonology 32 (2015). Supplementary materials

Supplementary materials 5 6 Robert Daland Supplementary materials 7

Long words in maximum entropy
phonotactic grammars

8 Robert Daland 10 Robert DalandSupplementary materials 9 Supplementary materials 11 12 Robert Daland

These supplementary materials introduce three theorems which formalise
the central contributions of this paper. The general purpose of the theorems
is discussed in the paper for the lay linguist. This introduction briefly
describes the theorems for more mathematically inclined readers.

In linguistic terms, Theorem 1 demonstrates that every phonotactic
grammar can be represented by a score function mapping strings to the
non-positive integers. Here, to be ‘represented’ has the technical meaning
that if the grammar distinguishes string x as strictly less well-formed than
x, then x is mapped to a smaller (more negative) integer (whereas if they
are not di‰erent in well-formedness, they are mapped to the same integer).
The proof critically relies on the property that there cannot be an infinite
sequence of strings in which well-formedness increases. The proof uses
the notions of equivalence relation and their corresponding equivalence
classes, which may be unfamiliar to many linguists; otherwise, it largely
consists of showing that various ordering properties are preserved by
relevant mappings.

Theorem 2 gives sufficient conditions for a maxent phonotactic grammar
to have a finite partition function. This in turn means that it assigns a well-
defined probability distribution over all possible strings. (If the partition
function is not finite, string probabilities are undefined.) The proof draws
on the theory of geometric series, the laws of exponentiation/logarithms
and basic facts about cardinality/counting, but should be accessible to most
mathematically inclined linguists.

The final background material is Eisner’s (2002) notion of an expectation
semi-ring.

In natural-language processing applications – where FSTs are most
widely used – it is typical to annotate arcs with weights, expressed in either
the probability or log-probability domain. For example, the CV grammar
in Figure 3 could be expressed as a probabilistic FST by assigning the
symbol 0 a pseudo-probability of 1, while max, dpv, dpc, ons and noc would
be assigned pseudo-probabilities less than 1. Pseudo-probabilities would
then be normalised by requiring that the probability of leaving a non-final
state must sum to 1. The probability of a path is defined as the product of
the probabilities of traversing all the arcs in the path, and the probability
of an input–output pair is the sum over the probabilities of all distinct paths
that generate the pair.

1 Theorem 1

While Theorem 2 gives su!cient conditions for a finite partition function,
Theorem 3 gives necessary conditions. The starting point is previous
research from formal language theory demonstrating how constraint-based
mappings that instantiate regular relations can be represented by (weighted)
finite-state automata. This means that maxent HG grammars can be given
a convenient graphical representation. Next, the proof draws on the notion
of expectation semi-ring, formalised in Eisner (2002), which associates a
probability and a violation vector with each node. Finally, the paper draws
on the tight coupling between weighted graphs and matrices to derive a
penalty matrix P, where the entry Pij represents the change in well-
formedness incurred by transitioning from node j to node i of the finite-
state automaton, expres sed as a multiplicative factor. If the princi pal
eigenvalue of this matrix has a magnitude greater than 1, then the partition
function is not finite.

Definition: A relation ı on a set X is a prewellordering if and only if
ı is total

– Ax, yŒX, x ı y or y ı x
– ‘every pair of strings is comparable’

ı is transitive
– Ax, zŒX, x ı y and y ı z implies x ı z
– e.g. if [lb] is worse then [bn], and [bn] is worse than [bl], then [lb]

is worse than [bl]
X is wellordered by ı

– ASàX, S≠.£EsmaxŒS˜AsŒS, s ı smax
– ‘every non-empty subset of X has a maximal element’
– in other words, there cannot be an infinite sequence of strings that

increase in well-formedness (though an infinite decreasing sequence
is allowed)

(Note that this inverts the normal direction for wellordering; it is more
typical to require a minimal element, but the formulations are completely
analogous.)

Definition: A score function f for a set X is a map from elements of X
to a totally ordered space (K, <K). A score function f represents the prewell-
ordering ı on X if

Ax, yŒX, x ı y and y ı x implies f(x)=f(y)
– ‘equally well-formed strings are assigned equal scores’

Ax, yŒX, x ¯ y implies f(x) <K f(y)
– if string x is strictly less well-formed than y, x is assigned a strictly

lower score than y

Another example in which the principal eigenvalue reflects ‘accumulation’
or ‘flow’ of some value across a graph is in Markov chains. A Markov chain
consists of an initial distribution over states and a transition matrix (Tij),
in which the value Tij indicates the probability of visiting state i next, given
that the current state is j. Since probabilities must be non-negative and
sum to 1, this enforces the condition that the sum over each column of T
must be 1. Very similarly to the adjacency matrix, (Tm)ij indicates the
probability of ending in state i after m steps, given that one started in state
j. The principal eigenvalue of the Markov chain always has the value 1,
indicating that there is a constant ‘amount’ of probability which simply
flows across the graph. Markov chains are very well-studied; for a more
thorough treatment the reader is directed to Grimstead & Snell (1997:
ch. 11).

In the present case, we wish to determine whether a given maxent HG
grammar has a finite partition function. The first step is to translate the
grammar into a weighted FST with a violation semi-ring, as in the work
of Riggle and Eisner. The next step it to use matrix multiplication to
characterise the ‘accumulation’ of well-formedness values of paths through
the FST, using a penalty matrix. It follows that the partition function is
finite if and only if the principal eigenvalue of this matrix has a magnitude
of 1 or less.

Definition: Let G=(S+, C⋲, w ƒ) be a maxent phonotactic grammar, and
G¢=(S, Q, q0, F, E, r) be the associated weighted FST over V, where

– S is the output alphabet
– Q is the set of states
– q1ŒQ is the unique start state
– FàQ is the set of final states
– Eà(QXSXVXQ) is a finite set of transitions, each signifying the

traversal from a state qj to a state qi after encountering an output
symbol s, and having a violation vector c √i j indicating the constraints
that are violated in this transition

Let the states in G¢ be indexed {qi}‰, and the constraints in G be indexed
{Ck}Á. Then define an (n+1)X(n+1) penalty matrix P as follows:

Theorem 1: Let S be an alphabet, and S+ the set of finite strings over S.
Every prewellordering ıßΩ over S+ can be represented by a score function
f : S*£(Ä—, <) where Ä— is the non-positive integers and < is the normal
order on integers.

Proof: Given the prewellordering ıßΩ, define the relation ~ by x ~ y if
and only if x ıßΩ y and y ıßΩ x (the ‘equality relation’). Symmetry follows
from the definition of ~, while transitivity and reflexivity follow from the
transitivity and reflexivity of prewellorders; thus ~ is an equivalence relation.
Let K denote the set of equivalence classes of ~, and f~ the map from
elements of X (strings) to their equivalence class, f~(x)=[x]. Because S+
is countable, K must be countable. Claim: ıßΩ induces a total strict well-
ordering on K. Define [x] <K [y] if and only if EwŒ[x], zŒ[y] such that
w ıßΩ z but [x]≠[y]. Totality, transitivity, strictness and antisymmetry
follow, so <K is a strict total order. Wellordering follows from the well-
ordering of ıßΩ, so (K, <K) is totally strictly wellordered.

Now the task is to construct a map from (K, <K) to the non-positive
integers. Proceed by induction. Base case: By wellordering, there must
exist a value k0ŒK that is maximal according to <K. Then define f(k0)=0.
Induction step: Now suppose there is a sequence of values {ki}‰ such that
f(ki)=—i Ai, (0{i{n). Let Kn+1=K \ {ki}‰. Since Kn+1 is a subset of K,
by wellordering it has a maximal element kn+1. Then define f(kn+1)=…(n+1).
This completes the induction step.

Since K is countable, f must be well-defined for every kŒK, and
f : K£Ä—. Evidently, kx <K ky implies f(kx) < f(ky) Akx, kyŒK by con-
struction. It is also easy to show that f(kx) < f(ky) implies kx <K ky for all
kx, kyŒK. Observe that f(kx) < f(ky) implies that Kx is a proper subset of
Ky. Since the maximal element ky of Ky was removed to construct Kx, it
follows that k <K ky AkŒKx. Since kxŒKx, it follows that kx <K ky. In
short, f preserves all and only the order di‰erences of <K.

Two maps have been defined: f~ : S+£K maps every string to a well-
formedness equivalence class, and f : K£Ä— maps each well-formedness
equivalence class to a non-positive integer score. Then their composition
f(x)=f(f~(x)) maps every string to a non-positive score, f~ : S+£Ä— with
the following properties:

Ax, yŒS+, x ıßΩ y and y ıßΩ x›f(x)=f(y)
Ax, yŒS+, x ¯ßΩ y›f(x) < f(y)

In other words, f represents the prewellordering ıßΩ using the non-negative
integers.

2 Theorem 2
Definition: A harmonic grammar is a tuple G=(X, Y, R, C ⋲, wƒ) where

– X is a set of lexical representations
– Y is a set of surface representations
– RàXXY indicates the set of possible surface representations that a

given lexical representation can map to, called the candidates: candi-
dates(x)={yŒY|xRy}

– C ⋲ is a finite set of constraint functions C⋲={Ck}Á, where each
constraint function assigns a non-negative integer violation count to
lexical-surface pairs, Ak, Ck : R£Ä

– wƒ is a set of real-valued, non-positive weights wƒ={wk}Á, associated
with the constraints

The harmony of a lexical–surface pair HCƒ,wƒ
(x, y) is defined as the weighted

sum of the constraint violations, H(x, y)=%Á wk·Ck(x, y). Given some
xŒX, surface representation yŒcandidates(x) is a winner if and only if
E/ zŒcandidates(x), such that H(x, z) > H(x, y), in other words if y has the
greatest harmony value among the candidates of x. We write G(x)=y in
case y is a unique winner for x. Thus G denotes a mapping from X to Y
just in case every xŒX has a unique winner G(x)ŒY.

Definition: A maxent HG grammar is a harmonic grammar G=(X, Y, R,
C ⋲, wƒ) that is augmented with a well-formedness function F : R£Z+

defined by F(x, y)=eH(x,y) (the range of the exponentiation is the non-
negative reals Z+). The partition function associated with a lexical
representation x, Z : X£Z+ U{≥} is defined as the sum of the well-
formedness values of all of x’s candidates, Z(x)=%xRy F(x, y). In case the
partition function is finite for a given x, G defines the conditional probability
distribution Pr(y|x)=F(x, y)/Z(x).

Definition: A maxent phonotactic grammar over S+ is a maxent HG
grammar G=(X, Y, R, C ⋲, wƒ) in which X is a singleton set {w}, Y=S+
where S+ is the set of finite strings over some alphabet S, and wRy AyŒS+.
Since X and R are trivial, it is convenient to omit them from the notation:
G=(S+, C⋲, wƒ), H(y)=Á wk·Ck(y), etc.

Definiti on: Define the *Struct const raint *Struct : S+£Ä by
*Struct(s)=k if and only if sŒSk. In other words, the number of *Struct
violations that a string s incurs is simply the length of s.

Theorem 2: Let G=(S+, C ⋲, wƒ) be a maxent phonotactic grammar. If the
const raint set C⋲ includ es a *Struct constrain t (i.e. Ei <k such that
Ci=*Struct) and w*Struct < —ln|S|, then the partition function Z of G is
finite.

Proof: The proof goes in two steps. The first step is to consider a maxent
phonotactic grammar G¢ over S+ whose constraint set includes only *Struct,
and prove that w*Struct < —ln|S| implies that Z¢ is finite. The second step
is to show that F¢(s) is an upper bound for F(s) for all sŒS*, so Z¢ is an
upper bound for Z. Finitude of Z follows from finitude of Z¢.

Part 1: Given G=(S+, C ⋲, w ƒ), define the maxent phonotactic grammar
G¢ over S+ to have the sole constraint C ⋲={*Struct} with weight w; the
corresponding harmony and well-formedness functions are denoted H¢ and
F¢. We will abuse notation by defining F¢(X)=%SÊX F¢(s), i.e. extending
the definition of the well-formedness function so that it measures sets of
strings (rather than merely evaluating individual strings). The goal is to
compute Z¢ by partitioning S+ by the length of its strings. Let us begin by
considering the value F¢(Sk) for an arbitrary k. By definition, sŒSk implies
*Struct(s) = k, so that H¢(s) = w·*Struct(s) = w·k and F¢(s) = eH¢(ß) =
ew·k = (ew)k. The number of strings in Sk is |S|k, and each such string s has
a constant well-formedness value, F¢(s)=(ew)k. Then the total F¢(Sk) can
be expressed as the product, F¢(Sk)=|Sk|·(ew)k=(|S|·ew)k. Now it is possible
to express Z¢ as the sum over the partition by length (S+=S0US1US2U…):

F¢(S+)=%ÂF¢(Sk)
=%Â(|S|·ew)k

This latter is instantly recognisable as an infinite series with common ratio
r=|S|·ew. The theory of infinite series indicates that this value is finite
(and well-defined) if and only if |r| < 1. Since |S| and ew are positive, this
reduces to the inequality |S|·ew < 1, or ew < |S|—1. The natural logarithm
is an increasing function, which can be applied to both sides to preserve
the inequality, yielding w < —ln|S|.

Part 2: We begin by showing that AsŒS*, H(s) ≤ H¢(s). Without loss
of generality, reassign indices so that H(s)=w·*Struct(s) + %Ê· Ck(s)
and recall that H¢(s)=w·*Struct(s). Then H (s)®H¢(s)=%Ê wk·Ck(s)
for all s. Now since wk ≤ 0 Ak and Ck ≥ 0 Ak, it follows that wk·Ck(s) ≤ 0
Ak, and therefore the sum must be non-positive as well, i.e. H(s)®H¢(s)
≤ 0 AsŒS*. But this means that H¢ (s) is an upper bound for H(s) for every
s. And since exponentiation is an increasing function, this implies that F¢(s)
is an upper bound for F(s) for all s. And since Z¢ is the sum of F¢ values,
while Z is the sum of F values, this means that Z¢ is an upper bound for Z.
Thus, if Z¢ is finite, Z must be as well. This completes the proof.

3 Theorem 3
Riggle (2009) gives a technical but well-exemplified presentation of finite-
state Optimality Theory. The essence of this approach is to model constraints
as (possibly weighted) finite-state transducers. In order to understand
Theorem 3, it is necessary to understand how maxent phonotactic grammars
are implemented as finite-state transducers, and in order to understand
this, it is first necessary to understand a little about finite-state transducers.

Intuitively, a finite-state transducer (FST) is a computational device
which accepts one ‘input’ string and converts it to another ‘output’ string.
Finite-state machines are conventionally represented as directed graphs.
The nodes of the graph represent ‘states’ of the machine. Arcs represent
the transition from one state to another; normally, this is associated with
reading one symbol from the input string, and writing one symbol to the
output string. The particular mapping that an arc represents is indicated
with a label on the arc; the label x:y indicates that the arc transduces input
symbol x into output symbol y. The ‘start’ and ‘final’ nodes of the graph
are graphically indicated by one or more conventions. Here I use the
convention that the start state is indicated by an arrow from nowhere
pointing to the start node, while the end state is indicated by a double circle.
Figure 1 gives a finite-state transducer that implements an intervocalic
voicing rule. The FST in Figure 1 only accepts the input sequence /apa/,
and if it is presented with that input sequence, it yields the output sequence
[aba]. Traversing a single arc in the graph represents reading/writing one
symbol, so that the nodes/states of the graph represent the amount of the
input string that has been read. It is possible for there to be multiple arcs
emanating from or leading to a state. For example, the FST in Fig. 1 could
be augmented with an additional arc ‘b:b’ pointing from node 2 to node 3;
the modified FST would then implement two mappings, /apa/£[aba] and
/aba/£[aba].

Riggle (2009) uses simple weighted finite-state transducers to represent
individual constraints. A grammar can then be represented using an operation
known as ‘intersection’. Figure 2, which is slightly adapted from Riggle
(2009: Fig. 1), illustrates three faithfulness constraints and their intersection.
Each transition x:y is followed by a value indicating the amount or type of
violation that is incurred. For example, when an input symbol maps to
itself – symbolised by X:X - no faithfulness violation is incurred, and this
is symbolised by 0. The symbol e is a special symbol indicating the empty
string. Thus when an empty input is mapped to a V, the grammar should
record a Dep(V) violation in some way. Similarly, when a non-empty input
symbol is mapped to an empty output, the input symbol has been deleted,
and the grammar should record a Max violation. The intersection of the
three simple FSTs in Fig. 2 is represented in the rightmost FST. In that
FST, any alteration to the input is penalised except for transducing an
empty input into a syllable boundary (the . symbol).

Figure 2
Simple weighted FSTs representing Max, Dep(V)

and Dep(C), and their intersection

e:./0

X:X/0

X:e/max

e:V/dpv

e:C/dpc

e:./0

X:X/0

X:e/0

e:V/0

e:C/dpc

e:./0

X:X/0

X:e/0

e:C/0

e:V/dpv

e:./0

X:X/0

X:e/max

e:X/0

Riggle further illustrates by generating the FST for a full CV grammar,
containing the hard constraint ((C)V(C).)*, as well as the violable constraints
Onset (ons) and NoCoda (noc), and the three faithfulness constraints from
before. The full CV grammar, slightly adapted from Riggle (2009: Fig. 3),
is reproduced in Fig. 3. The reader is encouraged to consult Riggle (2009)
for additional exposition.

Figure 3
Syllable grammar. State A represents the start of a syllable. State C

represents the moment after the nucleus has been written to the output.
State B represents the moment after an onset consonant has been written to
the output, whether it was in the input or epenthesised. State D represents

the moment after a postvocalic consonant has been read from the input,
whether it was written to the output or deleted. Only state A is a final state,

and this is why the links from C and D to A contain the end-of-syllable
symbol .. Thus, an onsetless syllable [V.] is generated by the path

A£C£A, while a [CV.] syllable is generated by the path A£B£C£A.

e:./noc

X:e/max

e:C/dpc

C:C/0

X:e/max
e:V/{ons, dpv}

V:V/ons

e:./0X:e/max

X:e/max

e:C/dpc C:C/0

V:V/0
e:V/dpv

In fact, Eisner points out that most useful formulations for weighted
FSTs have a common, abstract character: the weights of paths obey the
axioms of a closed semi-ring. A closed semi-ring (K, ò, fl, *) is a mathe-
matical structure which is a slight generalisation of the natural numbers:
it consists of a set K with an ‘addition’ operation ò (associative, commutative,
identity element 0), a ‘multiplication’ operation (associative, distributes
over ò from the right and the left, identity element 1), and ‘closure’ for
infinite loops (k+”def ò‚ ki). Eisner (2002) states: ‘ordinary probabilities
fall in the semi-ring (Z≥0, +, ú, *)’.

In Riggle’s (2009) formulation, the symbols 0, max, dpv, dpc, ons and noc
are treated as unit vectors, so that the violation vector for a path may be
accumulated as the sum the unit violation vectors encountered along the
path. (Technically, Riggle construes violations as belonging to a multiset
with a semi-ring structure, but for the present purposes these are the
equivalent.) Given that multiple paths may generate the same input–output
pair, but with possibly di‰erent violation vectors, one should also define
how to calculate the violation vector for an input–output pair. From a total
ranking over constraints, Riggle defines this as the violation profile of the
path which has the minimum number of violations over the highest-ranked
constraint on which there is a di‰erence. Riggle refers to this formulation
as a ‘violation semi-ring’, and points to its similarities with the tropical
semi-ring over the real numbers.

Eisner’s expectation semi-ring combines both probabilities and violation
vectors. In Eisner’s own words:

Abstractly, let us say that each path p has not only a probability P(p)Œ[0,
1] but also a value val(p) in a vector space V, which counts the arcs,
features or coin flips encountered along path p. The value of a path is the
sum of the values assigned to its arcs... The idea is to augment the weight
data structure with expectation information, so each weight records a
probability and a vector counting the parameters that contributed to that
probability.

Eisner proceeds to define the V-expectation semi-ring (Z≥0XV, ò, fl, *)
as follows:

(p1, v1)‡(p2, v2) ”def (p1p2, p1v2+v1p2)
(p1, v1)‡(p2, v2) ”def (p1+p2, v1+v2)
if p* defined, (p, v)* ”def (p*, p*vp*)

He elaborates:
If an arc has probability p and value p, we give it the weight (p, pv) so
that our invariant (see above) holds if [the pathset] # consists of a single
length-0 or length-1 path. The above definitions are designed to preserve
our invariant as we build up larger paths and pathsets. fl lets us concatenate
(e.g.) simple paths p1, p2 to get a longer path p with P(p)=(p1)P(p2) and
val(p)=val(p1)+val(p2). The definition of fl guarantees [the invariant]
that path p’s weight will be (P(p), P(p)·val(p)). ò lets us take the union
of two disjoint pathsets, and * computes infinite unions.

Now that the expectation semi-ring has been explained, we are in position
to consider its application to maxent HG grammars. As stated in Hayes &
Wilson (2008: 389):

the properties of a very large set of strings can be computed by representing
the set as a finite state machine. We construct our machines by first
representing each constraint as a weighted finite state acceptor. Using
intersection …, we then combine the constraints into a single machine
that embodies the full grammar … Each path through this machine
corresponds to a phonological representation together with its vector of
constraint violations. We then obtain the E[Ci] values by summing over
all paths through the machine …

Theorem 3 is concerned with whether the FST associated with a maxent
phonotactic grammar has well-defined expectations, or in other words,
whether it has a finite partition function. It does this by explicitly constructing
a matrix which sums over the well-formedness values of every path
through the FST. In order to understand this, it is first necessary to
understand how matrix multiplication can represent accumulation over
paths through a matrix, and how the principal eigenvalue reflects important
aspects of the limit behaviour.

Technically, a directed graph G consists of some nodes (indexed 1 to n),
and directed edges which point from a node j to some node i. The adjacency
matrix (Aij) associated with G is an nXn matrix in which:

Aij=
1 there is an edge from j to i
0 otherwise

Clearly (A1)ij indicates the number of paths of length 1 from node j to node
i. It turns out that something much more general is true: (Am)ij indicates
the number of paths of length m from node j to node i. To see this, consider
the (i, j) entry of Am+1. Since Am+1=Am·A, (Am+1)ij must be the dot product
of the ith row of Am and the jth column of A: (Am+1)ij=%„(Am)ik·Akj.
The value (Am)ik indicates the number of paths of length exactly m from
k to i, and Akj indicates the number of paths of length exactly 1 from j to
k. Thus, (Am)ik·Akj indicates the number of paths of length m+1 that begin
at j and end at i, passing through k as the first step. Since every path from
j to i must pass through some first step, the total number of paths of length
m+1 is given by their sum across k. Therefore, (Am+1)ij indicates the total
number of paths of length m+1 from node j to node i. In this case, matrix
multiplication represents the ‘accumulation’ of the number of paths. The
principal eigenvalue represents the (limit of the) ratio by which the number
of paths grows as the path length is increased. In fully connected graphs,
this value will be n (the number of nodes); in acyclic graphs (where it is not
possible to return to any state i once it has been visited), the principal
eigenvalue of the adjacency matrix is 0.

Theorem 3: Let (Pij) be the penalty matrix for a maxent phonotactic
grammar G=(S+, C⋲, wƒ) and its associated FST G¢=(S, Q, q0, F, E, r). G
has a finite partition function if and only if the principal eigenvalue of P
has a magnitude of 1 or less.

Proof: The proof goes in two steps. The first is to show that every accepted
string corresponds to a path beginning at q1 and being ‘absorbed’ in qn+1.
The second is to show that (Pm)ij indicates the well-formedness value of all
paths of length exactly m that begin at state j and end at state i (so that the
well-formedness of all paths will ‘accumulate’ in qn+1). It follows from this
that Z=limm√¥(Pm)(n+1)(n+1), which is finite if and only if the principal
eigenvalue has magnitude 1 or less.

Step 1: The definition of FST gives that every path begins in the start
state q1, and ends in one of a set of final states qjŒF. Then, the requirement
that P(n+1)j=dij amounts to adding a cost-free transition to the extra state
n+1, but only from pre-existing finals. The requirement that P(n+1)(n+1)=1
means that every string path which enters this state stays there without
penalty. (The cost-free self-link is necessary to preserve the well-formedness
so that it can be counted in the limit, rather than allowing it to vanish after
the path is accepted.) Since every string that is accepted by the FST must
begin at the start state and end at a final state, every terminating path of
length m®1 through the FST is counted by the matrix entry (Pm)(n+1)1
(and all subsequent values of m).

Step 2: Suppose that the violation vector e √ik is incurred by traversing a
single path from qk to qi, and e√kj is incurred by traversing a single path from
qj to qk. Then the well-formedness value associated with the k£i arc is
F(w ƒ·e √ik) = ewƒ·e√ik, and the well-formedness value associated with the j to k
arc is F(wƒ·e √kj)=ewƒ·e√kj. Their product is F(wƒ·e√ik)·F(w ƒ·e √kj) = ew ƒ·e√ik·ew ƒ·e√kj =
ew ƒ·e√ik+wƒ·e√kj = ew ƒ·(e√ik+e√kj) = F(wƒ·(e√ik+e√kj)). In other words, the penalty is the
same whether the violations are added up and assessed all at once, or assessed
one by one. This is the same kind of ‘invariant’ as Eisner (2002) refers to.
Now, it is already true by construction that (P1)i j represents the penalty
to a string incurred by transitioning from state j to state i in exactly 1 step.
Now suppose that (Pm)ij represents the penalty incurred by transitioning
from state j to state i in exactly m steps. Then (Pm+1)ij=%„(Pm)ik·(Pkj).
Then the well-formedness of all paths of exactly length m+1 is decomposed
just as with the adjacency matrix counting paths above.

It follows from these that the value (Pm)(n+1)1 represents the sum of the
well-formedness values of all accepted strings of length m®1 or less. Since
the partition function is defined as the sum of the well-formedness values
of all terminating strings, it follows that Z=limm√¥(Pm+1)(n+1)1. Since all
of the well-formedness must eventually accumulate in this cell for finite
strings, it follows that Z is finite if and only if the principal eigenvalue of
P has magnitude less than 1.

Pij=

F(wƒ·c √i j) there is an edge from qj to qi
1 i=n+1 and qjŒF, i.e. j is final
1 i=n+1 and j=n+1
0 otherwise

The second and third rows of this definition are equivalent to adding a final
final state qn+1 and requiring all final states to have a cost-free transition to
the final final state, so that all well-formedness will accumulate in qn+1.

Robert Daland
University of California, Los Angeles

Phonology 25.2: Artwork 1 of

Dep(C)
Max

Dep(V)
Dep(C)

Dep(V)Max

Supplementary materials 32 Robert Daland 4 Robert Daland
Phonology 32 (2015). Supplementary materials

Supplementary materials 5 6 Robert Daland Supplementary materials 7

Long words in maximum entropy
phonotactic grammars

8 Robert Daland 10 Robert DalandSupplementary materials 9 Supplementary materials 11 12 Robert Daland

These supplementary materials introduce three theorems which formalise
the central contributions of this paper. The general purpose of the theorems
is discussed in the paper for the lay linguist. This introduction briefly
describes the theorems for more mathematically inclined readers.

In linguistic terms, Theorem 1 demonstrates that every phonotactic
grammar can be represented by a score function mapping strings to the
non-positive integers. Here, to be ‘represented’ has the technical meaning
that if the grammar distinguishes string x as strictly less well-formed than
x, then x is mapped to a smaller (more negative) integer (whereas if they
are not di‰erent in well-formedness, they are mapped to the same integer).
The proof critically relies on the property that there cannot be an infinite
sequence of strings in which well-formedness increases. The proof uses
the notions of equivalence relation and their corresponding equivalence
classes, which may be unfamiliar to many linguists; otherwise, it largely
consists of showing that various ordering properties are preserved by
relevant mappings.

Theorem 2 gives sufficient conditions for a maxent phonotactic grammar
to have a finite partition function. This in turn means that it assigns a well-
defined probability distribution over all possible strings. (If the partition
function is not finite, string probabilities are undefined.) The proof draws
on the theory of geometric series, the laws of exponentiation/logarithms
and basic facts about cardinality/counting, but should be accessible to most
mathematically inclined linguists.

The final background material is Eisner’s (2002) notion of an expectation
semi-ring.

In natural-language processing applications – where FSTs are most
widely used – it is typical to annotate arcs with weights, expressed in either
the probability or log-probability domain. For example, the CV grammar
in Figure 3 could be expressed as a probabilistic FST by assigning the
symbol 0 a pseudo-probability of 1, while max, dpv, dpc, ons and noc would
be assigned pseudo-probabilities less than 1. Pseudo-probabilities would
then be normalised by requiring that the probability of leaving a non-final
state must sum to 1. The probability of a path is defined as the product of
the probabilities of traversing all the arcs in the path, and the probability
of an input–output pair is the sum over the probabilities of all distinct paths
that generate the pair.

1 Theorem 1

While Theorem 2 gives su!cient conditions for a finite partition function,
Theorem 3 gives necessary conditions. The starting point is previous
research from formal language theory demonstrating how constraint-based
mappings that instantiate regular relations can be represented by (weighted)
finite-state automata. This means that maxent HG grammars can be given
a convenient graphical representation. Next, the proof draws on the notion
of expectation semi-ring, formalised in Eisner (2002), which associates a
probability and a violation vector with each node. Finally, the paper draws
on the tight coupling between weighted graphs and matrices to derive a
penalty matrix P, where the entry Pij represents the change in well-
formedness incurred by transitioning from node j to node i of the finite-
state automaton, expres sed as a multiplicative factor. If the princi pal
eigenvalue of this matrix has a magnitude greater than 1, then the partition
function is not finite.

Definition: A relation ı on a set X is a prewellordering if and only if
ı is total

– Ax, yŒX, x ı y or y ı x
– ‘every pair of strings is comparable’

ı is transitive
– Ax, zŒX, x ı y and y ı z implies x ı z
– e.g. if [lb] is worse then [bn], and [bn] is worse than [bl], then [lb]

is worse than [bl]
X is wellordered by ı

– ASàX, S≠.£EsmaxŒS˜AsŒS, s ı smax
– ‘every non-empty subset of X has a maximal element’
– in other words, there cannot be an infinite sequence of strings that

increase in well-formedness (though an infinite decreasing sequence
is allowed)

(Note that this inverts the normal direction for wellordering; it is more
typical to require a minimal element, but the formulations are completely
analogous.)

Definition: A score function f for a set X is a map from elements of X
to a totally ordered space (K, <K). A score function f represents the prewell-
ordering ı on X if

Ax, yŒX, x ı y and y ı x implies f(x)=f(y)
– ‘equally well-formed strings are assigned equal scores’

Ax, yŒX, x ¯ y implies f(x) <K f(y)
– if string x is strictly less well-formed than y, x is assigned a strictly

lower score than y

Another example in which the principal eigenvalue reflects ‘accumulation’
or ‘flow’ of some value across a graph is in Markov chains. A Markov chain
consists of an initial distribution over states and a transition matrix (Tij),
in which the value Tij indicates the probability of visiting state i next, given
that the current state is j. Since probabilities must be non-negative and
sum to 1, this enforces the condition that the sum over each column of T
must be 1. Very similarly to the adjacency matrix, (Tm)ij indicates the
probability of ending in state i after m steps, given that one started in state
j. The principal eigenvalue of the Markov chain always has the value 1,
indicating that there is a constant ‘amount’ of probability which simply
flows across the graph. Markov chains are very well-studied; for a more
thorough treatment the reader is directed to Grimstead & Snell (1997:
ch. 11).

In the present case, we wish to determine whether a given maxent HG
grammar has a finite partition function. The first step is to translate the
grammar into a weighted FST with a violation semi-ring, as in the work
of Riggle and Eisner. The next step it to use matrix multiplication to
characterise the ‘accumulation’ of well-formedness values of paths through
the FST, using a penalty matrix. It follows that the partition function is
finite if and only if the principal eigenvalue of this matrix has a magnitude
of 1 or less.

Definition: Let G=(S+, C⋲, w ƒ) be a maxent phonotactic grammar, and
G¢=(S, Q, q0, F, E, r) be the associated weighted FST over V, where

– S is the output alphabet
– Q is the set of states
– q1ŒQ is the unique start state
– FàQ is the set of final states
– Eà(QXSXVXQ) is a finite set of transitions, each signifying the

traversal from a state qj to a state qi after encountering an output
symbol s, and having a violation vector c √i j indicating the constraints
that are violated in this transition

Let the states in G¢ be indexed {qi}‰, and the constraints in G be indexed
{Ck}Á. Then define an (n+1)X(n+1) penalty matrix P as follows:

Theorem 1: Let S be an alphabet, and S+ the set of finite strings over S.
Every prewellordering ıßΩ over S+ can be represented by a score function
f : S*£(Ä—, <) where Ä— is the non-positive integers and < is the normal
order on integers.

Proof: Given the prewellordering ıßΩ, define the relation ~ by x ~ y if
and only if x ıßΩ y and y ıßΩ x (the ‘equality relation’). Symmetry follows
from the definition of ~, while transitivity and reflexivity follow from the
transitivity and reflexivity of prewellorders; thus ~ is an equivalence relation.
Let K denote the set of equivalence classes of ~, and f~ the map from
elements of X (strings) to their equivalence class, f~(x)=[x]. Because S+
is countable, K must be countable. Claim: ıßΩ induces a total strict well-
ordering on K. Define [x] <K [y] if and only if EwŒ[x], zŒ[y] such that
w ıßΩ z but [x]≠[y]. Totality, transitivity, strictness and antisymmetry
follow, so <K is a strict total order. Wellordering follows from the well-
ordering of ıßΩ, so (K, <K) is totally strictly wellordered.

Now the task is to construct a map from (K, <K) to the non-positive
integers. Proceed by induction. Base case: By wellordering, there must
exist a value k0ŒK that is maximal according to <K. Then define f(k0)=0.
Induction step: Now suppose there is a sequence of values {ki}‰ such that
f(ki)=—i Ai, (0{i{n). Let Kn+1=K \ {ki}‰. Since Kn+1 is a subset of K,
by wellordering it has a maximal element kn+1. Then define f(kn+1)=…(n+1).
This completes the induction step.

Since K is countable, f must be well-defined for every kŒK, and
f : K£Ä—. Evidently, kx <K ky implies f(kx) < f(ky) Akx, kyŒK by con-
struction. It is also easy to show that f(kx) < f(ky) implies kx <K ky for all
kx, kyŒK. Observe that f(kx) < f(ky) implies that Kx is a proper subset of
Ky. Since the maximal element ky of Ky was removed to construct Kx, it
follows that k <K ky AkŒKx. Since kxŒKx, it follows that kx <K ky. In
short, f preserves all and only the order di‰erences of <K.

Two maps have been defined: f~ : S+£K maps every string to a well-
formedness equivalence class, and f : K£Ä— maps each well-formedness
equivalence class to a non-positive integer score. Then their composition
f(x)=f(f~(x)) maps every string to a non-positive score, f~ : S+£Ä— with
the following properties:

Ax, yŒS+, x ıßΩ y and y ıßΩ x›f(x)=f(y)
Ax, yŒS+, x ¯ßΩ y›f(x) < f(y)

In other words, f represents the prewellordering ıßΩ using the non-negative
integers.

2 Theorem 2
Definition: A harmonic grammar is a tuple G=(X, Y, R, C ⋲, wƒ) where

– X is a set of lexical representations
– Y is a set of surface representations
– RàXXY indicates the set of possible surface representations that a

given lexical representation can map to, called the candidates: candi-
dates(x)={yŒY|xRy}

– C ⋲ is a finite set of constraint functions C⋲={Ck}Á, where each
constraint function assigns a non-negative integer violation count to
lexical-surface pairs, Ak, Ck : R£Ä

– wƒ is a set of real-valued, non-positive weights wƒ={wk}Á, associated
with the constraints

The harmony of a lexical–surface pair HCƒ,wƒ
(x, y) is defined as the weighted

sum of the constraint violations, H(x, y)=%Á wk·Ck(x, y). Given some
xŒX, surface representation yŒcandidates(x) is a winner if and only if
E/ zŒcandidates(x), such that H(x, z) > H(x, y), in other words if y has the
greatest harmony value among the candidates of x. We write G(x)=y in
case y is a unique winner for x. Thus G denotes a mapping from X to Y
just in case every xŒX has a unique winner G(x)ŒY.

Definition: A maxent HG grammar is a harmonic grammar G=(X, Y, R,
C ⋲, wƒ) that is augmented with a well-formedness function F : R£Z+

defined by F(x, y)=eH(x,y) (the range of the exponentiation is the non-
negative reals Z+). The partition function associated with a lexical
representation x, Z : X£Z+ U{≥} is defined as the sum of the well-
formedness values of all of x’s candidates, Z(x)=%xRy F(x, y). In case the
partition function is finite for a given x, G defines the conditional probability
distribution Pr(y|x)=F(x, y)/Z(x).

Definition: A maxent phonotactic grammar over S+ is a maxent HG
grammar G=(X, Y, R, C ⋲, wƒ) in which X is a singleton set {w}, Y=S+
where S+ is the set of finite strings over some alphabet S, and wRy AyŒS+.
Since X and R are trivial, it is convenient to omit them from the notation:
G=(S+, C⋲, wƒ), H(y)=Á wk·Ck(y), etc.

Definiti on: Define the *Struct const raint *Struct : S+£Ä by
*Struct(s)=k if and only if sŒSk. In other words, the number of *Struct
violations that a string s incurs is simply the length of s.

Theorem 2: Let G=(S+, C ⋲, wƒ) be a maxent phonotactic grammar. If the
const raint set C⋲ includ es a *Struct constrain t (i.e. Ei <k such that
Ci=*Struct) and w*Struct < —ln|S|, then the partition function Z of G is
finite.

Proof: The proof goes in two steps. The first step is to consider a maxent
phonotactic grammar G¢ over S+ whose constraint set includes only *Struct,
and prove that w*Struct < —ln|S| implies that Z¢ is finite. The second step
is to show that F¢(s) is an upper bound for F(s) for all sŒS*, so Z¢ is an
upper bound for Z. Finitude of Z follows from finitude of Z¢.

Part 1: Given G=(S+, C ⋲, wƒ), define the maxent phonotactic grammar
G¢ over S+ to have the sole constraint C ⋲={*Struct} with weight w; the
corresponding harmony and well-formedness functions are denoted H¢ and
F¢. We will abuse notation by defining F¢(X)=%SÊX F¢(s), i.e. extending
the definition of the well-formedness function so that it measures sets of
strings (rather than merely evaluating individual strings). The goal is to
compute Z¢ by partitioning S+ by the length of its strings. Let us begin by
considering the value F¢(Sk) for an arbitrary k. By definition, sŒSk implies
*Struct(s) = k, so that H¢(s) = w·*Struct(s) = w·k and F¢(s) = eH¢(ß) =
ew·k = (ew)k. The number of strings in Sk is |S|k, and each such string s has
a constant well-formedness value, F¢(s)=(ew)k. Then the total F¢(Sk) can
be expressed as the product, F¢(Sk)=|Sk|·(ew)k=(|S|·ew)k. Now it is possible
to express Z¢ as the sum over the partition by length (S+=S0US1US2U…):

F¢(S+)=%ÂF¢(Sk)
=%Â(|S|·ew)k

This latter is instantly recognisable as an infinite series with common ratio
r=|S|·ew. The theory of infinite series indicates that this value is finite
(and well-defined) if and only if |r| < 1. Since |S| and ew are positive, this
reduces to the inequality |S|·ew < 1, or ew < |S|—1. The natural logarithm
is an increasing function, which can be applied to both sides to preserve
the inequality, yielding w < —ln|S|.

Part 2: We begin by showing that AsŒS*, H(s) ≤ H¢(s). Without loss
of generality, reassign indices so that H(s)=w·*Struct(s) + %Ê· Ck(s)
and recall that H¢(s)=w·*Struct(s). Then H (s)®H¢(s)=%Ê wk·Ck(s)
for all s. Now since wk ≤ 0 Ak and Ck ≥ 0 Ak, it follows that wk·Ck(s) ≤ 0
Ak, and therefore the sum must be non-positive as well, i.e. H(s)®H¢(s)
≤ 0 AsŒS*. But this means that H¢ (s) is an upper bound for H(s) for every
s. And since exponentiation is an increasing function, this implies that F¢(s)
is an upper bound for F(s) for all s. And since Z¢ is the sum of F¢ values,
while Z is the sum of F values, this means that Z¢ is an upper bound for Z.
Thus, if Z¢ is finite, Z must be as well. This completes the proof.

3 Theorem 3
Riggle (2009) gives a technical but well-exemplified presentation of finite-
state Optimality Theory. The essence of this approach is to model constraints
as (possibly weighted) finite-state transducers. In order to understand
Theorem 3, it is necessary to understand how maxent phonotactic grammars
are implemented as finite-state transducers, and in order to understand
this, it is first necessary to understand a little about finite-state transducers.

Intuitively, a finite-state transducer (FST) is a computational device
which accepts one ‘input’ string and converts it to another ‘output’ string.
Finite-state machines are conventionally represented as directed graphs.
The nodes of the graph represent ‘states’ of the machine. Arcs represent
the transition from one state to another; normally, this is associated with
reading one symbol from the input string, and writing one symbol to the
output string. The particular mapping that an arc represents is indicated
with a label on the arc; the label x:y indicates that the arc transduces input
symbol x into output symbol y. The ‘start’ and ‘final’ nodes of the graph
are graphically indicated by one or more conventions. Here I use the
convention that the start state is indicated by an arrow from nowhere
pointing to the start node, while the end state is indicated by a double circle.
Figure 1 gives a finite-state transducer that implements an intervocalic
voicing rule. The FST in Figure 1 only accepts the input sequence /apa/,
and if it is presented with that input sequence, it yields the output sequence
[aba]. Traversing a single arc in the graph represents reading/writing one
symbol, so that the nodes/states of the graph represent the amount of the
input string that has been read. It is possible for there to be multiple arcs
emanating from or leading to a state. For example, the FST in Fig. 1 could
be augmented with an additional arc ‘b:b’ pointing from node 2 to node 3;
the modified FST would then implement two mappings, /apa/£[aba] and
/aba/£[aba].

Riggle (2009) uses simple weighted finite-state transducers to represent
individual constraints. A grammar can then be represented using an operation
known as ‘intersection’. Figure 2, which is slightly adapted from Riggle
(2009: Fig. 1), illustrates three faithfulness constraints and their intersection.
Each transition x:y is followed by a value indicating the amount or type of
violation that is incurred. For example, when an input symbol maps to
itself – symbolised by X:X - no faithfulness violation is incurred, and this
is symbolised by 0. The symbol e is a special symbol indicating the empty
string. Thus when an empty input is mapped to a V, the grammar should
record a Dep(V) violation in some way. Similarly, when a non-empty input
symbol is mapped to an empty output, the input symbol has been deleted,
and the grammar should record a Max violation. The intersection of the
three simple FSTs in Fig. 2 is represented in the rightmost FST. In that
FST, any alteration to the input is penalised except for transducing an
empty input into a syllable boundary (the . symbol).

Figure 2
Simple weighted FSTs representing Max, Dep(V)

and Dep(C), and their intersection

e:./0

X:X/0

X:e/max

e:V/dpv

e:C/dpc

e:./0

X:X/0

X:e/0

e:V/0

e:C/dpc

e:./0

X:X/0

X:e/0

e:C/0

e:V/dpv

e:./0

X:X/0

X:e/max

e:X/0

Riggle further illustrates by generating the FST for a full CV grammar,
containing the hard constraint ((C)V(C).)*, as well as the violable constraints
Onset (ons) and NoCoda (noc), and the three faithfulness constraints from
before. The full CV grammar, slightly adapted from Riggle (2009: Fig. 3),
is reproduced in Fig. 3. The reader is encouraged to consult Riggle (2009)
for additional exposition.

Figure 3
Syllable grammar. State A represents the start of a syllable. State C

represents the moment after the nucleus has been written to the output.
State B represents the moment after an onset consonant has been written to
the output, whether it was in the input or epenthesised. State D represents

the moment after a postvocalic consonant has been read from the input,
whether it was written to the output or deleted. Only state A is a final state,

and this is why the links from C and D to A contain the end-of-syllable
symbol .. Thus, an onsetless syllable [V.] is generated by the path

A£C£A, while a [CV.] syllable is generated by the path A£B£C£A.

e:./noc

X:e/max

e:C/dpc

C:C/0

X:e/max
e:V/{ons, dpv}

V:V/ons

e:./0X:e/max

X:e/max

e:C/dpc C:C/0

V:V/0
e:V/dpv

In fact, Eisner points out that most useful formulations for weighted
FSTs have a common, abstract character: the weights of paths obey the
axioms of a closed semi-ring. A closed semi-ring (K, ò, fl, *) is a mathe-
matical structure which is a slight generalisation of the natural numbers:
it consists of a set K with an ‘addition’ operation ò (associative, commutative,
identity element 0), a ‘multiplication’ operation (associative, distributes
over ò from the right and the left, identity element 1), and ‘closure’ for
infinite loops (k+”def ò‚ ki). Eisner (2002) states: ‘ordinary probabilities
fall in the semi-ring (Z≥0, +, ú, *)’.

In Riggle’s (2009) formulation, the symbols 0, max, dpv, dpc, ons and noc
are treated as unit vectors, so that the violation vector for a path may be
accumulated as the sum the unit violation vectors encountered along the
path. (Technically, Riggle construes violations as belonging to a multiset
with a semi-ring structure, but for the present purposes these are the
equivalent.) Given that multiple paths may generate the same input–output
pair, but with possibly di‰erent violation vectors, one should also define
how to calculate the violation vector for an input–output pair. From a total
ranking over constraints, Riggle defines this as the violation profile of the
path which has the minimum number of violations over the highest-ranked
constraint on which there is a di‰erence. Riggle refers to this formulation
as a ‘violation semi-ring’, and points to its similarities with the tropical
semi-ring over the real numbers.

Eisner’s expectation semi-ring combines both probabilities and violation
vectors. In Eisner’s own words:

Abstractly, let us say that each path p has not only a probability P(p)Œ[0,
1] but also a value val(p) in a vector space V, which counts the arcs,
features or coin flips encountered along path p. The value of a path is the
sum of the values assigned to its arcs... The idea is to augment the weight
data structure with expectation information, so each weight records a
probability and a vector counting the parameters that contributed to that
probability.

Eisner proceeds to define the V-expectation semi-ring (Z≥0XV, ò, fl, *)
as follows:

(p1, v1)‡(p2, v2) ”def (p1p2, p1v2+v1p2)
(p1, v1)‡(p2, v2) ”def (p1+p2, v1+v2)
if p* defined, (p, v)* ”def (p*, p*vp*)

He elaborates:
If an arc has probability p and value p, we give it the weight (p, pv) so
that our invariant (see above) holds if [the pathset] # consists of a single
length-0 or length-1 path. The above definitions are designed to preserve
our invariant as we build up larger paths and pathsets. fl lets us concatenate
(e.g.) simple paths p1, p2 to get a longer path p with P(p)=(p1)P(p2) and
val(p)=val(p1)+val(p2). The definition of fl guarantees [the invariant]
that path p’s weight will be (P(p), P(p)·val(p)). ò lets us take the union
of two disjoint pathsets, and * computes infinite unions.

Now that the expectation semi-ring has been explained, we are in position
to consider its application to maxent HG grammars. As stated in Hayes &
Wilson (2008: 389):

the properties of a very large set of strings can be computed by representing
the set as a finite state machine. We construct our machines by first
representing each constraint as a weighted finite state acceptor. Using
intersection …, we then combine the constraints into a single machine
that embodies the full grammar … Each path through this machine
corresponds to a phonological representation together with its vector of
constraint violations. We then obtain the E[Ci] values by summing over
all paths through the machine …

Theorem 3 is concerned with whether the FST associated with a maxent
phonotactic grammar has well-defined expectations, or in other words,
whether it has a finite partition function. It does this by explicitly constructing
a matrix which sums over the well-formedness values of every path
through the FST. In order to unders tand this, it is first necessary to
understand how matrix multiplication can represent accumulation over
paths through a matrix, and how the principal eigenvalue reflects important
aspects of the limit behaviour.

Technically, a directed graph G consists of some nodes (indexed 1 to n),
and directed edges which point from a node j to some node i. The adjacency
matrix (Aij) associated with G is an nXn matrix in which:

Aij=
1 there is an edge from j to i
0 otherwise

Clearly (A1)ij indicates the number of paths of length 1 from node j to node
i. It turns out that something much more general is true: (Am)ij indicates
the number of paths of length m from node j to node i. To see this, consider
the (i, j) entry of Am+1. Since Am+1=Am·A, (Am+1)ij must be the dot product
of the ith row of Am and the jth column of A: (Am+1)ij=%„(Am)ik·Akj.
The value (Am)ik indicates the number of paths of length exactly m from
k to i, and Akj indicates the number of paths of length exactly 1 from j to
k. Thus, (Am)ik·Akj indicates the number of paths of length m+1 that begin
at j and end at i, passing through k as the first step. Since every path from
j to i must pass through some first step, the total number of paths of length
m+1 is given by their sum across k. Therefore, (Am+1)ij indicates the total
number of paths of length m+1 from node j to node i. In this case, matrix
multiplication represents the ‘accumulation’ of the number of paths. The
principal eigenvalue represents the (limit of the) ratio by which the number
of paths grows as the path length is increased. In fully connected graphs,
this value will be n (the number of nodes); in acyclic graphs (where it is not
possible to return to any state i once it has been visited), the principal
eigenvalue of the adjacency matrix is 0.

Theorem 3: Let (Pij) be the penalty matrix for a maxent phonotactic
grammar G=(S+, C⋲, wƒ) and its associated FST G¢=(S, Q, q0, F, E, r). G
has a finite partition function if and only if the principal eigenvalue of P
has a magnitude of 1 or less.

Proof: The proof goes in two steps. The first is to show that every accepted
string corresponds to a path beginning at q1 and being ‘absorbed’ in qn+1.
The second is to show that (Pm)ij indicates the well-formedness value of all
paths of length exactly m that begin at state j and end at state i (so that the
well-formedness of all paths will ‘accumulate’ in qn+1). It follows from this
that Z=limm√¥(Pm)(n+1)(n+1), which is finite if and only if the principal
eigenvalue has magnitude 1 or less.

Step 1: The definition of FST gives that every path begins in the start
state q1, and ends in one of a set of final states qjŒF. Then, the requirement
that P(n+1)j=dij amounts to adding a cost-free transition to the extra state
n+1, but only from pre-existing finals. The requirement that P(n+1)(n+1)=1
means that every string path which enters this state stays there without
penalty. (The cost-free self-link is necessary to preserve the well-formedness
so that it can be counted in the limit, rather than allowing it to vanish after
the path is accepted.) Since every string that is accepted by the FST must
begin at the start state and end at a final state, every terminating path of
length m®1 through the FST is counted by the matrix entry (Pm)(n+1)1
(and all subsequent values of m).

Step 2: Suppose that the violation vector e √ik is incurred by traversing a
single path from qk to qi, and e√kj is incurred by traversing a single path from
qj to qk. Then the well-formedness value associated with the k£i arc is
F(w ƒ·e √ik) = ew ƒ·e√ik, and the well-formedness value associated with the j to k
arc is F(wƒ·e √kj)=ewƒ·e√kj. Their product is F(w ƒ·e√ik)·F(wƒ·e √kj) = ew ƒ·e√ik·ewƒ·e√kj =
ew ƒ·e√ik+wƒ·e√kj = ew ƒ·(e√ik+e√kj) = F(wƒ·(e √ik+e√kj)). In other words, the penalty is the
same whether the violations are added up and assessed all at once, or assessed
one by one. This is the same kind of ‘invariant’ as Eisner (2002) refers to.
Now, it is already true by construction that (P1)i j represents the penalty
to a string incurred by transitioning from state j to state i in exactly 1 step.
Now suppose that (Pm)ij represents the penalty incurred by transitioning
from state j to state i in exactly m steps. Then (Pm+1)ij=%„(Pm)ik·(Pkj).
Then the well-formedness of all paths of exactly length m+1 is decomposed
just as with the adjacency matrix counting paths above.

It follows from these that the value (Pm)(n+1)1 represents the sum of the
well-formedness values of all accepted strings of length m®1 or less. Since
the partition function is defined as the sum of the well-formedness values
of all terminating strings, it follows that Z=limm√¥(Pm+1)(n+1)1. Since all
of the well-formedness must eventually accumulate in this cell for finite
strings, it follows that Z is finite if and only if the principal eigenvalue of
P has magnitude less than 1.

Pij=

F(wƒ·c √i j) there is an edge from qj to qi
1 i=n+1 and qjŒF, i.e. j is final
1 i=n+1 and j=n+1
0 otherwise

The second and third rows of this definition are equivalent to adding a final
final state qn+1 and requiring all final states to have a cost-free transition to
the final final state, so that all well-formedness will accumulate in qn+1.

Robert Daland
University of California, Los Angeles

Phonology 25.2: Artwork 1 of

Dep(C)
Max

Dep(V)
Dep(C)

Dep(V)Max

Supplementary materials 32 Robert Daland 4 Robert Daland
Phonology 32 (2015). Supplementary materials

Supplementary materials 5 6 Robert Daland Supplementary materials 7

Long words in maximum entropy
phonotactic grammars

8 Robert Daland 10 Robert DalandSupplementary materials 9 Supplementary materials 11 12 Robert Daland

These supplementary materials introduce three theorems which formalise
the central contributions of this paper. The general purpose of the theorems
is discussed in the paper for the lay linguist. This introduction briefly
describes the theorems for more mathematically inclined readers.

In linguistic terms, Theorem 1 demonstrates that every phonotactic
grammar can be represented by a score function mapping strings to the
non-positive integers. Here, to be ‘represented’ has the technical meaning
that if the grammar distinguishes string x as strictly less well-formed than
x, then x is mapped to a smaller (more negative) integer (whereas if they
are not di‰erent in well-formedness, they are mapped to the same integer).
The proof critically relies on the property that there cannot be an infinite
sequence of strings in which well-formedness increases. The proof uses
the notions of equivalence relation and their corresponding equivalence
classes, which may be unfamiliar to many linguists; otherwise, it largely
consists of showing that various ordering properties are preserved by
relevant mappings.

Theorem 2 gives sufficient conditions for a maxent phonotactic grammar
to have a finite partition function. This in turn means that it assigns a well-
defined probability distribution over all possible strings. (If the partition
function is not finite, string probabilities are undefined.) The proof draws
on the theory of geometric series, the laws of exponentiation/logarithms
and basic facts about cardinality/counting, but should be accessible to most
mathematically inclined linguists.

The final background material is Eisner’s (2002) notion of an expectation
semi-ring.

In natural-language processing applications – where FSTs are most
widely used – it is typical to annotate arcs with weights, expressed in either
the probability or log-probability domain. For example, the CV grammar
in Figure 3 could be expressed as a probabilistic FST by assigning the
symbol 0 a pseudo-probability of 1, while max, dpv, dpc, ons and noc would
be assigned pseudo-probabilities less than 1. Pseudo-probabilities would
then be normalised by requiring that the probability of leaving a non-final
state must sum to 1. The probability of a path is defined as the product of
the probabilities of traversing all the arcs in the path, and the probability
of an input–output pair is the sum over the probabilities of all distinct paths
that generate the pair.

1 Theorem 1

While Theorem 2 gives su!cient conditions for a finite partition function,
Theorem 3 gives necessary conditions. The starting point is previous
research from formal language theory demonstrating how constraint-based
mappings that instantiate regular relations can be represented by (weighted)
finite-state automata. This means that maxent HG grammars can be given
a convenient graphical representation. Next, the proof draws on the notion
of expectation semi-ring, formalised in Eisner (2002), which associates a
probability and a violation vector with each node. Finally, the paper draws
on the tight coupling between weighted graphs and matrices to derive a
penalty matrix P, where the entry Pij represents the change in well-
formedness incurred by transitioning from node j to node i of the finite-
state automaton, expres sed as a multiplicative factor. If the princi pal
eigenvalue of this matrix has a magnitude greater than 1, then the partition
function is not finite.

Definition: A relation ı on a set X is a prewellordering if and only if
ı is total

– Ax, yŒX, x ı y or y ı x
– ‘every pair of strings is comparable’

ı is transitive
– Ax, zŒX, x ı y and y ı z implies x ı z
– e.g. if [lb] is worse then [bn], and [bn] is worse than [bl], then [lb]

is worse than [bl]
X is wellordered by ı

– ASàX, S≠.£EsmaxŒS˜AsŒS, s ı smax
– ‘every non-empty subset of X has a maximal element’
– in other words, there cannot be an infinite sequence of strings that

increase in well-formedness (though an infinite decreasing sequence
is allowed)

(Note that this inverts the normal direction for wellordering; it is more
typical to require a minimal element, but the formulations are completely
analogous.)

Definition: A score function f for a set X is a map from elements of X
to a totally ordered space (K, <K). A score function f represents the prewell-
ordering ı on X if

Ax, yŒX, x ı y and y ı x implies f(x)=f(y)
– ‘equally well-formed strings are assigned equal scores’

Ax, yŒX, x ¯ y implies f(x) <K f(y)
– if string x is strictly less well-formed than y, x is assigned a strictly

lower score than y

Another example in which the principal eigenvalue reflects ‘accumulation’
or ‘flow’ of some value across a graph is in Markov chains. A Markov chain
consists of an initial distribution over states and a transition matrix (Tij),
in which the value Tij indicates the probability of visiting state i next, given
that the current state is j. Since probabilities must be non-negative and
sum to 1, this enforces the condition that the sum over each column of T
must be 1. Very similarly to the adjacency matrix, (Tm)ij indicates the
probability of ending in state i after m steps, given that one started in state
j. The principal eigenvalue of the Markov chain always has the value 1,
indicating that there is a constant ‘amount’ of probability which simply
flows across the graph. Markov chains are very well-studied; for a more
thorough treatment the reader is directed to Grimstead & Snell (1997:
ch. 11).

In the present case, we wish to determine whether a given maxent HG
grammar has a finite partition function. The first step is to translate the
grammar into a weighted FST with a violation semi-ring, as in the work
of Riggle and Eisner. The next step it to use matrix multiplication to
characterise the ‘accumulation’ of well-formedness values of paths through
the FST, using a penalty matrix. It follows that the partition function is
finite if and only if the principal eigenvalue of this matrix has a magnitude
of 1 or less.

Definition: Let G=(S+, C ⋲, wƒ) be a maxent phonotactic grammar, and
G¢=(S, Q, q0, F, E, r) be the associated weighted FST over V, where

– S is the output alphabet
– Q is the set of states
– q1ŒQ is the unique start state
– FàQ is the set of final states
– Eà(QXSXVXQ) is a finite set of transitions, each signifying the

traversal from a state qj to a state qi after encountering an output
symbol s, and having a violation vector c √i j indicating the constraints
that are violated in this transition

Let the states in G¢ be indexed {qi}‰, and the constraints in G be indexed
{Ck}Á. Then define an (n+1)X(n+1) penalty matrix P as follows:

Theorem 1: Let S be an alphabet, and S+ the set of finite strings over S.
Every prewellordering ıßΩ over S+ can be represented by a score function
f : S*£(Ä—, <) where Ä— is the non-positive integers and < is the normal
order on integers.

Proof: Given the prewellordering ıßΩ, define the relation ~ by x ~ y if
and only if x ıßΩ y and y ıßΩ x (the ‘equality relation’). Symmetry follows
from the definition of ~, while transitivity and reflexivity follow from the
transitivity and reflexivity of prewellorders; thus ~ is an equivalence relation.
Let K denote the set of equivalence classes of ~, and f~ the map from
elements of X (strings) to their equivalence class, f~(x)=[x]. Because S+
is countable, K must be countable. Claim: ıßΩ induces a total strict well-
ordering on K. Define [x] <K [y] if and only if EwŒ[x], zŒ[y] such that
w ıßΩ z but [x]≠[y]. Totality, transitivity, strictness and antisymmetry
follow, so <K is a strict total order. Wellordering follows from the well-
ordering of ıßΩ, so (K, <K) is totally strictly wellordered.

Now the task is to construct a map from (K, <K) to the non-positive
integers. Proceed by induction. Base case: By wellordering, there must
exist a value k0ŒK that is maximal according to <K. Then define f(k0)=0.
Induction step: Now suppose there is a sequence of values {ki}‰ such that
f(ki)=—i Ai, (0{i{n). Let Kn+1=K \ {ki}‰. Since Kn+1 is a subset of K,
by wellordering it has a maximal element kn+1. Then define f(kn+1)=…(n+1).
This completes the induction step.

Since K is countable, f must be well-defined for every kŒK, and
f : K£Ä—. Evidently, kx <K ky implies f(kx) < f(ky) Akx, kyŒK by con-
struction. It is also easy to show that f(kx) < f(ky) implies kx <K ky for all
kx, kyŒK. Observe that f(kx) < f(ky) implies that Kx is a proper subset of
Ky. Since the maximal element ky of Ky was removed to construct Kx, it
follows that k <K ky AkŒKx. Since kxŒKx, it follows that kx <K ky. In
short, f preserves all and only the order di‰erences of <K.

Two maps have been defined: f~ : S+£K maps every string to a well-
formedness equivalence class, and f : K£Ä— maps each well-formedness
equivalence class to a non-positive integer score. Then their composition
f(x)=f(f~(x)) maps every string to a non-positive score, f~ : S+£Ä— with
the following properties:

Ax, yŒS+, x ıßΩ y and y ıßΩ x›f(x)=f(y)
Ax, yŒS+, x ¯ßΩ y›f(x) < f(y)

In other words, f represents the prewellordering ıßΩ using the non-negative
integers.

2 Theorem 2
Definition: A harmonic grammar is a tuple G=(X, Y, R, C ⋲, wƒ) where

– X is a set of lexical representations
– Y is a set of surface representations
– RàXXY indicates the set of possible surface representations that a

given lexical representation can map to, called the candidates: candi-
dates(x)={yŒY|xRy}

– C ⋲ is a finite set of constraint functions C⋲={Ck}Á, where each
constraint function assigns a non-negative integer violation count to
lexical-surface pairs, Ak, Ck : R£Ä

– wƒ is a set of real-valued, non-positive weights wƒ={wk}Á, associated
with the constraints

The harmony of a lexical–surface pair HCƒ,wƒ
(x, y) is defined as the weighted

sum of the constraint violations, H(x, y)=%Á wk·Ck(x, y). Given some
xŒX, surface representation yŒcandidates(x) is a winner if and only if
E/ zŒcandidates(x), such that H(x, z) > H(x, y), in other words if y has the
greatest harmony value among the candidates of x. We write G(x)=y in
case y is a unique winner for x. Thus G denotes a mapping from X to Y
just in case every xŒX has a unique winner G(x)ŒY.

Definition: A maxent HG grammar is a harmonic grammar G=(X, Y, R,
C ⋲, wƒ) that is augmented with a well-formedness function F : R£Z+

defined by F(x, y)=eH(x,y) (the range of the exponentiation is the non-
negative reals Z+). The partition function associated with a lexical
representation x, Z : X£Z+ U{≥} is defined as the sum of the well-
formedness values of all of x’s candidates, Z(x)=%xRy F(x, y). In case the
partition function is finite for a given x, G defines the conditional probability
distribution Pr(y|x)=F(x, y)/Z(x).

Definition: A maxent phonotactic grammar over S+ is a maxent HG
grammar G=(X, Y, R, C ⋲, wƒ) in which X is a singleton set {w}, Y=S+
where S+ is the set of finite strings over some alphabet S, and wRy AyŒS+.
Since X and R are trivial, it is convenient to omit them from the notation:
G=(S+, C⋲, wƒ), H(y)=Á wk·Ck(y), etc.

Definiti on: Define the *Struct const raint *Struct : S+£Ä by
*Struct(s)=k if and only if sŒSk. In other words, the number of *Struct
violations that a string s incurs is simply the length of s.

Theorem 2: Let G=(S+, C ⋲, wƒ) be a maxent phonotactic grammar. If the
const raint set C⋲ includ es a *Struct constrain t (i.e. Ei <k such that
Ci=*Struct) and w*Struct < —ln|S|, then the partition function Z of G is
finite.

Proof: The proof goes in two steps. The first step is to consider a maxent
phonotactic grammar G¢ over S+ whose constraint set includes only *Struct,
and prove that w*Struct < —ln|S| implies that Z¢ is finite. The second step
is to show that F¢(s) is an upper bound for F(s) for all sŒS*, so Z¢ is an
upper bound for Z. Finitude of Z follows from finitude of Z¢.

Part 1: Given G=(S+, C ⋲, w ƒ), define the maxent phonotactic grammar
G¢ over S+ to have the sole constraint C ⋲={*Struct} with weight w; the
corresponding harmony and well-formedness functions are denoted H¢ and
F¢. We will abuse notation by defining F¢(X)=%SÊX F¢(s), i.e. extending
the definition of the well-formedness function so that it measures sets of
strings (rather than merely evaluating individual strings). The goal is to
compute Z¢ by partitioning S+ by the length of its strings. Let us begin by
considering the value F¢(Sk) for an arbitrary k. By definition, sŒSk implies
*Struct(s) = k, so that H¢(s) = w·*Struct(s) = w·k and F¢(s) = eH¢(ß) =
ew·k = (ew)k. The number of strings in Sk is |S|k, and each such string s has
a constant well-formedness value, F¢(s)=(ew)k. Then the total F¢(Sk) can
be expressed as the product, F¢(Sk)=|Sk|·(ew)k=(|S|·ew)k. Now it is possible
to express Z¢ as the sum over the partition by length (S+=S0US1US2U…):

F¢(S+)=%ÂF¢(Sk)
=%Â(|S|·ew)k

This latter is instantly recognisable as an infinite series with common ratio
r=|S|·ew. The theory of infinite series indicates that this value is finite
(and well-defined) if and only if |r| < 1. Since |S| and ew are positive, this
reduces to the inequality |S|·ew < 1, or ew < |S|—1. The natural logarithm
is an increasing function, which can be applied to both sides to preserve
the inequality, yielding w < —ln|S|.

Part 2: We begin by showing that AsŒS*, H(s) ≤ H¢(s). Without loss
of generality, reassign indices so that H(s)=w·*Struct(s) + %Ê· Ck(s)
and recall that H¢(s)=w·*Struct(s). Then H (s)®H¢(s)=%Ê wk·Ck(s)
for all s. Now since wk ≤ 0 Ak and Ck ≥ 0 Ak, it follows that wk·Ck(s) ≤ 0
Ak, and therefore the sum must be non-positive as well, i.e. H(s)®H¢(s)
≤ 0 AsŒS*. But this means that H¢ (s) is an upper bound for H(s) for every
s. And since exponentiation is an increasing function, this implies that F¢(s)
is an upper bound for F(s) for all s. And since Z¢ is the sum of F¢ values,
while Z is the sum of F values, this means that Z¢ is an upper bound for Z.
Thus, if Z¢ is finite, Z must be as well. This completes the proof.

3 Theorem 3
Riggle (2009) gives a technical but well-exemplified presentation of finite-
state Optimality Theory. The essence of this approach is to model constraints
as (possibly weighted) finite-state transducers. In order to understand
Theorem 3, it is necessary to understand how maxent phonotactic grammars
are implemented as finite-state transducers, and in order to understand
this, it is first necessary to understand a little about finite-state transducers.

Intuitively, a finite-state transducer (FST) is a computational device
which accepts one ‘input’ string and converts it to another ‘output’ string.
Finite-state machines are conventionally represented as directed graphs.
The nodes of the graph represent ‘states’ of the machine. Arcs represent
the transition from one state to another; normally, this is associated with
reading one symbol from the input string, and writing one symbol to the
output string. The particular mapping that an arc represents is indicated
with a label on the arc; the label x:y indicates that the arc transduces input
symbol x into output symbol y. The ‘start’ and ‘final’ nodes of the graph
are graphically indicated by one or more conventions. Here I use the
convention that the start state is indicated by an arrow from nowhere
pointing to the start node, while the end state is indicated by a double circle.
Figure 1 gives a finite-state transducer that implements an intervocalic
voicing rule. The FST in Figure 1 only accepts the input sequence /apa/,
and if it is presented with that input sequence, it yields the output sequence
[aba]. Traversing a single arc in the graph represents reading/writing one
symbol, so that the nodes/states of the graph represent the amount of the
input string that has been read. It is possible for there to be multiple arcs
emanating from or leading to a state. For example, the FST in Fig. 1 could
be augmented with an additional arc ‘b:b’ pointing from node 2 to node 3;
the modified FST would then implement two mappings, /apa/£[aba] and
/aba/£[aba].

Riggle (2009) uses simple weighted finite-state transducers to represent
individual constraints. A grammar can then be represented using an operation
known as ‘intersection’. Figure 2, which is slightly adapted from Riggle
(2009: Fig. 1), illustrates three faithfulness constraints and their intersection.
Each transition x:y is followed by a value indicating the amount or type of
violation that is incurred. For example, when an input symbol maps to
itself – symbolised by X:X - no faithfulness violation is incurred, and this
is symbolised by 0. The symbol e is a special symbol indicating the empty
string. Thus when an empty input is mapped to a V, the grammar should
record a Dep(V) violation in some way. Similarly, when a non-empty input
symbol is mapped to an empty output, the input symbol has been deleted,
and the grammar should record a Max violation. The intersection of the
three simple FSTs in Fig. 2 is represented in the rightmost FST. In that
FST, any alteration to the input is penalised except for transducing an
empty input into a syllable boundary (the . symbol).

Figure 2
Simple weighted FSTs representing Max, Dep(V)

and Dep(C), and their intersection

e:./0

X:X/0

X:e/max

e:V/dpv

e:C/dpc

e:./0

X:X/0

X:e/0

e:V/0

e:C/dpc

e:./0

X:X/0

X:e/0

e:C/0

e:V/dpv

e:./0

X:X/0

X:e/max

e:X/0

Riggle further illustrates by generating the FST for a full CV grammar,
containing the hard constraint ((C)V(C).)*, as well as the violable constraints
Onset (ons) and NoCoda (noc), and the three faithfulness constraints from
before. The full CV grammar, slightly adapted from Riggle (2009: Fig. 3),
is reproduced in Fig. 3. The reader is encouraged to consult Riggle (2009)
for additional exposition.

Figure 3
Syllable grammar. State A represents the start of a syllable. State C

represents the moment after the nucleus has been written to the output.
State B represents the moment after an onset consonant has been written to
the output, whether it was in the input or epenthesised. State D represents

the moment after a postvocalic consonant has been read from the input,
whether it was written to the output or deleted. Only state A is a final state,

and this is why the links from C and D to A contain the end-of-syllable
symbol .. Thus, an onsetless syllable [V.] is generated by the path

A£C£A, while a [CV.] syllable is generated by the path A£B£C£A.

e:./noc

X:e/max

e:C/dpc

C:C/0

X:e/max
e:V/{ons, dpv}

V:V/ons

e:./0X:e/max

X:e/max

e:C/dpc C:C/0

V:V/0
e:V/dpv

In fact, Eisner points out that most useful formulations for weighted
FSTs have a common, abstract character: the weights of paths obey the
axioms of a closed semi-ring. A closed semi-ring (K, ò, fl, *) is a mathe-
matical structure which is a slight generalisation of the natural numbers:
it consists of a set K with an ‘addition’ operation ò (associative, commutative,
identity element 0), a ‘multiplication’ operation (associative, distributes
over ò from the right and the left, identity element 1), and ‘closure’ for
infinite loops (k+”def ò‚ ki). Eisner (2002) states: ‘ordinary probabilities
fall in the semi-ring (Z≥0, +, ú, *)’.

In Riggle’s (2009) formulation, the symbols 0, max, dpv, dpc, ons and noc
are treated as unit vectors, so that the violation vector for a path may be
accumulated as the sum the unit violation vectors encountered along the
path. (Technically, Riggle construes violations as belonging to a multiset
with a semi-ring structure, but for the present purposes these are the
equivalent.) Given that multiple paths may generate the same input–output
pair, but with possibly di‰erent violation vectors, one should also define
how to calculate the violation vector for an input–output pair. From a total
ranking over constraints, Riggle defines this as the violation profile of the
path which has the minimum number of violations over the highest-ranked
constraint on which there is a di‰erence. Riggle refers to this formulation
as a ‘violation semi-ring’, and points to its similarities with the tropical
semi-ring over the real numbers.

Eisner’s expectation semi-ring combines both probabilities and violation
vectors. In Eisner’s own words:

Abstractly, let us say that each path p has not only a probability P(p)Œ[0,
1] but also a value val(p) in a vector space V, which counts the arcs,
features or coin flips encountered along path p. The value of a path is the
sum of the values assigned to its arcs... The idea is to augment the weight
data structure with expectation information, so each weight records a
probability and a vector counting the parameters that contributed to that
probability.

Eisner proceeds to define the V-expectation semi-ring (Z≥0XV, ò, fl, *)
as follows:

(p1, v1)‡(p2, v2) ”def (p1p2, p1v2+v1p2)
(p1, v1)‡(p2, v2) ”def (p1+p2, v1+v2)
if p* defined, (p, v)* ”def (p*, p*vp*)

He elaborates:
If an arc has probability p and value p, we give it the weight (p, pv) so
that our invariant (see above) holds if [the pathset] # consists of a single
length-0 or length-1 path. The above definitions are designed to preserve
our invariant as we build up larger paths and pathsets. fl lets us concatenate
(e.g.) simple paths p1, p2 to get a longer path p with P(p)=(p1)P(p2) and
val(p)=val(p1)+val(p2). The definition of fl guarantees [the invariant]
that path p’s weight will be (P(p), P(p)·val(p)). ò lets us take the union
of two disjoint pathsets, and * computes infinite unions.

Now that the expectation semi-ring has been explained, we are in position
to consider its application to maxent HG grammars. As stated in Hayes &
Wilson (2008: 389):

the properties of a very large set of strings can be computed by representing
the set as a finite state machine. We construct our machines by first
representing each constraint as a weighted finite state acceptor. Using
intersection …, we then combine the constraints into a single machine
that embodies the full grammar … Each path through this machine
corresponds to a phonological representation together with its vector of
constraint violations. We then obtain the E[Ci] values by summing over
all paths through the machine …

Theorem 3 is concerned with whether the FST associated with a maxent
phonotactic grammar has well-defined expectations, or in other words,
whether it has a finite partition function. It does this by explicitly constructing
a matrix which sums over the well-formedness values of every path
through the FST. In order to unders tand this, it is first necessary to
understand how matrix multiplication can represent accumulation over
paths through a matrix, and how the principal eigenvalue reflects important
aspects of the limit behaviour.

Technically, a directed graph G consists of some nodes (indexed 1 to n),
and directed edges which point from a node j to some node i. The adjacency
matrix (Aij) associated with G is an nXn matrix in which:

Aij=
1 there is an edge from j to i
0 otherwise

Clearly (A1)ij indicates the number of paths of length 1 from node j to node
i. It turns out that something much more general is true: (Am)ij indicates
the number of paths of length m from node j to node i. To see this, consider
the (i, j) entry of Am+1. Since Am+1=Am·A, (Am+1)ij must be the dot product
of the ith row of Am and the jth column of A: (Am+1)ij=%„(Am)ik·Akj.
The value (Am)ik indicates the number of paths of length exactly m from
k to i, and Akj indicates the number of paths of length exactly 1 from j to
k. Thus, (Am)ik·Akj indicates the number of paths of length m+1 that begin
at j and end at i, passing through k as the first step. Since every path from
j to i must pass through some first step, the total number of paths of length
m+1 is given by their sum across k. Therefore, (Am+1)ij indicates the total
number of paths of length m+1 from node j to node i. In this case, matrix
multiplication represents the ‘accumulation’ of the number of paths. The
principal eigenvalue represents the (limit of the) ratio by which the number
of paths grows as the path length is increased. In fully connected graphs,
this value will be n (the number of nodes); in acyclic graphs (where it is not
possible to return to any state i once it has been visited), the principal
eigenvalue of the adjacency matrix is 0.

Theorem 3: Let (Pij) be the penalty matrix for a maxent phonotactic
grammar G=(S+, C⋲, w ƒ) and its associated FST G¢=(S, Q, q0, F, E, r). G
has a finite partition function if and only if the principal eigenvalue of P
has a magnitude of 1 or less.

Proof: The proof goes in two steps. The first is to show that every accepted
string corresponds to a path beginning at q1 and being ‘absorbed’ in qn+1.
The second is to show that (Pm)ij indicates the well-formedness value of all
paths of length exactly m that begin at state j and end at state i (so that the
well-formedness of all paths will ‘accumulate’ in qn+1). It follows from this
that Z=limm√¥(Pm)(n+1)(n+1), which is finite if and only if the principal
eigenvalue has magnitude 1 or less.

Step 1: The definition of FST gives that every path begins in the start
state q1, and ends in one of a set of final states qjŒF. Then, the requirement
that P(n+1)j=dij amounts to adding a cost-free transition to the extra state
n+1, but only from pre-existing finals. The requirement that P(n+1)(n+1)=1
means that every string path which enters this state stays there without
penalty. (The cost-free self-link is necessary to preserve the well-formedness
so that it can be counted in the limit, rather than allowing it to vanish after
the path is accepted.) Since every string that is accepted by the FST must
begin at the start state and end at a final state, every terminating path of
length m®1 through the FST is counted by the matrix entry (Pm)(n+1)1
(and all subsequent values of m).

Step 2: Suppose that the violation vector e √ik is incurred by traversing a
single path from qk to qi, and e√kj is incurred by traversing a single path from
qj to qk. Then the well-formedness value associated with the k£i arc is
F(w ƒ·e √ik) = ew ƒ·e√ik, and the well-formedness value associated with the j to k
arc is F(wƒ·e √kj)=ewƒ·e√kj. Their product is F(w ƒ·e√ik)·F(wƒ·e √kj) = ewƒ·e√ik·ewƒ·e√kj =
ewƒ·e√ik+wƒ·e√kj = ewƒ·(e√ik+e√kj) = F(wƒ·(e √ik+e√kj)). In other words, the penalty is the
same whether the violations are added up and assessed all at once, or assessed
one by one. This is the same kind of ‘invariant’ as Eisner (2002) refers to.
Now, it is already true by construction that (P1)i j represents the penalty
to a string incurred by transitioning from state j to state i in exactly 1 step.
Now suppose that (Pm)ij represents the penalty incurred by transitioning
from state j to state i in exactly m steps. Then (Pm+1)ij=%„(Pm)ik·(Pkj).
Then the well-formedness of all paths of exactly length m+1 is decomposed
just as with the adjacency matrix counting paths above.

It follows from these that the value (Pm)(n+1)1 represents the sum of the
well-formedness values of all accepted strings of length m®1 or less. Since
the partition function is defined as the sum of the well-formedness values
of all terminating strings, it follows that Z=limm√¥(Pm+1)(n+1)1. Since all
of the well-formedness must eventually accumulate in this cell for finite
strings, it follows that Z is finite if and only if the principal eigenvalue of
P has magnitude less than 1.

Pij=

F(wƒ·c √i j) there is an edge from qj to qi
1 i=n+1 and qjŒF, i.e. j is final
1 i=n+1 and j=n+1
0 otherwise

The second and third rows of this definition are equivalent to adding a final
final state qn+1 and requiring all final states to have a cost-free transition to
the final final state, so that all well-formedness will accumulate in qn+1.

