
Phonology 25.2: Artwork 1 of

Supplementary materials 72 Giorgio Magri

every ranking consistent with the former is also consistent with the latter.
Thus ù1+ù2 entails both ù1 and ù2.

(36) At least one constraint which has a w in the ERC under consideration
is ranked above every constraint which instead has an l (constraints
which have an e play no role in the consistency condition).

2 The join

4 Giorgio Magri

Grammatical information was represented in §4.1.2 as a (possibly partial)
collection G of mappings (Aa, Xx) of an underlying form Aa to a surface
form Xx. Each of these mappings can be equivalently represented with the
corresponding ERC block ù(Aa, Xx). And the grammatical information
G can thus be represented with the ERC matrix obtained by stacking all
these blocks one of top of the other. Merchant’s CPR adopts the architecture
in (28), the only di‰erence being that the current partial grammatical
information is represented not as a partial grammar G but as an ERC matrix
ù. This makes the algorithm more flexible in the type of partial grammatical
information it maintains: any (partial) grammar G can be represented
through the corresponding ERC matrix, while not just any ERC matrix ù
corresponds to some partial collection of mappings. This additional flexibility
in the data structure maintained by the algorithm is crucial in order to
define the subroutine for extracting ranking information, as explained in
the next section.

Supplementary materials 5 6 Giorgio Magri 8 Giorgio Magri Supplementary materials 9 10 Giorgio Magri

Appendix B: Equivalence between Merchant’s and Tesar’s sub-
routines

Supplementary materials 11 12 Giorgio Magri Supplementary materials 13

Appendix A: Merchant’s (2008) CPR

Phonology 31 (2014). Supplementary materials

Review article

Giorgio Magri
CNRS, Université Paris 8 and University of Utrecht

Supplementary materials

This appendix sketches Merchant’s (2008) CPR algorithm. In §1, I explain
how CPR adheres to the architecture in (28), only with a more abstract
representation of the current partial ranking information in terms of ERCs.
I then review CPR’s subroutines for extracting ranking and lexical infor-
mation. I start from the easier case, where they are applied to a single
paradigmatic entry (§3 and §5), and then turn to the extension to contrast
pairs (§4 and §6).

1 ERCs and CPR’s architecture
An elementary ranking condition (ERC) is an assignment of one of the
three symbols l, w and e to each of the constraints in the constraint set
(Prince 2002). An ERC is usually represented as a row of these symbols,
with the constraints annotated on top. To illustrate, an ERC for the constraint
set (5) of the Paka typology is provided in (35). An ERC matrix is a finite
collection of ERCs, stacked one on top of the other (the order does not
matter). An arbitrary ERC matrix is denoted by ù. Given two ERC matrixes
ù1 and ù2, ù1+ù2 denotes the ERC matrix obtained by stacking one on
top of the other (the order does not matter).

14Giorgio MagriSupplementary materials15

Bruce Tesar (2014). Output-driven phonology: theory and learning. (Cam-
bridge Studies in Linguistics 139.) Cambridge: Cambridge University
Press. Pp. xix+415.

(35)
e

Id[str] Id[length] Main-L Main-R NoLong WSP
w w l l e|

The phonological underpinning of these notions is as follows. Consider the
mapping (Aa, Xx) of an underlying form Aa to a surface form Xx, which
is thus construed as the winner. For any other loser candidate Yy, consider
the ERC defined in (37). Stack all the ERCs thus constructed for all loser
candidates one on top of the other into an ERC matrix, denoted by ù(Aa,
Xx). Then the OT grammar corresponding to a ranking maps the under-
lying form Aa to the surface form Xx if and only if that ranking is consistent
with the ERC matrix ù(Aa, Xx) corresponding to that mapping.

(37) A constraint has a w provided it prefers the winner mapping (Aa,
Xx) to the loser mapping (Aa, Yy), i.e. it assigns fewer violations
to the former mapping than to the latter.

a.

A constraint has an l provided it instead prefers the loser mapping
(Aa, Yy) to the winner mapping (Aa, Xx), i.e. it assigns fewer
violations to the former mapping than to the latter.

b.

A constraint has an e provided it has no preference for one of the
two mappings (Aa, Xx) and (Aa, Yy), i.e. it assigns the same number
of violations to both.

c.

To illustrate, consider the Paka typology in §2.1 of the paper, focusing on
the mapping (/’pa:’ka/, [’pa:ka]) of the underlying form /’pa:’ka/ to the surface
form [’pa:ka]. The ERC matrix ù(/’pa:’ka/, [’pa:ka]) corresponding to this
mapping is provided in (38). It consists of seven ERCs, because there are
seven loser candidates. For convenience, each ERC is annotated on the left
with the corresponding underlying, winner and loser forms (loser forms
are struck through). The topmost ERC in (38) says that the winner mapping
(/’pa:’ka/, [’pa:ka]) beats the loser mapping (/’pa:’ka/, [pa’ka]), provided at
least one of the two winner-preferring constraints Ident[length] or Main-
L is ranked above the two loser-preferring constraints Main-R and NoLong.

Supplementary materials 3

The join of some ERC matrices ù1, …, ùn is any ERC matrix which satisfies
the two conditions in (39). Any such ERC matrix will be denoted by ∑(ù1,
…, ùn). Condition (39a) says that the join is weaker than (i.e. entailed by)
each matrix ù1, …, ùn. Condition (39b) says that, among all ERC matrices
which are weaker than (i.e. entailed by) each matrix ù1, …, ùn, the join is
a strongest one (i.e the one which entails all the others). In other words,
condition (39a) says that the join captures some of the ranking information
shared by the matrices ù1, …, ùn, and condition (39b) says there is no
shared ranking information which the join does not capture.

(39) Each of the ERC matrices ù1, …, ùn entails their join.a.
If each of the ERC matrices ù1, …, ùn entails some ERC matrix
ù, their join entails ù as well.

b.

Lemma 3 collects some properties of the join which will be used in the rest
of this appendix.

Proof. An ERC matrix ∏ is the join of two ERC matrixes ù1 and ù2

if and only if the set of rankings consistent with ∏ is the union of the
two sets of rankings consistent with ù1 and ù2. Furthermore, the set
of rankings consistent with ù1+ù2 is the intersection of the two sets
of rankings consistent with ù1 and ù2. Claims (i)–(iii) then follow
from elementary set-theoretic manipulations on the sets of consistent
rankings.

Given four ERC matrices ù1, ù2, π1, π2, consider the ERC
matrix ∑(ù1, ù2)+∑(π1, π2) obtained by stacking one on top of
the other the join of ù1 and ù2 and the join of π1 and π2. Then
∑(ù1, ù2)+∑(π1, π2) coincides with the join of the four ERC
matrices ù1+π1, ù1+π2, ù2+π1, ù2+π2.

(iii)

3 A subroutine for extracting ranking information through the join
3.1 Description of the subroutine. The subroutine in (40) takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex and a paradigm
p (line 1). It extends the ranking information encoded in the input ERC
matrix ù by adding to that input ERC matrix some additional ERCs as
follows. The subroutine considers a certain meaning combination Mm (line
2), and it reads o‰ the paradigm p the surface realisation Xx of that meaning
combination Mm (line 3). The subroutine then constructs the set " of all
underlying concatenations Aa which are consistent with the lexicon Lex as
underlying forms for that meaning combination Mm (line 4). This means
that if Lex sets a feature for the root M or the su!x m to a certain value,
then the root morpheme A or the su!x morpheme a of each underlying
form Aa in " has the feature set to that value. Any of these underlying
forms in " could be the actual underlying form according to the partial
lexical information encoded by Lex. In other words, the target grammar
could enforce any of the mappings (Aa, Xx) of any underlying form Aa in
" to the surface form Xx. Thus the best the subroutine can do is to extract
any ranking information shared by all these mappings. This is done by
computing the join of all ERC blocks ù(Aa, Xx) corresponding to all
mappings (Aa, Xx) of all underlying forms Aa in " to the surface form Xx
(line 5). The input ERC matrix ù is updated by adding this join to it (line
6). The ERC matrix thus updated is returned (line 7).

(40) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all concatenations Aa consistent with Lex as

underlying forms for Mm

1.

2.
3.

4.

The join of the ERC blocks ù(Aa, Xx) computed at line 5 is an ERC-
theoretic construct which might very well not correspond, in the sense of
(37), to any mapping of an underlying form to a surface form. For this
reason, CPR needs the additional flexibility of representing the current
(partial) grammatical/ranking information as an ERC matrix rather than
as a (partial) grammar. Appendix B: §1 shows that output-drivenness in
e‰ect guarantees that the join computed in line 5 always corresponds to the
mapping of a certain underlying form to the surface form Xx read at line
3.

3.2 Analysis of the subroutine. Lemma 4 provides a straightforward correct-
ness result for Merchant’s subroutine (40). Note that the proof only uses
property (39a) of the join, not property (39b). In other words, the lemma
hinges only on the fact that the join extracts ranking information which is
shared by all the ERC blocks ù(Aa, Xx). Property (39b) is nonetheless
crucial, because it ensures that the join does not lack any of this shared
ranking information, making subroutine (40) optimal. The crux of
Merchant’s subroutine is its time complexity. Merchant (2008: ch. 4)
develops an elegant algorithm for computing the join which can be used
to implement line 5. Unfortunately, his algorithm needs to compute the
fusional closure of each of the input ERC matrices it has to join. Although
there are no results that I am aware of concerning the time complexity of
that computation, it is most plausibly intractable in the general case.

4 Extension to contrast pairs
4.1 Description of the subroutine. The extension of Merchant’s subroutine
(40) to contrast pairs is provided in (41). This subroutine takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex, and a paradigm
p (line 1). The subroutine considers some contrast pair (line 2). For concrete-
ness, I am assuming here that the two meaning combinations of the contrast
pair share the su!x meaning, i.e. have the shape Mm and Ôm (the case
where they share the root meaning is handled analogously). The
subroutine reads o‰ the paradigm p the surface realisations Xx and ∑π of
those two meaning combinations (line 3). Although x and π are the surface
realisations of the same underlying su!x segment corresponding to the
su!x meaning m, they can be di‰erent, because of morphophonemic
alternations in the surface realisation of that underlying su!x triggered by
the two di‰erent roots M and Ô. The subroutine then constructs the set
" of all pairs (Aa, ∫a) of underlying concatenations which are consistent
with the lexicon Lex as underlying forms for the meaning combinations
Mm and Ôm and furthermore share the underlying su!x segment a (line
4). The latter requirement encodes the fact that we are focusing on a pair
of meaning combinations Mm and Ôm which share the su!x meaning m.
For each pair (Aa, ∫a) of underlying concatenations in ", the subroutine
considers the corresponding ERC blocks ù(Aa, Xx) and ù(∫a, ∑π), stacks
them together into the ERC matrix ù(Aa, Xx)+ù(∫a, ∑π) and constructs
the join of all ERC matrices thus obtained (line 5). The input ERC matrix
ù is updated by adding this join to it (line 6). The ERC matrix thus updated
is then returned (line 7).

There is a subtlety which should be pointed out here. At line 5, the subroutine
considers the join in (42a), not the one in (42b). The di‰erence is that in
(42a) we sum together the two ERC blocks ù(Aa, Xx) and ù(∫a, ∑π) into
ù(Aa, Xx)+ù(∫a, ∑π) before taking the join. This is indeed appropriate,
because the join in (42a) is stronger than the one in (42b), by Lemma 3.ii.

(42) ∑{ù(Aa, Xx)+ù(∫a, ∑π) | (Aa, ∫a)Œ"}a.
∑{ù(Aa, Xx), ù(∫a, ∑π) | (Aa, ∫a)Œ"}b.

4.2 Analysis of the subroutine. The Correctness Lemma 4 trivially extends
from the original subroutine (40) for single meaning combinations to the
variant (41) for contrast pairs. The ine!ciency of (40) for single meaning
combinations is of course aggravated in (41) for contrast pairs, as the latter
requires taking the join of a larger number of larger ERC matrices. Yet
subroutine (41) applied to the contrast pair (Mm, Ôm) is able to extract
more ranking information than the double application of the original
subroutine (40) to the two separate meaning combinations Mm and Ôm.
To see this, suppose that the root meaning M admits a unique underlying
form A consistent with Lex, the root meaning Ô admits a unique under-
lying form ∫ and the su!x meaning m admits only two underlying forms,
a1 and a2. Suppose we first apply the original subroutine (40) to the meaning
combination Mm. At line 4, it constructs the set " consisting of the two
underlying forms Aa1 and Aa2. At line 5, it computes the join ∑(ù1, ù2)
of the two ERC blocks ù1=ù(Aa1, Xx) and ù2=ù(Aa2, Xx). Suppose
we next apply the original subroutine (40) to the meaning combination
Ôm. At line 4, it constructs the set ", consisting of the two underlying
forms ∫a1 and ∫a2. At line 5, it computes the join ∑(π1, π2) of the two
ERC blocks π1=ù(∫a1, ∑π) and π2=ù(∫a2, ∑π). Ultimately, the two
consecutive applications of the original subroutine (40) to the two meaning
combinations Mm and Ôm extract the ranking information captured by
the sum of the two joins in (43).

Suppose we instead apply subroutine (41) to the contrast pair (Mm, Ôm).
At line 4, it constructs the set ", consisting of the two pairs (Aa1, ∫a1) and
(Aa2, ∫a2). At line 5, it computes the join in (45) of the two ERC blocks
ù(Aa1, Xx)+ù(∫a1, ∑π)=ù1+π1 and ù(Aa2, Xx)+ù(∫a2, ∑π) =
ù2+π2.

(45) ∑(ù1+π1, ù2+π2)

The join in (45) is stronger than the one in (44), because it joins fewer
matrices (the smaller the number of matrices, the larger the amount of
shared information for the join to extract). This is because the two blocks
ù1+π2 and ù2+π1 have disappeared from the join. This is what we want,
as they correspond to the unreasonable assumption that the su!x m has
di‰erent underlying forms in the two meaning combinations Mm and Ôm.
In other words, since the learner is processing the two meaning combinations
Mm and Ôm together as a contrast pair, it is able to take into account the
fact that these meaning combinations share the su!x meaning m, which
must therefore have the same underlying form in the two cases.

5 A subroutine for extracting lexical information through
inconsistency detection

5.1 Description of the subroutine. Subroutine (46) takes as input some
lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine then considers a certain
meaning combination Mm with some feature unset according to the input
partial lexicon Lex for either the root M or the su!x m (line 2). The goal
of the subroutine is to try to extend the input partial lexicon by setting
some of these unset features. To this end, the subroutine reads o‰ the
paradigm p the surface realisation Xx of the meaning combination Mm
(line 3). It constructs the set " of all underlying concatenations Aa which
are consistent with both the input lexical information Lex and the input
ranking information captured by the grammar G (or the ERC matrix ù)
(line 4). Consistency with the input lexical information means that, if Lex
sets a feature for the root M (or the su!x m) to a certain value, then the
root morpheme A (or the su!x morpheme a) of each underlying form Aa
in " has the feature set to that value. Consistency with the input ranking
information means that the input grammar G (or the input ERC matrix ù)
is consistent with the mapping (Aa, Xx) of each such underlying form Aa
in " to the surface form Xx. The subroutine then looks for a feature which
is unset by Lex for the root meaning M (or the su!x meaning m), such that
each root morpheme A (or each su!x morpheme a) has the same value for
that feature in all underlying concatenations Aa in " (line 5). For any such
feature, it can be concluded that the opposite value is inconsistent with the
available lexical and ranking information. The subroutine thus updates the
partial lexicon Lex by setting that feature to be equal to its constant value

(46) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that:
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G (or

the ERC matrix ù)
if some feature unset for the root M (or for the su!x m) has a

constant value over " for M (for m) then
update the lexicon Lex by setting the feature to that value for

the root M (or for the su!x m)
end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.
8.

This subroutine is called inconsistency detection (cf. Kager 1999, Tesar
et al. 2003, Tesar 2006), because it sets a certain feature to a certain value
based on the detection at line 6 of the fact that any other value for that
feature would be inconsistent with the available lexical and ranking
information.

Proof. Assume by contradiction that the lemma is false. This means
that the subroutine has set some feature j for, say, the root meaning
M to a value which is di‰erent from the value assigned by the target
lexicon. For concreteness, assume that the values assigned by the
subroutine and the target lexicon are + and — respectively. Thus , the
target lexicon assigns to the meaning combination Mm an underlying
form Aa, which has feature j set to the value — in the root A. This
underlying form Aa is consistent with the partial lexicon Lex (because
it is consistent with the target lexicon, which is in turn consistent with
Lex). Furthermore, the mapping (Aa, Xx) of this underlying form Aa
to the surface form Xx is consistent with the input grammar G (because
the target ranking is consistent with both). In other words, this
underlying form Aa satisfies the two conditions stated by the two
subclauses in line 4 and thus belongs to the set " constructed by the
subroutine. Since this underlying form Aa has feature j set equal to
— for the root A, then the subroutine cannot have set that feature to
the opposite value + at line 6.

5.2 Analysis of the subroutine. Lemma 5 provides a straightforward correct-
ness result for inconsistency detection (46). Its time complexity is controlled
by the size of the set " of consistent underlying forms constructed at line 4.
In the worst case (when both the input lexicon and the input ranking
information are empty), " consists of all underlying forms, i.e. all con-
catenations of root and su!x morphemes. In this case, the size of " grows
polynomially in the number of morphemes and thus exponentially in the
number of features. In conclusion, subroutine (46) is e!cient relative to
the generous notion of e!ciency defined in (14), which measures time
complexity in terms of the number of morphemes, but is not e!cient
relative to the more demanding notion of e!ciency defined in (15), which
measures time complexity in terms of the number of features.

Lemma 5
Inconsistency detection (46) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target grammar, that the input (possibly partial)
grammar G (or ERC matrix ù) is consistent with the target grammar

6 Extension to contrast pairs
6.1 Description of the subroutine. The extension of inconsistency detection
(46) to contrast pairs is provided in (47). This subroutine takes as input
some lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine considers a particular
contrast pair (line 2). For concreteness, I am assuming here that the two
meaning combinations of the contrast pair share the su!x meaning, namely
have the shape Mm and Ôm (the case where they share the root meaning
is handled analogously). The subroutine reads o‰ the paradigm p the surface
realisations Xx and ∑π of those two meaning combinations (line 3). It
constructs the set " of all pairs (Aa, ∫a) of underlying concatenations which
are consistent with both the input lexical information Lex and the input
ranking information G (or ù) and furthermore share the underlying su!x
segment a (line 4). The subroutine then looks for a feature which is unset
by Lex for the root meaning M (or the root meaning Ô or the su!x meaning
m), such that each underlying root morpheme A (or each underlying root
morpheme ∫ or each underlying su!x morpheme a) has the same value
for that feature in all pairs (Aa, ∫a) in " (line 5). For any such feature, the
subroutine updates the partial lexicon Lex by setting the feature equal to
its constant value for the root meaning M (or for the root meaning Ô or
for the su!x meaning m) (line 6). The lexicon thus updated is then returned
(line 8).

(47) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G (or
the ERC matrix ù)

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

- the mapping (∫a, ∑π) is consistent with the grammar G
if some unset feature has a constant value over " for any of the three

meanings M, Ô or m then
update the lexicon Lex by setting the feature to the constant

value for that meaning
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.
8.

6.2 Analysis of the subroutine. The Correctness Lemma 5 trivially extends
from the original subroutine (46) for single meaning combinations to the
variant (47) for contrast pairs. Furthermore, the variant for contrast pairs
remains as e!cient as the original version for single meaning combinations,
when e!ciency is generously measured in terms of the number of morphemes
(but again, not when it is measured in terms of the number of features).
Yet a number of authors (including Alderete et al. 2005 and Merchant &
Tesar 2008) have pointed out that (47), applied to the contrast pair (Mm,
Ôm), can extract more lexical information than the double application of
the original subroutine (46) to the two separate meaning combinations Mm
and Ôm. To see this, consider one of the two meaning combinations of the
contrast pair, say Mm. The original subroutine considers all underlying
forms Aa for Mm which are consistent with the input lexical and ranking
information, and only sets those features which are constant across all these
underlying forms. If the number of consistent underlying forms is large,
the number of features which are constant across them is small, and the
subroutine thus extracts little lexical information. (47) might instead be
able to extract more lexical information, because it looks for features which
are constant over a smaller set of underlying forms for Mm, namely those
underlying forms Aa which are not only consistent with the input lexical
and ranking information, but also use a su!x morpheme a which can be
combined with a root morpheme ∫ into an underlying form ∫a for Ôm
which is also consistent with the input lexical and ranking information.

I denote Tesar’s subroutine (29) for the extraction of ranking information
from a single meaning combination as ERIT, and Merchant’s subroutine
(40) as ERIM. Lemma 6 states that, if the underlying typology is output-
driven, then ERIT and ERIM are equivalent, because they update the
current ranking/grammatical information with the ‘same’ information. This
equivalence is striking, given that the time complexity of ERIT is only
linear in the number of features, while the time complexity of ERIM is
unknown, but probably exponential in both the number of features and the
number of morphemes. Output-drivenness thus a‰ords a significant
reduction in time complexity. The Correctness Lemma 1 for ERIT (which
was proven directly in §4.4) can also be made to follow from the Correctness
Lemma 4 for ERIT through the Equivalence Lemma 6.

1 Subroutines for extracting ranking information from a single
meaning combination

Proof. The underlying form Bb constructed by ERIT at line 4 is
consistent with Lex, and therefore belongs to the set " constructed by
ERIM at line 4. Consider one of the underlying forms Aa in this set ".
The two underlying forms Aa and Bb agree in every feature which is
set by the input partial lexicon Lex. Furthermore, Bb and the surface
form Xx agree in every remaining feature. Thus the underlying form
Bb is more similar to the surface form Xx than is the underlying form
Aa. Since the underlying typology is output-driven, then every ranking
which maps the less similar underlying form Aa to Xx also maps the
more similar underlying form Bb to Xx. In other words, any ranking
consistent with the ERC block ù(Aa, Xx) is also consistent with the
ERC block ù(Bb, Xx). Lemma 3.i thus ensures that the ERC block
ù(Bb, Xx) is the join of the ERC blocks ù(Aa, Xx) across all underlying
concatenations Aa in ".

Lemma 6
Suppose that the underlying typology is output-driven and that ERIT

is fed with a partial grammar G and a (possibly partial) lexicon Lex.
Suppose that ERIM is fed with the ERC matrix ù corresponding to
the partial grammar G and the same lexicon Lex. Then the ERC block
corresponding to the mapping (Bb, Xx) constructed by ERIT at line
4 is the join of the ERC blocks ù(Aa, Xx) corresponding to the
underlying forms Aa in " constructed by ERIM at line 5.

between the two implementations is the following: Merchant’s original
subroutine (46) sets any feature which is constant over "; the variant in (48)
instead focuses right from the beginning on a specific feature j, which is
unset for either the root M or the su!x m of the meaning combination Mm
under consideration. In line 3, I am assuming for concreteness that the
feature j is unset for the root M (the case where it is unset for the su!x m
is handled analogously). The modification is only cosmetic: the original
subroutine is equivalent to running this variant for each unset feature.

(48) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a meaning combination Mm in the paradigm p
Require: a feature j unset by Lex for either M or m; for concreteness,

say it is unset for M
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G

if all underlying forms Aa in " have the feature j set to the same
value in the root morpheme A then

update the lexicon Lex by setting the feature j to that value for
the root meaning M

end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.

8.
9.

I denote Tesar’s subroutine (33) for the extraction of lexical information
from a single meaning combination by ELIT, and (the cosmetic variant of)
the original inconsistency detection subroutine (48) by ELIid. Lemma 6
states that, if the underlying typology is output-driven, ELIT and ELIid

are equivalent, because their if-clauses at line 6 are equivalent. This
equivalence is striking, given that the if-clause of ELIT can be checked in
time linear in the number of features, while the if-clause of ELIid requires
time exponential in the number of features in the worst case. Output-
drivenness has thus a‰orded a significant reduction in time complexity.
The Correctness Lemma 2 for ELIT (which was proven directly in §4.5)
can also be made to follow from the Correctness Lemma 4 for ELIid through
the Equivalence Lemma 7.

Proof. To start, let me prove that the if-clause in line 6 of ELIT entails
the if-clause in line 6 of ELIid. Assume by contradiction that the
former if-clause is true while the latter if-clause is false. The hypothesis
that the if-clause of ELIid is false entails in particular that the set " of
consistent underlying forms constructed by ELIid at line 5 contains
an underlying form Aa whose root A disagrees with X relative to the
feature j (indeed, if all the underlying forms Aa in " had a root A
which agreed with X relative to j, the if-clause of ELIid would hold
true). The underlying form Aa and the underlying form Bb constructed
by ELIT at line 5 thus agree in the feature j for the root meaning M,
as they both have the opposite value from X. Furthermore, they agree
in every feature set by the partial lexicon Lex, because they are both
consistent with Lex. Finally, Bb agrees with Xx for every remaining
feature. The underlying form Bb is thus more similar to the surface
form Xx than is the underlying form Aa. Since the mapping (Aa, Xx)
is consistent with G (because Aa belongs to "), there exists a ranking
which is consistent with both. Since the grammar corresponding to
that ranking is output-driven and maps the less similar underlying
form Aa to Xx, it also maps the more similar underlying form Bb to
Xx. In other words, that ranking is also consistent with the mapping
(Bb, Xx). In conclusion, the mapping (Bb, Xx) and the grammar G
are consistent (because both are consistent with the ranking), contra-
dicting the hypothesis that the if-clause of ELIT is true.
Vice versa, let me prove that the if-clause in line 6 of ELIid entails
the if-clause in line 6 of ELIT. Assume by contradiction that the
former if-clause is true, while the latter if-clause is false. The hypothesis
that the if-clause of ELIT is false means that the input (partial) grammar
G is consistent with the mapping (Bb, Xx) of the underlying form Bb
constructed by ELIT at line 5 to the surface form Xx. Since this
underlying form Bb is consistent with Lex, then Bb belongs to the set
" of consistent underlying forms constructed at line 5 by ELIid. Since
B and X disagree relative to the feature j, consider the underlying
form ≥b, identical to Bb but for the fact that ≥ and X instead agree in
the feature j. Obviously, the underlying form ≥b is more similar to
the surface form Xx than is the underlying form Bb. Since (Bb, Xx)
is consistent with G, there exists a ranking which is consistent with
both. Since the grammar corresponding to that ranking is output-
driven and maps the less similar underlying form Bb to Xx, then it
also maps the more similar underlying form ≥b to Xx. In other words,
that ranking is also consistent with the mapping (≥b, Xx). This
underlying form ≥b thus belongs to the set " constructed by ELIid at
line 5.This conclusion contradicts the hypothesis that the if-clause of
ELIid holds, because it shows that " contains two underlying forms
Bb and ≥b, such that B and ≥ disagree in the feature j.Lemma 7

Suppose that the underlying typology is output-driven. Then the two
if-clauses in line 6 of ELIT and ELIid are equivalent.

Tesar’s subroutine for extracting lexical information from contrast pairs
is more involved than his other two subroutines, for extracting lexical and
ranking information from a single meaning combination. For this reason,
the latter two subroutines were reviewed in §4.4 and §4.5, while the former
subroutine is included in this appendix. Here I start out from Merchant’s
subroutine in (47) for extracting lexical information from contrast pairs,
and work towards Tesar’s reformulation, provided below in (52). This
seems to me the best way of making sense of the somewhat complex
formulation of Tesar’s subroutine. I begin by carrying out the same cosmetic
change as in the previous section: I replace the original subroutine (47)
with (49), which only di‰ers because line 3 focuses on a specific feature j,
unset by the input lexicon Lex for one of the three meanings M, Ô and m
of the contrast pair (Mm, Ôm). For concreteness, I assume it is unset for
the root meaning M.

3Subroutines for extracting lexical information from a contrast
pair

Supplementary materials1716Giorgio Magri

(49)Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p
Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m
Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M
read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p
construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that:
- Aa is consistent with the lexicon Lex as an underlying form
for Mm
- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm
- the mapping (∫a, ∑π) is consistent with the grammar G
if all the pairs (Aa, ∫a) in " have the underlying root A set to the
same value for feature j then
update the lexicon Lex by setting feature j to that constant value
for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.
9.

the two underlying su!x morphemes a and ¥ coincide, because they are
the underlying form corresponding to the same su!x meaning m. The
condition that a and ¥ coincide is in turn equivalent to the condition that
they agree for each feature y. We could of course relax this condition by
requiring that the two underlying su!x morphemes a and ¥ agree only for
certain features, y1, ..., yn. This intuition leads to the formulation in (50).
It di‰ers from (49) only because of the new line 4, which introduces the
features y1, ..., yn, and because of the additional fifth subclause in the
definition of the set ". Note that line 4 assumes all the features y1, ..., yn
to be unset by the input partial lexicon Lex for the shared su!x m, because
the condition that both a and ¥ are consistent with Lex as underlying forms
for m already entails that they agree on every feature set by Lex for m.

(50)Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p
Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m
Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M
Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex
read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p
construct the set " of pairs (Aa, ∫¥) of concatenations sharing the
su!x morpheme such that
- Aa is consistent with the lexicon Lex as an underlying form
for Mm
- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ agree for every
feature y1, ..., yn
if all the pairs (Aa, ∫¥) in " have the underlying root A set to the
same value for feature j then
update the lexicon Lex by setting feature j to that constant value
for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

combinations Mm and Ôm one at a time. If instead we consider all unset
y features at line 4, then (50) e‰ectively considers only pairs of underlying
forms for the two meaning combinations which share the underlying su!x,
and is therefore equivalent to the original subroutine (49) for extracting
lexical information from contrast pairs. In the end, depending on the
number of y features considered at line 4, (50) provides a whole range of
subroutines for extracting lexical information in between the weaker (46)
and the stronger (49).
Subroutine (50) can be equivalently restated as (51). Instead of requiring
the two su!x morphemes a and ¥ to coincide for every feature y1, ..., yn,
we consider all possible combinations v1, ..., vn of values of those features
at line 6, and we require both a and ¥ to have those features set equal to
those values in the fifth subclause of line 5.

(51)Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p
Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m
Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M
Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex
read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p
For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that:
- Aa is consistent with the lexicon Lex as an underlying form
for Mm
- the mapping (Aa, Xx) is consistent with the grammar G
- ∫¥ is consistent with the lexicon Lex as an underlying form
for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ both have the
values v1, ..., vn for the features y1, ..., yn
if all the pairs (Aa, ∫¥) in all the sets "(v1, ..., vn) have the underlying
root A set to the same value for feature j then
update the lexicon Lex by setting feature j to that constant value
for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

Supplementary materials1918Giorgio Magri

By reasoning as in the previous subsection we can easily show that subroutine
(51) is equivalent to (52) under the assumption of output-drivenness.
Indeed, the two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn con-
structed by (52) at line 6 provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (51).

(52)Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p
Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m
Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M
Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex
read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p
For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and
±≤v1, …, vn, as follows:
- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-
lying forms for Mm and Ôm
- B has the opposite value for feature j than X
- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values
v1, ..., vn
- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
if the grammar G is inconsistent with the two mappings (Bbv1, …, vn,
Xx) and (±≤v1, …, vn, ∑π) for any combination of values v1, ..., vn
then
update the lexicon Lex by setting feature j to that constant value
for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.
If the features y1, ..., yn considered in line 4 of (52) exhaust the set of
features, then the two subroutines (49) and (52) are equivalent. However,
the running time of (52) is exponential in the number of features in the
latter case, because it needs to consider all combinations v1, ..., vn.

By reasoning as in the previous subsection, we can proceed from Merchant’s
original subroutine (41) for extracting ranking information from contrast
pairs to the variant in (53).

4Subroutines for extracting ranking information from a contrast
pair

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that
- Aa is consistent with the lexicon Lex as an underlying form
for Mm
- ∫¥ is consistent with the lexicon Lex as an underlying form
for Ôm
- the two underlying su!x morphemes a and ¥ both have the
values v1, ..., vn for the features y1, ..., yn
compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫¥) in "(v1, ..., vn) for all combinations of values
v1, ..., vn
add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.

7.
8.

20Giorgio Magri

Once again, if we do not consider any y features at line 3, (53) e‰ectively
considers the two meaning combinations of the contrast pair independently
of each other, and thus ends up equivalent to subroutine (40) for extracting
lexical information from single meaning combinations. If we instead consider
all unset y features at line 3, then (53) e‰ectively only considers pairs of
underlying forms for the two meaning combinations which share the
underlying su!x, and is therefore equivalent to Merchant’s original
subroutine (41) for extracting lexical information from contrast pairs.
Ultimately, depending on the number of y features considered at line 3,
(53) provides a whole range of subroutines for extracting ranking information
in between the weaker (40) and the stronger (41).
By reasoning as in §2 of this appendix, we can easily show subroutine
(53) to be equivalent to (54) under the assumption of output-drivenness.
The two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn constructed
by (54) at line 5 again provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (53).

(54)

- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values
v1, ..., vn
- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
compute the join of the ERC matrices ù(Bbv1, …, vn, Xx)+
ù(±≤v1, …, vn, ∑π) for all combinations of values v1, ..., vn
add this join to the ERC matrix ù
Return: the updated ERC matrix ù

6.

7.
8.

Take the simplest case, where we consider a single feature y at line 3.
Assume furthermore that y is binary, i.e. it only takes the values v=‘+’ and
v=‘—’. At line 5, the subroutine constructs the two underlying forms Bb+
and ±≤+, corresponding to the value v=‘+’of feature y (i.e. both b+ and ≤+
have the value ‘+’ for the feature y), and the two underlying forms Bb— and
±≤—, corresponding to the value v=‘—’ (i.e. both b— and ≤— have the value
‘—’ for the feature y). At line 6, we finally compute the join of the two ERC
blocks ù(Bb+, Xx)+ù(±≤+, ∑π) and ù(Bb—, Xx)+ù(±≤—, ∑π). Even in
the simplest case of a single feature y, there is no way around computing
the join.
In summary, Merchant develops a new subroutine for extracting ranking
information through the notion of join. This subroutine can be applied to
either a single meaning combination at a time, as in (40); or to a contrast
pair, as in (41). The latter is more powerful than the former: the subroutine
extracts more ranking information by processing the two meaning
combinations Mm and Ôm as a contrast pair than by processing them
separately. The crux of Merchant’s subroutine for extracting ranking
information is that it relies on the computation of a join, which is time-
consuming. The biggest impact of output-drivenness is that it allows
Merchant’s subroutine for extracting ranking information from a single
meaning combination to be restated without having to compute any join.
The restated subroutine thus runs in time linear in the number of features.
In other words, it is e!cient even relative to the more demanding notion
of e!ciency introduced in §2.6. The situation is unfortunately very di‰erent
when Merchant’s subroutine for extracting ranking information is boosted
by being applied to contrast pairs. In this case, output-drivenness is not
able to circumvent the computation of the join, and thus does not su!ce
to make the subroutine e!cient.

A constraint ranking is consistent with an ERC provided it satisfies con-
dition (36); it is consistent with an ERC matrix provided it is consistent
with each of its rows. An ERC matrix entails another ERC matrix provided

(38) Id
[str]

Id
[length]

Main-
L

Main-
R

No
Long

WSP

w
w

w
w
w
w

w
w
w
w

l
l
l
l

l

w
l

w

/’pa:’ka/, [’pa:ka], [pa’ka]
/’pa:’ka/, [’pa:ka], [pa’ka:]
/’pa:’ka/, [’pa:ka], [pa:’ka]
/’pa:’ka/, [’pa:ka], [pa:’ka:]
/’pa:’ka/, [’pa:ka], [’paka]
/’pa:’ka/, [’pa:ka], [’paka:]
/’pa:’ka/, [’pa:ka], [’pa:ka:]

w
w

w
w

Lemma 3
Suppose that one of the ERC matrices ù1, ù2, …, Rn is entailed
by each of the others. For concreteness, assume that it is ù1 which
is entailed by each of the other ERC matrices ù2, …, Rn. Then
ù1 is the join of ù1, ù2, …, Rn.

(i)

Given the ERC matrices ù1, ù2, ù3, …, Rn, replace two of them
with the ERC matrix obtained by stacking the two matrices one
on top of the other. For concreteness, replace ù1 and ù2 with
ù1+ù2. Then the join of the n®1 ERC matrices ù1+ù2, ù3,
…, Rn entails the join of the original n ERC matrices ù1, ù2, ù3,
…, Rn, while the reverse does not in general hold.

(ii)

compute the join of the ERC matrices ù(Aa, Xx) for all underlying
forms Aa in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.
7.

Proof. Let Aa be the underlying form assigned to the meaning
combination Mm by the target lexicon. This underlying form Aa
belongs to the set " constructed by the subroutine at line 4, because
of the hypothesis that the input lexicon Lex is consistent with the
target lexicon. Thus the corresponding ERC block ù(Aa, Xx) is one
of the blocks that the subroutine takes the join of at line 5. Since the
target ranking is consistent with this ERC block ù(Aa, Xx), then it
is also consistent with the join, by property (39a) of the join. Since the
target ranking is also consistent with the input ERC matrix ù, it is

Lemma 4
Merchant’s subroutine (40) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target ranking, that the input ERC matrix ù is
consistent with that target ranking, and that the input (possibly partial)
lexicon Lex is consistent with that target lexicon. The updated ERC
matrix returned by subroutine (40) is also consistent with that target
ranking.

then consistent with the updated ERC matrix returned by the sub-
routine.

(41) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫a) in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

1.

2.

3.

4.

5.

6.
7.

(43) ∑(ù1, ù2)+∑(π1, π2)

Lemma 3.iii ensures that (43) is equivalent to the join in (44). The four
ERC matrices being joined here correspond to all four combinations of
underlying forms for the two meaning combinations Mm and Ôm. In
particular, the learner is also joining together the two ERC blocks ù1+π2

and π2+ù1, whereby the shared su!x meaning m is assigned a di‰erent
underlying form in the case of Mm than in the case of Ôm. In other words,
since the learner is processing the two meaning combinations Mm and Ôm
separately, it is blind to the fact that these meaning combinations share the
su!x meaning m, which must therefore have the same underlying form in
both cases.

(44) ∑(ù1+π1, ù1+π2, ù2+π1, ù2+π2)

for the root meaning M (or for the su!x meaning m) (line 6). The lexicon
thus updated is then returned (line 8).

and that the input partial lexicon Lex is consistent with the target
lexicon. The updated lexicon returned by subroutine (46) is also
consistent with that target lexicon.

2 Subroutines for extracting lexical information from a single
meaning combination

Consider the slight variant (48) of the subroutine (46) for the extraction of
lexical information through inconsistency detection. The only di‰erence

The modification is only cosmetic: the original subroutine (47) is equivalent
to running this variant (49) for each feature which is unset for one of the
three morphemes M, Ô and m.
The set " constructed by the subroutine (49) at line 5 can equivalently
be described as the collection of all pairs (Aa, ∫¥) which satisfy the conditions
expressed by the four subclauses of line 5 plus the additional condition that

If we consider no y features at all in line 4, then (50) e‰ectively considers
the two meaning combinations of the contrast pair independently of each
other, and thus ends up equivalent to subroutine (46) for extracting lexical
information from single meaning combinations, in the sense that the
application of subroutine (50) to the contrast pair (Mm, Ôm) is equivalent
to two consecutive applications of subroutine (46) to the two meaning

Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p
Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m
Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex
read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p
For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and ±≤v1,

…, vn as follows
- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-
lying forms for Mm and Ôm

1.

2.

3.

4.

5.

(53)Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p
Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m
Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex
read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

1.

2.

3.

4.

Phonology 25.2: Artwork 1 of

Supplementary materials 72 Giorgio Magri

every ranking consistent with the former is also consistent with the latter.
Thus ù1+ù2 entails both ù1 and ù2.

(36) At least one constraint which has a w in the ERC under consideration
is ranked above every constraint which instead has an l (constraints
which have an e play no role in the consistency condition).

2 The join

4 Giorgio Magri

Grammatical information was represented in §4.1.2 as a (possibly partial)
collection G of mappings (Aa, Xx) of an underlying form Aa to a surface
form Xx. Each of these mappings can be equivalently represented with the
corresponding ERC block ù(Aa, Xx). And the grammatical information
G can thus be represented with the ERC matrix obtained by stacking all
these blocks one of top of the other. Merchant’s CPR adopts the architecture
in (28), the only di‰erence being that the current partial grammatical
information is represented not as a partial grammar G but as an ERC matrix
ù. This makes the algorithm more flexible in the type of partial grammatical
information it maintains: any (partial) grammar G can be represented
through the corresponding ERC matrix, while not just any ERC matrix ù
corresponds to some partial collection of mappings. This additional flexibility
in the data structure maintained by the algorithm is crucial in order to
define the subroutine for extracting ranking information, as explained in
the next section.

Supplementary materials 5 6 Giorgio Magri 8 Giorgio Magri Supplementary materials 9 10 Giorgio Magri

Appendix B: Equivalence between Merchant’s and Tesar’s sub-
routines

Supplementary materials 11 12 Giorgio Magri Supplementary materials 13

Appendix A: Merchant’s (2008) CPR

Phonology 31 (2014). Supplementary materials

Review article

Giorgio Magri
CNRS, Université Paris 8 and University of Utrecht

Supplementary materials

This appendix sketches Merchant’s (2008) CPR algorithm. In §1, I explain
how CPR adheres to the architecture in (28), only with a more abstract
representation of the current partial ranking information in terms of ERCs.
I then review CPR’s subroutines for extracting ranking and lexical infor-
mation. I start from the easier case, where they are applied to a single
paradigmatic entry (§3 and §5), and then turn to the extension to contrast
pairs (§4 and §6).

1 ERCs and CPR’s architecture
An elementary ranking condition (ERC) is an assignment of one of the
three symbols l, w and e to each of the constraints in the constraint set
(Prince 2002). An ERC is usually represented as a row of these symbols,
with the constraints annotated on top. To illustrate, an ERC for the constraint
set (5) of the Paka typology is provided in (35). An ERC matrix is a finite
collection of ERCs, stacked one on top of the other (the order does not
matter). An arbitrary ERC matrix is denoted by ù. Given two ERC matrixes
ù1 and ù2, ù1+ù2 denotes the ERC matrix obtained by stacking one on
top of the other (the order does not matter).

14 Giorgio Magri Supplementary materials15

Bruce Tesar (2014). Output-driven phonology: theory and learning. (Cam-
bridge Studies in Linguistics 139.) Cambridge: Cambridge University
Press. Pp. xix+415.

(35)
e

Id[str] Id[length] Main-L Main-R NoLong WSP
w w l l e|

The phonological underpinning of these notions is as follows. Consider the
mapping (Aa, Xx) of an underlying form Aa to a surface form Xx, which
is thus construed as the winner. For any other loser candidate Yy, consider
the ERC defined in (37). Stack all the ERCs thus constructed for all loser
candidates one on top of the other into an ERC matrix, denoted by ù(Aa,
Xx). Then the OT grammar corresponding to a ranking maps the under-
lying form Aa to the surface form Xx if and only if that ranking is consistent
with the ERC matrix ù(Aa, Xx) corresponding to that mapping.

(37) A constraint has a w provided it prefers the winner mapping (Aa,
Xx) to the loser mapping (Aa, Yy), i.e. it assigns fewer violations
to the former mapping than to the latter.

a.

A constraint has an l provided it instead prefers the loser mapping
(Aa, Yy) to the winner mapping (Aa, Xx), i.e. it assigns fewer
violations to the former mapping than to the latter.

b.

A constraint has an e provided it has no preference for one of the
two mappings (Aa, Xx) and (Aa, Yy), i.e. it assigns the same number
of violations to both.

c.

To illustrate, consider the Paka typology in §2.1 of the paper, focusing on
the mapping (/’pa:’ka/, [’pa:ka]) of the underlying form /’pa:’ka/ to the surface
form [’pa:ka]. The ERC matrix ù(/’pa:’ka/, [’pa:ka]) corresponding to this
mapping is provided in (38). It consists of seven ERCs, because there are
seven loser candidates. For convenience, each ERC is annotated on the left
with the corresponding underlying, winner and loser forms (loser forms
are struck through). The topmost ERC in (38) says that the winner mapping
(/’pa:’ka/, [’pa:ka]) beats the loser mapping (/’pa:’ka/, [pa’ka]), provided at
least one of the two winner-preferring constraints Ident[length] or Main-
L is ranked above the two loser-preferring constraints Main-R and NoLong.

Supplementary materials 3

The join of some ERC matrices ù1, …, ùn is any ERC matrix which satisfies
the two conditions in (39). Any such ERC matrix will be denoted by ∑(ù1,
…, ùn). Condition (39a) says that the join is weaker than (i.e. entailed by)
each matrix ù1, …, ùn. Condition (39b) says that, among all ERC matrices
which are weaker than (i.e. entailed by) each matrix ù1, …, ùn, the join is
a strongest one (i.e the one which entails all the others). In other words,
condition (39a) says that the join captures some of the ranking information
shared by the matrices ù1, …, ùn, and condition (39b) says there is no
shared ranking information which the join does not capture.

(39) Each of the ERC matrices ù1, …, ùn entails their join.a.
If each of the ERC matrices ù1, …, ùn entails some ERC matrix
ù, their join entails ù as well.

b.

Lemma 3 collects some properties of the join which will be used in the rest
of this appendix.

Proof. An ERC matrix ∏ is the join of two ERC matrixes ù1 and ù2

if and only if the set of rankings consistent with ∏ is the union of the
two sets of rankings consistent with ù1 and ù2. Furthermore, the set
of rankings consistent with ù1+ù2 is the intersection of the two sets
of rankings consistent with ù1 and ù2. Claims (i)–(iii) then follow
from elementary set-theoretic manipulations on the sets of consistent
rankings.

Given four ERC matrices ù1, ù2, π1, π2, consider the ERC
matrix ∑(ù1, ù2)+∑(π1, π2) obtained by stacking one on top of
the other the join of ù1 and ù2 and the join of π1 and π2. Then
∑(ù1, ù2)+∑(π1, π2) coincides with the join of the four ERC
matrices ù1+π1, ù1+π2, ù2+π1, ù2+π2.

(iii)

3 A subroutine for extracting ranking information through the join
3.1 Description of the subroutine. The subroutine in (40) takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex and a paradigm
p (line 1). It extends the ranking information encoded in the input ERC
matrix ù by adding to that input ERC matrix some additional ERCs as
follows. The subroutine considers a certain meaning combination Mm (line
2), and it reads o‰ the paradigm p the surface realisation Xx of that meaning
combination Mm (line 3). The subroutine then constructs the set " of all
underlying concatenations Aa which are consistent with the lexicon Lex as
underlying forms for that meaning combination Mm (line 4). This means
that if Lex sets a feature for the root M or the su!x m to a certain value,
then the root morpheme A or the su!x morpheme a of each underlying
form Aa in " has the feature set to that value. Any of these underlying
forms in " could be the actual underlying form according to the partial
lexical information encoded by Lex. In other words, the target grammar
could enforce any of the mappings (Aa, Xx) of any underlying form Aa in
" to the surface form Xx. Thus the best the subroutine can do is to extract
any ranking information shared by all these mappings. This is done by
computing the join of all ERC blocks ù(Aa, Xx) corresponding to all
mappings (Aa, Xx) of all underlying forms Aa in " to the surface form Xx
(line 5). The input ERC matrix ù is updated by adding this join to it (line
6). The ERC matrix thus updated is returned (line 7).

(40) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all concatenations Aa consistent with Lex as

underlying forms for Mm

1.

2.
3.

4.

The join of the ERC blocks ù(Aa, Xx) computed at line 5 is an ERC-
theoretic construct which might very well not correspond, in the sense of
(37), to any mapping of an underlying form to a surface form. For this
reason, CPR needs the additional flexibility of representing the current
(partial) grammatical/ranking information as an ERC matrix rather than
as a (partial) grammar. Appendix B: §1 shows that output-drivenness in
e‰ect guarantees that the join computed in line 5 always corresponds to the
mapping of a certain underlying form to the surface form Xx read at line
3.

3.2 Analysis of the subroutine. Lemma 4 provides a straightforward correct-
ness result for Merchant’s subroutine (40). Note that the proof only uses
property (39a) of the join, not property (39b). In other words, the lemma
hinges only on the fact that the join extracts ranking information which is
shared by all the ERC blocks ù(Aa, Xx). Property (39b) is nonetheless
crucial, because it ensures that the join does not lack any of this shared
ranking information, making subroutine (40) optimal. The crux of
Merchant’s subroutine is its time complexity. Merchant (2008: ch. 4)
develops an elegant algorithm for computing the join which can be used
to implement line 5. Unfortunately, his algorithm needs to compute the
fusional closure of each of the input ERC matrices it has to join. Although
there are no results that I am aware of concerning the time complexity of
that computation, it is most plausibly intractable in the general case.

4 Extension to contrast pairs
4.1 Description of the subroutine. The extension of Merchant’s subroutine
(40) to contrast pairs is provided in (41). This subroutine takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex, and a paradigm
p (line 1). The subroutine considers some contrast pair (line 2). For concrete-
ness, I am assuming here that the two meaning combinations of the contrast
pair share the su!x meaning, i.e. have the shape Mm and Ôm (the case
where they share the root meaning is handled analogously). The
subroutine reads o‰ the paradigm p the surface realisations Xx and ∑π of
those two meaning combinations (line 3). Although x and π are the surface
realisations of the same underlying su!x segment corresponding to the
su!x meaning m, they can be di‰erent, because of morphophonemic
alternations in the surface realisation of that underlying su!x triggered by
the two di‰erent roots M and Ô. The subroutine then constructs the set
" of all pairs (Aa, ∫a) of underlying concatenations which are consistent
with the lexicon Lex as underlying forms for the meaning combinations
Mm and Ôm and furthermore share the underlying su!x segment a (line
4). The latter requirement encodes the fact that we are focusing on a pair
of meaning combinations Mm and Ôm which share the su!x meaning m.
For each pair (Aa, ∫a) of underlying concatenations in ", the subroutine
considers the corresponding ERC blocks ù(Aa, Xx) and ù(∫a, ∑π), stacks
them together into the ERC matrix ù(Aa, Xx)+ù(∫a, ∑π) and constructs
the join of all ERC matrices thus obtained (line 5). The input ERC matrix
ù is updated by adding this join to it (line 6). The ERC matrix thus updated
is then returned (line 7).

There is a subtlety which should be pointed out here. At line 5, the subroutine
considers the join in (42a), not the one in (42b). The di‰erence is that in
(42a) we sum together the two ERC blocks ù(Aa, Xx) and ù(∫a, ∑π) into
ù(Aa, Xx)+ù(∫a, ∑π) before taking the join. This is indeed appropriate,
because the join in (42a) is stronger than the one in (42b), by Lemma 3.ii.

(42) ∑{ù(Aa, Xx)+ù(∫a, ∑π) | (Aa, ∫a)Œ"}a.
∑{ù(Aa, Xx), ù(∫a, ∑π) | (Aa, ∫a)Œ"}b.

4.2 Analysis of the subroutine. The Correctness Lemma 4 trivially extends
from the original subroutine (40) for single meaning combinations to the
variant (41) for contrast pairs. The ine!ciency of (40) for single meaning
combinations is of course aggravated in (41) for contrast pairs, as the latter
requires taking the join of a larger number of larger ERC matrices. Yet
subroutine (41) applied to the contrast pair (Mm, Ôm) is able to extract
more ranking information than the double application of the original
subroutine (40) to the two separate meaning combinations Mm and Ôm.
To see this, suppose that the root meaning M admits a unique underlying
form A consistent with Lex, the root meaning Ô admits a unique under-
lying form ∫ and the su!x meaning m admits only two underlying forms,
a1 and a2. Suppose we first apply the original subroutine (40) to the meaning
combination Mm. At line 4, it constructs the set " consisting of the two
underlying forms Aa1 and Aa2. At line 5, it computes the join ∑(ù1, ù2)
of the two ERC blocks ù1=ù(Aa1, Xx) and ù2=ù(Aa2, Xx). Suppose
we next apply the original subroutine (40) to the meaning combination
Ôm. At line 4, it constructs the set ", consisting of the two underlying
forms ∫a1 and ∫a2. At line 5, it computes the join ∑(π1, π2) of the two
ERC blocks π1=ù(∫a1, ∑π) and π2=ù(∫a2, ∑π). Ultimately, the two
consecutive applications of the original subroutine (40) to the two meaning
combinations Mm and Ôm extract the ranking information captured by
the sum of the two joins in (43).

Suppose we instead apply subroutine (41) to the contrast pair (Mm, Ôm).
At line 4, it constructs the set ", consisting of the two pairs (Aa1, ∫a1) and
(Aa2, ∫a2). At line 5, it computes the join in (45) of the two ERC blocks
ù(Aa1, Xx)+ù(∫a1, ∑π)=ù1+π1 and ù(Aa2, Xx)+ù(∫a2, ∑π) =
ù2+π2.

(45) ∑(ù1+π1, ù2+π2)

The join in (45) is stronger than the one in (44), because it joins fewer
matrices (the smaller the number of matrices, the larger the amount of
shared information for the join to extract). This is because the two blocks
ù1+π2 and ù2+π1 have disappeared from the join. This is what we want,
as they correspond to the unreasonable assumption that the su!x m has
di‰erent underlying forms in the two meaning combinations Mm and Ôm.
In other words, since the learner is processing the two meaning combinations
Mm and Ôm together as a contrast pair, it is able to take into account the
fact that these meaning combinations share the su!x meaning m, which
must therefore have the same underlying form in the two cases.

5 A subroutine for extracting lexical information through
inconsistency detection

5.1 Description of the subroutine. Subroutine (46) takes as input some
lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine then considers a certain
meaning combination Mm with some feature unset according to the input
partial lexicon Lex for either the root M or the su!x m (line 2). The goal
of the subroutine is to try to extend the input partial lexicon by setting
some of these unset features. To this end, the subroutine reads o‰ the
paradigm p the surface realisation Xx of the meaning combination Mm
(line 3). It constructs the set " of all underlying concatenations Aa which
are consistent with both the input lexical information Lex and the input
ranking information captured by the grammar G (or the ERC matrix ù)
(line 4). Consistency with the input lexical information means that, if Lex
sets a feature for the root M (or the su!x m) to a certain value, then the
root morpheme A (or the su!x morpheme a) of each underlying form Aa
in " has the feature set to that value. Consistency with the input ranking
information means that the input grammar G (or the input ERC matrix ù)
is consistent with the mapping (Aa, Xx) of each such underlying form Aa
in " to the surface form Xx. The subroutine then looks for a feature which
is unset by Lex for the root meaning M (or the su!x meaning m), such that
each root morpheme A (or each su!x morpheme a) has the same value for
that feature in all underlying concatenations Aa in " (line 5). For any such
feature, it can be concluded that the opposite value is inconsistent with the
available lexical and ranking information. The subroutine thus updates the
partial lexicon Lex by setting that feature to be equal to its constant value

(46) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that:
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G (or

the ERC matrix ù)
if some feature unset for the root M (or for the su!x m) has a

constant value over " for M (for m) then
update the lexicon Lex by setting the feature to that value for

the root M (or for the su!x m)
end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.
8.

This subroutine is called inconsistency detection (cf. Kager 1999, Tesar
et al. 2003, Tesar 2006), because it sets a certain feature to a certain value
based on the detection at line 6 of the fact that any other value for that
feature would be inconsistent with the available lexical and ranking
information.

Proof. Assume by contradiction that the lemma is false. This means
that the subroutine has set some feature j for, say, the root meaning
M to a value which is di‰erent from the value assigned by the target
lexicon. For concreteness, assume that the values assigned by the
subroutine and the target lexicon are + and — respectively. Thus , the
target lexicon assigns to the meaning combination Mm an underlying
form Aa, which has feature j set to the value — in the root A. This
underlying form Aa is consistent with the partial lexicon Lex (because
it is consistent with the target lexicon, which is in turn consistent with
Lex). Furthermore, the mapping (Aa, Xx) of this underlying form Aa
to the surface form Xx is consistent with the input grammar G (because
the target ranking is consistent with both). In other words, this
underlying form Aa satisfies the two conditions stated by the two
subclauses in line 4 and thus belongs to the set " constructed by the
subroutine. Since this underlying form Aa has feature j set equal to
— for the root A, then the subroutine cannot have set that feature to
the opposite value + at line 6.

5.2 Analysis of the subroutine. Lemma 5 provides a straightforward correct-
ness result for inconsistency detection (46). Its time complexity is controlled
by the size of the set " of consistent underlying forms constructed at line 4.
In the worst case (when both the input lexicon and the input ranking
information are empty), " consists of all underlying forms, i.e. all con-
catenations of root and su!x morphemes. In this case, the size of " grows
polynomially in the number of morphemes and thus exponentially in the
number of features. In conclusion, subroutine (46) is e!cient relative to
the generous notion of e!ciency defined in (14), which measures time
complexity in terms of the number of morphemes, but is not e!cient
relative to the more demanding notion of e!ciency defined in (15), which
measures time complexity in terms of the number of features.

Lemma 5
Inconsistency detection (46) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target grammar, that the input (possibly partial)
grammar G (or ERC matrix ù) is consistent with the target grammar

6 Extension to contrast pairs
6.1 Description of the subroutine. The extension of inconsistency detection
(46) to contrast pairs is provided in (47). This subroutine takes as input
some lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine considers a particular
contrast pair (line 2). For concreteness, I am assuming here that the two
meaning combinations of the contrast pair share the su!x meaning, namely
have the shape Mm and Ôm (the case where they share the root meaning
is handled analogously). The subroutine reads o‰ the paradigm p the surface
realisations Xx and ∑π of those two meaning combinations (line 3). It
constructs the set " of all pairs (Aa, ∫a) of underlying concatenations which
are consistent with both the input lexical information Lex and the input
ranking information G (or ù) and furthermore share the underlying su!x
segment a (line 4). The subroutine then looks for a feature which is unset
by Lex for the root meaning M (or the root meaning Ô or the su!x meaning
m), such that each underlying root morpheme A (or each underlying root
morpheme ∫ or each underlying su!x morpheme a) has the same value
for that feature in all pairs (Aa, ∫a) in " (line 5). For any such feature, the
subroutine updates the partial lexicon Lex by setting the feature equal to
its constant value for the root meaning M (or for the root meaning Ô or
for the su!x meaning m) (line 6). The lexicon thus updated is then returned
(line 8).

(47) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G (or
the ERC matrix ù)

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

- the mapping (∫a, ∑π) is consistent with the grammar G
if some unset feature has a constant value over " for any of the three

meanings M, Ô or m then
update the lexicon Lex by setting the feature to the constant

value for that meaning
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.
8.

6.2 Analysis of the subroutine. The Correctness Lemma 5 trivially extends
from the original subroutine (46) for single meaning combinations to the
variant (47) for contrast pairs. Furthermore, the variant for contrast pairs
remains as e!cient as the original version for single meaning combinations,
when e!ciency is generously measured in terms of the number of morphemes
(but again, not when it is measured in terms of the number of features).
Yet a number of authors (including Alderete et al. 2005 and Merchant &
Tesar 2008) have pointed out that (47), applied to the contrast pair (Mm,
Ôm), can extract more lexical information than the double application of
the original subroutine (46) to the two separate meaning combinations Mm
and Ôm. To see this, consider one of the two meaning combinations of the
contrast pair, say Mm. The original subroutine considers all underlying
forms Aa for Mm which are consistent with the input lexical and ranking
information, and only sets those features which are constant across all these
underlying forms. If the number of consistent underlying forms is large,
the number of features which are constant across them is small, and the
subroutine thus extracts little lexical information. (47) might instead be
able to extract more lexical information, because it looks for features which
are constant over a smaller set of underlying forms for Mm, namely those
underlying forms Aa which are not only consistent with the input lexical
and ranking information, but also use a su!x morpheme a which can be
combined with a root morpheme ∫ into an underlying form ∫a for Ôm
which is also consistent with the input lexical and ranking information.

I denote Tesar’s subroutine (29) for the extraction of ranking information
from a single meaning combination as ERIT, and Merchant’s subroutine
(40) as ERIM. Lemma 6 states that, if the underlying typology is output-
driven, then ERIT and ERIM are equivalent, because they update the
current ranking/grammatical information with the ‘same’ information. This
equivalence is striking, given that the time complexity of ERIT is only
linear in the number of features, while the time complexity of ERIM is
unknown, but probably exponential in both the number of features and the
number of morphemes. Output-drivenness thus a‰ords a significant
reduction in time complexity. The Correctness Lemma 1 for ERIT (which
was proven directly in §4.4) can also be made to follow from the Correctness
Lemma 4 for ERIT through the Equivalence Lemma 6.

1 Subroutines for extracting ranking information from a single
meaning combination

Proof. The underlying form Bb constructed by ERIT at line 4 is
consistent with Lex, and therefore belongs to the set " constructed by
ERIM at line 4. Consider one of the underlying forms Aa in this set ".
The two underlying forms Aa and Bb agree in every feature which is
set by the input partial lexicon Lex. Furthermore, Bb and the surface
form Xx agree in every remaining feature. Thus the underlying form
Bb is more similar to the surface form Xx than is the underlying form
Aa. Since the underlying typology is output-driven, then every ranking
which maps the less similar underlying form Aa to Xx also maps the
more similar underlying form Bb to Xx. In other words, any ranking
consistent with the ERC block ù(Aa, Xx) is also consistent with the
ERC block ù(Bb, Xx). Lemma 3.i thus ensures that the ERC block
ù(Bb, Xx) is the join of the ERC blocks ù(Aa, Xx) across all underlying
concatenations Aa in ".

Lemma 6
Suppose that the underlying typology is output-driven and that ERIT

is fed with a partial grammar G and a (possibly partial) lexicon Lex.
Suppose that ERIM is fed with the ERC matrix ù corresponding to
the partial grammar G and the same lexicon Lex. Then the ERC block
corresponding to the mapping (Bb, Xx) constructed by ERIT at line
4 is the join of the ERC blocks ù(Aa, Xx) corresponding to the
underlying forms Aa in " constructed by ERIM at line 5.

between the two implementations is the following: Merchant’s original
subroutine (46) sets any feature which is constant over "; the variant in (48)
instead focuses right from the beginning on a specific feature j, which is
unset for either the root M or the su!x m of the meaning combination Mm
under consideration. In line 3, I am assuming for concreteness that the
feature j is unset for the root M (the case where it is unset for the su!x m
is handled analogously). The modification is only cosmetic: the original
subroutine is equivalent to running this variant for each unset feature.

(48) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a meaning combination Mm in the paradigm p
Require: a feature j unset by Lex for either M or m; for concreteness,

say it is unset for M
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G

if all underlying forms Aa in " have the feature j set to the same
value in the root morpheme A then

update the lexicon Lex by setting the feature j to that value for
the root meaning M

end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.

8.
9.

I denote Tesar’s subroutine (33) for the extraction of lexical information
from a single meaning combination by ELIT, and (the cosmetic variant of)
the original inconsistency detection subroutine (48) by ELIid. Lemma 6
states that, if the underlying typology is output-driven, ELIT and ELIid

are equivalent, because their if-clauses at line 6 are equivalent. This
equivalence is striking, given that the if-clause of ELIT can be checked in
time linear in the number of features, while the if-clause of ELIid requires
time exponential in the number of features in the worst case. Output-
drivenness has thus a‰orded a significant reduction in time complexity.
The Correctness Lemma 2 for ELIT (which was proven directly in §4.5)
can also be made to follow from the Correctness Lemma 4 for ELIid through
the Equivalence Lemma 7.

Proof. To start, let me prove that the if-clause in line 6 of ELIT entails
the if-clause in line 6 of ELIid. Assume by contradiction that the
former if-clause is true while the latter if-clause is false. The hypothesis
that the if-clause of ELIid is false entails in particular that the set " of
consistent underlying forms constructed by ELIid at line 5 contains
an underlying form Aa whose root A disagrees with X relative to the
feature j (indeed, if all the underlying forms Aa in " had a root A
which agreed with X relative to j, the if-clause of ELIid would hold
true). The underlying form Aa and the underlying form Bb constructed
by ELIT at line 5 thus agree in the feature j for the root meaning M,
as they both have the opposite value from X. Furthermore, they agree
in every feature set by the partial lexicon Lex, because they are both
consistent with Lex. Finally, Bb agrees with Xx for every remaining
feature. The underlying form Bb is thus more similar to the surface
form Xx than is the underlying form Aa. Since the mapping (Aa, Xx)
is consistent with G (because Aa belongs to "), there exists a ranking
which is consistent with both. Since the grammar corresponding to
that ranking is output-driven and maps the less similar underlying
form Aa to Xx, it also maps the more similar underlying form Bb to
Xx. In other words, that ranking is also consistent with the mapping
(Bb, Xx). In conclusion, the mapping (Bb, Xx) and the grammar G
are consistent (because both are consistent with the ranking), contra-
dicting the hypothesis that the if-clause of ELIT is true.

Vice versa, let me prove that the if-clause in line 6 of ELIid entails
the if-clause in line 6 of ELIT. Assume by contradiction that the
former if-clause is true, while the latter if-clause is false. The hypothesis
that the if-clause of ELIT is false means that the input (partial) grammar
G is consistent with the mapping (Bb, Xx) of the underlying form Bb
constructed by ELIT at line 5 to the surface form Xx. Since this
underlying form Bb is consistent with Lex, then Bb belongs to the set
" of consistent underlying forms constructed at line 5 by ELIid. Since
B and X disagree relative to the feature j, consider the underlying
form ≥b, identical to Bb but for the fact that ≥ and X instead agree in
the feature j. Obviously, the underlying form ≥b is more similar to
the surface form Xx than is the underlying form Bb. Since (Bb, Xx)
is consistent with G, there exists a ranking which is consistent with
both. Since the grammar corresponding to that ranking is output-
driven and maps the less similar underlying form Bb to Xx, then it
also maps the more similar underlying form ≥b to Xx. In other words,
that ranking is also consistent with the mapping (≥b, Xx). This
underlying form ≥b thus belongs to the set " constructed by ELIid at
line 5.This conclusion contradicts the hypothesis that the if-clause of
ELIid holds, because it shows that " contains two underlying forms
Bb and ≥b, such that B and ≥ disagree in the feature j.Lemma 7

Suppose that the underlying typology is output-driven. Then the two
if-clauses in line 6 of ELIT and ELIid are equivalent.

Tesar’s subroutine for extracting lexical information from contrast pairs
is more involved than his other two subroutines, for extracting lexical and
ranking information from a single meaning combination. For this reason,
the latter two subroutines were reviewed in §4.4 and §4.5, while the former
subroutine is included in this appendix. Here I start out from Merchant’s
subroutine in (47) for extracting lexical information from contrast pairs,
and work towards Tesar’s reformulation, provided below in (52). This
seems to me the best way of making sense of the somewhat complex
formulation of Tesar’s subroutine. I begin by carrying out the same cosmetic
change as in the previous section: I replace the original subroutine (47)
with (49), which only di‰ers because line 3 focuses on a specific feature j,
unset by the input lexicon Lex for one of the three meanings M, Ô and m
of the contrast pair (Mm, Ôm). For concreteness, I assume it is unset for
the root meaning M.

3Subroutines for extracting lexical information from a contrast
pair

Supplementary materials1716Giorgio Magri

(49)Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p
Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m
Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M
read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p
construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that:
- Aa is consistent with the lexicon Lex as an underlying form
for Mm
- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm
- the mapping (∫a, ∑π) is consistent with the grammar G
if all the pairs (Aa, ∫a) in " have the underlying root A set to the
same value for feature j then
update the lexicon Lex by setting feature j to that constant value
for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.
9.

the two underlying su!x morphemes a and ¥ coincide, because they are
the underlying form corresponding to the same su!x meaning m. The
condition that a and ¥ coincide is in turn equivalent to the condition that
they agree for each feature y. We could of course relax this condition by
requiring that the two underlying su!x morphemes a and ¥ agree only for
certain features, y1, ..., yn. This intuition leads to the formulation in (50).
It di‰ers from (49) only because of the new line 4, which introduces the
features y1, ..., yn, and because of the additional fifth subclause in the
definition of the set ". Note that line 4 assumes all the features y1, ..., yn
to be unset by the input partial lexicon Lex for the shared su!x m, because
the condition that both a and ¥ are consistent with Lex as underlying forms
for m already entails that they agree on every feature set by Lex for m.

(50)Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p
Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m
Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M
Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex
read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p
construct the set " of pairs (Aa, ∫¥) of concatenations sharing the
su!x morpheme such that
- Aa is consistent with the lexicon Lex as an underlying form
for Mm
- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ agree for every
feature y1, ..., yn
if all the pairs (Aa, ∫¥) in " have the underlying root A set to the
same value for feature j then
update the lexicon Lex by setting feature j to that constant value
for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

combinations Mm and Ôm one at a time. If instead we consider all unset
y features at line 4, then (50) e‰ectively considers only pairs of underlying
forms for the two meaning combinations which share the underlying su!x,
and is therefore equivalent to the original subroutine (49) for extracting
lexical information from contrast pairs. In the end, depending on the
number of y features considered at line 4, (50) provides a whole range of
subroutines for extracting lexical information in between the weaker (46)
and the stronger (49).
Subroutine (50) can be equivalently restated as (51). Instead of requiring
the two su!x morphemes a and ¥ to coincide for every feature y1, ..., yn,
we consider all possible combinations v1, ..., vn of values of those features
at line 6, and we require both a and ¥ to have those features set equal to
those values in the fifth subclause of line 5.

(51)Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p
Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m
Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M
Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex
read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p
For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that:
- Aa is consistent with the lexicon Lex as an underlying form
for Mm
- the mapping (Aa, Xx) is consistent with the grammar G
- ∫¥ is consistent with the lexicon Lex as an underlying form
for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ both have the
values v1, ..., vn for the features y1, ..., yn
if all the pairs (Aa, ∫¥) in all the sets "(v1, ..., vn) have the underlying
root A set to the same value for feature j then
update the lexicon Lex by setting feature j to that constant value
for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

Supplementary materials1918Giorgio Magri

By reasoning as in the previous subsection we can easily show that subroutine
(51) is equivalent to (52) under the assumption of output-drivenness.
Indeed, the two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn con-
structed by (52) at line 6 provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (51).

(52)Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p
Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m
Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M
Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex
read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p
For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and
±≤v1, …, vn, as follows:
- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-
lying forms for Mm and Ôm
- B has the opposite value for feature j than X
- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values
v1, ..., vn
- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
if the grammar G is inconsistent with the two mappings (Bbv1, …, vn,
Xx) and (±≤v1, …, vn, ∑π) for any combination of values v1, ..., vn
then
update the lexicon Lex by setting feature j to that constant value
for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.
If the features y1, ..., yn considered in line 4 of (52) exhaust the set of
features, then the two subroutines (49) and (52) are equivalent. However,
the running time of (52) is exponential in the number of features in the
latter case, because it needs to consider all combinations v1, ..., vn.

By reasoning as in the previous subsection, we can proceed from Merchant’s
original subroutine (41) for extracting ranking information from contrast
pairs to the variant in (53).

4Subroutines for extracting ranking information from a contrast
pair

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that
- Aa is consistent with the lexicon Lex as an underlying form
for Mm
- ∫¥ is consistent with the lexicon Lex as an underlying form
for Ôm
- the two underlying su!x morphemes a and ¥ both have the
values v1, ..., vn for the features y1, ..., yn
compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫¥) in "(v1, ..., vn) for all combinations of values
v1, ..., vn
add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.

7.
8.

20Giorgio Magri

Once again, if we do not consider any y features at line 3, (53) e‰ectively
considers the two meaning combinations of the contrast pair independently
of each other, and thus ends up equivalent to subroutine (40) for extracting
lexical information from single meaning combinations. If we instead consider
all unset y features at line 3, then (53) e‰ectively only considers pairs of
underlying forms for the two meaning combinations which share the
underlying su!x, and is therefore equivalent to Merchant’s original
subroutine (41) for extracting lexical information from contrast pairs.
Ultimately, depending on the number of y features considered at line 3,
(53) provides a whole range of subroutines for extracting ranking information
in between the weaker (40) and the stronger (41).
By reasoning as in §2 of this appendix, we can easily show subroutine
(53) to be equivalent to (54) under the assumption of output-drivenness.
The two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn constructed
by (54) at line 5 again provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (53).

(54)

- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values
v1, ..., vn
- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
compute the join of the ERC matrices ù(Bbv1, …, vn, Xx)+
ù(±≤v1, …, vn, ∑π) for all combinations of values v1, ..., vn
add this join to the ERC matrix ù
Return: the updated ERC matrix ù

6.

7.
8.

Take the simplest case, where we consider a single feature y at line 3.
Assume furthermore that y is binary, i.e. it only takes the values v=‘+’ and
v=‘—’. At line 5, the subroutine constructs the two underlying forms Bb+
and ±≤+, corresponding to the value v=‘+’of feature y (i.e. both b+ and ≤+
have the value ‘+’ for the feature y), and the two underlying forms Bb— and
±≤—, corresponding to the value v=‘—’ (i.e. both b— and ≤— have the value
‘—’ for the feature y). At line 6, we finally compute the join of the two ERC
blocks ù(Bb+, Xx)+ù(±≤+, ∑π) and ù(Bb—, Xx)+ù(±≤—, ∑π). Even in
the simplest case of a single feature y, there is no way around computing
the join.
In summary, Merchant develops a new subroutine for extracting ranking
information through the notion of join. This subroutine can be applied to
either a single meaning combination at a time, as in (40); or to a contrast
pair, as in (41). The latter is more powerful than the former: the subroutine
extracts more ranking information by processing the two meaning
combinations Mm and Ôm as a contrast pair than by processing them
separately. The crux of Merchant’s subroutine for extracting ranking
information is that it relies on the computation of a join, which is time-
consuming. The biggest impact of output-drivenness is that it allows
Merchant’s subroutine for extracting ranking information from a single
meaning combination to be restated without having to compute any join.
The restated subroutine thus runs in time linear in the number of features.
In other words, it is e!cient even relative to the more demanding notion
of e!ciency introduced in §2.6. The situation is unfortunately very di‰erent
when Merchant’s subroutine for extracting ranking information is boosted
by being applied to contrast pairs. In this case, output-drivenness is not
able to circumvent the computation of the join, and thus does not su!ce
to make the subroutine e!cient.

A constraint ranking is consistent with an ERC provided it satisfies con-
dition (36); it is consistent with an ERC matrix provided it is consistent
with each of its rows. An ERC matrix entails another ERC matrix provided

(38) Id
[str]

Id
[length]

Main-
L

Main-
R

No
Long

WSP

w
w

w
w
w
w

w
w
w
w

l
l
l
l

l

w
l

w

/’pa:’ka/, [’pa:ka], [pa’ka]
/’pa:’ka/, [’pa:ka], [pa’ka:]
/’pa:’ka/, [’pa:ka], [pa:’ka]
/’pa:’ka/, [’pa:ka], [pa:’ka:]
/’pa:’ka/, [’pa:ka], [’paka]
/’pa:’ka/, [’pa:ka], [’paka:]
/’pa:’ka/, [’pa:ka], [’pa:ka:]

w
w

w
w

Lemma 3
Suppose that one of the ERC matrices ù1, ù2, …, Rn is entailed
by each of the others. For concreteness, assume that it is ù1 which
is entailed by each of the other ERC matrices ù2, …, Rn. Then
ù1 is the join of ù1, ù2, …, Rn.

(i)

Given the ERC matrices ù1, ù2, ù3, …, Rn, replace two of them
with the ERC matrix obtained by stacking the two matrices one
on top of the other. For concreteness, replace ù1 and ù2 with
ù1+ù2. Then the join of the n®1 ERC matrices ù1+ù2, ù3,
…, Rn entails the join of the original n ERC matrices ù1, ù2, ù3,
…, Rn, while the reverse does not in general hold.

(ii)

compute the join of the ERC matrices ù(Aa, Xx) for all underlying
forms Aa in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.
7.

Proof. Let Aa be the underlying form assigned to the meaning
combination Mm by the target lexicon. This underlying form Aa
belongs to the set " constructed by the subroutine at line 4, because
of the hypothesis that the input lexicon Lex is consistent with the
target lexicon. Thus the corresponding ERC block ù(Aa, Xx) is one
of the blocks that the subroutine takes the join of at line 5. Since the
target ranking is consistent with this ERC block ù(Aa, Xx), then it
is also consistent with the join, by property (39a) of the join. Since the
target ranking is also consistent with the input ERC matrix ù, it is

Lemma 4
Merchant’s subroutine (40) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target ranking, that the input ERC matrix ù is
consistent with that target ranking, and that the input (possibly partial)
lexicon Lex is consistent with that target lexicon. The updated ERC
matrix returned by subroutine (40) is also consistent with that target
ranking.

then consistent with the updated ERC matrix returned by the sub-
routine.

(41) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫a) in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

1.

2.

3.

4.

5.

6.
7.

(43) ∑(ù1, ù2)+∑(π1, π2)

Lemma 3.iii ensures that (43) is equivalent to the join in (44). The four
ERC matrices being joined here correspond to all four combinations of
underlying forms for the two meaning combinations Mm and Ôm. In
particular, the learner is also joining together the two ERC blocks ù1+π2

and π2+ù1, whereby the shared su!x meaning m is assigned a di‰erent
underlying form in the case of Mm than in the case of Ôm. In other words,
since the learner is processing the two meaning combinations Mm and Ôm
separately, it is blind to the fact that these meaning combinations share the
su!x meaning m, which must therefore have the same underlying form in
both cases.

(44) ∑(ù1+π1, ù1+π2, ù2+π1, ù2+π2)

for the root meaning M (or for the su!x meaning m) (line 6). The lexicon
thus updated is then returned (line 8).

and that the input partial lexicon Lex is consistent with the target
lexicon. The updated lexicon returned by subroutine (46) is also
consistent with that target lexicon.

2 Subroutines for extracting lexical information from a single
meaning combination

Consider the slight variant (48) of the subroutine (46) for the extraction of
lexical information through inconsistency detection. The only di‰erence

The modification is only cosmetic: the original subroutine (47) is equivalent
to running this variant (49) for each feature which is unset for one of the
three morphemes M, Ô and m.
The set " constructed by the subroutine (49) at line 5 can equivalently
be described as the collection of all pairs (Aa, ∫¥) which satisfy the conditions
expressed by the four subclauses of line 5 plus the additional condition that

If we consider no y features at all in line 4, then (50) e‰ectively considers
the two meaning combinations of the contrast pair independently of each
other, and thus ends up equivalent to subroutine (46) for extracting lexical
information from single meaning combinations, in the sense that the
application of subroutine (50) to the contrast pair (Mm, Ôm) is equivalent
to two consecutive applications of subroutine (46) to the two meaning

Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p
Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m
Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex
read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p
For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and ±≤v1,

…, vn as follows
- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-
lying forms for Mm and Ôm

1.

2.

3.

4.

5.

(53)Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p
Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m
Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex
read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

1.

2.

3.

4.

Phonology 25.2: Artwork 1 of

Supplementary materials 72 Giorgio Magri

every ranking consistent with the former is also consistent with the latter.
Thus ù1+ù2 entails both ù1 and ù2.

(36) At least one constraint which has a w in the ERC under consideration
is ranked above every constraint which instead has an l (constraints
which have an e play no role in the consistency condition).

2 The join

4 Giorgio Magri

Grammatical information was represented in §4.1.2 as a (possibly partial)
collection G of mappings (Aa, Xx) of an underlying form Aa to a surface
form Xx. Each of these mappings can be equivalently represented with the
corresponding ERC block ù(Aa, Xx). And the grammatical information
G can thus be represented with the ERC matrix obtained by stacking all
these blocks one of top of the other. Merchant’s CPR adopts the architecture
in (28), the only di‰erence being that the current partial grammatical
information is represented not as a partial grammar G but as an ERC matrix
ù. This makes the algorithm more flexible in the type of partial grammatical
information it maintains: any (partial) grammar G can be represented
through the corresponding ERC matrix, while not just any ERC matrix ù
corresponds to some partial collection of mappings. This additional flexibility
in the data structure maintained by the algorithm is crucial in order to
define the subroutine for extracting ranking information, as explained in
the next section.

Supplementary materials 5 6 Giorgio Magri 8 Giorgio Magri Supplementary materials 9 10 Giorgio Magri

Appendix B: Equivalence between Merchant’s and Tesar’s sub-
routines

Supplementary materials 11 12 Giorgio Magri Supplementary materials 13

Appendix A: Merchant’s (2008) CPR

Phonology 31 (2014). Supplementary materials

Review article

Giorgio Magri
CNRS, Université Paris 8 and University of Utrecht

Supplementary materials

This appendix sketches Merchant’s (2008) CPR algorithm. In §1, I explain
how CPR adheres to the architecture in (28), only with a more abstract
representation of the current partial ranking information in terms of ERCs.
I then review CPR’s subroutines for extracting ranking and lexical infor-
mation. I start from the easier case, where they are applied to a single
paradigmatic entry (§3 and §5), and then turn to the extension to contrast
pairs (§4 and §6).

1 ERCs and CPR’s architecture
An elementary ranking condition (ERC) is an assignment of one of the
three symbols l, w and e to each of the constraints in the constraint set
(Prince 2002). An ERC is usually represented as a row of these symbols,
with the constraints annotated on top. To illustrate, an ERC for the constraint
set (5) of the Paka typology is provided in (35). An ERC matrix is a finite
collection of ERCs, stacked one on top of the other (the order does not
matter). An arbitrary ERC matrix is denoted by ù. Given two ERC matrixes
ù1 and ù2, ù1+ù2 denotes the ERC matrix obtained by stacking one on
top of the other (the order does not matter).

14 Giorgio Magri Supplementary materials 15

Bruce Tesar (2014). Output-driven phonology: theory and learning. (Cam-
bridge Studies in Linguistics 139.) Cambridge: Cambridge University
Press. Pp. xix+415.

(35)
e

Id[str] Id[length] Main-L Main-R NoLong WSP
w w l l e|

The phonological underpinning of these notions is as follows. Consider the
mapping (Aa, Xx) of an underlying form Aa to a surface form Xx, which
is thus construed as the winner. For any other loser candidate Yy, consider
the ERC defined in (37). Stack all the ERCs thus constructed for all loser
candidates one on top of the other into an ERC matrix, denoted by ù(Aa,
Xx). Then the OT grammar corresponding to a ranking maps the under-
lying form Aa to the surface form Xx if and only if that ranking is consistent
with the ERC matrix ù(Aa, Xx) corresponding to that mapping.

(37) A constraint has a w provided it prefers the winner mapping (Aa,
Xx) to the loser mapping (Aa, Yy), i.e. it assigns fewer violations
to the former mapping than to the latter.

a.

A constraint has an l provided it instead prefers the loser mapping
(Aa, Yy) to the winner mapping (Aa, Xx), i.e. it assigns fewer
violations to the former mapping than to the latter.

b.

A constraint has an e provided it has no preference for one of the
two mappings (Aa, Xx) and (Aa, Yy), i.e. it assigns the same number
of violations to both.

c.

To illustrate, consider the Paka typology in §2.1 of the paper, focusing on
the mapping (/’pa:’ka/, [’pa:ka]) of the underlying form /’pa:’ka/ to the surface
form [’pa:ka]. The ERC matrix ù(/’pa:’ka/, [’pa:ka]) corresponding to this
mapping is provided in (38). It consists of seven ERCs, because there are
seven loser candidates. For convenience, each ERC is annotated on the left
with the corresponding underlying, winner and loser forms (loser forms
are struck through). The topmost ERC in (38) says that the winner mapping
(/’pa:’ka/, [’pa:ka]) beats the loser mapping (/’pa:’ka/, [pa’ka]), provided at
least one of the two winner-preferring constraints Ident[length] or Main-
L is ranked above the two loser-preferring constraints Main-R and NoLong.

Supplementary materials 3

The join of some ERC matrices ù1, …, ùn is any ERC matrix which satisfies
the two conditions in (39). Any such ERC matrix will be denoted by ∑(ù1,
…, ùn). Condition (39a) says that the join is weaker than (i.e. entailed by)
each matrix ù1, …, ùn. Condition (39b) says that, among all ERC matrices
which are weaker than (i.e. entailed by) each matrix ù1, …, ùn, the join is
a strongest one (i.e the one which entails all the others). In other words,
condition (39a) says that the join captures some of the ranking information
shared by the matrices ù1, …, ùn, and condition (39b) says there is no
shared ranking information which the join does not capture.

(39) Each of the ERC matrices ù1, …, ùn entails their join.a.
If each of the ERC matrices ù1, …, ùn entails some ERC matrix
ù, their join entails ù as well.

b.

Lemma 3 collects some properties of the join which will be used in the rest
of this appendix.

Proof. An ERC matrix ∏ is the join of two ERC matrixes ù1 and ù2

if and only if the set of rankings consistent with ∏ is the union of the
two sets of rankings consistent with ù1 and ù2. Furthermore, the set
of rankings consistent with ù1+ù2 is the intersection of the two sets
of rankings consistent with ù1 and ù2. Claims (i)–(iii) then follow
from elementary set-theoretic manipulations on the sets of consistent
rankings.

Given four ERC matrices ù1, ù2, π1, π2, consider the ERC
matrix ∑(ù1, ù2)+∑(π1, π2) obtained by stacking one on top of
the other the join of ù1 and ù2 and the join of π1 and π2. Then
∑(ù1, ù2)+∑(π1, π2) coincides with the join of the four ERC
matrices ù1+π1, ù1+π2, ù2+π1, ù2+π2.

(iii)

3 A subroutine for extracting ranking information through the join
3.1 Description of the subroutine. The subroutine in (40) takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex and a paradigm
p (line 1). It extends the ranking information encoded in the input ERC
matrix ù by adding to that input ERC matrix some additional ERCs as
follows. The subroutine considers a certain meaning combination Mm (line
2), and it reads o‰ the paradigm p the surface realisation Xx of that meaning
combination Mm (line 3). The subroutine then constructs the set " of all
underlying concatenations Aa which are consistent with the lexicon Lex as
underlying forms for that meaning combination Mm (line 4). This means
that if Lex sets a feature for the root M or the su!x m to a certain value,
then the root morpheme A or the su!x morpheme a of each underlying
form Aa in " has the feature set to that value. Any of these underlying
forms in " could be the actual underlying form according to the partial
lexical information encoded by Lex. In other words, the target grammar
could enforce any of the mappings (Aa, Xx) of any underlying form Aa in
" to the surface form Xx. Thus the best the subroutine can do is to extract
any ranking information shared by all these mappings. This is done by
computing the join of all ERC blocks ù(Aa, Xx) corresponding to all
mappings (Aa, Xx) of all underlying forms Aa in " to the surface form Xx
(line 5). The input ERC matrix ù is updated by adding this join to it (line
6). The ERC matrix thus updated is returned (line 7).

(40) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all concatenations Aa consistent with Lex as

underlying forms for Mm

1.

2.
3.

4.

The join of the ERC blocks ù(Aa, Xx) computed at line 5 is an ERC-
theoretic construct which might very well not correspond, in the sense of
(37), to any mapping of an underlying form to a surface form. For this
reason, CPR needs the additional flexibility of representing the current
(partial) grammatical/ranking information as an ERC matrix rather than
as a (partial) grammar. Appendix B: §1 shows that output-drivenness in
e‰ect guarantees that the join computed in line 5 always corresponds to the
mapping of a certain underlying form to the surface form Xx read at line
3.

3.2 Analysis of the subroutine. Lemma 4 provides a straightforward correct-
ness result for Merchant’s subroutine (40). Note that the proof only uses
property (39a) of the join, not property (39b). In other words, the lemma
hinges only on the fact that the join extracts ranking information which is
shared by all the ERC blocks ù(Aa, Xx). Property (39b) is nonetheless
crucial, because it ensures that the join does not lack any of this shared
ranking information, making subroutine (40) optimal. The crux of
Merchant’s subroutine is its time complexity. Merchant (2008: ch. 4)
develops an elegant algorithm for computing the join which can be used
to implement line 5. Unfortunately, his algorithm needs to compute the
fusional closure of each of the input ERC matrices it has to join. Although
there are no results that I am aware of concerning the time complexity of
that computation, it is most plausibly intractable in the general case.

4 Extension to contrast pairs
4.1 Description of the subroutine. The extension of Merchant’s subroutine
(40) to contrast pairs is provided in (41). This subroutine takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex, and a paradigm
p (line 1). The subroutine considers some contrast pair (line 2). For concrete-
ness, I am assuming here that the two meaning combinations of the contrast
pair share the su!x meaning, i.e. have the shape Mm and Ôm (the case
where they share the root meaning is handled analogously). The
subroutine reads o‰ the paradigm p the surface realisations Xx and ∑π of
those two meaning combinations (line 3). Although x and π are the surface
realisations of the same underlying su!x segment corresponding to the
su!x meaning m, they can be di‰erent, because of morphophonemic
alternations in the surface realisation of that underlying su!x triggered by
the two di‰erent roots M and Ô. The subroutine then constructs the set
" of all pairs (Aa, ∫a) of underlying concatenations which are consistent
with the lexicon Lex as underlying forms for the meaning combinations
Mm and Ôm and furthermore share the underlying su!x segment a (line
4). The latter requirement encodes the fact that we are focusing on a pair
of meaning combinations Mm and Ôm which share the su!x meaning m.
For each pair (Aa, ∫a) of underlying concatenations in ", the subroutine
considers the corresponding ERC blocks ù(Aa, Xx) and ù(∫a, ∑π), stacks
them together into the ERC matrix ù(Aa, Xx)+ù(∫a, ∑π) and constructs
the join of all ERC matrices thus obtained (line 5). The input ERC matrix
ù is updated by adding this join to it (line 6). The ERC matrix thus updated
is then returned (line 7).

There is a subtlety which should be pointed out here. At line 5, the subroutine
considers the join in (42a), not the one in (42b). The di‰erence is that in
(42a) we sum together the two ERC blocks ù(Aa, Xx) and ù(∫a, ∑π) into
ù(Aa, Xx)+ù(∫a, ∑π) before taking the join. This is indeed appropriate,
because the join in (42a) is stronger than the one in (42b), by Lemma 3.ii.

(42) ∑{ù(Aa, Xx)+ù(∫a, ∑π) | (Aa, ∫a)Œ"}a.
∑{ù(Aa, Xx), ù(∫a, ∑π) | (Aa, ∫a)Œ"}b.

4.2 Analysis of the subroutine. The Correctness Lemma 4 trivially extends
from the original subroutine (40) for single meaning combinations to the
variant (41) for contrast pairs. The ine!ciency of (40) for single meaning
combinations is of course aggravated in (41) for contrast pairs, as the latter
requires taking the join of a larger number of larger ERC matrices. Yet
subroutine (41) applied to the contrast pair (Mm, Ôm) is able to extract
more ranking information than the double application of the original
subroutine (40) to the two separate meaning combinations Mm and Ôm.
To see this, suppose that the root meaning M admits a unique underlying
form A consistent with Lex, the root meaning Ô admits a unique under-
lying form ∫ and the su!x meaning m admits only two underlying forms,
a1 and a2. Suppose we first apply the original subroutine (40) to the meaning
combination Mm. At line 4, it constructs the set " consisting of the two
underlying forms Aa1 and Aa2. At line 5, it computes the join ∑(ù1, ù2)
of the two ERC blocks ù1=ù(Aa1, Xx) and ù2=ù(Aa2, Xx). Suppose
we next apply the original subroutine (40) to the meaning combination
Ôm. At line 4, it constructs the set ", consisting of the two underlying
forms ∫a1 and ∫a2. At line 5, it computes the join ∑(π1, π2) of the two
ERC blocks π1=ù(∫a1, ∑π) and π2=ù(∫a2, ∑π). Ultimately, the two
consecutive applications of the original subroutine (40) to the two meaning
combinations Mm and Ôm extract the ranking information captured by
the sum of the two joins in (43).

Suppose we instead apply subroutine (41) to the contrast pair (Mm, Ôm).
At line 4, it constructs the set ", consisting of the two pairs (Aa1, ∫a1) and
(Aa2, ∫a2). At line 5, it computes the join in (45) of the two ERC blocks
ù(Aa1, Xx)+ù(∫a1, ∑π)=ù1+π1 and ù(Aa2, Xx)+ù(∫a2, ∑π) =
ù2+π2.

(45) ∑(ù1+π1, ù2+π2)

The join in (45) is stronger than the one in (44), because it joins fewer
matrices (the smaller the number of matrices, the larger the amount of
shared information for the join to extract). This is because the two blocks
ù1+π2 and ù2+π1 have disappeared from the join. This is what we want,
as they correspond to the unreasonable assumption that the su!x m has
di‰erent underlying forms in the two meaning combinations Mm and Ôm.
In other words, since the learner is processing the two meaning combinations
Mm and Ôm together as a contrast pair, it is able to take into account the
fact that these meaning combinations share the su!x meaning m, which
must therefore have the same underlying form in the two cases.

5 A subroutine for extracting lexical information through
inconsistency detection

5.1 Description of the subroutine. Subroutine (46) takes as input some
lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine then considers a certain
meaning combination Mm with some feature unset according to the input
partial lexicon Lex for either the root M or the su!x m (line 2). The goal
of the subroutine is to try to extend the input partial lexicon by setting
some of these unset features. To this end, the subroutine reads o‰ the
paradigm p the surface realisation Xx of the meaning combination Mm
(line 3). It constructs the set " of all underlying concatenations Aa which
are consistent with both the input lexical information Lex and the input
ranking information captured by the grammar G (or the ERC matrix ù)
(line 4). Consistency with the input lexical information means that, if Lex
sets a feature for the root M (or the su!x m) to a certain value, then the
root morpheme A (or the su!x morpheme a) of each underlying form Aa
in " has the feature set to that value. Consistency with the input ranking
information means that the input grammar G (or the input ERC matrix ù)
is consistent with the mapping (Aa, Xx) of each such underlying form Aa
in " to the surface form Xx. The subroutine then looks for a feature which
is unset by Lex for the root meaning M (or the su!x meaning m), such that
each root morpheme A (or each su!x morpheme a) has the same value for
that feature in all underlying concatenations Aa in " (line 5). For any such
feature, it can be concluded that the opposite value is inconsistent with the
available lexical and ranking information. The subroutine thus updates the
partial lexicon Lex by setting that feature to be equal to its constant value

(46) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that:
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G (or

the ERC matrix ù)
if some feature unset for the root M (or for the su!x m) has a

constant value over " for M (for m) then
update the lexicon Lex by setting the feature to that value for

the root M (or for the su!x m)
end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.
8.

This subroutine is called inconsistency detection (cf. Kager 1999, Tesar
et al. 2003, Tesar 2006), because it sets a certain feature to a certain value
based on the detection at line 6 of the fact that any other value for that
feature would be inconsistent with the available lexical and ranking
information.

Proof. Assume by contradiction that the lemma is false. This means
that the subroutine has set some feature j for, say, the root meaning
M to a value which is di‰erent from the value assigned by the target
lexicon. For concreteness, assume that the values assigned by the
subroutine and the target lexicon are + and — respectively. Thus , the
target lexicon assigns to the meaning combination Mm an underlying
form Aa, which has feature j set to the value — in the root A. This
underlying form Aa is consistent with the partial lexicon Lex (because
it is consistent with the target lexicon, which is in turn consistent with
Lex). Furthermore, the mapping (Aa, Xx) of this underlying form Aa
to the surface form Xx is consistent with the input grammar G (because
the target ranking is consistent with both). In other words, this
underlying form Aa satisfies the two conditions stated by the two
subclauses in line 4 and thus belongs to the set " constructed by the
subroutine. Since this underlying form Aa has feature j set equal to
— for the root A, then the subroutine cannot have set that feature to
the opposite value + at line 6.

5.2 Analysis of the subroutine. Lemma 5 provides a straightforward correct-
ness result for inconsistency detection (46). Its time complexity is controlled
by the size of the set " of consistent underlying forms constructed at line 4.
In the worst case (when both the input lexicon and the input ranking
information are empty), " consists of all underlying forms, i.e. all con-
catenations of root and su!x morphemes. In this case, the size of " grows
polynomially in the number of morphemes and thus exponentially in the
number of features. In conclusion, subroutine (46) is e!cient relative to
the generous notion of e!ciency defined in (14), which measures time
complexity in terms of the number of morphemes, but is not e!cient
relative to the more demanding notion of e!ciency defined in (15), which
measures time complexity in terms of the number of features.

Lemma 5
Inconsistency detection (46) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target grammar, that the input (possibly partial)
grammar G (or ERC matrix ù) is consistent with the target grammar

6 Extension to contrast pairs
6.1 Description of the subroutine. The extension of inconsistency detection
(46) to contrast pairs is provided in (47). This subroutine takes as input
some lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine considers a particular
contrast pair (line 2). For concreteness, I am assuming here that the two
meaning combinations of the contrast pair share the su!x meaning, namely
have the shape Mm and Ôm (the case where they share the root meaning
is handled analogously). The subroutine reads o‰ the paradigm p the surface
realisations Xx and ∑π of those two meaning combinations (line 3). It
constructs the set " of all pairs (Aa, ∫a) of underlying concatenations which
are consistent with both the input lexical information Lex and the input
ranking information G (or ù) and furthermore share the underlying su!x
segment a (line 4). The subroutine then looks for a feature which is unset
by Lex for the root meaning M (or the root meaning Ô or the su!x meaning
m), such that each underlying root morpheme A (or each underlying root
morpheme ∫ or each underlying su!x morpheme a) has the same value
for that feature in all pairs (Aa, ∫a) in " (line 5). For any such feature, the
subroutine updates the partial lexicon Lex by setting the feature equal to
its constant value for the root meaning M (or for the root meaning Ô or
for the su!x meaning m) (line 6). The lexicon thus updated is then returned
(line 8).

(47) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G (or
the ERC matrix ù)

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

- the mapping (∫a, ∑π) is consistent with the grammar G
if some unset feature has a constant value over " for any of the three

meanings M, Ô or m then
update the lexicon Lex by setting the feature to the constant

value for that meaning
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.
8.

6.2 Analysis of the subroutine. The Correctness Lemma 5 trivially extends
from the original subroutine (46) for single meaning combinations to the
variant (47) for contrast pairs. Furthermore, the variant for contrast pairs
remains as e!cient as the original version for single meaning combinations,
when e!ciency is generously measured in terms of the number of morphemes
(but again, not when it is measured in terms of the number of features).
Yet a number of authors (including Alderete et al. 2005 and Merchant &
Tesar 2008) have pointed out that (47), applied to the contrast pair (Mm,
Ôm), can extract more lexical information than the double application of
the original subroutine (46) to the two separate meaning combinations Mm
and Ôm. To see this, consider one of the two meaning combinations of the
contrast pair, say Mm. The original subroutine considers all underlying
forms Aa for Mm which are consistent with the input lexical and ranking
information, and only sets those features which are constant across all these
underlying forms. If the number of consistent underlying forms is large,
the number of features which are constant across them is small, and the
subroutine thus extracts little lexical information. (47) might instead be
able to extract more lexical information, because it looks for features which
are constant over a smaller set of underlying forms for Mm, namely those
underlying forms Aa which are not only consistent with the input lexical
and ranking information, but also use a su!x morpheme a which can be
combined with a root morpheme ∫ into an underlying form ∫a for Ôm
which is also consistent with the input lexical and ranking information.

I denote Tesar’s subroutine (29) for the extraction of ranking information
from a single meaning combination as ERIT, and Merchant’s subroutine
(40) as ERIM. Lemma 6 states that, if the underlying typology is output-
driven, then ERIT and ERIM are equivalent, because they update the
current ranking/grammatical information with the ‘same’ information. This
equivalence is striking, given that the time complexity of ERIT is only
linear in the number of features, while the time complexity of ERIM is
unknown, but probably exponential in both the number of features and the
number of morphemes. Output-drivenness thus a‰ords a significant
reduction in time complexity. The Correctness Lemma 1 for ERIT (which
was proven directly in §4.4) can also be made to follow from the Correctness
Lemma 4 for ERIT through the Equivalence Lemma 6.

1 Subroutines for extracting ranking information from a single
meaning combination

Proof. The underlying form Bb constructed by ERIT at line 4 is
consistent with Lex, and therefore belongs to the set " constructed by
ERIM at line 4. Consider one of the underlying forms Aa in this set ".
The two underlying forms Aa and Bb agree in every feature which is
set by the input partial lexicon Lex. Furthermore, Bb and the surface
form Xx agree in every remaining feature. Thus the underlying form
Bb is more similar to the surface form Xx than is the underlying form
Aa. Since the underlying typology is output-driven, then every ranking
which maps the less similar underlying form Aa to Xx also maps the
more similar underlying form Bb to Xx. In other words, any ranking
consistent with the ERC block ù(Aa, Xx) is also consistent with the
ERC block ù(Bb, Xx). Lemma 3.i thus ensures that the ERC block
ù(Bb, Xx) is the join of the ERC blocks ù(Aa, Xx) across all underlying
concatenations Aa in ".

Lemma 6
Suppose that the underlying typology is output-driven and that ERIT

is fed with a partial grammar G and a (possibly partial) lexicon Lex.
Suppose that ERIM is fed with the ERC matrix ù corresponding to
the partial grammar G and the same lexicon Lex. Then the ERC block
corresponding to the mapping (Bb, Xx) constructed by ERIT at line
4 is the join of the ERC blocks ù(Aa, Xx) corresponding to the
underlying forms Aa in " constructed by ERIM at line 5.

between the two implementations is the following: Merchant’s original
subroutine (46) sets any feature which is constant over "; the variant in (48)
instead focuses right from the beginning on a specific feature j, which is
unset for either the root M or the su!x m of the meaning combination Mm
under consideration. In line 3, I am assuming for concreteness that the
feature j is unset for the root M (the case where it is unset for the su!x m
is handled analogously). The modification is only cosmetic: the original
subroutine is equivalent to running this variant for each unset feature.

(48) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a meaning combination Mm in the paradigm p
Require: a feature j unset by Lex for either M or m; for concreteness,

say it is unset for M
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G

if all underlying forms Aa in " have the feature j set to the same
value in the root morpheme A then

update the lexicon Lex by setting the feature j to that value for
the root meaning M

end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.

8.
9.

I denote Tesar’s subroutine (33) for the extraction of lexical information
from a single meaning combination by ELIT, and (the cosmetic variant of)
the original inconsistency detection subroutine (48) by ELIid. Lemma 6
states that, if the underlying typology is output-driven, ELIT and ELIid

are equivalent, because their if-clauses at line 6 are equivalent. This
equivalence is striking, given that the if-clause of ELIT can be checked in
time linear in the number of features, while the if-clause of ELIid requires
time exponential in the number of features in the worst case. Output-
drivenness has thus a‰orded a significant reduction in time complexity.
The Correctness Lemma 2 for ELIT (which was proven directly in §4.5)
can also be made to follow from the Correctness Lemma 4 for ELIid through
the Equivalence Lemma 7.

Proof. To start, let me prove that the if-clause in line 6 of ELIT entails
the if-clause in line 6 of ELIid. Assume by contradiction that the
former if-clause is true while the latter if-clause is false. The hypothesis
that the if-clause of ELIid is false entails in particular that the set " of
consistent underlying forms constructed by ELIid at line 5 contains
an underlying form Aa whose root A disagrees with X relative to the
feature j (indeed, if all the underlying forms Aa in " had a root A
which agreed with X relative to j, the if-clause of ELIid would hold
true). The underlying form Aa and the underlying form Bb constructed
by ELIT at line 5 thus agree in the feature j for the root meaning M,
as they both have the opposite value from X. Furthermore, they agree
in every feature set by the partial lexicon Lex, because they are both
consistent with Lex. Finally, Bb agrees with Xx for every remaining
feature. The underlying form Bb is thus more similar to the surface
form Xx than is the underlying form Aa. Since the mapping (Aa, Xx)
is consistent with G (because Aa belongs to "), there exists a ranking
which is consistent with both. Since the grammar corresponding to
that ranking is output-driven and maps the less similar underlying
form Aa to Xx, it also maps the more similar underlying form Bb to
Xx. In other words, that ranking is also consistent with the mapping
(Bb, Xx). In conclusion, the mapping (Bb, Xx) and the grammar G
are consistent (because both are consistent with the ranking), contra-
dicting the hypothesis that the if-clause of ELIT is true.

Vice versa, let me prove that the if-clause in line 6 of ELIid entails
the if-clause in line 6 of ELIT. Assume by contradiction that the
former if-clause is true, while the latter if-clause is false. The hypothesis
that the if-clause of ELIT is false means that the input (partial) grammar
G is consistent with the mapping (Bb, Xx) of the underlying form Bb
constructed by ELIT at line 5 to the surface form Xx. Since this
underlying form Bb is consistent with Lex, then Bb belongs to the set
" of consistent underlying forms constructed at line 5 by ELIid. Since
B and X disagree relative to the feature j, consider the underlying
form ≥b, identical to Bb but for the fact that ≥ and X instead agree in
the feature j. Obviously, the underlying form ≥b is more similar to
the surface form Xx than is the underlying form Bb. Since (Bb, Xx)
is consistent with G, there exists a ranking which is consistent with
both. Since the grammar corresponding to that ranking is output-
driven and maps the less similar underlying form Bb to Xx, then it
also maps the more similar underlying form ≥b to Xx. In other words,
that ranking is also consistent with the mapping (≥b, Xx). This
underlying form ≥b thus belongs to the set " constructed by ELIid at
line 5.This conclusion contradicts the hypothesis that the if-clause of
ELIid holds, because it shows that " contains two underlying forms
Bb and ≥b, such that B and ≥ disagree in the feature j.Lemma 7

Suppose that the underlying typology is output-driven. Then the two
if-clauses in line 6 of ELIT and ELIid are equivalent.

Tesar’s subroutine for extracting lexical information from contrast pairs
is more involved than his other two subroutines, for extracting lexical and
ranking information from a single meaning combination. For this reason,
the latter two subroutines were reviewed in §4.4 and §4.5, while the former
subroutine is included in this appendix. Here I start out from Merchant’s
subroutine in (47) for extracting lexical information from contrast pairs,
and work towards Tesar’s reformulation, provided below in (52). This
seems to me the best way of making sense of the somewhat complex
formulation of Tesar’s subroutine. I begin by carrying out the same cosmetic
change as in the previous section: I replace the original subroutine (47)
with (49), which only di‰ers because line 3 focuses on a specific feature j,
unset by the input lexicon Lex for one of the three meanings M, Ô and m
of the contrast pair (Mm, Ôm). For concreteness, I assume it is unset for
the root meaning M.

3 Subroutines for extracting lexical information from a contrast
pair

Supplementary materials1716Giorgio Magri

(49) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫a, ∑π) is consistent with the grammar G

if all the pairs (Aa, ∫a) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.
9.

the two underlying su!x morphemes a and ¥ coincide, because they are
the underlying form corresponding to the same su!x meaning m. The
condition that a and ¥ coincide is in turn equivalent to the condition that
they agree for each feature y. We could of course relax this condition by
requiring that the two underlying su!x morphemes a and ¥ agree only for
certain features, y1, ..., yn. This intuition leads to the formulation in (50).
It di‰ers from (49) only because of the new line 4, which introduces the
features y1, ..., yn, and because of the additional fifth subclause in the
definition of the set ". Note that line 4 assumes all the features y1, ..., yn
to be unset by the input partial lexicon Lex for the shared su!x m, because
the condition that both a and ¥ are consistent with Lex as underlying forms
for m already entails that they agree on every feature set by Lex for m.

(50)Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p
Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m
Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M
Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex
read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p
construct the set " of pairs (Aa, ∫¥) of concatenations sharing the
su!x morpheme such that
- Aa is consistent with the lexicon Lex as an underlying form
for Mm
- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ agree for every
feature y1, ..., yn
if all the pairs (Aa, ∫¥) in " have the underlying root A set to the
same value for feature j then
update the lexicon Lex by setting feature j to that constant value
for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

combinations Mm and Ôm one at a time. If instead we consider all unset
y features at line 4, then (50) e‰ectively considers only pairs of underlying
forms for the two meaning combinations which share the underlying su!x,
and is therefore equivalent to the original subroutine (49) for extracting
lexical information from contrast pairs. In the end, depending on the
number of y features considered at line 4, (50) provides a whole range of
subroutines for extracting lexical information in between the weaker (46)
and the stronger (49).
Subroutine (50) can be equivalently restated as (51). Instead of requiring
the two su!x morphemes a and ¥ to coincide for every feature y1, ..., yn,
we consider all possible combinations v1, ..., vn of values of those features
at line 6, and we require both a and ¥ to have those features set equal to
those values in the fifth subclause of line 5.

(51)Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p
Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m
Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M
Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex
read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p
For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that:
- Aa is consistent with the lexicon Lex as an underlying form
for Mm
- the mapping (Aa, Xx) is consistent with the grammar G
- ∫¥ is consistent with the lexicon Lex as an underlying form
for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ both have the
values v1, ..., vn for the features y1, ..., yn
if all the pairs (Aa, ∫¥) in all the sets "(v1, ..., vn) have the underlying
root A set to the same value for feature j then
update the lexicon Lex by setting feature j to that constant value
for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

Supplementary materials1918Giorgio Magri

By reasoning as in the previous subsection we can easily show that subroutine
(51) is equivalent to (52) under the assumption of output-drivenness.
Indeed, the two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn con-
structed by (52) at line 6 provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (51).

(52)Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p
Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m
Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M
Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex
read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p
For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and
±≤v1, …, vn, as follows:
- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-
lying forms for Mm and Ôm
- B has the opposite value for feature j than X
- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values
v1, ..., vn
- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
if the grammar G is inconsistent with the two mappings (Bbv1, …, vn,
Xx) and (±≤v1, …, vn, ∑π) for any combination of values v1, ..., vn
then
update the lexicon Lex by setting feature j to that constant value
for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.
If the features y1, ..., yn considered in line 4 of (52) exhaust the set of
features, then the two subroutines (49) and (52) are equivalent. However,
the running time of (52) is exponential in the number of features in the
latter case, because it needs to consider all combinations v1, ..., vn.

By reasoning as in the previous subsection, we can proceed from Merchant’s
original subroutine (41) for extracting ranking information from contrast
pairs to the variant in (53).

4Subroutines for extracting ranking information from a contrast
pair

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that
- Aa is consistent with the lexicon Lex as an underlying form
for Mm
- ∫¥ is consistent with the lexicon Lex as an underlying form
for Ôm
- the two underlying su!x morphemes a and ¥ both have the
values v1, ..., vn for the features y1, ..., yn
compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫¥) in "(v1, ..., vn) for all combinations of values
v1, ..., vn
add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.

7.
8.

20Giorgio Magri

Once again, if we do not consider any y features at line 3, (53) e‰ectively
considers the two meaning combinations of the contrast pair independently
of each other, and thus ends up equivalent to subroutine (40) for extracting
lexical information from single meaning combinations. If we instead consider
all unset y features at line 3, then (53) e‰ectively only considers pairs of
underlying forms for the two meaning combinations which share the
underlying su!x, and is therefore equivalent to Merchant’s original
subroutine (41) for extracting lexical information from contrast pairs.
Ultimately, depending on the number of y features considered at line 3,
(53) provides a whole range of subroutines for extracting ranking information
in between the weaker (40) and the stronger (41).
By reasoning as in §2 of this appendix, we can easily show subroutine
(53) to be equivalent to (54) under the assumption of output-drivenness.
The two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn constructed
by (54) at line 5 again provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (53).

(54)

- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values
v1, ..., vn
- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
compute the join of the ERC matrices ù(Bbv1, …, vn, Xx)+
ù(±≤v1, …, vn, ∑π) for all combinations of values v1, ..., vn
add this join to the ERC matrix ù
Return: the updated ERC matrix ù

6.

7.
8.

Take the simplest case, where we consider a single feature y at line 3.
Assume furthermore that y is binary, i.e. it only takes the values v=‘+’ and
v=‘—’. At line 5, the subroutine constructs the two underlying forms Bb+
and ±≤+, corresponding to the value v=‘+’of feature y (i.e. both b+ and ≤+
have the value ‘+’ for the feature y), and the two underlying forms Bb— and
±≤—, corresponding to the value v=‘—’ (i.e. both b— and ≤— have the value
‘—’ for the feature y). At line 6, we finally compute the join of the two ERC
blocks ù(Bb+, Xx)+ù(±≤+, ∑π) and ù(Bb—, Xx)+ù(±≤—, ∑π). Even in
the simplest case of a single feature y, there is no way around computing
the join.
In summary, Merchant develops a new subroutine for extracting ranking
information through the notion of join. This subroutine can be applied to
either a single meaning combination at a time, as in (40); or to a contrast
pair, as in (41). The latter is more powerful than the former: the subroutine
extracts more ranking information by processing the two meaning
combinations Mm and Ôm as a contrast pair than by processing them
separately. The crux of Merchant’s subroutine for extracting ranking
information is that it relies on the computation of a join, which is time-
consuming. The biggest impact of output-drivenness is that it allows
Merchant’s subroutine for extracting ranking information from a single
meaning combination to be restated without having to compute any join.
The restated subroutine thus runs in time linear in the number of features.
In other words, it is e!cient even relative to the more demanding notion
of e!ciency introduced in §2.6. The situation is unfortunately very di‰erent
when Merchant’s subroutine for extracting ranking information is boosted
by being applied to contrast pairs. In this case, output-drivenness is not
able to circumvent the computation of the join, and thus does not su!ce
to make the subroutine e!cient.

A constraint ranking is consistent with an ERC provided it satisfies con-
dition (36); it is consistent with an ERC matrix provided it is consistent
with each of its rows. An ERC matrix entails another ERC matrix provided

(38) Id
[str]

Id
[length]

Main-
L

Main-
R

No
Long

WSP

w
w

w
w
w
w

w
w
w
w

l
l
l
l

l

w
l

w

/’pa:’ka/, [’pa:ka], [pa’ka]
/’pa:’ka/, [’pa:ka], [pa’ka:]
/’pa:’ka/, [’pa:ka], [pa:’ka]
/’pa:’ka/, [’pa:ka], [pa:’ka:]
/’pa:’ka/, [’pa:ka], [’paka]
/’pa:’ka/, [’pa:ka], [’paka:]
/’pa:’ka/, [’pa:ka], [’pa:ka:]

w
w

w
w

Lemma 3
Suppose that one of the ERC matrices ù1, ù2, …, Rn is entailed
by each of the others. For concreteness, assume that it is ù1 which
is entailed by each of the other ERC matrices ù2, …, Rn. Then
ù1 is the join of ù1, ù2, …, Rn.

(i)

Given the ERC matrices ù1, ù2, ù3, …, Rn, replace two of them
with the ERC matrix obtained by stacking the two matrices one
on top of the other. For concreteness, replace ù1 and ù2 with
ù1+ù2. Then the join of the n®1 ERC matrices ù1+ù2, ù3,
…, Rn entails the join of the original n ERC matrices ù1, ù2, ù3,
…, Rn, while the reverse does not in general hold.

(ii)

compute the join of the ERC matrices ù(Aa, Xx) for all underlying
forms Aa in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.
7.

Proof. Let Aa be the underlying form assigned to the meaning
combination Mm by the target lexicon. This underlying form Aa
belongs to the set " constructed by the subroutine at line 4, because
of the hypothesis that the input lexicon Lex is consistent with the
target lexicon. Thus the corresponding ERC block ù(Aa, Xx) is one
of the blocks that the subroutine takes the join of at line 5. Since the
target ranking is consistent with this ERC block ù(Aa, Xx), then it
is also consistent with the join, by property (39a) of the join. Since the
target ranking is also consistent with the input ERC matrix ù, it is

Lemma 4
Merchant’s subroutine (40) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target ranking, that the input ERC matrix ù is
consistent with that target ranking, and that the input (possibly partial)
lexicon Lex is consistent with that target lexicon. The updated ERC
matrix returned by subroutine (40) is also consistent with that target
ranking.

then consistent with the updated ERC matrix returned by the sub-
routine.

(41) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫a) in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

1.

2.

3.

4.

5.

6.
7.

(43) ∑(ù1, ù2)+∑(π1, π2)

Lemma 3.iii ensures that (43) is equivalent to the join in (44). The four
ERC matrices being joined here correspond to all four combinations of
underlying forms for the two meaning combinations Mm and Ôm. In
particular, the learner is also joining together the two ERC blocks ù1+π2

and π2+ù1, whereby the shared su!x meaning m is assigned a di‰erent
underlying form in the case of Mm than in the case of Ôm. In other words,
since the learner is processing the two meaning combinations Mm and Ôm
separately, it is blind to the fact that these meaning combinations share the
su!x meaning m, which must therefore have the same underlying form in
both cases.

(44) ∑(ù1+π1, ù1+π2, ù2+π1, ù2+π2)

for the root meaning M (or for the su!x meaning m) (line 6). The lexicon
thus updated is then returned (line 8).

and that the input partial lexicon Lex is consistent with the target
lexicon. The updated lexicon returned by subroutine (46) is also
consistent with that target lexicon.

2 Subroutines for extracting lexical information from a single
meaning combination

Consider the slight variant (48) of the subroutine (46) for the extraction of
lexical information through inconsistency detection. The only di‰erence

The modification is only cosmetic: the original subroutine (47) is equivalent
to running this variant (49) for each feature which is unset for one of the
three morphemes M, Ô and m.

The set " constructed by the subroutine (49) at line 5 can equivalently
be described as the collection of all pairs (Aa, ∫¥) which satisfy the conditions
expressed by the four subclauses of line 5 plus the additional condition that

If we consider no y features at all in line 4, then (50) e‰ectively considers
the two meaning combinations of the contrast pair independently of each
other, and thus ends up equivalent to subroutine (46) for extracting lexical
information from single meaning combinations, in the sense that the
application of subroutine (50) to the contrast pair (Mm, Ôm) is equivalent
to two consecutive applications of subroutine (46) to the two meaning

Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p
Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m
Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex
read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p
For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and ±≤v1,

…, vn as follows
- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-
lying forms for Mm and Ôm

1.

2.

3.

4.

5.

(53)Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p
Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m
Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex
read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

1.

2.

3.

4.

Phonology 25.2: Artwork 1 of

Supplementary materials 72 Giorgio Magri

every ranking consistent with the former is also consistent with the latter.
Thus ù1+ù2 entails both ù1 and ù2.

(36) At least one constraint which has a w in the ERC under consideration
is ranked above every constraint which instead has an l (constraints
which have an e play no role in the consistency condition).

2 The join

4 Giorgio Magri

Grammatical information was represented in §4.1.2 as a (possibly partial)
collection G of mappings (Aa, Xx) of an underlying form Aa to a surface
form Xx. Each of these mappings can be equivalently represented with the
corresponding ERC block ù(Aa, Xx). And the grammatical information
G can thus be represented with the ERC matrix obtained by stacking all
these blocks one of top of the other. Merchant’s CPR adopts the architecture
in (28), the only di‰erence being that the current partial grammatical
information is represented not as a partial grammar G but as an ERC matrix
ù. This makes the algorithm more flexible in the type of partial grammatical
information it maintains: any (partial) grammar G can be represented
through the corresponding ERC matrix, while not just any ERC matrix ù
corresponds to some partial collection of mappings. This additional flexibility
in the data structure maintained by the algorithm is crucial in order to
define the subroutine for extracting ranking information, as explained in
the next section.

Supplementary materials 5 6 Giorgio Magri 8 Giorgio Magri Supplementary materials 9 10 Giorgio Magri

Appendix B: Equivalence between Merchant’s and Tesar’s sub-
routines

Supplementary materials 11 12 Giorgio Magri Supplementary materials 13

Appendix A: Merchant’s (2008) CPR

Phonology 31 (2014). Supplementary materials

Review article

Giorgio Magri
CNRS, Université Paris 8 and University of Utrecht

Supplementary materials

This appendix sketches Merchant’s (2008) CPR algorithm. In §1, I explain
how CPR adheres to the architecture in (28), only with a more abstract
representation of the current partial ranking information in terms of ERCs.
I then review CPR’s subroutines for extracting ranking and lexical infor-
mation. I start from the easier case, where they are applied to a single
paradigmatic entry (§3 and §5), and then turn to the extension to contrast
pairs (§4 and §6).

1 ERCs and CPR’s architecture
An elementary ranking condition (ERC) is an assignment of one of the
three symbols l, w and e to each of the constraints in the constraint set
(Prince 2002). An ERC is usually represented as a row of these symbols,
with the constraints annotated on top. To illustrate, an ERC for the constraint
set (5) of the Paka typology is provided in (35). An ERC matrix is a finite
collection of ERCs, stacked one on top of the other (the order does not
matter). An arbitrary ERC matrix is denoted by ù. Given two ERC matrixes
ù1 and ù2, ù1+ù2 denotes the ERC matrix obtained by stacking one on
top of the other (the order does not matter).

14 Giorgio Magri Supplementary materials 15

Bruce Tesar (2014). Output-driven phonology: theory and learning. (Cam-
bridge Studies in Linguistics 139.) Cambridge: Cambridge University
Press. Pp. xix+415.

(35)
e

Id[str] Id[length] Main-L Main-R NoLong WSP
w w l l e|

The phonological underpinning of these notions is as follows. Consider the
mapping (Aa, Xx) of an underlying form Aa to a surface form Xx, which
is thus construed as the winner. For any other loser candidate Yy, consider
the ERC defined in (37). Stack all the ERCs thus constructed for all loser
candidates one on top of the other into an ERC matrix, denoted by ù(Aa,
Xx). Then the OT grammar corresponding to a ranking maps the under-
lying form Aa to the surface form Xx if and only if that ranking is consistent
with the ERC matrix ù(Aa, Xx) corresponding to that mapping.

(37) A constraint has a w provided it prefers the winner mapping (Aa,
Xx) to the loser mapping (Aa, Yy), i.e. it assigns fewer violations
to the former mapping than to the latter.

a.

A constraint has an l provided it instead prefers the loser mapping
(Aa, Yy) to the winner mapping (Aa, Xx), i.e. it assigns fewer
violations to the former mapping than to the latter.

b.

A constraint has an e provided it has no preference for one of the
two mappings (Aa, Xx) and (Aa, Yy), i.e. it assigns the same number
of violations to both.

c.

To illustrate, consider the Paka typology in §2.1 of the paper, focusing on
the mapping (/’pa:’ka/, [’pa:ka]) of the underlying form /’pa:’ka/ to the surface
form [’pa:ka]. The ERC matrix ù(/’pa:’ka/, [’pa:ka]) corresponding to this
mapping is provided in (38). It consists of seven ERCs, because there are
seven loser candidates. For convenience, each ERC is annotated on the left
with the corresponding underlying, winner and loser forms (loser forms
are struck through). The topmost ERC in (38) says that the winner mapping
(/’pa:’ka/, [’pa:ka]) beats the loser mapping (/’pa:’ka/, [pa’ka]), provided at
least one of the two winner-preferring constraints Ident[length] or Main-
L is ranked above the two loser-preferring constraints Main-R and NoLong.

Supplementary materials 3

The join of some ERC matrices ù1, …, ùn is any ERC matrix which satisfies
the two conditions in (39). Any such ERC matrix will be denoted by ∑(ù1,
…, ùn). Condition (39a) says that the join is weaker than (i.e. entailed by)
each matrix ù1, …, ùn. Condition (39b) says that, among all ERC matrices
which are weaker than (i.e. entailed by) each matrix ù1, …, ùn, the join is
a strongest one (i.e the one which entails all the others). In other words,
condition (39a) says that the join captures some of the ranking information
shared by the matrices ù1, …, ùn, and condition (39b) says there is no
shared ranking information which the join does not capture.

(39) Each of the ERC matrices ù1, …, ùn entails their join.a.
If each of the ERC matrices ù1, …, ùn entails some ERC matrix
ù, their join entails ù as well.

b.

Lemma 3 collects some properties of the join which will be used in the rest
of this appendix.

Proof. An ERC matrix ∏ is the join of two ERC matrixes ù1 and ù2

if and only if the set of rankings consistent with ∏ is the union of the
two sets of rankings consistent with ù1 and ù2. Furthermore, the set
of rankings consistent with ù1+ù2 is the intersection of the two sets
of rankings consistent with ù1 and ù2. Claims (i)–(iii) then follow
from elementary set-theoretic manipulations on the sets of consistent
rankings.

Given four ERC matrices ù1, ù2, π1, π2, consider the ERC
matrix ∑(ù1, ù2)+∑(π1, π2) obtained by stacking one on top of
the other the join of ù1 and ù2 and the join of π1 and π2. Then
∑(ù1, ù2)+∑(π1, π2) coincides with the join of the four ERC
matrices ù1+π1, ù1+π2, ù2+π1, ù2+π2.

(iii)

3 A subroutine for extracting ranking information through the join
3.1 Description of the subroutine. The subroutine in (40) takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex and a paradigm
p (line 1). It extends the ranking information encoded in the input ERC
matrix ù by adding to that input ERC matrix some additional ERCs as
follows. The subroutine considers a certain meaning combination Mm (line
2), and it reads o‰ the paradigm p the surface realisation Xx of that meaning
combination Mm (line 3). The subroutine then constructs the set " of all
underlying concatenations Aa which are consistent with the lexicon Lex as
underlying forms for that meaning combination Mm (line 4). This means
that if Lex sets a feature for the root M or the su!x m to a certain value,
then the root morpheme A or the su!x morpheme a of each underlying
form Aa in " has the feature set to that value. Any of these underlying
forms in " could be the actual underlying form according to the partial
lexical information encoded by Lex. In other words, the target grammar
could enforce any of the mappings (Aa, Xx) of any underlying form Aa in
" to the surface form Xx. Thus the best the subroutine can do is to extract
any ranking information shared by all these mappings. This is done by
computing the join of all ERC blocks ù(Aa, Xx) corresponding to all
mappings (Aa, Xx) of all underlying forms Aa in " to the surface form Xx
(line 5). The input ERC matrix ù is updated by adding this join to it (line
6). The ERC matrix thus updated is returned (line 7).

(40) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all concatenations Aa consistent with Lex as

underlying forms for Mm

1.

2.
3.

4.

The join of the ERC blocks ù(Aa, Xx) computed at line 5 is an ERC-
theoretic construct which might very well not correspond, in the sense of
(37), to any mapping of an underlying form to a surface form. For this
reason, CPR needs the additional flexibility of representing the current
(partial) grammatical/ranking information as an ERC matrix rather than
as a (partial) grammar. Appendix B: §1 shows that output-drivenness in
e‰ect guarantees that the join computed in line 5 always corresponds to the
mapping of a certain underlying form to the surface form Xx read at line
3.

3.2 Analysis of the subroutine. Lemma 4 provides a straightforward correct-
ness result for Merchant’s subroutine (40). Note that the proof only uses
property (39a) of the join, not property (39b). In other words, the lemma
hinges only on the fact that the join extracts ranking information which is
shared by all the ERC blocks ù(Aa, Xx). Property (39b) is nonetheless
crucial, because it ensures that the join does not lack any of this shared
ranking information, making subroutine (40) optimal. The crux of
Merchant’s subroutine is its time complexity. Merchant (2008: ch. 4)
develops an elegant algorithm for computing the join which can be used
to implement line 5. Unfortunately, his algorithm needs to compute the
fusional closure of each of the input ERC matrices it has to join. Although
there are no results that I am aware of concerning the time complexity of
that computation, it is most plausibly intractable in the general case.

4 Extension to contrast pairs
4.1 Description of the subroutine. The extension of Merchant’s subroutine
(40) to contrast pairs is provided in (41). This subroutine takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex, and a paradigm
p (line 1). The subroutine considers some contrast pair (line 2). For concrete-
ness, I am assuming here that the two meaning combinations of the contrast
pair share the su!x meaning, i.e. have the shape Mm and Ôm (the case
where they share the root meaning is handled analogously). The
subroutine reads o‰ the paradigm p the surface realisations Xx and ∑π of
those two meaning combinations (line 3). Although x and π are the surface
realisations of the same underlying su!x segment corresponding to the
su!x meaning m, they can be di‰erent, because of morphophonemic
alternations in the surface realisation of that underlying su!x triggered by
the two di‰erent roots M and Ô. The subroutine then constructs the set
" of all pairs (Aa, ∫a) of underlying concatenations which are consistent
with the lexicon Lex as underlying forms for the meaning combinations
Mm and Ôm and furthermore share the underlying su!x segment a (line
4). The latter requirement encodes the fact that we are focusing on a pair
of meaning combinations Mm and Ôm which share the su!x meaning m.
For each pair (Aa, ∫a) of underlying concatenations in ", the subroutine
considers the corresponding ERC blocks ù(Aa, Xx) and ù(∫a, ∑π), stacks
them together into the ERC matrix ù(Aa, Xx)+ù(∫a, ∑π) and constructs
the join of all ERC matrices thus obtained (line 5). The input ERC matrix
ù is updated by adding this join to it (line 6). The ERC matrix thus updated
is then returned (line 7).

There is a subtlety which should be pointed out here. At line 5, the subroutine
considers the join in (42a), not the one in (42b). The di‰erence is that in
(42a) we sum together the two ERC blocks ù(Aa, Xx) and ù(∫a, ∑π) into
ù(Aa, Xx)+ù(∫a, ∑π) before taking the join. This is indeed appropriate,
because the join in (42a) is stronger than the one in (42b), by Lemma 3.ii.

(42) ∑{ù(Aa, Xx)+ù(∫a, ∑π) | (Aa, ∫a)Œ"}a.
∑{ù(Aa, Xx), ù(∫a, ∑π) | (Aa, ∫a)Œ"}b.

4.2 Analysis of the subroutine. The Correctness Lemma 4 trivially extends
from the original subroutine (40) for single meaning combinations to the
variant (41) for contrast pairs. The ine!ciency of (40) for single meaning
combinations is of course aggravated in (41) for contrast pairs, as the latter
requires taking the join of a larger number of larger ERC matrices. Yet
subroutine (41) applied to the contrast pair (Mm, Ôm) is able to extract
more ranking information than the double application of the original
subroutine (40) to the two separate meaning combinations Mm and Ôm.
To see this, suppose that the root meaning M admits a unique underlying
form A consistent with Lex, the root meaning Ô admits a unique under-
lying form ∫ and the su!x meaning m admits only two underlying forms,
a1 and a2. Suppose we first apply the original subroutine (40) to the meaning
combination Mm. At line 4, it constructs the set " consisting of the two
underlying forms Aa1 and Aa2. At line 5, it computes the join ∑(ù1, ù2)
of the two ERC blocks ù1=ù(Aa1, Xx) and ù2=ù(Aa2, Xx). Suppose
we next apply the original subroutine (40) to the meaning combination
Ôm. At line 4, it constructs the set ", consisting of the two underlying
forms ∫a1 and ∫a2. At line 5, it computes the join ∑(π1, π2) of the two
ERC blocks π1=ù(∫a1, ∑π) and π2=ù(∫a2, ∑π). Ultimately, the two
consecutive applications of the original subroutine (40) to the two meaning
combinations Mm and Ôm extract the ranking information captured by
the sum of the two joins in (43).

Suppose we instead apply subroutine (41) to the contrast pair (Mm, Ôm).
At line 4, it constructs the set ", consisting of the two pairs (Aa1, ∫a1) and
(Aa2, ∫a2). At line 5, it computes the join in (45) of the two ERC blocks
ù(Aa1, Xx)+ù(∫a1, ∑π)=ù1+π1 and ù(Aa2, Xx)+ù(∫a2, ∑π) =
ù2+π2.

(45) ∑(ù1+π1, ù2+π2)

The join in (45) is stronger than the one in (44), because it joins fewer
matrices (the smaller the number of matrices, the larger the amount of
shared information for the join to extract). This is because the two blocks
ù1+π2 and ù2+π1 have disappeared from the join. This is what we want,
as they correspond to the unreasonable assumption that the su!x m has
di‰erent underlying forms in the two meaning combinations Mm and Ôm.
In other words, since the learner is processing the two meaning combinations
Mm and Ôm together as a contrast pair, it is able to take into account the
fact that these meaning combinations share the su!x meaning m, which
must therefore have the same underlying form in the two cases.

5 A subroutine for extracting lexical information through
inconsistency detection

5.1 Description of the subroutine. Subroutine (46) takes as input some
lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine then considers a certain
meaning combination Mm with some feature unset according to the input
partial lexicon Lex for either the root M or the su!x m (line 2). The goal
of the subroutine is to try to extend the input partial lexicon by setting
some of these unset features. To this end, the subroutine reads o‰ the
paradigm p the surface realisation Xx of the meaning combination Mm
(line 3). It constructs the set " of all underlying concatenations Aa which
are consistent with both the input lexical information Lex and the input
ranking information captured by the grammar G (or the ERC matrix ù)
(line 4). Consistency with the input lexical information means that, if Lex
sets a feature for the root M (or the su!x m) to a certain value, then the
root morpheme A (or the su!x morpheme a) of each underlying form Aa
in " has the feature set to that value. Consistency with the input ranking
information means that the input grammar G (or the input ERC matrix ù)
is consistent with the mapping (Aa, Xx) of each such underlying form Aa
in " to the surface form Xx. The subroutine then looks for a feature which
is unset by Lex for the root meaning M (or the su!x meaning m), such that
each root morpheme A (or each su!x morpheme a) has the same value for
that feature in all underlying concatenations Aa in " (line 5). For any such
feature, it can be concluded that the opposite value is inconsistent with the
available lexical and ranking information. The subroutine thus updates the
partial lexicon Lex by setting that feature to be equal to its constant value

(46) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that:
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G (or

the ERC matrix ù)
if some feature unset for the root M (or for the su!x m) has a

constant value over " for M (for m) then
update the lexicon Lex by setting the feature to that value for

the root M (or for the su!x m)
end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.
8.

This subroutine is called inconsistency detection (cf. Kager 1999, Tesar
et al. 2003, Tesar 2006), because it sets a certain feature to a certain value
based on the detection at line 6 of the fact that any other value for that
feature would be inconsistent with the available lexical and ranking
information.

Proof. Assume by contradiction that the lemma is false. This means
that the subroutine has set some feature j for, say, the root meaning
M to a value which is di‰erent from the value assigned by the target
lexicon. For concreteness, assume that the values assigned by the
subroutine and the target lexicon are + and — respectively. Thus , the
target lexicon assigns to the meaning combination Mm an underlying
form Aa, which has feature j set to the value — in the root A. This
underlying form Aa is consistent with the partial lexicon Lex (because
it is consistent with the target lexicon, which is in turn consistent with
Lex). Furthermore, the mapping (Aa, Xx) of this underlying form Aa
to the surface form Xx is consistent with the input grammar G (because
the target ranking is consistent with both). In other words, this
underlying form Aa satisfies the two conditions stated by the two
subclauses in line 4 and thus belongs to the set " constructed by the
subroutine. Since this underlying form Aa has feature j set equal to
— for the root A, then the subroutine cannot have set that feature to
the opposite value + at line 6.

5.2 Analysis of the subroutine. Lemma 5 provides a straightforward correct-
ness result for inconsistency detection (46). Its time complexity is controlled
by the size of the set " of consistent underlying forms constructed at line 4.
In the worst case (when both the input lexicon and the input ranking
information are empty), " consists of all underlying forms, i.e. all con-
catenations of root and su!x morphemes. In this case, the size of " grows
polynomially in the number of morphemes and thus exponentially in the
number of features. In conclusion, subroutine (46) is e!cient relative to
the generous notion of e!ciency defined in (14), which measures time
complexity in terms of the number of morphemes, but is not e!cient
relative to the more demanding notion of e!ciency defined in (15), which
measures time complexity in terms of the number of features.

Lemma 5
Inconsistency detection (46) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target grammar, that the input (possibly partial)
grammar G (or ERC matrix ù) is consistent with the target grammar

6 Extension to contrast pairs
6.1 Description of the subroutine. The extension of inconsistency detection
(46) to contrast pairs is provided in (47). This subroutine takes as input
some lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine considers a particular
contrast pair (line 2). For concreteness, I am assuming here that the two
meaning combinations of the contrast pair share the su!x meaning, namely
have the shape Mm and Ôm (the case where they share the root meaning
is handled analogously). The subroutine reads o‰ the paradigm p the surface
realisations Xx and ∑π of those two meaning combinations (line 3). It
constructs the set " of all pairs (Aa, ∫a) of underlying concatenations which
are consistent with both the input lexical information Lex and the input
ranking information G (or ù) and furthermore share the underlying su!x
segment a (line 4). The subroutine then looks for a feature which is unset
by Lex for the root meaning M (or the root meaning Ô or the su!x meaning
m), such that each underlying root morpheme A (or each underlying root
morpheme ∫ or each underlying su!x morpheme a) has the same value
for that feature in all pairs (Aa, ∫a) in " (line 5). For any such feature, the
subroutine updates the partial lexicon Lex by setting the feature equal to
its constant value for the root meaning M (or for the root meaning Ô or
for the su!x meaning m) (line 6). The lexicon thus updated is then returned
(line 8).

(47) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G (or
the ERC matrix ù)

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

- the mapping (∫a, ∑π) is consistent with the grammar G
if some unset feature has a constant value over " for any of the three

meanings M, Ô or m then
update the lexicon Lex by setting the feature to the constant

value for that meaning
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.
8.

6.2 Analysis of the subroutine. The Correctness Lemma 5 trivially extends
from the original subroutine (46) for single meaning combinations to the
variant (47) for contrast pairs. Furthermore, the variant for contrast pairs
remains as e!cient as the original version for single meaning combinations,
when e!ciency is generously measured in terms of the number of morphemes
(but again, not when it is measured in terms of the number of features).
Yet a number of authors (including Alderete et al. 2005 and Merchant &
Tesar 2008) have pointed out that (47), applied to the contrast pair (Mm,
Ôm), can extract more lexical information than the double application of
the original subroutine (46) to the two separate meaning combinations Mm
and Ôm. To see this, consider one of the two meaning combinations of the
contrast pair, say Mm. The original subroutine considers all underlying
forms Aa for Mm which are consistent with the input lexical and ranking
information, and only sets those features which are constant across all these
underlying forms. If the number of consistent underlying forms is large,
the number of features which are constant across them is small, and the
subroutine thus extracts little lexical information. (47) might instead be
able to extract more lexical information, because it looks for features which
are constant over a smaller set of underlying forms for Mm, namely those
underlying forms Aa which are not only consistent with the input lexical
and ranking information, but also use a su!x morpheme a which can be
combined with a root morpheme ∫ into an underlying form ∫a for Ôm
which is also consistent with the input lexical and ranking information.

I denote Tesar’s subroutine (29) for the extraction of ranking information
from a single meaning combination as ERIT, and Merchant’s subroutine
(40) as ERIM. Lemma 6 states that, if the underlying typology is output-
driven, then ERIT and ERIM are equivalent, because they update the
current ranking/grammatical information with the ‘same’ information. This
equivalence is striking, given that the time complexity of ERIT is only
linear in the number of features, while the time complexity of ERIM is
unknown, but probably exponential in both the number of features and the
number of morphemes. Output-drivenness thus a‰ords a significant
reduction in time complexity. The Correctness Lemma 1 for ERIT (which
was proven directly in §4.4) can also be made to follow from the Correctness
Lemma 4 for ERIT through the Equivalence Lemma 6.

1 Subroutines for extracting ranking information from a single
meaning combination

Proof. The underlying form Bb constructed by ERIT at line 4 is
consistent with Lex, and therefore belongs to the set " constructed by
ERIM at line 4. Consider one of the underlying forms Aa in this set ".
The two underlying forms Aa and Bb agree in every feature which is
set by the input partial lexicon Lex. Furthermore, Bb and the surface
form Xx agree in every remaining feature. Thus the underlying form
Bb is more similar to the surface form Xx than is the underlying form
Aa. Since the underlying typology is output-driven, then every ranking
which maps the less similar underlying form Aa to Xx also maps the
more similar underlying form Bb to Xx. In other words, any ranking
consistent with the ERC block ù(Aa, Xx) is also consistent with the
ERC block ù(Bb, Xx). Lemma 3.i thus ensures that the ERC block
ù(Bb, Xx) is the join of the ERC blocks ù(Aa, Xx) across all underlying
concatenations Aa in ".

Lemma 6
Suppose that the underlying typology is output-driven and that ERIT

is fed with a partial grammar G and a (possibly partial) lexicon Lex.
Suppose that ERIM is fed with the ERC matrix ù corresponding to
the partial grammar G and the same lexicon Lex. Then the ERC block
corresponding to the mapping (Bb, Xx) constructed by ERIT at line
4 is the join of the ERC blocks ù(Aa, Xx) corresponding to the
underlying forms Aa in " constructed by ERIM at line 5.

between the two implementations is the following: Merchant’s original
subroutine (46) sets any feature which is constant over "; the variant in (48)
instead focuses right from the beginning on a specific feature j, which is
unset for either the root M or the su!x m of the meaning combination Mm
under consideration. In line 3, I am assuming for concreteness that the
feature j is unset for the root M (the case where it is unset for the su!x m
is handled analogously). The modification is only cosmetic: the original
subroutine is equivalent to running this variant for each unset feature.

(48) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a meaning combination Mm in the paradigm p
Require: a feature j unset by Lex for either M or m; for concreteness,

say it is unset for M
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G

if all underlying forms Aa in " have the feature j set to the same
value in the root morpheme A then

update the lexicon Lex by setting the feature j to that value for
the root meaning M

end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.

8.
9.

I denote Tesar’s subroutine (33) for the extraction of lexical information
from a single meaning combination by ELIT, and (the cosmetic variant of)
the original inconsistency detection subroutine (48) by ELIid. Lemma 6
states that, if the underlying typology is output-driven, ELIT and ELIid

are equivalent, because their if-clauses at line 6 are equivalent. This
equivalence is striking, given that the if-clause of ELIT can be checked in
time linear in the number of features, while the if-clause of ELIid requires
time exponential in the number of features in the worst case. Output-
drivenness has thus a‰orded a significant reduction in time complexity.
The Correctness Lemma 2 for ELIT (which was proven directly in §4.5)
can also be made to follow from the Correctness Lemma 4 for ELIid through
the Equivalence Lemma 7.

Proof. To start, let me prove that the if-clause in line 6 of ELIT entails
the if-clause in line 6 of ELIid. Assume by contradiction that the
former if-clause is true while the latter if-clause is false. The hypothesis
that the if-clause of ELIid is false entails in particular that the set " of
consistent underlying forms constructed by ELIid at line 5 contains
an underlying form Aa whose root A disagrees with X relative to the
feature j (indeed, if all the underlying forms Aa in " had a root A
which agreed with X relative to j, the if-clause of ELIid would hold
true). The underlying form Aa and the underlying form Bb constructed
by ELIT at line 5 thus agree in the feature j for the root meaning M,
as they both have the opposite value from X. Furthermore, they agree
in every feature set by the partial lexicon Lex, because they are both
consistent with Lex. Finally, Bb agrees with Xx for every remaining
feature. The underlying form Bb is thus more similar to the surface
form Xx than is the underlying form Aa. Since the mapping (Aa, Xx)
is consistent with G (because Aa belongs to "), there exists a ranking
which is consistent with both. Since the grammar corresponding to
that ranking is output-driven and maps the less similar underlying
form Aa to Xx, it also maps the more similar underlying form Bb to
Xx. In other words, that ranking is also consistent with the mapping
(Bb, Xx). In conclusion, the mapping (Bb, Xx) and the grammar G
are consistent (because both are consistent with the ranking), contra-
dicting the hypothesis that the if-clause of ELIT is true.

Vice versa, let me prove that the if-clause in line 6 of ELIid entails
the if-clause in line 6 of ELIT. Assume by contradiction that the
former if-clause is true, while the latter if-clause is false. The hypothesis
that the if-clause of ELIT is false means that the input (partial) grammar
G is consistent with the mapping (Bb, Xx) of the underlying form Bb
constructed by ELIT at line 5 to the surface form Xx. Since this
underlying form Bb is consistent with Lex, then Bb belongs to the set
" of consistent underlying forms constructed at line 5 by ELIid. Since
B and X disagree relative to the feature j, consider the underlying
form ≥b, identical to Bb but for the fact that ≥ and X instead agree in
the feature j. Obviously, the underlying form ≥b is more similar to
the surface form Xx than is the underlying form Bb. Since (Bb, Xx)
is consistent with G, there exists a ranking which is consistent with
both. Since the grammar corresponding to that ranking is output-
driven and maps the less similar underlying form Bb to Xx, then it
also maps the more similar underlying form ≥b to Xx. In other words,
that ranking is also consistent with the mapping (≥b, Xx). This
underlying form ≥b thus belongs to the set " constructed by ELIid at
line 5.This conclusion contradicts the hypothesis that the if-clause of
ELIid holds, because it shows that " contains two underlying forms
Bb and ≥b, such that B and ≥ disagree in the feature j.Lemma 7

Suppose that the underlying typology is output-driven. Then the two
if-clauses in line 6 of ELIT and ELIid are equivalent.

Tesar’s subroutine for extracting lexical information from contrast pairs
is more involved than his other two subroutines, for extracting lexical and
ranking information from a single meaning combination. For this reason,
the latter two subroutines were reviewed in §4.4 and §4.5, while the former
subroutine is included in this appendix. Here I start out from Merchant’s
subroutine in (47) for extracting lexical information from contrast pairs,
and work towards Tesar’s reformulation, provided below in (52). This
seems to me the best way of making sense of the somewhat complex
formulation of Tesar’s subroutine. I begin by carrying out the same cosmetic
change as in the previous section: I replace the original subroutine (47)
with (49), which only di‰ers because line 3 focuses on a specific feature j,
unset by the input lexicon Lex for one of the three meanings M, Ô and m
of the contrast pair (Mm, Ôm). For concreteness, I assume it is unset for
the root meaning M.

3 Subroutines for extracting lexical information from a contrast
pair

Supplementary materials1716 Giorgio Magri

(49) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫a, ∑π) is consistent with the grammar G

if all the pairs (Aa, ∫a) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.
9.

the two underlying su!x morphemes a and ¥ coincide, because they are
the underlying form corresponding to the same su!x meaning m. The
condition that a and ¥ coincide is in turn equivalent to the condition that
they agree for each feature y. We could of course relax this condition by
requiring that the two underlying su!x morphemes a and ¥ agree only for
certain features, y1, ..., yn. This intuition leads to the formulation in (50).
It di‰ers from (49) only because of the new line 4, which introduces the
features y1, ..., yn, and because of the additional fifth subclause in the
definition of the set ". Note that line 4 assumes all the features y1, ..., yn

to be unset by the input partial lexicon Lex for the shared su!x m, because
the condition that both a and ¥ are consistent with Lex as underlying forms
for m already entails that they agree on every feature set by Lex for m.

(50) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫¥) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ agree for every

feature y1, ..., yn

if all the pairs (Aa, ∫¥) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

combinations Mm and Ôm one at a time. If instead we consider all unset
y features at line 4, then (50) e‰ectively considers only pairs of underlying
forms for the two meaning combinations which share the underlying su!x,
and is therefore equivalent to the original subroutine (49) for extracting
lexical information from contrast pairs. In the end, depending on the
number of y features considered at line 4, (50) provides a whole range of
subroutines for extracting lexical information in between the weaker (46)
and the stronger (49).
Subroutine (50) can be equivalently restated as (51). Instead of requiring
the two su!x morphemes a and ¥ to coincide for every feature y1, ..., yn,
we consider all possible combinations v1, ..., vn of values of those features
at line 6, and we require both a and ¥ to have those features set equal to
those values in the fifth subclause of line 5.

(51)Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p
Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m
Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M
Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex
read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p
For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that:
- Aa is consistent with the lexicon Lex as an underlying form
for Mm
- the mapping (Aa, Xx) is consistent with the grammar G
- ∫¥ is consistent with the lexicon Lex as an underlying form
for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ both have the
values v1, ..., vn for the features y1, ..., yn
if all the pairs (Aa, ∫¥) in all the sets "(v1, ..., vn) have the underlying
root A set to the same value for feature j then
update the lexicon Lex by setting feature j to that constant value
for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

Supplementary materials1918Giorgio Magri

By reasoning as in the previous subsection we can easily show that subroutine
(51) is equivalent to (52) under the assumption of output-drivenness.
Indeed, the two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn con-
structed by (52) at line 6 provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (51).

(52)Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p
Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m
Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M
Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex
read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p
For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and
±≤v1, …, vn, as follows:
- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-
lying forms for Mm and Ôm
- B has the opposite value for feature j than X
- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values
v1, ..., vn
- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
if the grammar G is inconsistent with the two mappings (Bbv1, …, vn,
Xx) and (±≤v1, …, vn, ∑π) for any combination of values v1, ..., vn
then
update the lexicon Lex by setting feature j to that constant value
for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.
If the features y1, ..., yn considered in line 4 of (52) exhaust the set of
features, then the two subroutines (49) and (52) are equivalent. However,
the running time of (52) is exponential in the number of features in the
latter case, because it needs to consider all combinations v1, ..., vn.

By reasoning as in the previous subsection, we can proceed from Merchant’s
original subroutine (41) for extracting ranking information from contrast
pairs to the variant in (53).

4Subroutines for extracting ranking information from a contrast
pair

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that
- Aa is consistent with the lexicon Lex as an underlying form
for Mm
- ∫¥ is consistent with the lexicon Lex as an underlying form
for Ôm
- the two underlying su!x morphemes a and ¥ both have the
values v1, ..., vn for the features y1, ..., yn
compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫¥) in "(v1, ..., vn) for all combinations of values
v1, ..., vn
add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.

7.
8.

20Giorgio Magri

Once again, if we do not consider any y features at line 3, (53) e‰ectively
considers the two meaning combinations of the contrast pair independently
of each other, and thus ends up equivalent to subroutine (40) for extracting
lexical information from single meaning combinations. If we instead consider
all unset y features at line 3, then (53) e‰ectively only considers pairs of
underlying forms for the two meaning combinations which share the
underlying su!x, and is therefore equivalent to Merchant’s original
subroutine (41) for extracting lexical information from contrast pairs.
Ultimately, depending on the number of y features considered at line 3,
(53) provides a whole range of subroutines for extracting ranking information
in between the weaker (40) and the stronger (41).
By reasoning as in §2 of this appendix, we can easily show subroutine
(53) to be equivalent to (54) under the assumption of output-drivenness.
The two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn constructed
by (54) at line 5 again provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (53).

(54)

- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values
v1, ..., vn
- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
compute the join of the ERC matrices ù(Bbv1, …, vn, Xx)+
ù(±≤v1, …, vn, ∑π) for all combinations of values v1, ..., vn
add this join to the ERC matrix ù
Return: the updated ERC matrix ù

6.

7.
8.

Take the simplest case, where we consider a single feature y at line 3.
Assume furthermore that y is binary, i.e. it only takes the values v=‘+’ and
v=‘—’. At line 5, the subroutine constructs the two underlying forms Bb+
and ±≤+, corresponding to the value v=‘+’of feature y (i.e. both b+ and ≤+
have the value ‘+’ for the feature y), and the two underlying forms Bb— and
±≤—, corresponding to the value v=‘—’ (i.e. both b— and ≤— have the value
‘—’ for the feature y). At line 6, we finally compute the join of the two ERC
blocks ù(Bb+, Xx)+ù(±≤+, ∑π) and ù(Bb—, Xx)+ù(±≤—, ∑π). Even in
the simplest case of a single feature y, there is no way around computing
the join.
In summary, Merchant develops a new subroutine for extracting ranking
information through the notion of join. This subroutine can be applied to
either a single meaning combination at a time, as in (40); or to a contrast
pair, as in (41). The latter is more powerful than the former: the subroutine
extracts more ranking information by processing the two meaning
combinations Mm and Ôm as a contrast pair than by processing them
separately. The crux of Merchant’s subroutine for extracting ranking
information is that it relies on the computation of a join, which is time-
consuming. The biggest impact of output-drivenness is that it allows
Merchant’s subroutine for extracting ranking information from a single
meaning combination to be restated without having to compute any join.
The restated subroutine thus runs in time linear in the number of features.
In other words, it is e!cient even relative to the more demanding notion
of e!ciency introduced in §2.6. The situation is unfortunately very di‰erent
when Merchant’s subroutine for extracting ranking information is boosted
by being applied to contrast pairs. In this case, output-drivenness is not
able to circumvent the computation of the join, and thus does not su!ce
to make the subroutine e!cient.

A constraint ranking is consistent with an ERC provided it satisfies con-
dition (36); it is consistent with an ERC matrix provided it is consistent
with each of its rows. An ERC matrix entails another ERC matrix provided

(38) Id
[str]

Id
[length]

Main-
L

Main-
R

No
Long

WSP

w
w

w
w
w
w

w
w
w
w

l
l
l
l

l

w
l

w

/’pa:’ka/, [’pa:ka], [pa’ka]
/’pa:’ka/, [’pa:ka], [pa’ka:]
/’pa:’ka/, [’pa:ka], [pa:’ka]
/’pa:’ka/, [’pa:ka], [pa:’ka:]
/’pa:’ka/, [’pa:ka], [’paka]
/’pa:’ka/, [’pa:ka], [’paka:]
/’pa:’ka/, [’pa:ka], [’pa:ka:]

w
w

w
w

Lemma 3
Suppose that one of the ERC matrices ù1, ù2, …, Rn is entailed
by each of the others. For concreteness, assume that it is ù1 which
is entailed by each of the other ERC matrices ù2, …, Rn. Then
ù1 is the join of ù1, ù2, …, Rn.

(i)

Given the ERC matrices ù1, ù2, ù3, …, Rn, replace two of them
with the ERC matrix obtained by stacking the two matrices one
on top of the other. For concreteness, replace ù1 and ù2 with
ù1+ù2. Then the join of the n®1 ERC matrices ù1+ù2, ù3,
…, Rn entails the join of the original n ERC matrices ù1, ù2, ù3,
…, Rn, while the reverse does not in general hold.

(ii)

compute the join of the ERC matrices ù(Aa, Xx) for all underlying
forms Aa in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.
7.

Proof. Let Aa be the underlying form assigned to the meaning
combination Mm by the target lexicon. This underlying form Aa
belongs to the set " constructed by the subroutine at line 4, because
of the hypothesis that the input lexicon Lex is consistent with the
target lexicon. Thus the corresponding ERC block ù(Aa, Xx) is one
of the blocks that the subroutine takes the join of at line 5. Since the
target ranking is consistent with this ERC block ù(Aa, Xx), then it
is also consistent with the join, by property (39a) of the join. Since the
target ranking is also consistent with the input ERC matrix ù, it is

Lemma 4
Merchant’s subroutine (40) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target ranking, that the input ERC matrix ù is
consistent with that target ranking, and that the input (possibly partial)
lexicon Lex is consistent with that target lexicon. The updated ERC
matrix returned by subroutine (40) is also consistent with that target
ranking.

then consistent with the updated ERC matrix returned by the sub-
routine.

(41) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫a) in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

1.

2.

3.

4.

5.

6.
7.

(43) ∑(ù1, ù2)+∑(π1, π2)

Lemma 3.iii ensures that (43) is equivalent to the join in (44). The four
ERC matrices being joined here correspond to all four combinations of
underlying forms for the two meaning combinations Mm and Ôm. In
particular, the learner is also joining together the two ERC blocks ù1+π2

and π2+ù1, whereby the shared su!x meaning m is assigned a di‰erent
underlying form in the case of Mm than in the case of Ôm. In other words,
since the learner is processing the two meaning combinations Mm and Ôm
separately, it is blind to the fact that these meaning combinations share the
su!x meaning m, which must therefore have the same underlying form in
both cases.

(44) ∑(ù1+π1, ù1+π2, ù2+π1, ù2+π2)

for the root meaning M (or for the su!x meaning m) (line 6). The lexicon
thus updated is then returned (line 8).

and that the input partial lexicon Lex is consistent with the target
lexicon. The updated lexicon returned by subroutine (46) is also
consistent with that target lexicon.

2 Subroutines for extracting lexical information from a single
meaning combination

Consider the slight variant (48) of the subroutine (46) for the extraction of
lexical information through inconsistency detection. The only di‰erence

The modification is only cosmetic: the original subroutine (47) is equivalent
to running this variant (49) for each feature which is unset for one of the
three morphemes M, Ô and m.

The set " constructed by the subroutine (49) at line 5 can equivalently
be described as the collection of all pairs (Aa, ∫¥) which satisfy the conditions
expressed by the four subclauses of line 5 plus the additional condition that

If we consider no y features at all in line 4, then (50) e‰ectively considers
the two meaning combinations of the contrast pair independently of each
other, and thus ends up equivalent to subroutine (46) for extracting lexical
information from single meaning combinations, in the sense that the
application of subroutine (50) to the contrast pair (Mm, Ôm) is equivalent
to two consecutive applications of subroutine (46) to the two meaning

Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p
Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m
Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex
read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p
For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and ±≤v1,

…, vn as follows
- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-
lying forms for Mm and Ôm

1.

2.

3.

4.

5.

(53)Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p
Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m
Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex
read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

1.

2.

3.

4.

Phonology 25.2: Artwork 1 of

Supplementary materials 72 Giorgio Magri

every ranking consistent with the former is also consistent with the latter.
Thus ù1+ù2 entails both ù1 and ù2.

(36) At least one constraint which has a w in the ERC under consideration
is ranked above every constraint which instead has an l (constraints
which have an e play no role in the consistency condition).

2 The join

4 Giorgio Magri

Grammatical information was represented in §4.1.2 as a (possibly partial)
collection G of mappings (Aa, Xx) of an underlying form Aa to a surface
form Xx. Each of these mappings can be equivalently represented with the
corresponding ERC block ù(Aa, Xx). And the grammatical information
G can thus be represented with the ERC matrix obtained by stacking all
these blocks one of top of the other. Merchant’s CPR adopts the architecture
in (28), the only di‰erence being that the current partial grammatical
information is represented not as a partial grammar G but as an ERC matrix
ù. This makes the algorithm more flexible in the type of partial grammatical
information it maintains: any (partial) grammar G can be represented
through the corresponding ERC matrix, while not just any ERC matrix ù
corresponds to some partial collection of mappings. This additional flexibility
in the data structure maintained by the algorithm is crucial in order to
define the subroutine for extracting ranking information, as explained in
the next section.

Supplementary materials 5 6 Giorgio Magri 8 Giorgio Magri Supplementary materials 9 10 Giorgio Magri

Appendix B: Equivalence between Merchant’s and Tesar’s sub-
routines

Supplementary materials 11 12 Giorgio Magri Supplementary materials 13

Appendix A: Merchant’s (2008) CPR

Phonology 31 (2014). Supplementary materials

Review article

Giorgio Magri
CNRS, Université Paris 8 and University of Utrecht

Supplementary materials

This appendix sketches Merchant’s (2008) CPR algorithm. In §1, I explain
how CPR adheres to the architecture in (28), only with a more abstract
representation of the current partial ranking information in terms of ERCs.
I then review CPR’s subroutines for extracting ranking and lexical infor-
mation. I start from the easier case, where they are applied to a single
paradigmatic entry (§3 and §5), and then turn to the extension to contrast
pairs (§4 and §6).

1 ERCs and CPR’s architecture
An elementary ranking condition (ERC) is an assignment of one of the
three symbols l, w and e to each of the constraints in the constraint set
(Prince 2002). An ERC is usually represented as a row of these symbols,
with the constraints annotated on top. To illustrate, an ERC for the constraint
set (5) of the Paka typology is provided in (35). An ERC matrix is a finite
collection of ERCs, stacked one on top of the other (the order does not
matter). An arbitrary ERC matrix is denoted by ù. Given two ERC matrixes
ù1 and ù2, ù1+ù2 denotes the ERC matrix obtained by stacking one on
top of the other (the order does not matter).

14 Giorgio Magri Supplementary materials 15

Bruce Tesar (2014). Output-driven phonology: theory and learning. (Cam-
bridge Studies in Linguistics 139.) Cambridge: Cambridge University
Press. Pp. xix+415.

(35)
e

Id[str] Id[length] Main-L Main-R NoLong WSP
w w l l e|

The phonological underpinning of these notions is as follows. Consider the
mapping (Aa, Xx) of an underlying form Aa to a surface form Xx, which
is thus construed as the winner. For any other loser candidate Yy, consider
the ERC defined in (37). Stack all the ERCs thus constructed for all loser
candidates one on top of the other into an ERC matrix, denoted by ù(Aa,
Xx). Then the OT grammar corresponding to a ranking maps the under-
lying form Aa to the surface form Xx if and only if that ranking is consistent
with the ERC matrix ù(Aa, Xx) corresponding to that mapping.

(37) A constraint has a w provided it prefers the winner mapping (Aa,
Xx) to the loser mapping (Aa, Yy), i.e. it assigns fewer violations
to the former mapping than to the latter.

a.

A constraint has an l provided it instead prefers the loser mapping
(Aa, Yy) to the winner mapping (Aa, Xx), i.e. it assigns fewer
violations to the former mapping than to the latter.

b.

A constraint has an e provided it has no preference for one of the
two mappings (Aa, Xx) and (Aa, Yy), i.e. it assigns the same number
of violations to both.

c.

To illustrate, consider the Paka typology in §2.1 of the paper, focusing on
the mapping (/’pa:’ka/, [’pa:ka]) of the underlying form /’pa:’ka/ to the surface
form [’pa:ka]. The ERC matrix ù(/’pa:’ka/, [’pa:ka]) corresponding to this
mapping is provided in (38). It consists of seven ERCs, because there are
seven loser candidates. For convenience, each ERC is annotated on the left
with the corresponding underlying, winner and loser forms (loser forms
are struck through). The topmost ERC in (38) says that the winner mapping
(/’pa:’ka/, [’pa:ka]) beats the loser mapping (/’pa:’ka/, [pa’ka]), provided at
least one of the two winner-preferring constraints Ident[length] or Main-
L is ranked above the two loser-preferring constraints Main-R and NoLong.

Supplementary materials 3

The join of some ERC matrices ù1, …, ùn is any ERC matrix which satisfies
the two conditions in (39). Any such ERC matrix will be denoted by ∑(ù1,
…, ùn). Condition (39a) says that the join is weaker than (i.e. entailed by)
each matrix ù1, …, ùn. Condition (39b) says that, among all ERC matrices
which are weaker than (i.e. entailed by) each matrix ù1, …, ùn, the join is
a strongest one (i.e the one which entails all the others). In other words,
condition (39a) says that the join captures some of the ranking information
shared by the matrices ù1, …, ùn, and condition (39b) says there is no
shared ranking information which the join does not capture.

(39) Each of the ERC matrices ù1, …, ùn entails their join.a.
If each of the ERC matrices ù1, …, ùn entails some ERC matrix
ù, their join entails ù as well.

b.

Lemma 3 collects some properties of the join which will be used in the rest
of this appendix.

Proof. An ERC matrix ∏ is the join of two ERC matrixes ù1 and ù2

if and only if the set of rankings consistent with ∏ is the union of the
two sets of rankings consistent with ù1 and ù2. Furthermore, the set
of rankings consistent with ù1+ù2 is the intersection of the two sets
of rankings consistent with ù1 and ù2. Claims (i)–(iii) then follow
from elementary set-theoretic manipulations on the sets of consistent
rankings.

Given four ERC matrices ù1, ù2, π1, π2, consider the ERC
matrix ∑(ù1, ù2)+∑(π1, π2) obtained by stacking one on top of
the other the join of ù1 and ù2 and the join of π1 and π2. Then
∑(ù1, ù2)+∑(π1, π2) coincides with the join of the four ERC
matrices ù1+π1, ù1+π2, ù2+π1, ù2+π2.

(iii)

3 A subroutine for extracting ranking information through the join
3.1 Description of the subroutine. The subroutine in (40) takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex and a paradigm
p (line 1). It extends the ranking information encoded in the input ERC
matrix ù by adding to that input ERC matrix some additional ERCs as
follows. The subroutine considers a certain meaning combination Mm (line
2), and it reads o‰ the paradigm p the surface realisation Xx of that meaning
combination Mm (line 3). The subroutine then constructs the set " of all
underlying concatenations Aa which are consistent with the lexicon Lex as
underlying forms for that meaning combination Mm (line 4). This means
that if Lex sets a feature for the root M or the su!x m to a certain value,
then the root morpheme A or the su!x morpheme a of each underlying
form Aa in " has the feature set to that value. Any of these underlying
forms in " could be the actual underlying form according to the partial
lexical information encoded by Lex. In other words, the target grammar
could enforce any of the mappings (Aa, Xx) of any underlying form Aa in
" to the surface form Xx. Thus the best the subroutine can do is to extract
any ranking information shared by all these mappings. This is done by
computing the join of all ERC blocks ù(Aa, Xx) corresponding to all
mappings (Aa, Xx) of all underlying forms Aa in " to the surface form Xx
(line 5). The input ERC matrix ù is updated by adding this join to it (line
6). The ERC matrix thus updated is returned (line 7).

(40) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all concatenations Aa consistent with Lex as

underlying forms for Mm

1.

2.
3.

4.

The join of the ERC blocks ù(Aa, Xx) computed at line 5 is an ERC-
theoretic construct which might very well not correspond, in the sense of
(37), to any mapping of an underlying form to a surface form. For this
reason, CPR needs the additional flexibility of representing the current
(partial) grammatical/ranking information as an ERC matrix rather than
as a (partial) grammar. Appendix B: §1 shows that output-drivenness in
e‰ect guarantees that the join computed in line 5 always corresponds to the
mapping of a certain underlying form to the surface form Xx read at line
3.

3.2 Analysis of the subroutine. Lemma 4 provides a straightforward correct-
ness result for Merchant’s subroutine (40). Note that the proof only uses
property (39a) of the join, not property (39b). In other words, the lemma
hinges only on the fact that the join extracts ranking information which is
shared by all the ERC blocks ù(Aa, Xx). Property (39b) is nonetheless
crucial, because it ensures that the join does not lack any of this shared
ranking information, making subroutine (40) optimal. The crux of
Merchant’s subroutine is its time complexity. Merchant (2008: ch. 4)
develops an elegant algorithm for computing the join which can be used
to implement line 5. Unfortunately, his algorithm needs to compute the
fusional closure of each of the input ERC matrices it has to join. Although
there are no results that I am aware of concerning the time complexity of
that computation, it is most plausibly intractable in the general case.

4 Extension to contrast pairs
4.1 Description of the subroutine. The extension of Merchant’s subroutine
(40) to contrast pairs is provided in (41). This subroutine takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex, and a paradigm
p (line 1). The subroutine considers some contrast pair (line 2). For concrete-
ness, I am assuming here that the two meaning combinations of the contrast
pair share the su!x meaning, i.e. have the shape Mm and Ôm (the case
where they share the root meaning is handled analogously). The
subroutine reads o‰ the paradigm p the surface realisations Xx and ∑π of
those two meaning combinations (line 3). Although x and π are the surface
realisations of the same underlying su!x segment corresponding to the
su!x meaning m, they can be di‰erent, because of morphophonemic
alternations in the surface realisation of that underlying su!x triggered by
the two di‰erent roots M and Ô. The subroutine then constructs the set
" of all pairs (Aa, ∫a) of underlying concatenations which are consistent
with the lexicon Lex as underlying forms for the meaning combinations
Mm and Ôm and furthermore share the underlying su!x segment a (line
4). The latter requirement encodes the fact that we are focusing on a pair
of meaning combinations Mm and Ôm which share the su!x meaning m.
For each pair (Aa, ∫a) of underlying concatenations in ", the subroutine
considers the corresponding ERC blocks ù(Aa, Xx) and ù(∫a, ∑π), stacks
them together into the ERC matrix ù(Aa, Xx)+ù(∫a, ∑π) and constructs
the join of all ERC matrices thus obtained (line 5). The input ERC matrix
ù is updated by adding this join to it (line 6). The ERC matrix thus updated
is then returned (line 7).

There is a subtlety which should be pointed out here. At line 5, the subroutine
considers the join in (42a), not the one in (42b). The di‰erence is that in
(42a) we sum together the two ERC blocks ù(Aa, Xx) and ù(∫a, ∑π) into
ù(Aa, Xx)+ù(∫a, ∑π) before taking the join. This is indeed appropriate,
because the join in (42a) is stronger than the one in (42b), by Lemma 3.ii.

(42) ∑{ù(Aa, Xx)+ù(∫a, ∑π) | (Aa, ∫a)Œ"}a.
∑{ù(Aa, Xx), ù(∫a, ∑π) | (Aa, ∫a)Œ"}b.

4.2 Analysis of the subroutine. The Correctness Lemma 4 trivially extends
from the original subroutine (40) for single meaning combinations to the
variant (41) for contrast pairs. The ine!ciency of (40) for single meaning
combinations is of course aggravated in (41) for contrast pairs, as the latter
requires taking the join of a larger number of larger ERC matrices. Yet
subroutine (41) applied to the contrast pair (Mm, Ôm) is able to extract
more ranking information than the double application of the original
subroutine (40) to the two separate meaning combinations Mm and Ôm.
To see this, suppose that the root meaning M admits a unique underlying
form A consistent with Lex, the root meaning Ô admits a unique under-
lying form ∫ and the su!x meaning m admits only two underlying forms,
a1 and a2. Suppose we first apply the original subroutine (40) to the meaning
combination Mm. At line 4, it constructs the set " consisting of the two
underlying forms Aa1 and Aa2. At line 5, it computes the join ∑(ù1, ù2)
of the two ERC blocks ù1=ù(Aa1, Xx) and ù2=ù(Aa2, Xx). Suppose
we next apply the original subroutine (40) to the meaning combination
Ôm. At line 4, it constructs the set ", consisting of the two underlying
forms ∫a1 and ∫a2. At line 5, it computes the join ∑(π1, π2) of the two
ERC blocks π1=ù(∫a1, ∑π) and π2=ù(∫a2, ∑π). Ultimately, the two
consecutive applications of the original subroutine (40) to the two meaning
combinations Mm and Ôm extract the ranking information captured by
the sum of the two joins in (43).

Suppose we instead apply subroutine (41) to the contrast pair (Mm, Ôm).
At line 4, it constructs the set ", consisting of the two pairs (Aa1, ∫a1) and
(Aa2, ∫a2). At line 5, it computes the join in (45) of the two ERC blocks
ù(Aa1, Xx)+ù(∫a1, ∑π)=ù1+π1 and ù(Aa2, Xx)+ù(∫a2, ∑π) =
ù2+π2.

(45) ∑(ù1+π1, ù2+π2)

The join in (45) is stronger than the one in (44), because it joins fewer
matrices (the smaller the number of matrices, the larger the amount of
shared information for the join to extract). This is because the two blocks
ù1+π2 and ù2+π1 have disappeared from the join. This is what we want,
as they correspond to the unreasonable assumption that the su!x m has
di‰erent underlying forms in the two meaning combinations Mm and Ôm.
In other words, since the learner is processing the two meaning combinations
Mm and Ôm together as a contrast pair, it is able to take into account the
fact that these meaning combinations share the su!x meaning m, which
must therefore have the same underlying form in the two cases.

5 A subroutine for extracting lexical information through
inconsistency detection

5.1 Description of the subroutine. Subroutine (46) takes as input some
lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine then considers a certain
meaning combination Mm with some feature unset according to the input
partial lexicon Lex for either the root M or the su!x m (line 2). The goal
of the subroutine is to try to extend the input partial lexicon by setting
some of these unset features. To this end, the subroutine reads o‰ the
paradigm p the surface realisation Xx of the meaning combination Mm
(line 3). It constructs the set " of all underlying concatenations Aa which
are consistent with both the input lexical information Lex and the input
ranking information captured by the grammar G (or the ERC matrix ù)
(line 4). Consistency with the input lexical information means that, if Lex
sets a feature for the root M (or the su!x m) to a certain value, then the
root morpheme A (or the su!x morpheme a) of each underlying form Aa
in " has the feature set to that value. Consistency with the input ranking
information means that the input grammar G (or the input ERC matrix ù)
is consistent with the mapping (Aa, Xx) of each such underlying form Aa
in " to the surface form Xx. The subroutine then looks for a feature which
is unset by Lex for the root meaning M (or the su!x meaning m), such that
each root morpheme A (or each su!x morpheme a) has the same value for
that feature in all underlying concatenations Aa in " (line 5). For any such
feature, it can be concluded that the opposite value is inconsistent with the
available lexical and ranking information. The subroutine thus updates the
partial lexicon Lex by setting that feature to be equal to its constant value

(46) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that:
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G (or

the ERC matrix ù)
if some feature unset for the root M (or for the su!x m) has a

constant value over " for M (for m) then
update the lexicon Lex by setting the feature to that value for

the root M (or for the su!x m)
end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.
8.

This subroutine is called inconsistency detection (cf. Kager 1999, Tesar
et al. 2003, Tesar 2006), because it sets a certain feature to a certain value
based on the detection at line 6 of the fact that any other value for that
feature would be inconsistent with the available lexical and ranking
information.

Proof. Assume by contradiction that the lemma is false. This means
that the subroutine has set some feature j for, say, the root meaning
M to a value which is di‰erent from the value assigned by the target
lexicon. For concreteness, assume that the values assigned by the
subroutine and the target lexicon are + and — respectively. Thus , the
target lexicon assigns to the meaning combination Mm an underlying
form Aa, which has feature j set to the value — in the root A. This
underlying form Aa is consistent with the partial lexicon Lex (because
it is consistent with the target lexicon, which is in turn consistent with
Lex). Furthermore, the mapping (Aa, Xx) of this underlying form Aa
to the surface form Xx is consistent with the input grammar G (because
the target ranking is consistent with both). In other words, this
underlying form Aa satisfies the two conditions stated by the two
subclauses in line 4 and thus belongs to the set " constructed by the
subroutine. Since this underlying form Aa has feature j set equal to
— for the root A, then the subroutine cannot have set that feature to
the opposite value + at line 6.

5.2 Analysis of the subroutine. Lemma 5 provides a straightforward correct-
ness result for inconsistency detection (46). Its time complexity is controlled
by the size of the set " of consistent underlying forms constructed at line 4.
In the worst case (when both the input lexicon and the input ranking
information are empty), " consists of all underlying forms, i.e. all con-
catenations of root and su!x morphemes. In this case, the size of " grows
polynomially in the number of morphemes and thus exponentially in the
number of features. In conclusion, subroutine (46) is e!cient relative to
the generous notion of e!ciency defined in (14), which measures time
complexity in terms of the number of morphemes, but is not e!cient
relative to the more demanding notion of e!ciency defined in (15), which
measures time complexity in terms of the number of features.

Lemma 5
Inconsistency detection (46) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target grammar, that the input (possibly partial)
grammar G (or ERC matrix ù) is consistent with the target grammar

6 Extension to contrast pairs
6.1 Description of the subroutine. The extension of inconsistency detection
(46) to contrast pairs is provided in (47). This subroutine takes as input
some lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine considers a particular
contrast pair (line 2). For concreteness, I am assuming here that the two
meaning combinations of the contrast pair share the su!x meaning, namely
have the shape Mm and Ôm (the case where they share the root meaning
is handled analogously). The subroutine reads o‰ the paradigm p the surface
realisations Xx and ∑π of those two meaning combinations (line 3). It
constructs the set " of all pairs (Aa, ∫a) of underlying concatenations which
are consistent with both the input lexical information Lex and the input
ranking information G (or ù) and furthermore share the underlying su!x
segment a (line 4). The subroutine then looks for a feature which is unset
by Lex for the root meaning M (or the root meaning Ô or the su!x meaning
m), such that each underlying root morpheme A (or each underlying root
morpheme ∫ or each underlying su!x morpheme a) has the same value
for that feature in all pairs (Aa, ∫a) in " (line 5). For any such feature, the
subroutine updates the partial lexicon Lex by setting the feature equal to
its constant value for the root meaning M (or for the root meaning Ô or
for the su!x meaning m) (line 6). The lexicon thus updated is then returned
(line 8).

(47) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G (or
the ERC matrix ù)

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

- the mapping (∫a, ∑π) is consistent with the grammar G
if some unset feature has a constant value over " for any of the three

meanings M, Ô or m then
update the lexicon Lex by setting the feature to the constant

value for that meaning
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.
8.

6.2 Analysis of the subroutine. The Correctness Lemma 5 trivially extends
from the original subroutine (46) for single meaning combinations to the
variant (47) for contrast pairs. Furthermore, the variant for contrast pairs
remains as e!cient as the original version for single meaning combinations,
when e!ciency is generously measured in terms of the number of morphemes
(but again, not when it is measured in terms of the number of features).
Yet a number of authors (including Alderete et al. 2005 and Merchant &
Tesar 2008) have pointed out that (47), applied to the contrast pair (Mm,
Ôm), can extract more lexical information than the double application of
the original subroutine (46) to the two separate meaning combinations Mm
and Ôm. To see this, consider one of the two meaning combinations of the
contrast pair, say Mm. The original subroutine considers all underlying
forms Aa for Mm which are consistent with the input lexical and ranking
information, and only sets those features which are constant across all these
underlying forms. If the number of consistent underlying forms is large,
the number of features which are constant across them is small, and the
subroutine thus extracts little lexical information. (47) might instead be
able to extract more lexical information, because it looks for features which
are constant over a smaller set of underlying forms for Mm, namely those
underlying forms Aa which are not only consistent with the input lexical
and ranking information, but also use a su!x morpheme a which can be
combined with a root morpheme ∫ into an underlying form ∫a for Ôm
which is also consistent with the input lexical and ranking information.

I denote Tesar’s subroutine (29) for the extraction of ranking information
from a single meaning combination as ERIT, and Merchant’s subroutine
(40) as ERIM. Lemma 6 states that, if the underlying typology is output-
driven, then ERIT and ERIM are equivalent, because they update the
current ranking/grammatical information with the ‘same’ information. This
equivalence is striking, given that the time complexity of ERIT is only
linear in the number of features, while the time complexity of ERIM is
unknown, but probably exponential in both the number of features and the
number of morphemes. Output-drivenness thus a‰ords a significant
reduction in time complexity. The Correctness Lemma 1 for ERIT (which
was proven directly in §4.4) can also be made to follow from the Correctness
Lemma 4 for ERIT through the Equivalence Lemma 6.

1 Subroutines for extracting ranking information from a single
meaning combination

Proof. The underlying form Bb constructed by ERIT at line 4 is
consistent with Lex, and therefore belongs to the set " constructed by
ERIM at line 4. Consider one of the underlying forms Aa in this set ".
The two underlying forms Aa and Bb agree in every feature which is
set by the input partial lexicon Lex. Furthermore, Bb and the surface
form Xx agree in every remaining feature. Thus the underlying form
Bb is more similar to the surface form Xx than is the underlying form
Aa. Since the underlying typology is output-driven, then every ranking
which maps the less similar underlying form Aa to Xx also maps the
more similar underlying form Bb to Xx. In other words, any ranking
consistent with the ERC block ù(Aa, Xx) is also consistent with the
ERC block ù(Bb, Xx). Lemma 3.i thus ensures that the ERC block
ù(Bb, Xx) is the join of the ERC blocks ù(Aa, Xx) across all underlying
concatenations Aa in ".

Lemma 6
Suppose that the underlying typology is output-driven and that ERIT

is fed with a partial grammar G and a (possibly partial) lexicon Lex.
Suppose that ERIM is fed with the ERC matrix ù corresponding to
the partial grammar G and the same lexicon Lex. Then the ERC block
corresponding to the mapping (Bb, Xx) constructed by ERIT at line
4 is the join of the ERC blocks ù(Aa, Xx) corresponding to the
underlying forms Aa in " constructed by ERIM at line 5.

between the two implementations is the following: Merchant’s original
subroutine (46) sets any feature which is constant over "; the variant in (48)
instead focuses right from the beginning on a specific feature j, which is
unset for either the root M or the su!x m of the meaning combination Mm
under consideration. In line 3, I am assuming for concreteness that the
feature j is unset for the root M (the case where it is unset for the su!x m
is handled analogously). The modification is only cosmetic: the original
subroutine is equivalent to running this variant for each unset feature.

(48) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a meaning combination Mm in the paradigm p
Require: a feature j unset by Lex for either M or m; for concreteness,

say it is unset for M
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G

if all underlying forms Aa in " have the feature j set to the same
value in the root morpheme A then

update the lexicon Lex by setting the feature j to that value for
the root meaning M

end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.

8.
9.

I denote Tesar’s subroutine (33) for the extraction of lexical information
from a single meaning combination by ELIT, and (the cosmetic variant of)
the original inconsistency detection subroutine (48) by ELIid. Lemma 6
states that, if the underlying typology is output-driven, ELIT and ELIid

are equivalent, because their if-clauses at line 6 are equivalent. This
equivalence is striking, given that the if-clause of ELIT can be checked in
time linear in the number of features, while the if-clause of ELIid requires
time exponential in the number of features in the worst case. Output-
drivenness has thus a‰orded a significant reduction in time complexity.
The Correctness Lemma 2 for ELIT (which was proven directly in §4.5)
can also be made to follow from the Correctness Lemma 4 for ELIid through
the Equivalence Lemma 7.

Proof. To start, let me prove that the if-clause in line 6 of ELIT entails
the if-clause in line 6 of ELIid. Assume by contradiction that the
former if-clause is true while the latter if-clause is false. The hypothesis
that the if-clause of ELIid is false entails in particular that the set " of
consistent underlying forms constructed by ELIid at line 5 contains
an underlying form Aa whose root A disagrees with X relative to the
feature j (indeed, if all the underlying forms Aa in " had a root A
which agreed with X relative to j, the if-clause of ELIid would hold
true). The underlying form Aa and the underlying form Bb constructed
by ELIT at line 5 thus agree in the feature j for the root meaning M,
as they both have the opposite value from X. Furthermore, they agree
in every feature set by the partial lexicon Lex, because they are both
consistent with Lex. Finally, Bb agrees with Xx for every remaining
feature. The underlying form Bb is thus more similar to the surface
form Xx than is the underlying form Aa. Since the mapping (Aa, Xx)
is consistent with G (because Aa belongs to "), there exists a ranking
which is consistent with both. Since the grammar corresponding to
that ranking is output-driven and maps the less similar underlying
form Aa to Xx, it also maps the more similar underlying form Bb to
Xx. In other words, that ranking is also consistent with the mapping
(Bb, Xx). In conclusion, the mapping (Bb, Xx) and the grammar G
are consistent (because both are consistent with the ranking), contra-
dicting the hypothesis that the if-clause of ELIT is true.

Vice versa, let me prove that the if-clause in line 6 of ELIid entails
the if-clause in line 6 of ELIT. Assume by contradiction that the
former if-clause is true, while the latter if-clause is false. The hypothesis
that the if-clause of ELIT is false means that the input (partial) grammar
G is consistent with the mapping (Bb, Xx) of the underlying form Bb
constructed by ELIT at line 5 to the surface form Xx. Since this
underlying form Bb is consistent with Lex, then Bb belongs to the set
" of consistent underlying forms constructed at line 5 by ELIid. Since
B and X disagree relative to the feature j, consider the underlying
form ≥b, identical to Bb but for the fact that ≥ and X instead agree in
the feature j. Obviously, the underlying form ≥b is more similar to
the surface form Xx than is the underlying form Bb. Since (Bb, Xx)
is consistent with G, there exists a ranking which is consistent with
both. Since the grammar corresponding to that ranking is output-
driven and maps the less similar underlying form Bb to Xx, then it
also maps the more similar underlying form ≥b to Xx. In other words,
that ranking is also consistent with the mapping (≥b, Xx). This
underlying form ≥b thus belongs to the set " constructed by ELIid at
line 5.This conclusion contradicts the hypothesis that the if-clause of
ELIid holds, because it shows that " contains two underlying forms
Bb and ≥b, such that B and ≥ disagree in the feature j.Lemma 7

Suppose that the underlying typology is output-driven. Then the two
if-clauses in line 6 of ELIT and ELIid are equivalent.

Tesar’s subroutine for extracting lexical information from contrast pairs
is more involved than his other two subroutines, for extracting lexical and
ranking information from a single meaning combination. For this reason,
the latter two subroutines were reviewed in §4.4 and §4.5, while the former
subroutine is included in this appendix. Here I start out from Merchant’s
subroutine in (47) for extracting lexical information from contrast pairs,
and work towards Tesar’s reformulation, provided below in (52). This
seems to me the best way of making sense of the somewhat complex
formulation of Tesar’s subroutine. I begin by carrying out the same cosmetic
change as in the previous section: I replace the original subroutine (47)
with (49), which only di‰ers because line 3 focuses on a specific feature j,
unset by the input lexicon Lex for one of the three meanings M, Ô and m
of the contrast pair (Mm, Ôm). For concreteness, I assume it is unset for
the root meaning M.

3 Subroutines for extracting lexical information from a contrast
pair

Supplementary materials 1716 Giorgio Magri

(49) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫a, ∑π) is consistent with the grammar G

if all the pairs (Aa, ∫a) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.
9.

the two underlying su!x morphemes a and ¥ coincide, because they are
the underlying form corresponding to the same su!x meaning m. The
condition that a and ¥ coincide is in turn equivalent to the condition that
they agree for each feature y. We could of course relax this condition by
requiring that the two underlying su!x morphemes a and ¥ agree only for
certain features, y1, ..., yn. This intuition leads to the formulation in (50).
It di‰ers from (49) only because of the new line 4, which introduces the
features y1, ..., yn, and because of the additional fifth subclause in the
definition of the set ". Note that line 4 assumes all the features y1, ..., yn

to be unset by the input partial lexicon Lex for the shared su!x m, because
the condition that both a and ¥ are consistent with Lex as underlying forms
for m already entails that they agree on every feature set by Lex for m.

(50) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫¥) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ agree for every

feature y1, ..., yn

if all the pairs (Aa, ∫¥) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

combinations Mm and Ôm one at a time. If instead we consider all unset
y features at line 4, then (50) e‰ectively considers only pairs of underlying
forms for the two meaning combinations which share the underlying su!x,
and is therefore equivalent to the original subroutine (49) for extracting
lexical information from contrast pairs. In the end, depending on the
number of y features considered at line 4, (50) provides a whole range of
subroutines for extracting lexical information in between the weaker (46)
and the stronger (49).

Subroutine (50) can be equivalently restated as (51). Instead of requiring
the two su!x morphemes a and ¥ to coincide for every feature y1, ..., yn,
we consider all possible combinations v1, ..., vn of values of those features
at line 6, and we require both a and ¥ to have those features set equal to
those values in the fifth subclause of line 5.

(51) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫¥ is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ both have the

values v1, ..., vn for the features y1, ..., yn

if all the pairs (Aa, ∫¥) in all the sets "(v1, ..., vn) have the underlying
root A set to the same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

Supplementary materials1918Giorgio Magri

By reasoning as in the previous subsection we can easily show that subroutine
(51) is equivalent to (52) under the assumption of output-drivenness.
Indeed, the two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn con-
structed by (52) at line 6 provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (51).

(52)Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p
Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m
Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M
Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex
read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p
For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and
±≤v1, …, vn, as follows:
- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-
lying forms for Mm and Ôm
- B has the opposite value for feature j than X
- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values
v1, ..., vn
- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
if the grammar G is inconsistent with the two mappings (Bbv1, …, vn,
Xx) and (±≤v1, …, vn, ∑π) for any combination of values v1, ..., vn
then
update the lexicon Lex by setting feature j to that constant value
for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.
If the features y1, ..., yn considered in line 4 of (52) exhaust the set of
features, then the two subroutines (49) and (52) are equivalent. However,
the running time of (52) is exponential in the number of features in the
latter case, because it needs to consider all combinations v1, ..., vn.

By reasoning as in the previous subsection, we can proceed from Merchant’s
original subroutine (41) for extracting ranking information from contrast
pairs to the variant in (53).

4Subroutines for extracting ranking information from a contrast
pair

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that
- Aa is consistent with the lexicon Lex as an underlying form
for Mm
- ∫¥ is consistent with the lexicon Lex as an underlying form
for Ôm
- the two underlying su!x morphemes a and ¥ both have the
values v1, ..., vn for the features y1, ..., yn
compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫¥) in "(v1, ..., vn) for all combinations of values
v1, ..., vn
add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.

7.
8.

20Giorgio Magri

Once again, if we do not consider any y features at line 3, (53) e‰ectively
considers the two meaning combinations of the contrast pair independently
of each other, and thus ends up equivalent to subroutine (40) for extracting
lexical information from single meaning combinations. If we instead consider
all unset y features at line 3, then (53) e‰ectively only considers pairs of
underlying forms for the two meaning combinations which share the
underlying su!x, and is therefore equivalent to Merchant’s original
subroutine (41) for extracting lexical information from contrast pairs.
Ultimately, depending on the number of y features considered at line 3,
(53) provides a whole range of subroutines for extracting ranking information
in between the weaker (40) and the stronger (41).
By reasoning as in §2 of this appendix, we can easily show subroutine
(53) to be equivalent to (54) under the assumption of output-drivenness.
The two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn constructed
by (54) at line 5 again provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (53).

(54)

- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values
v1, ..., vn
- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
compute the join of the ERC matrices ù(Bbv1, …, vn, Xx)+
ù(±≤v1, …, vn, ∑π) for all combinations of values v1, ..., vn
add this join to the ERC matrix ù
Return: the updated ERC matrix ù

6.

7.
8.

Take the simplest case, where we consider a single feature y at line 3.
Assume furthermore that y is binary, i.e. it only takes the values v=‘+’ and
v=‘—’. At line 5, the subroutine constructs the two underlying forms Bb+
and ±≤+, corresponding to the value v=‘+’of feature y (i.e. both b+ and ≤+
have the value ‘+’ for the feature y), and the two underlying forms Bb— and
±≤—, corresponding to the value v=‘—’ (i.e. both b— and ≤— have the value
‘—’ for the feature y). At line 6, we finally compute the join of the two ERC
blocks ù(Bb+, Xx)+ù(±≤+, ∑π) and ù(Bb—, Xx)+ù(±≤—, ∑π). Even in
the simplest case of a single feature y, there is no way around computing
the join.
In summary, Merchant develops a new subroutine for extracting ranking
information through the notion of join. This subroutine can be applied to
either a single meaning combination at a time, as in (40); or to a contrast
pair, as in (41). The latter is more powerful than the former: the subroutine
extracts more ranking information by processing the two meaning
combinations Mm and Ôm as a contrast pair than by processing them
separately. The crux of Merchant’s subroutine for extracting ranking
information is that it relies on the computation of a join, which is time-
consuming. The biggest impact of output-drivenness is that it allows
Merchant’s subroutine for extracting ranking information from a single
meaning combination to be restated without having to compute any join.
The restated subroutine thus runs in time linear in the number of features.
In other words, it is e!cient even relative to the more demanding notion
of e!ciency introduced in §2.6. The situation is unfortunately very di‰erent
when Merchant’s subroutine for extracting ranking information is boosted
by being applied to contrast pairs. In this case, output-drivenness is not
able to circumvent the computation of the join, and thus does not su!ce
to make the subroutine e!cient.

A constraint ranking is consistent with an ERC provided it satisfies con-
dition (36); it is consistent with an ERC matrix provided it is consistent
with each of its rows. An ERC matrix entails another ERC matrix provided

(38) Id
[str]

Id
[length]

Main-
L

Main-
R

No
Long

WSP

w
w

w
w
w
w

w
w
w
w

l
l
l
l

l

w
l

w

/’pa:’ka/, [’pa:ka], [pa’ka]
/’pa:’ka/, [’pa:ka], [pa’ka:]
/’pa:’ka/, [’pa:ka], [pa:’ka]
/’pa:’ka/, [’pa:ka], [pa:’ka:]
/’pa:’ka/, [’pa:ka], [’paka]
/’pa:’ka/, [’pa:ka], [’paka:]
/’pa:’ka/, [’pa:ka], [’pa:ka:]

w
w

w
w

Lemma 3
Suppose that one of the ERC matrices ù1, ù2, …, Rn is entailed
by each of the others. For concreteness, assume that it is ù1 which
is entailed by each of the other ERC matrices ù2, …, Rn. Then
ù1 is the join of ù1, ù2, …, Rn.

(i)

Given the ERC matrices ù1, ù2, ù3, …, Rn, replace two of them
with the ERC matrix obtained by stacking the two matrices one
on top of the other. For concreteness, replace ù1 and ù2 with
ù1+ù2. Then the join of the n®1 ERC matrices ù1+ù2, ù3,
…, Rn entails the join of the original n ERC matrices ù1, ù2, ù3,
…, Rn, while the reverse does not in general hold.

(ii)

compute the join of the ERC matrices ù(Aa, Xx) for all underlying
forms Aa in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.
7.

Proof. Let Aa be the underlying form assigned to the meaning
combination Mm by the target lexicon. This underlying form Aa
belongs to the set " constructed by the subroutine at line 4, because
of the hypothesis that the input lexicon Lex is consistent with the
target lexicon. Thus the corresponding ERC block ù(Aa, Xx) is one
of the blocks that the subroutine takes the join of at line 5. Since the
target ranking is consistent with this ERC block ù(Aa, Xx), then it
is also consistent with the join, by property (39a) of the join. Since the
target ranking is also consistent with the input ERC matrix ù, it is

Lemma 4
Merchant’s subroutine (40) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target ranking, that the input ERC matrix ù is
consistent with that target ranking, and that the input (possibly partial)
lexicon Lex is consistent with that target lexicon. The updated ERC
matrix returned by subroutine (40) is also consistent with that target
ranking.

then consistent with the updated ERC matrix returned by the sub-
routine.

(41) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫a) in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

1.

2.

3.

4.

5.

6.
7.

(43) ∑(ù1, ù2)+∑(π1, π2)

Lemma 3.iii ensures that (43) is equivalent to the join in (44). The four
ERC matrices being joined here correspond to all four combinations of
underlying forms for the two meaning combinations Mm and Ôm. In
particular, the learner is also joining together the two ERC blocks ù1+π2

and π2+ù1, whereby the shared su!x meaning m is assigned a di‰erent
underlying form in the case of Mm than in the case of Ôm. In other words,
since the learner is processing the two meaning combinations Mm and Ôm
separately, it is blind to the fact that these meaning combinations share the
su!x meaning m, which must therefore have the same underlying form in
both cases.

(44) ∑(ù1+π1, ù1+π2, ù2+π1, ù2+π2)

for the root meaning M (or for the su!x meaning m) (line 6). The lexicon
thus updated is then returned (line 8).

and that the input partial lexicon Lex is consistent with the target
lexicon. The updated lexicon returned by subroutine (46) is also
consistent with that target lexicon.

2 Subroutines for extracting lexical information from a single
meaning combination

Consider the slight variant (48) of the subroutine (46) for the extraction of
lexical information through inconsistency detection. The only di‰erence

The modification is only cosmetic: the original subroutine (47) is equivalent
to running this variant (49) for each feature which is unset for one of the
three morphemes M, Ô and m.

The set " constructed by the subroutine (49) at line 5 can equivalently
be described as the collection of all pairs (Aa, ∫¥) which satisfy the conditions
expressed by the four subclauses of line 5 plus the additional condition that

If we consider no y features at all in line 4, then (50) e‰ectively considers
the two meaning combinations of the contrast pair independently of each
other, and thus ends up equivalent to subroutine (46) for extracting lexical
information from single meaning combinations, in the sense that the
application of subroutine (50) to the contrast pair (Mm, Ôm) is equivalent
to two consecutive applications of subroutine (46) to the two meaning

Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p
Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m
Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex
read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p
For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and ±≤v1,

…, vn as follows
- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-
lying forms for Mm and Ôm

1.

2.

3.

4.

5.

(53)Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p
Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m
Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex
read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

1.

2.

3.

4.

Phonology 25.2: Artwork 1 of

Supplementary materials 72 Giorgio Magri

every ranking consistent with the former is also consistent with the latter.
Thus ù1+ù2 entails both ù1 and ù2.

(36) At least one constraint which has a w in the ERC under consideration
is ranked above every constraint which instead has an l (constraints
which have an e play no role in the consistency condition).

2 The join

4 Giorgio Magri

Grammatical information was represented in §4.1.2 as a (possibly partial)
collection G of mappings (Aa, Xx) of an underlying form Aa to a surface
form Xx. Each of these mappings can be equivalently represented with the
corresponding ERC block ù(Aa, Xx). And the grammatical information
G can thus be represented with the ERC matrix obtained by stacking all
these blocks one of top of the other. Merchant’s CPR adopts the architecture
in (28), the only di‰erence being that the current partial grammatical
information is represented not as a partial grammar G but as an ERC matrix
ù. This makes the algorithm more flexible in the type of partial grammatical
information it maintains: any (partial) grammar G can be represented
through the corresponding ERC matrix, while not just any ERC matrix ù
corresponds to some partial collection of mappings. This additional flexibility
in the data structure maintained by the algorithm is crucial in order to
define the subroutine for extracting ranking information, as explained in
the next section.

Supplementary materials 5 6 Giorgio Magri 8 Giorgio Magri Supplementary materials 9 10 Giorgio Magri

Appendix B: Equivalence between Merchant’s and Tesar’s sub-
routines

Supplementary materials 11 12 Giorgio Magri Supplementary materials 13

Appendix A: Merchant’s (2008) CPR

Phonology 31 (2014). Supplementary materials

Review article

Giorgio Magri
CNRS, Université Paris 8 and University of Utrecht

Supplementary materials

This appendix sketches Merchant’s (2008) CPR algorithm. In §1, I explain
how CPR adheres to the architecture in (28), only with a more abstract
representation of the current partial ranking information in terms of ERCs.
I then review CPR’s subroutines for extracting ranking and lexical infor-
mation. I start from the easier case, where they are applied to a single
paradigmatic entry (§3 and §5), and then turn to the extension to contrast
pairs (§4 and §6).

1 ERCs and CPR’s architecture
An elementary ranking condition (ERC) is an assignment of one of the
three symbols l, w and e to each of the constraints in the constraint set
(Prince 2002). An ERC is usually represented as a row of these symbols,
with the constraints annotated on top. To illustrate, an ERC for the constraint
set (5) of the Paka typology is provided in (35). An ERC matrix is a finite
collection of ERCs, stacked one on top of the other (the order does not
matter). An arbitrary ERC matrix is denoted by ù. Given two ERC matrixes
ù1 and ù2, ù1+ù2 denotes the ERC matrix obtained by stacking one on
top of the other (the order does not matter).

14 Giorgio Magri Supplementary materials 15

Bruce Tesar (2014). Output-driven phonology: theory and learning. (Cam-
bridge Studies in Linguistics 139.) Cambridge: Cambridge University
Press. Pp. xix+415.

(35)
e

Id[str] Id[length] Main-L Main-R NoLong WSP
w w l l e|

The phonological underpinning of these notions is as follows. Consider the
mapping (Aa, Xx) of an underlying form Aa to a surface form Xx, which
is thus construed as the winner. For any other loser candidate Yy, consider
the ERC defined in (37). Stack all the ERCs thus constructed for all loser
candidates one on top of the other into an ERC matrix, denoted by ù(Aa,
Xx). Then the OT grammar corresponding to a ranking maps the under-
lying form Aa to the surface form Xx if and only if that ranking is consistent
with the ERC matrix ù(Aa, Xx) corresponding to that mapping.

(37) A constraint has a w provided it prefers the winner mapping (Aa,
Xx) to the loser mapping (Aa, Yy), i.e. it assigns fewer violations
to the former mapping than to the latter.

a.

A constraint has an l provided it instead prefers the loser mapping
(Aa, Yy) to the winner mapping (Aa, Xx), i.e. it assigns fewer
violations to the former mapping than to the latter.

b.

A constraint has an e provided it has no preference for one of the
two mappings (Aa, Xx) and (Aa, Yy), i.e. it assigns the same number
of violations to both.

c.

To illustrate, consider the Paka typology in §2.1 of the paper, focusing on
the mapping (/’pa:’ka/, [’pa:ka]) of the underlying form /’pa:’ka/ to the surface
form [’pa:ka]. The ERC matrix ù(/’pa:’ka/, [’pa:ka]) corresponding to this
mapping is provided in (38). It consists of seven ERCs, because there are
seven loser candidates. For convenience, each ERC is annotated on the left
with the corresponding underlying, winner and loser forms (loser forms
are struck through). The topmost ERC in (38) says that the winner mapping
(/’pa:’ka/, [’pa:ka]) beats the loser mapping (/’pa:’ka/, [pa’ka]), provided at
least one of the two winner-preferring constraints Ident[length] or Main-
L is ranked above the two loser-preferring constraints Main-R and NoLong.

Supplementary materials 3

The join of some ERC matrices ù1, …, ùn is any ERC matrix which satisfies
the two conditions in (39). Any such ERC matrix will be denoted by ∑(ù1,
…, ùn). Condition (39a) says that the join is weaker than (i.e. entailed by)
each matrix ù1, …, ùn. Condition (39b) says that, among all ERC matrices
which are weaker than (i.e. entailed by) each matrix ù1, …, ùn, the join is
a strongest one (i.e the one which entails all the others). In other words,
condition (39a) says that the join captures some of the ranking information
shared by the matrices ù1, …, ùn, and condition (39b) says there is no
shared ranking information which the join does not capture.

(39) Each of the ERC matrices ù1, …, ùn entails their join.a.
If each of the ERC matrices ù1, …, ùn entails some ERC matrix
ù, their join entails ù as well.

b.

Lemma 3 collects some properties of the join which will be used in the rest
of this appendix.

Proof. An ERC matrix ∏ is the join of two ERC matrixes ù1 and ù2

if and only if the set of rankings consistent with ∏ is the union of the
two sets of rankings consistent with ù1 and ù2. Furthermore, the set
of rankings consistent with ù1+ù2 is the intersection of the two sets
of rankings consistent with ù1 and ù2. Claims (i)–(iii) then follow
from elementary set-theoretic manipulations on the sets of consistent
rankings.

Given four ERC matrices ù1, ù2, π1, π2, consider the ERC
matrix ∑(ù1, ù2)+∑(π1, π2) obtained by stacking one on top of
the other the join of ù1 and ù2 and the join of π1 and π2. Then
∑(ù1, ù2)+∑(π1, π2) coincides with the join of the four ERC
matrices ù1+π1, ù1+π2, ù2+π1, ù2+π2.

(iii)

3 A subroutine for extracting ranking information through the join
3.1 Description of the subroutine. The subroutine in (40) takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex and a paradigm
p (line 1). It extends the ranking information encoded in the input ERC
matrix ù by adding to that input ERC matrix some additional ERCs as
follows. The subroutine considers a certain meaning combination Mm (line
2), and it reads o‰ the paradigm p the surface realisation Xx of that meaning
combination Mm (line 3). The subroutine then constructs the set " of all
underlying concatenations Aa which are consistent with the lexicon Lex as
underlying forms for that meaning combination Mm (line 4). This means
that if Lex sets a feature for the root M or the su!x m to a certain value,
then the root morpheme A or the su!x morpheme a of each underlying
form Aa in " has the feature set to that value. Any of these underlying
forms in " could be the actual underlying form according to the partial
lexical information encoded by Lex. In other words, the target grammar
could enforce any of the mappings (Aa, Xx) of any underlying form Aa in
" to the surface form Xx. Thus the best the subroutine can do is to extract
any ranking information shared by all these mappings. This is done by
computing the join of all ERC blocks ù(Aa, Xx) corresponding to all
mappings (Aa, Xx) of all underlying forms Aa in " to the surface form Xx
(line 5). The input ERC matrix ù is updated by adding this join to it (line
6). The ERC matrix thus updated is returned (line 7).

(40) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all concatenations Aa consistent with Lex as

underlying forms for Mm

1.

2.
3.

4.

The join of the ERC blocks ù(Aa, Xx) computed at line 5 is an ERC-
theoretic construct which might very well not correspond, in the sense of
(37), to any mapping of an underlying form to a surface form. For this
reason, CPR needs the additional flexibility of representing the current
(partial) grammatical/ranking information as an ERC matrix rather than
as a (partial) grammar. Appendix B: §1 shows that output-drivenness in
e‰ect guarantees that the join computed in line 5 always corresponds to the
mapping of a certain underlying form to the surface form Xx read at line
3.

3.2 Analysis of the subroutine. Lemma 4 provides a straightforward correct-
ness result for Merchant’s subroutine (40). Note that the proof only uses
property (39a) of the join, not property (39b). In other words, the lemma
hinges only on the fact that the join extracts ranking information which is
shared by all the ERC blocks ù(Aa, Xx). Property (39b) is nonetheless
crucial, because it ensures that the join does not lack any of this shared
ranking informa tion, making subroutine (40) optimal. The crux of
Merchant’s subroutine is its time complexity. Merchant (2008: ch. 4)
develops an elegant algorithm for computing the join which can be used
to implement line 5. Unfortunately, his algorithm needs to compute the
fusional closure of each of the input ERC matrices it has to join. Although
there are no results that I am aware of concerning the time complexity of
that computation, it is most plausibly intractable in the general case.

4 Extension to contrast pairs
4.1 Description of the subroutine. The extension of Merchant’s subroutine
(40) to contrast pairs is provided in (41). This subroutine takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex, and a paradigm
p (line 1). The subroutine considers some contrast pair (line 2). For concrete-
ness, I am assuming here that the two meaning combinations of the contrast
pair share the su!x meaning, i.e. have the shape Mm and Ôm (the case
where they share the root meaning is handled analogously). The
subroutine reads o‰ the paradigm p the surface realisations Xx and ∑π of
those two meaning combinations (line 3). Although x and π are the surface
realisations of the same underlying su!x segment corresponding to the
su!x meaning m, they can be di‰erent, because of morphophonemic
alternations in the surface realisation of that underlying su!x triggered by
the two di‰erent roots M and Ô. The subroutine then constructs the set
" of all pairs (Aa, ∫a) of underlying concatenations which are consistent
with the lexicon Lex as underlying forms for the meaning combinations
Mm and Ôm and furthermore share the underlying su!x segment a (line
4). The latter requirement encodes the fact that we are focusing on a pair
of meaning combinations Mm and Ôm which share the su!x meaning m.
For each pair (Aa, ∫a) of underlying concatenations in ", the subroutine
considers the corresponding ERC blocks ù(Aa, Xx) and ù(∫a, ∑π), stacks
them together into the ERC matrix ù(Aa, Xx)+ù(∫a, ∑π) and constructs
the join of all ERC matrices thus obtained (line 5). The input ERC matrix
ù is updated by adding this join to it (line 6). The ERC matrix thus updated
is then returned (line 7).

There is a subtlety which should be pointed out here. At line 5, the subroutine
considers the join in (42a), not the one in (42b). The di‰erence is that in
(42a) we sum together the two ERC blocks ù(Aa, Xx) and ù(∫a, ∑π) into
ù(Aa, Xx)+ù(∫a, ∑π) before taking the join. This is indeed appropriate,
because the join in (42a) is stronger than the one in (42b), by Lemma 3.ii.

(42) ∑{ù(Aa, Xx)+ù(∫a, ∑π) | (Aa, ∫a)Œ"}a.
∑{ù(Aa, Xx), ù(∫a, ∑π) | (Aa, ∫a)Œ"}b.

4.2 Analysis of the subroutine. The Correctness Lemma 4 trivially extends
from the original subroutine (40) for single meaning combinations to the
variant (41) for contrast pairs. The ine!ciency of (40) for single meaning
combinations is of course aggravated in (41) for contrast pairs, as the latter
requires taking the join of a larger number of larger ERC matrices. Yet
subroutine (41) applied to the contrast pair (Mm, Ôm) is able to extract
more ranking information than the double application of the original
subroutine (40) to the two separate meaning combinations Mm and Ôm.
To see this, suppose that the root meaning M admits a unique underlying
form A consistent with Lex, the root meaning Ô admits a unique under-
lying form ∫ and the su!x meaning m admits only two underlying forms,
a1 and a2. Suppose we first apply the original subroutine (40) to the meaning
combination Mm. At line 4, it constructs the set " consisting of the two
underlying forms Aa1 and Aa2. At line 5, it computes the join ∑(ù1, ù2)
of the two ERC blocks ù1=ù(Aa1, Xx) and ù2=ù(Aa2, Xx). Suppose
we next apply the original subroutine (40) to the meaning combination
Ôm. At line 4, it constructs the set ", consisting of the two underlying
forms ∫a1 and ∫a2. At line 5, it computes the join ∑(π1, π2) of the two
ERC blocks π1=ù(∫a1, ∑π) and π2=ù(∫a2, ∑π). Ultimately, the two
consecutive applications of the original subroutine (40) to the two meaning
combinations Mm and Ôm extract the ranking information captured by
the sum of the two joins in (43).

Suppose we instead apply subroutine (41) to the contrast pair (Mm, Ôm).
At line 4, it constructs the set ", consisting of the two pairs (Aa1, ∫a1) and
(Aa2, ∫a2). At line 5, it computes the join in (45) of the two ERC blocks
ù(Aa1, Xx)+ù(∫a1, ∑π)=ù1+π1 and ù(Aa2, Xx)+ù(∫a2, ∑π) =
ù2+π2.

(45) ∑(ù1+π1, ù2+π2)

The join in (45) is stronger than the one in (44), because it joins fewer
matrices (the smaller the number of matrices, the larger the amount of
shared information for the join to extract). This is because the two blocks
ù1+π2 and ù2+π1 have disappeared from the join. This is what we want,
as they correspond to the unreasonable assumption that the su!x m has
di‰erent underlying forms in the two meaning combinations Mm and Ôm.
In other words, since the learner is processing the two meaning combinations
Mm and Ôm together as a contrast pair, it is able to take into account the
fact that these meaning combinations share the su!x meaning m, which
must therefore have the same underlying form in the two cases.

5 A subroutine for extracting lexical information through
inconsistency detection

5.1 Description of the subroutine. Subroutine (46) takes as input some
lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine then considers a certain
meaning combination Mm with some feature unset according to the input
partial lexicon Lex for either the root M or the su!x m (line 2). The goal
of the subroutine is to try to extend the input partial lexicon by setting
some of these unset features. To this end, the subroutine reads o‰ the
paradigm p the surface realisation Xx of the meaning combination Mm
(line 3). It constructs the set " of all underlying concatenations Aa which
are consistent with both the input lexical information Lex and the input
ranking information captured by the grammar G (or the ERC matrix ù)
(line 4). Consistency with the input lexical information means that, if Lex
sets a feature for the root M (or the su!x m) to a certain value, then the
root morpheme A (or the su!x morpheme a) of each underlying form Aa
in " has the feature set to that value. Consistency with the input ranking
information means that the input grammar G (or the input ERC matrix ù)
is consistent with the mapping (Aa, Xx) of each such underlying form Aa
in " to the surface form Xx. The subroutine then looks for a feature which
is unset by Lex for the root meaning M (or the su!x meaning m), such that
each root morpheme A (or each su!x morpheme a) has the same value for
that feature in all underlying concatenations Aa in " (line 5). For any such
feature, it can be concluded that the opposite value is inconsistent with the
available lexical and ranking information. The subroutine thus updates the
partial lexicon Lex by setting that feature to be equal to its constant value

(46) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that:
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G (or

the ERC matrix ù)
if some feature unset for the root M (or for the su!x m) has a

constant value over " for M (for m) then
update the lexicon Lex by setting the feature to that value for

the root M (or for the su!x m)
end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.
8.

This subroutine is called inconsistency detection (cf. Kager 1999, Tesar
et al. 2003, Tesar 2006), because it sets a certain feature to a certain value
based on the detection at line 6 of the fact that any other value for that
feature would be inconsistent with the available lexical and ranking
information.

Proof. Assume by contradiction that the lemma is false. This means
that the subroutine has set some feature j for, say, the root meaning
M to a value which is di‰erent from the value assigned by the target
lexicon. For concreteness, assume that the values assigned by the
subroutine and the target lexicon are + and — respectively. Thus , the
target lexicon assigns to the meaning combination Mm an underlying
form Aa, which has feature j set to the value — in the root A. This
underlying form Aa is consistent with the partial lexicon Lex (because
it is consistent with the target lexicon, which is in turn consistent with
Lex). Furthermore, the mapping (Aa, Xx) of this underlying form Aa
to the surface form Xx is consistent with the input grammar G (because
the target ranking is consistent with both). In other words, this
underlying form Aa satisfies the two conditions stated by the two
subclauses in line 4 and thus belongs to the set " constructed by the
subroutine. Since this underlying form Aa has feature j set equal to
— for the root A, then the subroutine cannot have set that feature to
the opposite value + at line 6.

5.2 Analysis of the subroutine. Lemma 5 provides a straightforward correct-
ness result for inconsistency detection (46). Its time complexity is controlled
by the size of the set " of consistent underlying forms constructed at line 4.
In the worst case (when both the input lexicon and the input ranking
information are empty), " consists of all underlying forms, i.e. all con-
catenations of root and su!x morphemes. In this case, the size of " grows
polynomially in the number of morphemes and thus exponentially in the
number of features. In conclusion, subroutine (46) is e!cient relative to
the generous notion of e!ciency defined in (14), which measures time
complexity in terms of the number of morphemes, but is not e!cient
relative to the more demanding notion of e!ciency defined in (15), which
measures time complexity in terms of the number of features.

Lemma 5
Inconsistency detection (46) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target grammar, that the input (possibly partial)
grammar G (or ERC matrix ù) is consistent with the target grammar

6 Extension to contrast pairs
6.1 Description of the subroutine. The extension of inconsistency detection
(46) to contrast pairs is provided in (47). This subroutine takes as input
some lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine considers a particular
contrast pair (line 2). For concreteness, I am assuming here that the two
meaning combinations of the contrast pair share the su!x meaning, namely
have the shape Mm and Ôm (the case where they share the root meaning
is handled analogously). The subroutine reads o‰ the paradigm p the surface
realisations Xx and ∑π of those two meaning combinations (line 3). It
constructs the set " of all pairs (Aa, ∫a) of underlying concatenations which
are consistent with both the input lexical information Lex and the input
ranking information G (or ù) and furthermore share the underlying su!x
segment a (line 4). The subroutine then looks for a feature which is unset
by Lex for the root meaning M (or the root meaning Ô or the su!x meaning
m), such that each underlying root morpheme A (or each underlying root
morpheme ∫ or each underlying su!x morpheme a) has the same value
for that feature in all pairs (Aa, ∫a) in " (line 5). For any such feature, the
subroutine updates the partial lexicon Lex by setting the feature equal to
its constant value for the root meaning M (or for the root meaning Ô or
for the su!x meaning m) (line 6). The lexicon thus updated is then returned
(line 8).

(47) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G (or
the ERC matrix ù)

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

- the mapping (∫a, ∑π) is consistent with the grammar G
if some unset feature has a constant value over " for any of the three

meanings M, Ô or m then
update the lexicon Lex by setting the feature to the constant

value for that meaning
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.
8.

6.2 Analysis of the subroutine. The Correctness Lemma 5 trivially extends
from the original subroutine (46) for single meaning combinations to the
variant (47) for contrast pairs. Furthermore, the variant for contrast pairs
remains as e!cient as the original version for single meaning combinations,
when e!ciency is generously measured in terms of the number of morphemes
(but again, not when it is measured in terms of the number of features).
Yet a number of authors (including Alderete et al. 2005 and Merchant &
Tesar 2008) have pointed out that (47), applied to the contrast pair (Mm,
Ôm), can extract more lexical information than the double application of
the original subroutine (46) to the two separate meaning combinations Mm
and Ôm. To see this, consider one of the two meaning combinations of the
contrast pair, say Mm. The original subroutine considers all underlying
forms Aa for Mm which are consistent with the input lexical and ranking
information, and only sets those features which are constant across all these
underlying forms. If the number of consistent underlying forms is large,
the number of features which are constant across them is small, and the
subroutine thus extracts little lexical information. (47) might instead be
able to extract more lexical information, because it looks for features which
are constant over a smaller set of underlying forms for Mm, namely those
underlying forms Aa which are not only consistent with the input lexical
and ranking information, but also use a su!x morpheme a which can be
combined with a root morpheme ∫ into an underlying form ∫a for Ôm
which is also consistent with the input lexical and ranking information.

I denote Tesar’s subroutine (29) for the extraction of ranking information
from a single meaning combination as ERIT, and Merchant’s subroutine
(40) as ERIM. Lemma 6 states that, if the underlying typology is output-
driven, then ERIT and ERIM are equivalent, because they update the
current ranking/grammatical information with the ‘same’ information. This
equivalence is striking, given that the time complexity of ERIT is only
linear in the number of features, while the time complexity of ERIM is
unknown, but probably exponential in both the number of features and the
number of morphemes. Output-drivenness thus a‰ords a significant
reduction in time complexity. The Correctness Lemma 1 for ERIT (which
was proven directly in §4.4) can also be made to follow from the Correctness
Lemma 4 for ERIT through the Equivalence Lemma 6.

1 Subroutines for extracting ranking information from a single
meaning combination

Proof. The underlying form Bb constructed by ERIT at line 4 is
consistent with Lex, and therefore belongs to the set " constructed by
ERIM at line 4. Consider one of the underlying forms Aa in this set ".
The two underlying forms Aa and Bb agree in every feature which is
set by the input partial lexicon Lex. Furthermore, Bb and the surface
form Xx agree in every remaining feature. Thus the underlying form
Bb is more similar to the surface form Xx than is the underlying form
Aa. Since the underlying typology is output-driven, then every ranking
which maps the less similar underlying form Aa to Xx also maps the
more similar underlying form Bb to Xx. In other words, any ranking
consistent with the ERC block ù(Aa, Xx) is also consistent with the
ERC block ù(Bb, Xx). Lemma 3.i thus ensures that the ERC block
ù(Bb, Xx) is the join of the ERC blocks ù(Aa, Xx) across all underlying
concatenations Aa in ".

Lemma 6
Suppose that the underlying typology is output-driven and that ERIT

is fed with a partial grammar G and a (possibly partial) lexicon Lex.
Suppose that ERIM is fed with the ERC matrix ù corresponding to
the partial grammar G and the same lexicon Lex. Then the ERC block
corresponding to the mapping (Bb, Xx) constructed by ERIT at line
4 is the join of the ERC blocks ù(Aa, Xx) corresponding to the
underlying forms Aa in " constructed by ERIM at line 5.

between the two implementations is the following: Merchant’s original
subroutine (46) sets any feature which is constant over "; the variant in (48)
instead focuses right from the beginning on a specific feature j, which is
unset for either the root M or the su!x m of the meaning combination Mm
under consideration. In line 3, I am assuming for concreteness that the
feature j is unset for the root M (the case where it is unset for the su!x m
is handled analogously). The modification is only cosmetic: the original
subroutine is equivalent to running this variant for each unset feature.

(48) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a meaning combination Mm in the paradigm p
Require: a feature j unset by Lex for either M or m; for concreteness,

say it is unset for M
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G

if all underlying forms Aa in " have the feature j set to the same
value in the root morpheme A then

update the lexicon Lex by setting the feature j to that value for
the root meaning M

end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.

8.
9.

I denote Tesar’s subroutine (33) for the extraction of lexical information
from a single meaning combination by ELIT, and (the cosmetic variant of)
the original inconsistency detection subroutine (48) by ELIid. Lemma 6
states that, if the underlying typology is output-driven, ELIT and ELIid

are equivalent, because their if-clauses at line 6 are equivalent. This
equivalence is striking, given that the if-clause of ELIT can be checked in
time linear in the number of features, while the if-clause of ELIid requires
time exponential in the number of features in the worst case. Output-
drivenness has thus a‰orded a significant reduction in time complexity.
The Correctness Lemma 2 for ELIT (which was proven directly in §4.5)
can also be made to follow from the Correctness Lemma 4 for ELIid through
the Equivalence Lemma 7.

Proof. To start, let me prove that the if-clause in line 6 of ELIT entails
the if-clause in line 6 of ELIid. Assume by contradiction that the
former if-clause is true while the latter if-clause is false. The hypothesis
that the if-clause of ELIid is false entails in particular that the set " of
consistent underlying forms constructed by ELIid at line 5 contains
an underlying form Aa whose root A disagrees with X relative to the
feature j (indeed, if all the underlying forms Aa in " had a root A
which agreed with X relative to j, the if-clause of ELIid would hold
true). The underlying form Aa and the underlying form Bb constructed
by ELIT at line 5 thus agree in the feature j for the root meaning M,
as they both have the opposite value from X. Furthermore, they agree
in every feature set by the partial lexicon Lex, because they are both
consistent with Lex. Finally, Bb agrees with Xx for every remaining
feature. The underlying form Bb is thus more similar to the surface
form Xx than is the underlying form Aa. Since the mapping (Aa, Xx)
is consistent with G (because Aa belongs to "), there exists a ranking
which is consistent with both. Since the grammar corresponding to
that ranking is output-driven and maps the less similar underlying
form Aa to Xx, it also maps the more similar underlying form Bb to
Xx. In other words, that ranking is also consistent with the mapping
(Bb, Xx). In conclusion, the mapping (Bb, Xx) and the grammar G
are consistent (because both are consistent with the ranking), contra-
dicting the hypothesis that the if-clause of ELIT is true.

Vice versa, let me prove that the if-clause in line 6 of ELIid entails
the if-clause in line 6 of ELIT. Assume by contradiction that the
former if-clause is true, while the latter if-clause is false. The hypothesis
that the if-clause of ELIT is false means that the input (partial) grammar
G is consistent with the mapping (Bb, Xx) of the underlying form Bb
constructed by ELIT at line 5 to the surface form Xx. Since this
underlying form Bb is consistent with Lex, then Bb belongs to the set
" of consistent underlying forms constructed at line 5 by ELIid. Since
B and X disagree relative to the feature j, consider the underlying
form ≥b, identical to Bb but for the fact that ≥ and X instead agree in
the feature j. Obviously, the underlying form ≥b is more similar to
the surface form Xx than is the underlying form Bb. Since (Bb, Xx)
is consistent with G, there exists a ranking which is consistent with
both. Since the grammar corresponding to that ranking is output-
driven and maps the less similar underlying form Bb to Xx, then it
also maps the more similar underlying form ≥b to Xx. In other words,
that ranking is also consistent with the mapping (≥b, Xx). This
underlying form ≥b thus belongs to the set " constructed by ELIid at
line 5.This conclusion contradicts the hypothesis that the if-clause of
ELIid holds, because it shows that " contains two underlying forms
Bb and ≥b, such that B and ≥ disagree in the feature j.Lemma 7

Suppose that the underlying typology is output-driven. Then the two
if-clauses in line 6 of ELIT and ELIid are equivalent.

Tesar’s subroutine for extracting lexical information from contrast pairs
is more involved than his other two subroutines, for extracting lexical and
ranking information from a single meaning combination. For this reason,
the latter two subroutines were reviewed in §4.4 and §4.5, while the former
subroutine is included in this appendix. Here I start out from Merchant’s
subroutine in (47) for extracting lexical information from contrast pairs,
and work towards Tesar’s reformulation, provided below in (52). This
seems to me the best way of making sense of the somewhat complex
formulation of Tesar’s subroutine. I begin by carrying out the same cosmetic
change as in the previous section: I replace the original subroutine (47)
with (49), which only di‰ers because line 3 focuses on a specific feature j,
unset by the input lexicon Lex for one of the three meanings M, Ô and m
of the contrast pair (Mm, Ôm). For concreteness, I assume it is unset for
the root meaning M.

3 Subroutines for extracting lexical information from a contrast
pair

Supplementary materials 1716 Giorgio Magri

(49) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫a, ∑π) is consistent with the grammar G

if all the pairs (Aa, ∫a) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.
9.

the two underlying su!x morphemes a and ¥ coincide, because they are
the underlying form corresponding to the same su!x meaning m. The
condition that a and ¥ coincide is in turn equivalent to the condition that
they agree for each feature y. We could of course relax this condition by
requiring that the two underlying su!x morphemes a and ¥ agree only for
certain features, y1, ..., yn. This intuition leads to the formulation in (50).
It di‰ers from (49) only because of the new line 4, which introduces the
features y1, ..., yn, and because of the additional fifth subclause in the
definition of the set ". Note that line 4 assumes all the features y1, ..., yn

to be unset by the input partial lexicon Lex for the shared su!x m, because
the condition that both a and ¥ are consistent with Lex as underlying forms
for m already entails that they agree on every feature set by Lex for m.

(50) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫¥) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ agree for every

feature y1, ..., yn

if all the pairs (Aa, ∫¥) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

combinations Mm and Ôm one at a time. If instead we consider all unset
y features at line 4, then (50) e‰ectively considers only pairs of underlying
forms for the two meaning combinations which share the underlying su!x,
and is therefore equivalent to the original subroutine (49) for extracting
lexical information from contrast pairs. In the end, depending on the
number of y features considered at line 4, (50) provides a whole range of
subroutines for extracting lexical information in between the weaker (46)
and the stronger (49).

Subroutine (50) can be equivalently restated as (51). Instead of requiring
the two su!x morphemes a and ¥ to coincide for every feature y1, ..., yn,
we consider all possible combinations v1, ..., vn of values of those features
at line 6, and we require both a and ¥ to have those features set equal to
those values in the fifth subclause of line 5.

(51) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫¥ is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ both have the

values v1, ..., vn for the features y1, ..., yn

if all the pairs (Aa, ∫¥) in all the sets "(v1, ..., vn) have the underlying
root A set to the same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

Supplementary materials1918 Giorgio Magri

By reasoning as in the previous subsection we can easily show that subroutine
(51) is equivalent to (52) under the assumption of output-drivenness.
Indeed, the two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn con-
structed by (52) at line 6 provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (51).

(52) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and
±≤v1, …, vn, as follows:

- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-
lying forms for Mm and Ôm

- B has the opposite value for feature j than X
- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values

v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
if the grammar G is inconsistent with the two mappings (Bbv1, …, vn,

Xx) and (±≤v1, …, vn, ∑π) for any combination of values v1, ..., vn

then
update the lexicon Lex by setting feature j to that constant value

for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

If the features y1, ..., yn considered in line 4 of (52) exhaust the set of
features, then the two subroutines (49) and (52) are equivalent. However,
the running time of (52) is exponential in the number of features in the
latter case, because it needs to consider all combinations v1, ..., vn.

By reasoning as in the previous subsection, we can proceed from Merchant’s
original subroutine (41) for extracting ranking information from contrast
pairs to the variant in (53).

4 Subroutines for extracting ranking information from a contrast
pair

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that
- Aa is consistent with the lexicon Lex as an underlying form
for Mm
- ∫¥ is consistent with the lexicon Lex as an underlying form
for Ôm
- the two underlying su!x morphemes a and ¥ both have the
values v1, ..., vn for the features y1, ..., yn
compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫¥) in "(v1, ..., vn) for all combinations of values
v1, ..., vn
add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.

7.
8.

20Giorgio Magri

Once again, if we do not consider any y features at line 3, (53) e‰ectively
considers the two meaning combinations of the contrast pair independently
of each other, and thus ends up equivalent to subroutine (40) for extracting
lexical information from single meaning combinations. If we instead consider
all unset y features at line 3, then (53) e‰ectively only considers pairs of
underlying forms for the two meaning combinations which share the
underlying su!x, and is therefore equivalent to Merchant’s original
subroutine (41) for extracting lexical information from contrast pairs.
Ultimately, depending on the number of y features considered at line 3,
(53) provides a whole range of subroutines for extracting ranking information
in between the weaker (40) and the stronger (41).
By reasoning as in §2 of this appendix, we can easily show subroutine
(53) to be equivalent to (54) under the assumption of output-drivenness.
The two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn constructed
by (54) at line 5 again provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (53).

(54)

- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values
v1, ..., vn
- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
compute the join of the ERC matrices ù(Bbv1, …, vn, Xx)+
ù(±≤v1, …, vn, ∑π) for all combinations of values v1, ..., vn
add this join to the ERC matrix ù
Return: the updated ERC matrix ù

6.

7.
8.

Take the simplest case, where we consider a single feature y at line 3.
Assume furthermore that y is binary, i.e. it only takes the values v=‘+’ and
v=‘—’. At line 5, the subroutine constructs the two underlying forms Bb+
and ±≤+, corresponding to the value v=‘+’of feature y (i.e. both b+ and ≤+
have the value ‘+’ for the feature y), and the two underlying forms Bb— and
±≤—, corresponding to the value v=‘—’ (i.e. both b— and ≤— have the value
‘—’ for the feature y). At line 6, we finally compute the join of the two ERC
blocks ù(Bb+, Xx)+ù(±≤+, ∑π) and ù(Bb—, Xx)+ù(±≤—, ∑π). Even in
the simplest case of a single feature y, there is no way around computing
the join.
In summary, Merchant develops a new subroutine for extracting ranking
information through the notion of join. This subroutine can be applied to
either a single meaning combination at a time, as in (40); or to a contrast
pair, as in (41). The latter is more powerful than the former: the subroutine
extracts more ranking information by processing the two meaning
combinations Mm and Ôm as a contrast pair than by processing them
separately. The crux of Merchant’s subroutine for extracting ranking
information is that it relies on the computation of a join, which is time-
consuming. The biggest impact of output-drivenness is that it allows
Merchant’s subroutine for extracting ranking information from a single
meaning combination to be restated without having to compute any join.
The restated subroutine thus runs in time linear in the number of features.
In other words, it is e!cient even relative to the more demanding notion
of e!ciency introduced in §2.6. The situation is unfortunately very di‰erent
when Merchant’s subroutine for extracting ranking information is boosted
by being applied to contrast pairs. In this case, output-drivenness is not
able to circumvent the computation of the join, and thus does not su!ce
to make the subroutine e!cient.

A constraint ranking is consistent with an ERC provided it satisfies con-
dition (36); it is consistent with an ERC matrix provided it is consistent
with each of its rows. An ERC matrix entails another ERC matrix provided

(38) Id
[str]

Id
[length]

Main-
L

Main-
R

No
Long

WSP

w
w

w
w
w
w

w
w
w
w

l
l
l
l

l

w
l

w

/’pa:’ka/, [’pa:ka], [pa’ka]
/’pa:’ka/, [’pa:ka], [pa’ka:]
/’pa:’ka/, [’pa:ka], [pa:’ka]
/’pa:’ka/, [’pa:ka], [pa:’ka:]
/’pa:’ka/, [’pa:ka], [’paka]
/’pa:’ka/, [’pa:ka], [’paka:]
/’pa:’ka/, [’pa:ka], [’pa:ka:]

w
w

w
w

Lemma 3
Suppose that one of the ERC matrices ù1, ù2, …, Rn is entailed
by each of the others. For concreteness, assume that it is ù1 which
is entailed by each of the other ERC matrices ù2, …, Rn. Then
ù1 is the join of ù1, ù2, …, Rn.

(i)

Given the ERC matrices ù1, ù2, ù3, …, Rn, replace two of them
with the ERC matrix obtained by stacking the two matrices one
on top of the other. For concreteness, replace ù1 and ù2 with
ù1+ù2. Then the join of the n®1 ERC matrices ù1+ù2, ù3,
…, Rn entails the join of the original n ERC matrices ù1, ù2, ù3,
…, Rn, while the reverse does not in general hold.

(ii)

compute the join of the ERC matrices ù(Aa, Xx) for all underlying
forms Aa in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.
7.

Proof. Let Aa be the underlying form assign ed to the meanin g
combination Mm by the target lexicon. This underlying form Aa
belongs to the set " constructed by the subroutine at line 4, because
of the hypothesis that the input lexicon Lex is consistent with the
target lexicon. Thus the corresponding ERC block ù(Aa, Xx) is one
of the blocks that the subroutine takes the join of at line 5. Since the
target ranking is consistent with this ERC block ù(Aa, Xx), then it
is also consistent with the join, by property (39a) of the join. Since the
target ranking is also consistent with the input ERC matrix ù, it is

Lemma 4
Merchant’s subroutine (40) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target ranking, that the input ERC matrix ù is
consistent with that target ranking, and that the input (possibly partial)
lexicon Lex is consistent with that target lexicon. The updated ERC
matrix returned by subroutine (40) is also consistent with that target
ranking.

then consistent with the updated ERC matrix returned by the sub-
routine.

(41) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫a) in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

1.

2.

3.

4.

5.

6.
7.

(43) ∑(ù1, ù2)+∑(π1, π2)

Lemma 3.iii ensures that (43) is equivalent to the join in (44). The four
ERC matrices being joined here correspond to all four combinations of
underlying forms for the two meaning combinations Mm and Ôm. In
particular, the learner is also joining together the two ERC blocks ù1+π2

and π2+ù1, whereby the shared su!x meaning m is assigned a di‰erent
underlying form in the case of Mm than in the case of Ôm. In other words,
since the learner is processing the two meaning combinations Mm and Ôm
separately, it is blind to the fact that these meaning combinations share the
su!x meaning m, which must therefore have the same underlying form in
both cases.

(44) ∑(ù1+π1, ù1+π2, ù2+π1, ù2+π2)

for the root meaning M (or for the su!x meaning m) (line 6). The lexicon
thus updated is then returned (line 8).

and that the input partial lexicon Lex is consistent with the target
lexicon. The updated lexicon returned by subroutine (46) is also
consistent with that target lexicon.

2 Subroutines for extracting lexical information from a single
meaning combination

Consider the slight variant (48) of the subroutine (46) for the extraction of
lexical information through inconsistency detection. The only di‰erence

The modification is only cosmetic: the original subroutine (47) is equivalent
to running this variant (49) for each feature which is unset for one of the
three morphemes M, Ô and m.

The set " constructed by the subroutine (49) at line 5 can equivalently
be described as the collection of all pairs (Aa, ∫¥) which satisfy the conditions
expressed by the four subclauses of line 5 plus the additional condition that

If we consider no y features at all in line 4, then (50) e‰ectively considers
the two meaning combinations of the contrast pair independently of each
other, and thus ends up equivalent to subroutine (46) for extracting lexical
information from single meaning combinations, in the sense that the
application of subroutine (50) to the contrast pair (Mm, Ôm) is equivalent
to two consecutive applications of subroutine (46) to the two meaning

Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p
Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m
Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex
read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p
For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and ±≤v1,

…, vn as follows
- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-
lying forms for Mm and Ôm

1.

2.

3.

4.

5.

(53) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

1.

2.

3.

4.

Phonology 25.2: Artwork 1 of

Supplementary materials 72 Giorgio Magri

every ranking consistent with the former is also consistent with the latter.
Thus ù1+ù2 entails both ù1 and ù2.

(36) At least one constraint which has a w in the ERC under consideration
is ranked above every constraint which instead has an l (constraints
which have an e play no role in the consistency condition).

2 The join

4 Giorgio Magri

Grammatical information was represented in §4.1.2 as a (possibly partial)
collection G of mappings (Aa, Xx) of an underlying form Aa to a surface
form Xx. Each of these mappings can be equivalently represented with the
corresponding ERC block ù(Aa, Xx). And the grammatical information
G can thus be represented with the ERC matrix obtained by stacking all
these blocks one of top of the other. Merchant’s CPR adopts the architecture
in (28), the only di‰erence being that the current partial grammatical
information is represented not as a partial grammar G but as an ERC matrix
ù. This makes the algorithm more flexible in the type of partial grammatical
information it maintains: any (partial) grammar G can be represented
through the corresponding ERC matrix, while not just any ERC matrix ù
corresponds to some partial collection of mappings. This additional flexibility
in the data structure maintained by the algorithm is crucial in order to
define the subroutine for extracting ranking information, as explained in
the next section.

Supplementary materials 5 6 Giorgio Magri 8 Giorgio Magri Supplementary materials 9 10 Giorgio Magri

Appendix B: Equivalence between Merchant’s and Tesar’s sub-
routines

Supplementary materials 11 12 Giorgio Magri Supplementary materials 13

Appendix A: Merchant’s (2008) CPR

Phonology 31 (2014). Supplementary materials

Review article

Giorgio Magri
CNRS, Université Paris 8 and University of Utrecht

Supplementary materials

This appendix sketches Merchant’s (2008) CPR algorithm. In §1, I explain
how CPR adheres to the architecture in (28), only with a more abstract
representation of the current partial ranking information in terms of ERCs.
I then review CPR’s subroutines for extracting ranking and lexical infor-
mation. I start from the easier case, where they are applied to a single
paradigmatic entry (§3 and §5), and then turn to the extension to contrast
pairs (§4 and §6).

1 ERCs and CPR’s architecture
An elementary ranking condition (ERC) is an assignment of one of the
three symbols l, w and e to each of the constraints in the constraint set
(Prince 2002). An ERC is usually represented as a row of these symbols,
with the constraints annotated on top. To illustrate, an ERC for the constraint
set (5) of the Paka typology is provided in (35). An ERC matrix is a finite
collection of ERCs, stacked one on top of the other (the order does not
matter). An arbitrary ERC matrix is denoted by ù. Given two ERC matrixes
ù1 and ù2, ù1+ù2 denotes the ERC matrix obtained by stacking one on
top of the other (the order does not matter).

14 Giorgio Magri Supplementary materials 15

Bruce Tesar (2014). Output-driven phonology: theory and learning. (Cam-
bridge Studies in Linguistics 139.) Cambridge: Cambridge University
Press. Pp. xix+415.

(35)
e

Id[str] Id[length] Main-L Main-R NoLong WSP
w w l l e|

The phonological underpinning of these notions is as follows. Consider the
mapping (Aa, Xx) of an underlying form Aa to a surface form Xx, which
is thus construed as the winner. For any other loser candidate Yy, consider
the ERC defined in (37). Stack all the ERCs thus constructed for all loser
candidates one on top of the other into an ERC matrix, denoted by ù(Aa,
Xx). Then the OT grammar corresponding to a ranking maps the under-
lying form Aa to the surface form Xx if and only if that ranking is consistent
with the ERC matrix ù(Aa, Xx) corresponding to that mapping.

(37) A constraint has a w provided it prefers the winner mapping (Aa,
Xx) to the loser mapping (Aa, Yy), i.e. it assigns fewer violations
to the former mapping than to the latter.

a.

A constraint has an l provided it instead prefers the loser mapping
(Aa, Yy) to the winner mapping (Aa, Xx), i.e. it assigns fewer
violations to the former mapping than to the latter.

b.

A constraint has an e provided it has no preference for one of the
two mappings (Aa, Xx) and (Aa, Yy), i.e. it assigns the same number
of violations to both.

c.

To illustrate, consider the Paka typology in §2.1 of the paper, focusing on
the mapping (/’pa:’ka/, [’pa:ka]) of the underlying form /’pa:’ka/ to the surface
form [’pa:ka]. The ERC matrix ù(/’pa:’ka/, [’pa:ka]) corresponding to this
mapping is provided in (38). It consists of seven ERCs, because there are
seven loser candidates. For convenience, each ERC is annotated on the left
with the corresponding underlying, winner and loser forms (loser forms
are struck through). The topmost ERC in (38) says that the winner mapping
(/’pa:’ka/, [’pa:ka]) beats the loser mapping (/’pa:’ka/, [pa’ka]), provided at
least one of the two winner-preferring constraints Ident[length] or Main-
L is ranked above the two loser-preferring constraints Main-R and NoLong.

Supplementary materials 3

The join of some ERC matrices ù1, …, ùn is any ERC matrix which satisfies
the two conditions in (39). Any such ERC matrix will be denoted by ∑(ù1,
…, ùn). Condition (39a) says that the join is weaker than (i.e. entailed by)
each matrix ù1, …, ùn. Condition (39b) says that, among all ERC matrices
which are weaker than (i.e. entailed by) each matrix ù1, …, ùn, the join is
a strongest one (i.e the one which entails all the others). In other words,
condition (39a) says that the join captures some of the ranking information
shared by the matrices ù1, …, ùn, and condition (39b) says there is no
shared ranking information which the join does not capture.

(39) Each of the ERC matrices ù1, …, ùn entails their join.a.
If each of the ERC matrices ù1, …, ùn entails some ERC matrix
ù, their join entails ù as well.

b.

Lemma 3 collects some properties of the join which will be used in the rest
of this appendix.

Proof. An ERC matrix ∏ is the join of two ERC matrixes ù1 and ù2

if and only if the set of rankings consistent with ∏ is the union of the
two sets of rankings consistent with ù1 and ù2. Furthermore, the set
of rankings consistent with ù1+ù2 is the intersection of the two sets
of rankings consistent with ù1 and ù2. Claims (i)–(iii) then follow
from elementary set-theoretic manipulations on the sets of consistent
rankings.

Given four ERC matrices ù1, ù2, π1, π2, consider the ERC
matrix ∑(ù1, ù2)+∑(π1, π2) obtained by stacking one on top of
the other the join of ù1 and ù2 and the join of π1 and π2. Then
∑(ù1, ù2)+∑(π1, π2) coincides with the join of the four ERC
matrices ù1+π1, ù1+π2, ù2+π1, ù2+π2.

(iii)

3 A subroutine for extracting ranking information through the join
3.1 Description of the subroutine. The subroutine in (40) takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex and a paradigm
p (line 1). It extends the ranking information encoded in the input ERC
matrix ù by adding to that input ERC matrix some additional ERCs as
follows. The subroutine considers a certain meaning combination Mm (line
2), and it reads o‰ the paradigm p the surface realisation Xx of that meaning
combination Mm (line 3). The subroutine then constructs the set " of all
underlying concatenations Aa which are consistent with the lexicon Lex as
underlying forms for that meaning combination Mm (line 4). This means
that if Lex sets a feature for the root M or the su!x m to a certain value,
then the root morpheme A or the su!x morpheme a of each underlying
form Aa in " has the feature set to that value. Any of these underlying
forms in " could be the actual underlying form according to the partial
lexical information encoded by Lex. In other words, the target grammar
could enforce any of the mappings (Aa, Xx) of any underlying form Aa in
" to the surface form Xx. Thus the best the subroutine can do is to extract
any ranking information shared by all these mappings. This is done by
computing the join of all ERC blocks ù(Aa, Xx) corresponding to all
mappings (Aa, Xx) of all underlying forms Aa in " to the surface form Xx
(line 5). The input ERC matrix ù is updated by adding this join to it (line
6). The ERC matrix thus updated is returned (line 7).

(40) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all concatenations Aa consistent with Lex as

underlying forms for Mm

1.

2.
3.

4.

The join of the ERC blocks ù(Aa, Xx) computed at line 5 is an ERC-
theoretic construct which might very well not correspond, in the sense of
(37), to any mapping of an underlying form to a surface form. For this
reason, CPR needs the additional flexibility of representing the current
(partial) grammatical/ranking information as an ERC matrix rather than
as a (partial) grammar. Appendix B: §1 shows that output-drivenness in
e‰ect guarantees that the join computed in line 5 always corresponds to the
mapping of a certain underlying form to the surface form Xx read at line
3.

3.2 Analysis of the subroutine. Lemma 4 provides a straightforward correct-
ness result for Merchant’s subroutine (40). Note that the proof only uses
property (39a) of the join, not property (39b). In other words, the lemma
hinges only on the fact that the join extracts ranking information which is
shared by all the ERC blocks ù(Aa, Xx). Property (39b) is nonetheless
crucial, because it ensures that the join does not lack any of this shared
ranking informa tion, making subroutine (40) optimal. The crux of
Merchant’s subroutine is its time complexity. Merchant (2008: ch. 4)
develops an elegant algorithm for computing the join which can be used
to implement line 5. Unfortunately, his algorithm needs to compute the
fusional closure of each of the input ERC matrices it has to join. Although
there are no results that I am aware of concerning the time complexity of
that computation, it is most plausibly intractable in the general case.

4 Extension to contrast pairs
4.1 Description of the subroutine. The extension of Merchant’s subroutine
(40) to contrast pairs is provided in (41). This subroutine takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex, and a paradigm
p (line 1). The subroutine considers some contrast pair (line 2). For concrete-
ness, I am assuming here that the two meaning combinations of the contrast
pair share the su!x meaning, i.e. have the shape Mm and Ôm (the case
where they share the root meaning is handled analogously). The
subroutine reads o‰ the paradigm p the surface realisations Xx and ∑π of
those two meaning combinations (line 3). Although x and π are the surface
realisations of the same underlying su!x segment corresponding to the
su!x meaning m, they can be di‰erent, because of morphophonem ic
alternations in the surface realisation of that underlying su!x triggered by
the two di‰erent roots M and Ô. The subroutine then constructs the set
" of all pairs (Aa, ∫a) of underlying concatenations which are consistent
with the lexicon Lex as underlying forms for the meaning combinations
Mm and Ôm and furthermore share the underlying su!x segment a (line
4). The latter requirement encodes the fact that we are focusing on a pair
of meaning combinations Mm and Ôm which share the su!x meaning m.
For each pair (Aa, ∫a) of underlying concatenations in ", the subroutine
considers the corresponding ERC blocks ù(Aa, Xx) and ù(∫a, ∑π), stacks
them together into the ERC matrix ù(Aa, Xx)+ù(∫a, ∑π) and constructs
the join of all ERC matrices thus obtained (line 5). The input ERC matrix
ù is updated by adding this join to it (line 6). The ERC matrix thus updated
is then returned (line 7).

There is a subtlety which should be pointed out here. At line 5, the subroutine
considers the join in (42a), not the one in (42b). The di‰erence is that in
(42a) we sum together the two ERC blocks ù(Aa, Xx) and ù(∫a, ∑π) into
ù(Aa, Xx)+ù(∫a, ∑π) before taking the join. This is indeed appropriate,
because the join in (42a) is stronger than the one in (42b), by Lemma 3.ii.

(42) ∑{ù(Aa, Xx)+ù(∫a, ∑π) | (Aa, ∫a)Œ"}a.
∑{ù(Aa, Xx), ù(∫a, ∑π) | (Aa, ∫a)Œ"}b.

4.2 Analysis of the subroutine. The Correctness Lemma 4 trivially extends
from the original subroutine (40) for single meaning combinations to the
variant (41) for contrast pairs. The ine!ciency of (40) for single meaning
combinations is of course aggravated in (41) for contrast pairs, as the latter
requires taking the join of a larger number of larger ERC matrices. Yet
subroutine (41) applied to the contrast pair (Mm, Ôm) is able to extract
more ranking information than the double application of the original
subroutine (40) to the two separate meaning combinations Mm and Ôm.
To see this, suppose that the root meaning M admits a unique underlying
form A consistent with Lex, the root meaning Ô admits a unique under-
lying form ∫ and the su!x meaning m admits only two underlying forms,
a1 and a2. Suppose we first apply the original subroutine (40) to the meaning
combination Mm. At line 4, it constructs the set " consisting of the two
underlying forms Aa1 and Aa2. At line 5, it computes the join ∑(ù1, ù2)
of the two ERC blocks ù1=ù(Aa1, Xx) and ù2=ù(Aa2, Xx). Suppose
we next apply the original subroutine (40) to the meaning combination
Ôm. At line 4, it constructs the set ", consisting of the two underlying
forms ∫a1 and ∫a2. At line 5, it computes the join ∑(π1, π2) of the two
ERC blocks π1=ù(∫a1, ∑π) and π2=ù(∫a2, ∑π). Ultimately, the two
consecutive applications of the original subroutine (40) to the two meaning
combinations Mm and Ôm extract the ranking information captured by
the sum of the two joins in (43).

Suppose we instead apply subroutine (41) to the contrast pair (Mm, Ôm).
At line 4, it constructs the set ", consisting of the two pairs (Aa1, ∫a1) and
(Aa2, ∫a2). At line 5, it computes the join in (45) of the two ERC blocks
ù(Aa1, Xx)+ù(∫a1, ∑π)=ù1+π1 and ù(Aa2, Xx)+ù(∫a2, ∑π) =
ù2+π2.

(45) ∑(ù1+π1, ù2+π2)

The join in (45) is stronger than the one in (44), because it joins fewer
matrices (the smaller the number of matrices, the larger the amount of
shared information for the join to extract). This is because the two blocks
ù1+π2 and ù2+π1 have disappeared from the join. This is what we want,
as they correspond to the unreasonable assumption that the su!x m has
di‰erent underlying forms in the two meaning combinations Mm and Ôm.
In other words, since the learner is processing the two meaning combinations
Mm and Ôm together as a contrast pair, it is able to take into account the
fact that these meaning combinations share the su!x meaning m, which
must therefore have the same underlying form in the two cases.

5 A subroutine for extracting lexical information through
inconsistency detection

5.1 Description of the subroutine. Subroutine (46) takes as input some
lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine then considers a certain
meaning combination Mm with some feature unset according to the input
partial lexicon Lex for either the root M or the su!x m (line 2). The goal
of the subroutine is to try to extend the input partial lexicon by setting
some of these unset features. To this end, the subroutine reads o‰ the
paradigm p the surface realisation Xx of the meaning combination Mm
(line 3). It constructs the set " of all underlying concatenations Aa which
are consistent with both the input lexical information Lex and the input
ranking information captured by the grammar G (or the ERC matrix ù)
(line 4). Consistency with the input lexical information means that, if Lex
sets a feature for the root M (or the su!x m) to a certain value, then the
root morpheme A (or the su!x morpheme a) of each underlying form Aa
in " has the feature set to that value. Consistency with the input ranking
information means that the input grammar G (or the input ERC matrix ù)
is consistent with the mapping (Aa, Xx) of each such underlying form Aa
in " to the surface form Xx. The subroutine then looks for a feature which
is unset by Lex for the root meaning M (or the su!x meaning m), such that
each root morpheme A (or each su!x morpheme a) has the same value for
that feature in all underlying concatenations Aa in " (line 5). For any such
feature, it can be concluded that the opposite value is inconsistent with the
available lexical and ranking information. The subroutine thus updates the
partial lexicon Lex by setting that feature to be equal to its constant value

(46) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that:
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G (or

the ERC matrix ù)
if some feature unset for the root M (or for the su!x m) has a

constant value over " for M (for m) then
update the lexicon Lex by setting the feature to that value for

the root M (or for the su!x m)
end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.
8.

This subroutine is called inconsistency detection (cf. Kager 1999, Tesar
et al. 2003, Tesar 2006), because it sets a certain feature to a certain value
based on the detection at line 6 of the fact that any other value for that
feature would be inconsistent with the available lexical and ranking
information.

Proof. Assume by contradiction that the lemma is false. This means
that the subroutine has set some feature j for, say, the root meaning
M to a value which is di‰erent from the value assigned by the target
lexicon. For concreteness, assume that the values assigned by the
subroutine and the target lexicon are + and — respectively. Thus , the
target lexicon assigns to the meaning combination Mm an underlying
form Aa, which has feature j set to the value — in the root A. This
underlying form Aa is consistent with the partial lexicon Lex (because
it is consistent with the target lexicon, which is in turn consistent with
Lex). Furthermore, the mapping (Aa, Xx) of this underlying form Aa
to the surface form Xx is consistent with the input grammar G (because
the target ranking is consistent with both). In other words, this
underlying form Aa satisfies the two conditions stated by the two
subclauses in line 4 and thus belongs to the set " constructed by the
subroutine. Since this underlying form Aa has feature j set equal to
— for the root A, then the subroutine cannot have set that feature to
the opposite value + at line 6.

5.2 Analysis of the subroutine. Lemma 5 provides a straightforward correct-
ness result for inconsistency detection (46). Its time complexity is controlled
by the size of the set " of consistent underlying forms constructed at line 4.
In the worst case (when both the input lexicon and the input ranking
information are empty), " consists of all underlying forms, i.e. all con-
catenations of root and su!x morphemes. In this case, the size of " grows
polynomially in the number of morphemes and thus exponentially in the
number of features. In conclusion, subroutine (46) is e!cient relative to
the generous notion of e!ciency defined in (14), which measures time
complexity in terms of the number of morphemes, but is not e!cient
relative to the more demanding notion of e!ciency defined in (15), which
measures time complexity in terms of the number of features.

Lemma 5
Inconsistency detection (46) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target grammar, that the input (possibly partial)
grammar G (or ERC matrix ù) is consistent with the target grammar

6 Extension to contrast pairs
6.1 Description of the subroutine. The extension of inconsistency detection
(46) to contrast pairs is provided in (47). This subroutine takes as input
some lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine considers a particular
contrast pair (line 2). For concreteness, I am assuming here that the two
meaning combinations of the contrast pair share the su!x meaning, namely
have the shape Mm and Ôm (the case where they share the root meaning
is handled analogously). The subroutine reads o‰ the paradigm p the surface
realisations Xx and ∑π of those two meaning combinations (line 3). It
constructs the set " of all pairs (Aa, ∫a) of underlying concatenations which
are consistent with both the input lexical information Lex and the input
ranking information G (or ù) and furthermore share the underlying su!x
segment a (line 4). The subroutine then looks for a feature which is unset
by Lex for the root meaning M (or the root meaning Ô or the su!x meaning
m), such that each underlying root morpheme A (or each underlying root
morpheme ∫ or each underlying su!x morpheme a) has the same value
for that feature in all pairs (Aa, ∫a) in " (line 5). For any such feature, the
subroutine updates the partial lexicon Lex by setting the feature equal to
its constant value for the root meaning M (or for the root meaning Ô or
for the su!x meaning m) (line 6). The lexicon thus updated is then returned
(line 8).

(47) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G (or
the ERC matrix ù)

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

- the mapping (∫a, ∑π) is consistent with the grammar G
if some unset feature has a constant value over " for any of the three

meanings M, Ô or m then
update the lexicon Lex by setting the feature to the constant

value for that meaning
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.
8.

6.2 Analysis of the subroutine. The Correctness Lemma 5 trivially extends
from the original subroutine (46) for single meaning combinations to the
variant (47) for contrast pairs. Furthermore, the variant for contrast pairs
remains as e!cient as the original version for single meaning combinations,
when e!ciency is generously measured in terms of the number of morphemes
(but again, not when it is measured in terms of the number of features).
Yet a number of authors (including Alderete et al. 2005 and Merchant &
Tesar 2008) have pointed out that (47), applied to the contrast pair (Mm,
Ôm), can extract more lexical information than the double application of
the original subroutine (46) to the two separate meaning combinations Mm
and Ôm. To see this, consider one of the two meaning combinations of the
contrast pair, say Mm. The original subroutine considers all underlying
forms Aa for Mm which are consistent with the input lexical and ranking
information, and only sets those features which are constant across all these
underlying forms. If the number of consistent underlying forms is large,
the number of features which are constant across them is small, and the
subroutine thus extracts little lexical information. (47) might instead be
able to extract more lexical information, because it looks for features which
are constant over a smaller set of underlying forms for Mm, namely those
underlying forms Aa which are not only consistent with the input lexical
and ranking information, but also use a su!x morpheme a which can be
combined with a root morpheme ∫ into an underlying form ∫a for Ôm
which is also consistent with the input lexical and ranking information.

I denote Tesar’s subroutine (29) for the extraction of ranking information
from a single meaning combination as ERIT, and Merchant’s subroutine
(40) as ERIM. Lemma 6 states that, if the underlying typology is output-
driven, then ERIT and ERIM are equivalent, because they update the
current ranking/grammatical information with the ‘same’ information. This
equivalence is striking, given that the time complexity of ERIT is only
linear in the number of features, while the time complexity of ERIM is
unknown, but probably exponential in both the number of features and the
number of morphemes. Output-drivenness thus a‰ords a significant
reduction in time complexity. The Correctness Lemma 1 for ERIT (which
was proven directly in §4.4) can also be made to follow from the Correctness
Lemma 4 for ERIT through the Equivalence Lemma 6.

1 Subroutines for extracting ranking information from a single
meaning combination

Proof. The underlying form Bb constructed by ERIT at line 4 is
consistent with Lex, and therefore belongs to the set " constructed by
ERIM at line 4. Consider one of the underlying forms Aa in this set ".
The two underlying forms Aa and Bb agree in every feature which is
set by the input partial lexicon Lex. Furthermore, Bb and the surface
form Xx agree in every remaining feature. Thus the underlying form
Bb is more similar to the surface form Xx than is the underlying form
Aa. Since the underlying typology is output-driven, then every ranking
which maps the less similar underlying form Aa to Xx also maps the
more similar underlying form Bb to Xx. In other words, any ranking
consistent with the ERC block ù(Aa, Xx) is also consistent with the
ERC block ù(Bb, Xx). Lemma 3.i thus ensures that the ERC block
ù(Bb, Xx) is the join of the ERC blocks ù(Aa, Xx) across all underlying
concatenations Aa in ".

Lemma 6
Suppose that the underlying typology is output-driven and that ERIT

is fed with a partial grammar G and a (possibly partial) lexicon Lex.
Suppose that ERIM is fed with the ERC matrix ù corresponding to
the partial grammar G and the same lexicon Lex. Then the ERC block
corresponding to the mapping (Bb, Xx) constructed by ERIT at line
4 is the join of the ERC blocks ù(Aa, Xx) corresponding to the
underlying forms Aa in " constructed by ERIM at line 5.

between the two implementations is the following: Merchant’s original
subroutine (46) sets any feature which is constant over "; the variant in (48)
instead focuses right from the beginning on a specific feature j, which is
unset for either the root M or the su!x m of the meaning combination Mm
under consideration. In line 3, I am assuming for concreteness that the
feature j is unset for the root M (the case where it is unset for the su!x m
is handled analogously). The modification is only cosmetic: the original
subroutine is equivalent to running this variant for each unset feature.

(48) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a meaning combination Mm in the paradigm p
Require: a feature j unset by Lex for either M or m; for concreteness,

say it is unset for M
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G

if all underlying forms Aa in " have the feature j set to the same
value in the root morpheme A then

update the lexicon Lex by setting the feature j to that value for
the root meaning M

end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.

8.
9.

I denote Tesar’s subroutine (33) for the extraction of lexical information
from a single meaning combination by ELIT, and (the cosmetic variant of)
the original inconsistency detection subroutine (48) by ELIid. Lemma 6
states that, if the underlying typology is output-driven, ELIT and ELIid

are equivalent, because their if-clauses at line 6 are equivalent. This
equivalence is striking, given that the if-clause of ELIT can be checked in
time linear in the number of features, while the if-clause of ELIid requires
time exponential in the number of features in the worst case. Output-
drivenness has thus a‰orded a significant reduction in time complexity.
The Correctness Lemma 2 for ELIT (which was proven directly in §4.5)
can also be made to follow from the Correctness Lemma 4 for ELIid through
the Equivalence Lemma 7.

Proof. To start, let me prove that the if-clause in line 6 of ELIT entails
the if-clause in line 6 of ELIid. Assume by contradiction that the
former if-clause is true while the latter if-clause is false. The hypothesis
that the if-clause of ELIid is false entails in particular that the set " of
consistent underlying forms constructed by ELIid at line 5 contains
an underlying form Aa whose root A disagrees with X relative to the
feature j (indeed, if all the underlying forms Aa in " had a root A
which agreed with X relative to j, the if-clause of ELIid would hold
true). The underlying form Aa and the underlying form Bb constructed
by ELIT at line 5 thus agree in the feature j for the root meaning M,
as they both have the opposite value from X. Furthermore, they agree
in every feature set by the partial lexicon Lex, because they are both
consistent with Lex. Finally, Bb agrees with Xx for every remaining
feature. The underlying form Bb is thus more similar to the surface
form Xx than is the underlying form Aa. Since the mapping (Aa, Xx)
is consistent with G (because Aa belongs to "), there exists a ranking
which is consistent with both. Since the grammar corresponding to
that ranking is output-driven and maps the less similar underlying
form Aa to Xx, it also maps the more similar underlying form Bb to
Xx. In other words, that ranking is also consistent with the mapping
(Bb, Xx). In conclusion, the mapping (Bb, Xx) and the grammar G
are consistent (because both are consistent with the ranking), contra-
dicting the hypothesis that the if-clause of ELIT is true.

Vice versa, let me prove that the if-clause in line 6 of ELIid entails
the if-clause in line 6 of ELIT. Assume by contradiction that the
former if-clause is true, while the latter if-clause is false. The hypothesis
that the if-clause of ELIT is false means that the input (partial) grammar
G is consistent with the mapping (Bb, Xx) of the underlying form Bb
constructed by ELIT at line 5 to the surface form Xx. Since this
underlying form Bb is consistent with Lex, then Bb belongs to the set
" of consistent underlying forms constructed at line 5 by ELIid. Since
B and X disagree relative to the feature j, consider the underlying
form ≥b, identical to Bb but for the fact that ≥ and X instead agree in
the feature j. Obviously, the underlying form ≥b is more similar to
the surface form Xx than is the underlying form Bb. Since (Bb, Xx)
is consistent with G, there exists a ranking which is consistent with
both. Since the grammar corresponding to that ranking is output-
driven and maps the less similar underlying form Bb to Xx, then it
also maps the more similar underlying form ≥b to Xx. In other words,
that ranking is also consistent with the mapping (≥b, Xx). This
underlying form ≥b thus belongs to the set " constructed by ELIid at
line 5.This conclusion contradicts the hypothesis that the if-clause of
ELIid holds, because it shows that " contains two underlying forms
Bb and ≥b, such that B and ≥ disagree in the feature j.Lemma 7

Suppose that the underlying typology is output-driven. Then the two
if-clauses in line 6 of ELIT and ELIid are equivalent.

Tesar’s subroutine for extracting lexical information from contrast pairs
is more involved than his other two subroutines, for extracting lexical and
ranking information from a single meaning combination. For this reason,
the latter two subroutines were reviewed in §4.4 and §4.5, while the former
subroutine is included in this appendix. Here I start out from Merchant’s
subroutine in (47) for extracting lexical information from contrast pairs,
and work towards Tesar’s reformulation, provided below in (52). This
seems to me the best way of making sense of the somewhat complex
formulation of Tesar’s subroutine. I begin by carrying out the same cosmetic
change as in the previous section: I replace the original subroutine (47)
with (49), which only di‰ers because line 3 focuses on a specific feature j,
unset by the input lexicon Lex for one of the three meanings M, Ô and m
of the contrast pair (Mm, Ôm). For concreteness, I assume it is unset for
the root meaning M.

3 Subroutines for extracting lexical information from a contrast
pair

Supplementary materials 1716 Giorgio Magri

(49) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫a, ∑π) is consistent with the grammar G

if all the pairs (Aa, ∫a) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.
9.

the two underlying su!x morphemes a and ¥ coincide, because they are
the underlying form corresponding to the same su!x meaning m. The
condition that a and ¥ coincide is in turn equivalent to the condition that
they agree for each feature y. We could of course relax this condition by
requiring that the two underlying su!x morphemes a and ¥ agree only for
certain features, y1, ..., yn. This intuition leads to the formulation in (50).
It di‰ers from (49) only because of the new line 4, which introduces the
features y1, ..., yn, and because of the additional fifth subclause in the
definition of the set ". Note that line 4 assumes all the features y1, ..., yn

to be unset by the input partial lexicon Lex for the shared su!x m, because
the condition that both a and ¥ are consistent with Lex as underlying forms
for m already entails that they agree on every feature set by Lex for m.

(50) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫¥) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ agree for every

feature y1, ..., yn

if all the pairs (Aa, ∫¥) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

combinations Mm and Ôm one at a time. If instead we consider all unset
y features at line 4, then (50) e‰ectively considers only pairs of underlying
forms for the two meaning combinations which share the underlying su!x,
and is therefore equivalent to the original subroutine (49) for extracting
lexical information from contrast pairs. In the end, depending on the
number of y features considered at line 4, (50) provides a whole range of
subroutines for extracting lexical information in between the weaker (46)
and the stronger (49).

Subroutine (50) can be equivalently restated as (51). Instead of requiring
the two su!x morphemes a and ¥ to coincide for every feature y1, ..., yn,
we consider all possible combinations v1, ..., vn of values of those features
at line 6, and we require both a and ¥ to have those features set equal to
those values in the fifth subclause of line 5.

(51) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫¥ is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ both have the

values v1, ..., vn for the features y1, ..., yn

if all the pairs (Aa, ∫¥) in all the sets "(v1, ..., vn) have the underlying
root A set to the same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

Supplementary materials 1918 Giorgio Magri

By reasoning as in the previous subsection we can easily show that subroutine
(51) is equivalent to (52) under the assumption of output-drivenness.
Indeed, the two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn con-
structed by (52) at line 6 provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (51).

(52) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and
±≤v1, …, vn, as follows:

- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-
lying forms for Mm and Ôm

- B has the opposite value for feature j than X
- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values

v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
if the grammar G is inconsistent with the two mappings (Bbv1, …, vn,

Xx) and (±≤v1, …, vn, ∑π) for any combination of values v1, ..., vn

then
update the lexicon Lex by setting feature j to that constant value

for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

If the features y1, ..., yn considered in line 4 of (52) exhaust the set of
features, then the two subroutines (49) and (52) are equivalent. However,
the running time of (52) is exponential in the number of features in the
latter case, because it needs to consider all combinations v1, ..., vn.

By reasoning as in the previous subsection, we can proceed from Merchant’s
original subroutine (41) for extracting ranking information from contrast
pairs to the variant in (53).

4 Subroutines for extracting ranking information from a contrast
pair

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫¥ is consistent with the lexicon Lex as an underlying form
for Ôm

- the two underlying su!x morphemes a and ¥ both have the
values v1, ..., vn for the features y1, ..., yn

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫¥) in "(v1, ..., vn) for all combinations of values
v1, ..., vn

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.

7.
8.

20Giorgio Magri

Once again, if we do not consider any y features at line 3, (53) e‰ectively
considers the two meaning combinations of the contrast pair independently
of each other, and thus ends up equivalent to subroutine (40) for extracting
lexical information from single meaning combinations. If we instead consider
all unset y features at line 3, then (53) e‰ectively only considers pairs of
underlying forms for the two meaning combinations which share the
underlying su!x, and is therefore equivalent to Merchant’s original
subroutine (41) for extracting lexical information from contrast pairs.
Ultimately, depending on the number of y features considered at line 3,
(53) provides a whole range of subroutines for extracting ranking information
in between the weaker (40) and the stronger (41).

By reasoning as in §2 of this appendix, we can easily show subroutine
(53) to be equivalent to (54) under the assumption of output-drivenness.
The two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn constructed
by (54) at line 5 again provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (53).

(54)

- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values
v1, ..., vn
- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
compute the join of the ERC matrices ù(Bbv1, …, vn, Xx)+
ù(±≤v1, …, vn, ∑π) for all combinations of values v1, ..., vn
add this join to the ERC matrix ù
Return: the updated ERC matrix ù

6.

7.
8.

Take the simplest case, where we consider a single feature y at line 3.
Assume furthermore that y is binary, i.e. it only takes the values v=‘+’ and
v=‘—’. At line 5, the subroutine constructs the two underlying forms Bb+
and ±≤+, corresponding to the value v=‘+’of feature y (i.e. both b+ and ≤+
have the value ‘+’ for the feature y), and the two underlying forms Bb— and
±≤—, corresponding to the value v=‘—’ (i.e. both b— and ≤— have the value
‘—’ for the feature y). At line 6, we finally compute the join of the two ERC
blocks ù(Bb+, Xx)+ù(±≤+, ∑π) and ù(Bb—, Xx)+ù(±≤—, ∑π). Even in
the simplest case of a single feature y, there is no way around computing
the join.
In summary, Merchant develops a new subroutine for extracting ranking
information through the notion of join. This subroutine can be applied to
either a single meaning combination at a time, as in (40); or to a contrast
pair, as in (41). The latter is more powerful than the former: the subroutine
extracts more ranking information by processing the two meaning
combinations Mm and Ôm as a contrast pair than by processing them
separately. The crux of Merchant’s subroutine for extracting ranking
information is that it relies on the computation of a join, which is time-
consuming. The biggest impact of output-drivenness is that it allows
Merchant’s subroutine for extracting ranking information from a single
meaning combination to be restated without having to compute any join.
The restated subroutine thus runs in time linear in the number of features.
In other words, it is e!cient even relative to the more demanding notion
of e!ciency introduced in §2.6. The situation is unfortunately very di‰erent
when Merchant’s subroutine for extracting ranking information is boosted
by being applied to contrast pairs. In this case, output-drivenness is not
able to circumvent the computation of the join, and thus does not su!ce
to make the subroutine e!cient.

A constraint ranking is consistent with an ERC provided it satisfies con-
dition (36); it is consistent with an ERC matrix provided it is consistent
with each of its rows. An ERC matrix entails another ERC matrix provided

(38) Id
[str]

Id
[length]

Main-
L

Main-
R

No
Long

WSP

w
w

w
w
w
w

w
w
w
w

l
l
l
l

l

w
l

w

/’pa:’ka/, [’pa:ka], [pa’ka]
/’pa:’ka/, [’pa:ka], [pa’ka:]
/’pa:’ka/, [’pa:ka], [pa:’ka]
/’pa:’ka/, [’pa:ka], [pa:’ka:]
/’pa:’ka/, [’pa:ka], [’paka]
/’pa:’ka/, [’pa:ka], [’paka:]
/’pa:’ka/, [’pa:ka], [’pa:ka:]

w
w

w
w

Lemma 3
Suppose that one of the ERC matrices ù1, ù2, …, Rn is entailed
by each of the others. For concreteness, assume that it is ù1 which
is entailed by each of the other ERC matrices ù2, …, Rn. Then
ù1 is the join of ù1, ù2, …, Rn.

(i)

Given the ERC matrices ù1, ù2, ù3, …, Rn, replace two of them
with the ERC matrix obtained by stacking the two matrices one
on top of the other. For concreteness, replace ù1 and ù2 with
ù1+ù2. Then the join of the n®1 ERC matrices ù1+ù2, ù3,
…, Rn entails the join of the original n ERC matrices ù1, ù2, ù3,
…, Rn, while the reverse does not in general hold.

(ii)

compute the join of the ERC matrices ù(Aa, Xx) for all underlying
forms Aa in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.
7.

Proof. Let Aa be the underlying form assign ed to the meanin g
combination Mm by the target lexicon. This underlying form Aa
belongs to the set " constructed by the subroutine at line 4, because
of the hypothesis that the input lexicon Lex is consistent with the
target lexicon. Thus the corresponding ERC block ù(Aa, Xx) is one
of the blocks that the subroutine takes the join of at line 5. Since the
target ranking is consistent with this ERC block ù(Aa, Xx), then it
is also consistent with the join, by property (39a) of the join. Since the
target ranking is also consistent with the input ERC matrix ù, it is

Lemma 4
Merchant’s subroutine (40) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target ranking, that the input ERC matrix ù is
consistent with that target ranking, and that the input (possibly partial)
lexicon Lex is consistent with that target lexicon. The updated ERC
matrix returned by subroutine (40) is also consistent with that target
ranking.

then consistent with the updated ERC matrix returned by the sub-
routine.

(41) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫a) in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

1.

2.

3.

4.

5.

6.
7.

(43) ∑(ù1, ù2)+∑(π1, π2)

Lemma 3.iii ensures that (43) is equivalent to the join in (44). The four
ERC matrices being joined here correspond to all four combinations of
underlying forms for the two meaning combinations Mm and Ôm. In
particular, the learner is also joining together the two ERC blocks ù1+π2

and π2+ù1, whereby the shared su!x meaning m is assigned a di‰erent
underlying form in the case of Mm than in the case of Ôm. In other words,
since the learner is processing the two meaning combinations Mm and Ôm
separately, it is blind to the fact that these meaning combinations share the
su!x meaning m, which must therefore have the same underlying form in
both cases.

(44) ∑(ù1+π1, ù1+π2, ù2+π1, ù2+π2)

for the root meaning M (or for the su!x meaning m) (line 6). The lexicon
thus updated is then returned (line 8).

and that the input partial lexicon Lex is consistent with the target
lexicon. The updated lexicon returned by subroutine (46) is also
consistent with that target lexicon.

2 Subroutines for extracting lexical information from a single
meaning combination

Consider the slight variant (48) of the subroutine (46) for the extraction of
lexical information through inconsistency detection. The only di‰erence

The modification is only cosmetic: the original subroutine (47) is equivalent
to running this variant (49) for each feature which is unset for one of the
three morphemes M, Ô and m.

The set " constructed by the subroutine (49) at line 5 can equivalently
be described as the collection of all pairs (Aa, ∫¥) which satisfy the conditions
expressed by the four subclauses of line 5 plus the additional condition that

If we consider no y features at all in line 4, then (50) e‰ectively considers
the two meaning combinations of the contrast pair independently of each
other, and thus ends up equivalent to subroutine (46) for extracting lexical
information from single meaning combinations, in the sense that the
application of subroutine (50) to the contrast pair (Mm, Ôm) is equivalent
to two consecutive applications of subroutine (46) to the two meaning

Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and ±≤v1,

…, vn as follows
- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-

lying forms for Mm and Ôm

1.

2.

3.

4.

5.

(53) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

1.

2.

3.

4.

Phonology 25.2: Artwork 1 of

Supplementary materials 72 Giorgio Magri

every ranking consistent with the former is also consistent with the latter.
Thus ù1+ù2 entails both ù1 and ù2.

(36) At least one constraint which has a w in the ERC under consideration
is ranked above every constraint which instead has an l (constraints
which have an e play no role in the consistency condition).

2 The join

4 Giorgio Magri

Grammatical information was represented in §4.1.2 as a (possibly partial)
collection G of mappings (Aa, Xx) of an underlying form Aa to a surface
form Xx. Each of these mappings can be equivalently represented with the
corresponding ERC block ù(Aa, Xx). And the grammatical information
G can thus be represented with the ERC matrix obtained by stacking all
these blocks one of top of the other. Merchant’s CPR adopts the architecture
in (28), the only di‰erence being that the current partial grammatical
information is represented not as a partial grammar G but as an ERC matrix
ù. This makes the algorithm more flexible in the type of partial grammatical
information it maintains: any (partial) grammar G can be represented
through the corresponding ERC matrix, while not just any ERC matrix ù
corresponds to some partial collection of mappings. This additional flexibility
in the data structure maintained by the algorithm is crucial in order to
define the subroutine for extracting ranking information, as explained in
the next section.

Supplementary materials 5 6 Giorgio Magri 8 Giorgio Magri Supplementary materials 9 10 Giorgio Magri

Appendix B: Equivalence between Merchant’s and Tesar’s sub-
routines

Supplementary materials 11 12 Giorgio Magri Supplementary materials 13

Appendix A: Merchant’s (2008) CPR

Phonology 31 (2014). Supplementary materials

Review article

Giorgio Magri
CNRS, Université Paris 8 and University of Utrecht

Supplementary materials

This appendix sketches Merchant’s (2008) CPR algorithm. In §1, I explain
how CPR adheres to the architecture in (28), only with a more abstract
representation of the current partial ranking information in terms of ERCs.
I then review CPR’s subroutines for extracting ranking and lexical infor-
mation. I start from the easier case, where they are applied to a single
paradigmatic entry (§3 and §5), and then turn to the extension to contrast
pairs (§4 and §6).

1 ERCs and CPR’s architecture
An elementary ranking condition (ERC) is an assignment of one of the
three symbols l, w and e to each of the constraints in the constraint set
(Prince 2002). An ERC is usually represented as a row of these symbols,
with the constraints annotated on top. To illustrate, an ERC for the constraint
set (5) of the Paka typology is provided in (35). An ERC matrix is a finite
collection of ERCs, stacked one on top of the other (the order does not
matter). An arbitrary ERC matrix is denoted by ù. Given two ERC matrixes
ù1 and ù2, ù1+ù2 denotes the ERC matrix obtained by stacking one on
top of the other (the order does not matter).

14 Giorgio Magri Supplementary materials 15

Bruce Tesar (2014). Output-driven phonology: theory and learning. (Cam-
bridge Studies in Linguistics 139.) Cambridge: Cambridge University
Press. Pp. xix+415.

(35)
e

Id[str] Id[length] Main-L Main-R NoLong WSP
w w l l e|

The phonological underpinning of these notions is as follows. Consider the
mapping (Aa, Xx) of an underlying form Aa to a surface form Xx, which
is thus construed as the winner. For any other loser candidate Yy, consider
the ERC defined in (37). Stack all the ERCs thus constructed for all loser
candidates one on top of the other into an ERC matrix, denoted by ù(Aa,
Xx). Then the OT grammar corresponding to a ranking maps the under-
lying form Aa to the surface form Xx if and only if that ranking is consistent
with the ERC matrix ù(Aa, Xx) corresponding to that mapping.

(37) A constraint has a w provided it prefers the winner mapping (Aa,
Xx) to the loser mapping (Aa, Yy), i.e. it assigns fewer violations
to the former mapping than to the latter.

a.

A constraint has an l provided it instead prefers the loser mapping
(Aa, Yy) to the winner mapping (Aa, Xx), i.e. it assigns fewer
violations to the former mapping than to the latter.

b.

A constraint has an e provided it has no preference for one of the
two mappings (Aa, Xx) and (Aa, Yy), i.e. it assigns the same number
of violations to both.

c.

To illustrate, consider the Paka typology in §2.1 of the paper, focusing on
the mapping (/’pa:’ka/, [’pa:ka]) of the underlying form /’pa:’ka/ to the surface
form [’pa:ka]. The ERC matrix ù(/’pa:’ka/, [’pa:ka]) corresponding to this
mapping is provided in (38). It consists of seven ERCs, because there are
seven loser candidates. For convenience, each ERC is annotated on the left
with the corresponding underlying, winner and loser forms (loser forms
are struck through). The topmost ERC in (38) says that the winner mapping
(/’pa:’ka/, [’pa:ka]) beats the loser mapping (/’pa:’ka/, [pa’ka]), provided at
least one of the two winner-preferring constraints Ident[length] or Main-
L is ranked above the two loser-preferring constraints Main-R and NoLong.

Supplementary materials 3

The join of some ERC matrices ù1, …, ùn is any ERC matrix which satisfies
the two conditions in (39). Any such ERC matrix will be denoted by ∑(ù1,
…, ùn). Condition (39a) says that the join is weaker than (i.e. entailed by)
each matrix ù1, …, ùn. Condition (39b) says that, among all ERC matrices
which are weaker than (i.e. entailed by) each matrix ù1, …, ùn, the join is
a strongest one (i.e the one which entails all the others). In other words,
condition (39a) says that the join captures some of the ranking information
shared by the matrices ù1, …, ùn, and condition (39b) says there is no
shared ranking information which the join does not capture.

(39) Each of the ERC matrices ù1, …, ùn entails their join.a.
If each of the ERC matrices ù1, …, ùn entails some ERC matrix
ù, their join entails ù as well.

b.

Lemma 3 collects some properties of the join which will be used in the rest
of this appendix.

Proof. An ERC matrix ∏ is the join of two ERC matrixes ù1 and ù2

if and only if the set of rankings consistent with ∏ is the union of the
two sets of rankings consistent with ù1 and ù2. Furthermore, the set
of rankings consistent with ù1+ù2 is the intersection of the two sets
of rankings consistent with ù1 and ù2. Claims (i)–(iii) then follow
from elementary set-theoretic manipulations on the sets of consistent
rankings.

Given four ERC matrices ù1, ù2, π1, π2, consider the ERC
matrix ∑(ù1, ù2)+∑(π1, π2) obtained by stacking one on top of
the other the join of ù1 and ù2 and the join of π1 and π2. Then
∑(ù1, ù2)+∑(π1, π2) coincides with the join of the four ERC
matrices ù1+π1, ù1+π2, ù2+π1, ù2+π2.

(iii)

3 A subroutine for extracting ranking information through the join
3.1 Description of the subroutine. The subroutine in (40) takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex and a paradigm
p (line 1). It extends the ranking information encoded in the input ERC
matrix ù by adding to that input ERC matrix some additional ERCs as
follows. The subroutine considers a certain meaning combination Mm (line
2), and it reads o‰ the paradigm p the surface realisation Xx of that meaning
combination Mm (line 3). The subroutine then constructs the set " of all
underlying concatenations Aa which are consistent with the lexicon Lex as
underlying forms for that meaning combination Mm (line 4). This means
that if Lex sets a feature for the root M or the su!x m to a certain value,
then the root morpheme A or the su!x morpheme a of each underlying
form Aa in " has the feature set to that value. Any of these underlying
forms in " could be the actual underlying form according to the partial
lexical information encoded by Lex. In other words, the target grammar
could enforce any of the mappings (Aa, Xx) of any underlying form Aa in
" to the surface form Xx. Thus the best the subroutine can do is to extract
any ranking information shared by all these mappings. This is done by
computing the join of all ERC blocks ù(Aa, Xx) corresponding to all
mappings (Aa, Xx) of all underlying forms Aa in " to the surface form Xx
(line 5). The input ERC matrix ù is updated by adding this join to it (line
6). The ERC matrix thus updated is returned (line 7).

(40) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all concatenations Aa consistent with Lex as

underlying forms for Mm

1.

2.
3.

4.

The join of the ERC blocks ù(Aa, Xx) computed at line 5 is an ERC-
theoretic construct which might very well not correspond, in the sense of
(37), to any mapping of an underlying form to a surface form. For this
reason, CPR needs the additional flexibility of representing the current
(partial) grammatical/ranking information as an ERC matrix rather than
as a (partial) grammar. Appendix B: §1 shows that output-drivenness in
e‰ect guarantees that the join computed in line 5 always corresponds to the
mapping of a certain underlying form to the surface form Xx read at line
3.

3.2 Analysis of the subroutine. Lemma 4 provides a straightforward correct-
ness result for Merchant’s subroutine (40). Note that the proof only uses
property (39a) of the join, not property (39b). In other words, the lemma
hinges only on the fact that the join extracts ranking information which is
shared by all the ERC blocks ù(Aa, Xx). Property (39b) is nonetheless
crucial, because it ensures that the join does not lack any of this shared
ranking informa tion, making subroutine (40) optimal. The crux of
Merchant’s subroutine is its time complexity. Merchant (2008: ch. 4)
develops an elegant algorithm for computing the join which can be used
to implement line 5. Unfortunately, his algorithm needs to compute the
fusional closure of each of the input ERC matrices it has to join. Although
there are no results that I am aware of concerning the time complexity of
that computation, it is most plausibly intractable in the general case.

4 Extension to contrast pairs
4.1 Description of the subroutine. The extension of Merchant’s subroutine
(40) to contrast pairs is provided in (41). This subroutine takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex, and a paradigm
p (line 1). The subroutine considers some contrast pair (line 2). For concrete-
ness, I am assuming here that the two meaning combinations of the contrast
pair share the su!x meaning, i.e. have the shape Mm and Ôm (the case
where they share the root meaning is handled analogously). The
subroutine reads o‰ the paradigm p the surface realisations Xx and ∑π of
those two meaning combinations (line 3). Although x and π are the surface
realisations of the same underlying su!x segment corresponding to the
su!x meaning m, they can be di‰erent, because of morphophonem ic
alternations in the surface realisation of that underlying su!x triggered by
the two di‰erent roots M and Ô. The subroutine then constructs the set
" of all pairs (Aa, ∫a) of underlying concatenations which are consistent
with the lexicon Lex as underlying forms for the meaning combinations
Mm and Ôm and furthermore share the underlying su!x segment a (line
4). The latter requirement encodes the fact that we are focusing on a pair
of meaning combinations Mm and Ôm which share the su!x meaning m.
For each pair (Aa, ∫a) of underlying concatenations in ", the subroutine
considers the corresponding ERC blocks ù(Aa, Xx) and ù(∫a, ∑π), stacks
them together into the ERC matrix ù(Aa, Xx)+ù(∫a, ∑π) and constructs
the join of all ERC matrices thus obtained (line 5). The input ERC matrix
ù is updated by adding this join to it (line 6). The ERC matrix thus updated
is then returned (line 7).

There is a subtlety which should be pointed out here. At line 5, the subroutine
considers the join in (42a), not the one in (42b). The di‰erence is that in
(42a) we sum together the two ERC blocks ù(Aa, Xx) and ù(∫a, ∑π) into
ù(Aa, Xx)+ù(∫a, ∑π) before taking the join. This is indeed appropriate,
because the join in (42a) is stronger than the one in (42b), by Lemma 3.ii.

(42) ∑{ù(Aa, Xx)+ù(∫a, ∑π) | (Aa, ∫a)Œ"}a.
∑{ù(Aa, Xx), ù(∫a, ∑π) | (Aa, ∫a)Œ"}b.

4.2 Analysis of the subroutine. The Correctness Lemma 4 trivially extends
from the original subroutine (40) for single meaning combinations to the
variant (41) for contrast pairs. The ine!ciency of (40) for single meaning
combinations is of course aggravated in (41) for contrast pairs, as the latter
requires taking the join of a larger number of larger ERC matrices. Yet
subroutine (41) applied to the contrast pair (Mm, Ôm) is able to extract
more ranking information than the double applica tion of the original
subroutine (40) to the two separate meaning combinations Mm and Ôm.
To see this, suppose that the root meaning M admits a unique underlying
form A consistent with Lex, the root meaning Ô admits a unique under-
lying form ∫ and the su!x meaning m admits only two underlying forms,
a1 and a2. Suppose we first apply the original subroutine (40) to the meaning
combination Mm. At line 4, it constructs the set " consisting of the two
underlying forms Aa1 and Aa2. At line 5, it computes the join ∑(ù1, ù2)
of the two ERC blocks ù1=ù(Aa1, Xx) and ù2=ù(Aa2, Xx). Suppose
we next apply the original subroutine (40) to the meaning combination
Ôm. At line 4, it constructs the set ", consisting of the two underlying
forms ∫a1 and ∫a2. At line 5, it computes the join ∑(π1, π2) of the two
ERC blocks π1=ù(∫a1, ∑π) and π2=ù(∫a2, ∑π). Ultimately, the two
consecutive applications of the original subroutine (40) to the two meaning
combinations Mm and Ôm extract the ranking information captured by
the sum of the two joins in (43).

Suppose we instead apply subroutine (41) to the contrast pair (Mm, Ôm).
At line 4, it constructs the set ", consisting of the two pairs (Aa1, ∫a1) and
(Aa2, ∫a2). At line 5, it computes the join in (45) of the two ERC blocks
ù(Aa1, Xx)+ù(∫a1, ∑π)=ù1+π1 and ù(Aa2, Xx)+ù(∫a2, ∑π) =
ù2+π2.

(45) ∑(ù1+π1, ù2+π2)

The join in (45) is stronger than the one in (44), because it joins fewer
matrices (the smaller the number of matrices, the larger the amount of
shared information for the join to extract). This is because the two blocks
ù1+π2 and ù2+π1 have disappeared from the join. This is what we want,
as they correspond to the unreasonable assumption that the su!x m has
di‰erent underlying forms in the two meaning combinations Mm and Ôm.
In other words, since the learner is processing the two meaning combinations
Mm and Ôm together as a contrast pair, it is able to take into account the
fact that these meaning combinations share the su!x meaning m, which
must therefore have the same underlying form in the two cases.

5 A subroutine for extracting lexical information through
inconsistency detection

5.1 Description of the subroutine. Subroutine (46) takes as input some
lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine then considers a certain
meaning combination Mm with some feature unset according to the input
partial lexicon Lex for either the root M or the su!x m (line 2). The goal
of the subroutine is to try to extend the input partial lexicon by setting
some of these unset features. To this end, the subroutine reads o‰ the
paradigm p the surface realisation Xx of the meaning combination Mm
(line 3). It constructs the set " of all underlying concatenations Aa which
are consistent with both the input lexical information Lex and the input
ranking information captured by the grammar G (or the ERC matrix ù)
(line 4). Consistency with the input lexical information means that, if Lex
sets a feature for the root M (or the su!x m) to a certain value, then the
root morpheme A (or the su!x morpheme a) of each underlying form Aa
in " has the feature set to that value. Consistency with the input ranking
information means that the input grammar G (or the input ERC matrix ù)
is consistent with the mapping (Aa, Xx) of each such underlying form Aa
in " to the surface form Xx. The subroutine then looks for a feature which
is unset by Lex for the root meaning M (or the su!x meaning m), such that
each root morpheme A (or each su!x morpheme a) has the same value for
that feature in all underlying concatenations Aa in " (line 5). For any such
feature, it can be concluded that the opposite value is inconsistent with the
available lexical and ranking information. The subroutine thus updates the
partial lexicon Lex by setting that feature to be equal to its constant value

(46) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that:
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G (or

the ERC matrix ù)
if some feature unset for the root M (or for the su!x m) has a

constant value over " for M (for m) then
update the lexicon Lex by setting the feature to that value for

the root M (or for the su!x m)
end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.
8.

This subroutine is called inconsistency detection (cf. Kager 1999, Tesar
et al. 2003, Tesar 2006), because it sets a certain feature to a certain value
based on the detection at line 6 of the fact that any other value for that
feature would be inconsistent with the available lexical and ranking
information.

Proof. Assume by contradiction that the lemma is false. This means
that the subroutine has set some feature j for, say, the root meaning
M to a value which is di‰erent from the value assigned by the target
lexicon. For concreteness, assume that the values assigned by the
subroutine and the target lexicon are + and — respectively. Thus , the
target lexicon assigns to the meaning combination Mm an underlying
form Aa, which has feature j set to the value — in the root A. This
underlying form Aa is consistent with the partial lexicon Lex (because
it is consistent with the target lexicon, which is in turn consistent with
Lex). Furthermore, the mapping (Aa, Xx) of this underlying form Aa
to the surface form Xx is consistent with the input grammar G (because
the target ranking is consistent with both). In other words, this
underlying form Aa satisfies the two conditions stated by the two
subclauses in line 4 and thus belongs to the set " constructed by the
subroutine. Since this underlying form Aa has feature j set equal to
— for the root A, then the subroutine cannot have set that feature to
the opposite value + at line 6.

5.2 Analysis of the subroutine. Lemma 5 provides a straightforward correct-
ness result for inconsistency detection (46). Its time complexity is controlled
by the size of the set " of consistent underlying forms constructed at line 4.
In the worst case (when both the input lexicon and the input ranking
information are empty), " consists of all underlying forms, i.e. all con-
catenations of root and su!x morphemes. In this case, the size of " grows
polynomially in the number of morphemes and thus exponentially in the
number of features. In conclusion, subroutine (46) is e!cient relative to
the generous notion of e!ciency defined in (14), which measures time
complexity in terms of the number of morphemes, but is not e!cient
relative to the more demanding notion of e!ciency defined in (15), which
measures time complexity in terms of the number of features.

Lemma 5
Inconsistency detection (46) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target grammar, that the input (possibly partial)
grammar G (or ERC matrix ù) is consistent with the target grammar

6 Extension to contrast pairs
6.1 Description of the subroutine. The extension of inconsistency detection
(46) to contrast pairs is provided in (47). This subroutine takes as input
some lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine considers a particular
contrast pair (line 2). For concreteness, I am assuming here that the two
meaning combinations of the contrast pair share the su!x meaning, namely
have the shape Mm and Ôm (the case where they share the root meaning
is handled analogously). The subroutine reads o‰ the paradigm p the surface
realisations Xx and ∑π of those two meaning combinations (line 3). It
constructs the set " of all pairs (Aa, ∫a) of underlying concatenations which
are consistent with both the input lexical information Lex and the input
ranking information G (or ù) and furthermore share the underlying su!x
segment a (line 4). The subroutine then looks for a feature which is unset
by Lex for the root meaning M (or the root meaning Ô or the su!x meaning
m), such that each underlying root morpheme A (or each underlying root
morpheme ∫ or each underlying su!x morpheme a) has the same value
for that feature in all pairs (Aa, ∫a) in " (line 5). For any such feature, the
subroutine updates the partial lexicon Lex by setting the feature equal to
its constant value for the root meaning M (or for the root meaning Ô or
for the su!x meaning m) (line 6). The lexicon thus updated is then returned
(line 8).

(47) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G (or
the ERC matrix ù)

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

- the mapping (∫a, ∑π) is consistent with the grammar G
if some unset feature has a constant value over " for any of the three

meanings M, Ô or m then
update the lexicon Lex by setting the feature to the constant

value for that meaning
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.
8.

6.2 Analysis of the subroutine. The Correctness Lemma 5 trivially extends
from the original subroutine (46) for single meaning combinations to the
variant (47) for contrast pairs. Furthermore, the variant for contrast pairs
remains as e!cient as the original version for single meaning combinations,
when e!ciency is generously measured in terms of the number of morphemes
(but again, not when it is measured in terms of the number of features).
Yet a number of authors (including Alderete et al. 2005 and Merchant &
Tesar 2008) have pointed out that (47), applied to the contrast pair (Mm,
Ôm), can extract more lexical information than the double application of
the original subroutine (46) to the two separate meaning combinations Mm
and Ôm. To see this, consider one of the two meaning combinations of the
contrast pair, say Mm. The original subroutine considers all underlying
forms Aa for Mm which are consistent with the input lexical and ranking
information, and only sets those features which are constant across all these
underlying forms. If the number of consistent underlying forms is large,
the number of features which are constant across them is small, and the
subroutine thus extracts little lexical information. (47) might instead be
able to extract more lexical information, because it looks for features which
are constant over a smaller set of underlying forms for Mm, namely those
underlying forms Aa which are not only consistent with the input lexical
and ranking information, but also use a su!x morpheme a which can be
combined with a root morpheme ∫ into an underlying form ∫a for Ôm
which is also consistent with the input lexical and ranking information.

I denote Tesar’s subroutine (29) for the extraction of ranking information
from a single meaning combination as ERIT, and Merchant’s subroutine
(40) as ERIM. Lemma 6 states that, if the underlying typology is output-
driven, then ERIT and ERIM are equivalent, because they update the
current ranking/grammatical information with the ‘same’ information. This
equivalence is striking, given that the time complexity of ERIT is only
linear in the number of features, while the time complexity of ERIM is
unknown, but probably exponential in both the number of features and the
number of morphemes. Output-drivenness thus a‰ords a significant
reduction in time complexity. The Correctness Lemma 1 for ERIT (which
was proven directly in §4.4) can also be made to follow from the Correctness
Lemma 4 for ERIT through the Equivalence Lemma 6.

1 Subroutines for extracting ranking information from a single
meaning combination

Proof. The underlying form Bb constructed by ERIT at line 4 is
consistent with Lex, and therefore belongs to the set " constructed by
ERIM at line 4. Consider one of the underlying forms Aa in this set ".
The two underlying forms Aa and Bb agree in every feature which is
set by the input partial lexicon Lex. Furthermore, Bb and the surface
form Xx agree in every remaining feature. Thus the underlying form
Bb is more similar to the surface form Xx than is the underlying form
Aa. Since the underlying typology is output-driven, then every ranking
which maps the less similar underlying form Aa to Xx also maps the
more similar underlying form Bb to Xx. In other words, any ranking
consistent with the ERC block ù(Aa, Xx) is also consistent with the
ERC block ù(Bb, Xx). Lemma 3.i thus ensures that the ERC block
ù(Bb, Xx) is the join of the ERC blocks ù(Aa, Xx) across all underlying
concatenations Aa in ".

Lemma 6
Suppose that the underlying typology is output-driven and that ERIT

is fed with a partial grammar G and a (possibly partial) lexicon Lex.
Suppose that ERIM is fed with the ERC matrix ù corresponding to
the partial grammar G and the same lexicon Lex. Then the ERC block
corresponding to the mapping (Bb, Xx) constructed by ERIT at line
4 is the join of the ERC blocks ù(Aa, Xx) corresponding to the
underlying forms Aa in " constructed by ERIM at line 5.

between the two implementations is the following: Merchant’s original
subroutine (46) sets any feature which is constant over "; the variant in (48)
instead focuses right from the beginning on a specific feature j, which is
unset for either the root M or the su!x m of the meaning combination Mm
under consideration. In line 3, I am assuming for concreteness that the
feature j is unset for the root M (the case where it is unset for the su!x m
is handled analogously). The modification is only cosmetic: the original
subroutine is equivalent to running this variant for each unset feature.

(48) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a meaning combination Mm in the paradigm p
Require: a feature j unset by Lex for either M or m; for concreteness,

say it is unset for M
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G

if all underlying forms Aa in " have the feature j set to the same
value in the root morpheme A then

update the lexicon Lex by setting the feature j to that value for
the root meaning M

end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.

8.
9.

I denote Tesar’s subroutine (33) for the extraction of lexical information
from a single meaning combination by ELIT, and (the cosmetic variant of)
the original inconsistency detection subroutine (48) by ELIid. Lemma 6
states that, if the underlying typology is output-driven, ELIT and ELIid

are equivalent, because their if-clauses at line 6 are equivalent. This
equivalence is striking, given that the if-clause of ELIT can be checked in
time linear in the number of features, while the if-clause of ELIid requires
time exponential in the number of features in the worst case. Output-
drivenness has thus a‰orded a significant reduction in time complexity.
The Correctness Lemma 2 for ELIT (which was proven directly in §4.5)
can also be made to follow from the Correctness Lemma 4 for ELIid through
the Equivalence Lemma 7.

Proof. To start, let me prove that the if-clause in line 6 of ELIT entails
the if-clause in line 6 of ELIid. Assume by contradiction that the
former if-clause is true while the latter if-clause is false. The hypothesis
that the if-clause of ELIid is false entails in particular that the set " of
consistent underlying forms constructed by ELIid at line 5 contains
an underlying form Aa whose root A disagrees with X relative to the
feature j (indeed, if all the underlying forms Aa in " had a root A
which agreed with X relative to j, the if-clause of ELIid would hold
true). The underlying form Aa and the underlying form Bb constructed
by ELIT at line 5 thus agree in the feature j for the root meaning M,
as they both have the opposite value from X. Furthermore, they agree
in every feature set by the partial lexicon Lex, because they are both
consistent with Lex. Finally, Bb agrees with Xx for every remaining
feature. The underlying form Bb is thus more similar to the surface
form Xx than is the underlying form Aa. Since the mapping (Aa, Xx)
is consistent with G (because Aa belongs to "), there exists a ranking
which is consistent with both. Since the grammar corresponding to
that ranking is output-driven and maps the less similar underlying
form Aa to Xx, it also maps the more similar underlying form Bb to
Xx. In other words, that ranking is also consistent with the mapping
(Bb, Xx). In conclusion, the mapping (Bb, Xx) and the grammar G
are consistent (because both are consistent with the ranking), contra-
dicting the hypothesis that the if-clause of ELIT is true.

Vice versa, let me prove that the if-clause in line 6 of ELIid entails
the if-clause in line 6 of ELIT. Assume by contradiction that the
former if-clause is true, while the latter if-clause is false. The hypothesis
that the if-clause of ELIT is false means that the input (partial) grammar
G is consistent with the mapping (Bb, Xx) of the underlying form Bb
constructed by ELIT at line 5 to the surface form Xx. Since this
underlying form Bb is consistent with Lex, then Bb belongs to the set
" of consistent underlying forms constructed at line 5 by ELIid. Since
B and X disagree relative to the feature j, consider the underlying
form ≥b, identical to Bb but for the fact that ≥ and X instead agree in
the feature j. Obviously, the underlying form ≥b is more similar to
the surface form Xx than is the underlying form Bb. Since (Bb, Xx)
is consistent with G, there exists a ranking which is consistent with
both. Since the grammar corresponding to that ranking is output-
driven and maps the less similar underlying form Bb to Xx, then it
also maps the more similar underlying form ≥b to Xx. In other words,
that ranking is also consistent with the mapping (≥b, Xx). This
underlying form ≥b thus belongs to the set " constructed by ELIid at
line 5.This conclusion contradicts the hypothesis that the if-clause of
ELIid holds, because it shows that " contains two underlying forms
Bb and ≥b, such that B and ≥ disagree in the feature j.Lemma 7

Suppose that the underlying typology is output-driven. Then the two
if-clauses in line 6 of ELIT and ELIid are equivalent.

Tesar’s subroutine for extracting lexical information from contrast pairs
is more involved than his other two subroutines, for extracting lexical and
ranking information from a single meaning combination. For this reason,
the latter two subroutines were reviewed in §4.4 and §4.5, while the former
subroutine is included in this appendix. Here I start out from Merchant’s
subroutine in (47) for extracting lexical information from contrast pairs,
and work towards Tesar’s reformulation, provided below in (52). This
seems to me the best way of making sense of the somewhat complex
formulation of Tesar’s subroutine. I begin by carrying out the same cosmetic
change as in the previous section: I replace the original subroutine (47)
with (49), which only di‰ers because line 3 focuses on a specific feature j,
unset by the input lexicon Lex for one of the three meanings M, Ô and m
of the contrast pair (Mm, Ôm). For concreteness, I assume it is unset for
the root meaning M.

3 Subroutines for extracting lexical information from a contrast
pair

Supplementary materials 1716 Giorgio Magri

(49) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫a, ∑π) is consistent with the grammar G

if all the pairs (Aa, ∫a) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.
9.

the two underlying su!x morphemes a and ¥ coincide, because they are
the underlying form corresponding to the same su!x meaning m. The
condition that a and ¥ coincide is in turn equivalent to the condition that
they agree for each feature y. We could of course relax this condition by
requiring that the two underlying su!x morphemes a and ¥ agree only for
certain features, y1, ..., yn. This intuition leads to the formulation in (50).
It di‰ers from (49) only because of the new line 4, which introduces the
features y1, ..., yn, and because of the additional fifth subclause in the
definition of the set ". Note that line 4 assumes all the features y1, ..., yn

to be unset by the input partial lexicon Lex for the shared su!x m, because
the condition that both a and ¥ are consistent with Lex as underlying forms
for m already entails that they agree on every feature set by Lex for m.

(50) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫¥) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ agree for every

feature y1, ..., yn

if all the pairs (Aa, ∫¥) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

combinations Mm and Ôm one at a time. If instead we consider all unset
y features at line 4, then (50) e‰ectively considers only pairs of underlying
forms for the two meaning combinations which share the underlying su!x,
and is therefore equivalent to the original subroutine (49) for extracting
lexical information from contrast pairs. In the end, depending on the
number of y features considered at line 4, (50) provides a whole range of
subroutines for extracting lexical information in between the weaker (46)
and the stronger (49).

Subroutine (50) can be equivalently restated as (51). Instead of requiring
the two su!x morphemes a and ¥ to coincide for every feature y1, ..., yn,
we consider all possible combinations v1, ..., vn of values of those features
at line 6, and we require both a and ¥ to have those features set equal to
those values in the fifth subclause of line 5.

(51) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫¥ is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ both have the

values v1, ..., vn for the features y1, ..., yn

if all the pairs (Aa, ∫¥) in all the sets "(v1, ..., vn) have the underlying
root A set to the same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

Supplementary materials 1918 Giorgio Magri

By reasoning as in the previous subsection we can easily show that subroutine
(51) is equivalent to (52) under the assumption of output-drivenness.
Indeed, the two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn con-
structed by (52) at line 6 provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (51).

(52) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and
±≤v1, …, vn, as follows:

- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-
lying forms for Mm and Ôm

- B has the opposite value for feature j than X
- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values

v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
if the grammar G is inconsistent with the two mappings (Bbv1, …, vn,

Xx) and (±≤v1, …, vn, ∑π) for any combination of values v1, ..., vn

then
update the lexicon Lex by setting feature j to that constant value

for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

If the features y1, ..., yn considered in line 4 of (52) exhaust the set of
features, then the two subroutines (49) and (52) are equivalent. However,
the running time of (52) is exponential in the number of features in the
latter case, because it needs to consider all combinations v1, ..., vn.

By reasoning as in the previous subsection, we can proceed from Merchant’s
original subroutine (41) for extracting ranking information from contrast
pairs to the variant in (53).

4 Subroutines for extracting ranking information from a contrast
pair

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫¥ is consistent with the lexicon Lex as an underlying form
for Ôm

- the two underlying su!x morphemes a and ¥ both have the
values v1, ..., vn for the features y1, ..., yn

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫¥) in "(v1, ..., vn) for all combinations of values
v1, ..., vn

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.

7.
8.

20 Giorgio Magri

Once again, if we do not consider any y features at line 3, (53) e‰ectively
considers the two meaning combinations of the contrast pair independently
of each other, and thus ends up equivalent to subroutine (40) for extracting
lexical information from single meaning combinations. If we instead consider
all unset y features at line 3, then (53) e‰ectively only considers pairs of
underlying forms for the two meaning combinations which share the
underlying su!x, and is therefore equivalent to Merchant’s original
subroutine (41) for extracting lexical information from contrast pairs.
Ultimately, depending on the number of y features considered at line 3,
(53) provides a whole range of subroutines for extracting ranking information
in between the weaker (40) and the stronger (41).

By reasoning as in §2 of this appendix, we can easily show subroutine
(53) to be equivalent to (54) under the assumption of output-drivenness.
The two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn constructed
by (54) at line 5 again provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (53).

(54)

- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values
v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
compute the join of the ERC matrices ù(Bbv1, …, vn, Xx)+

ù(±≤v1, …, vn, ∑π) for all combinations of values v1, ..., vn

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

6.

7.
8.

Take the simplest case, where we consider a single feature y at line 3.
Assume furthermore that y is binary, i.e. it only takes the values v=‘+’ and
v=‘—’. At line 5, the subroutine constructs the two underlying forms Bb+
and ±≤+, corresponding to the value v=‘+’of feature y (i.e. both b+ and ≤+
have the value ‘+’ for the feature y), and the two underlying forms Bb— and
±≤—, corresponding to the value v=‘—’ (i.e. both b— and ≤— have the value
‘—’ for the feature y). At line 6, we finally compute the join of the two ERC
blocks ù(Bb+, Xx)+ù(±≤+, ∑π) and ù(Bb—, Xx)+ù(±≤—, ∑π). Even in
the simplest case of a single feature y, there is no way around computing
the join.

In summary, Merchant develops a new subroutine for extracting ranking
information through the notion of join. This subroutine can be applied to
either a single meaning combination at a time, as in (40); or to a contrast
pair, as in (41). The latter is more powerful than the former: the subroutine
extracts more ranking information by processing the two meaning
combinations Mm and Ôm as a contrast pair than by processing them
separately. The crux of Merchant’s subroutine for extracting ranking
information is that it relies on the computation of a join, which is time-
consuming. The biggest impact of output-drivenness is that it allows
Merchant’s subroutine for extracting ranking information from a single
meaning combination to be restated without having to compute any join.
The restated subroutine thus runs in time linear in the number of features.
In other words, it is e!cient even relative to the more demanding notion
of e!ciency introduced in §2.6. The situation is unfortunately very di‰erent
when Merchant’s subroutine for extracting ranking information is boosted
by being applied to contrast pairs. In this case, output-drivenness is not
able to circumvent the computation of the join, and thus does not su!ce
to make the subroutine e!cient.

A constraint ranking is consistent with an ERC provided it satisfies con-
dition (36); it is consistent with an ERC matrix provided it is consistent
with each of its rows. An ERC matrix entails another ERC matrix provided

(38) Id
[str]

Id
[length]

Main-
L

Main-
R

No
Long

WSP

w
w

w
w
w
w

w
w
w
w

l
l
l
l

l

w
l

w

/’pa:’ka/, [’pa:ka], [pa’ka]
/’pa:’ka/, [’pa:ka], [pa’ka:]
/’pa:’ka/, [’pa:ka], [pa:’ka]
/’pa:’ka/, [’pa:ka], [pa:’ka:]
/’pa:’ka/, [’pa:ka], [’paka]
/’pa:’ka/, [’pa:ka], [’paka:]
/’pa:’ka/, [’pa:ka], [’pa:ka:]

w
w

w
w

Lemma 3
Suppose that one of the ERC matrices ù1, ù2, …, Rn is entailed
by each of the others. For concreteness, assume that it is ù1 which
is entailed by each of the other ERC matrices ù2, …, Rn. Then
ù1 is the join of ù1, ù2, …, Rn.

(i)

Given the ERC matrices ù1, ù2, ù3, …, Rn, replace two of them
with the ERC matrix obtained by stacking the two matrices one
on top of the other. For concreteness, replace ù1 and ù2 with
ù1+ù2. Then the join of the n®1 ERC matrices ù1+ù2, ù3,
…, Rn entails the join of the original n ERC matrices ù1, ù2, ù3,
…, Rn, while the reverse does not in general hold.

(ii)

compute the join of the ERC matrices ù(Aa, Xx) for all underlying
forms Aa in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.
7.

Proof. Let Aa be the underlying form assign ed to the meanin g
combination Mm by the target lexicon. This underlying form Aa
belongs to the set " constructed by the subroutine at line 4, because
of the hypothesis that the input lexicon Lex is consistent with the
target lexicon. Thus the corresponding ERC block ù(Aa, Xx) is one
of the blocks that the subroutine takes the join of at line 5. Since the
target ranking is consistent with this ERC block ù(Aa, Xx), then it
is also consistent with the join, by property (39a) of the join. Since the
target ranking is also consistent with the input ERC matrix ù, it is

Lemma 4
Merchant’s subroutine (40) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target ranking, that the input ERC matrix ù is
consistent with that target ranking, and that the input (possibly partial)
lexicon Lex is consistent with that target lexicon. The updated ERC
matrix returned by subroutine (40) is also consistent with that target
ranking.

then consistent with the updated ERC matrix returned by the sub-
routine.

(41) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫a) in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

1.

2.

3.

4.

5.

6.
7.

(43) ∑(ù1, ù2)+∑(π1, π2)

Lemma 3.iii ensures that (43) is equivalent to the join in (44). The four
ERC matrices being joined here correspond to all four combinations of
underlying forms for the two meaning combinations Mm and Ôm. In
particular, the learner is also joining together the two ERC blocks ù1+π2

and π2+ù1, whereby the shared su!x meaning m is assigned a di‰erent
underlying form in the case of Mm than in the case of Ôm. In other words,
since the learner is processing the two meaning combinations Mm and Ôm
separately, it is blind to the fact that these meaning combinations share the
su!x meaning m, which must therefore have the same underlying form in
both cases.

(44) ∑(ù1+π1, ù1+π2, ù2+π1, ù2+π2)

for the root meaning M (or for the su!x meaning m) (line 6). The lexicon
thus updated is then returned (line 8).

and that the input partial lexicon Lex is consistent with the target
lexicon. The updated lexicon returned by subroutine (46) is also
consistent with that target lexicon.

2 Subroutines for extracting lexical information from a single
meaning combination

Consider the slight variant (48) of the subroutine (46) for the extraction of
lexical information through inconsistency detection. The only di‰erence

The modification is only cosmetic: the original subroutine (47) is equivalent
to running this variant (49) for each feature which is unset for one of the
three morphemes M, Ô and m.

The set " constructed by the subroutine (49) at line 5 can equivalently
be described as the collection of all pairs (Aa, ∫¥) which satisfy the conditions
expressed by the four subclauses of line 5 plus the additional condition that

If we consider no y features at all in line 4, then (50) e‰ectively considers
the two meaning combinations of the contrast pair independently of each
other, and thus ends up equivalent to subroutine (46) for extracting lexical
information from single meaning combinations, in the sense that the
application of subroutine (50) to the contrast pair (Mm, Ôm) is equivalent
to two consecutive applications of subroutine (46) to the two meaning

Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and ±≤v1,

…, vn as follows
- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-

lying forms for Mm and Ôm

1.

2.

3.

4.

5.

(53) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

1.

2.

3.

4.

Phonology 25.2: Artwork 1 of

Supplementary materials 72 Giorgio Magri

every ranking consistent with the former is also consistent with the latter.
Thus ù1+ù2 entails both ù1 and ù2.

(36) At least one constraint which has a w in the ERC under consideration
is ranked above every constraint which instead has an l (constraints
which have an e play no role in the consistency condition).

2 The join

4 Giorgio Magri

Grammatical information was represented in §4.1.2 as a (possibly partial)
collection G of mappings (Aa, Xx) of an underlying form Aa to a surface
form Xx. Each of these mappings can be equivalently represented with the
corresponding ERC block ù(Aa, Xx). And the grammatical information
G can thus be represented with the ERC matrix obtained by stacking all
these blocks one of top of the other. Merchant’s CPR adopts the architecture
in (28), the only di‰erence being that the current partial grammatical
information is represented not as a partial grammar G but as an ERC matrix
ù. This makes the algorithm more flexible in the type of partial grammatical
information it maintains: any (partial) grammar G can be represented
through the corresponding ERC matrix, while not just any ERC matrix ù
corresponds to some partial collection of mappings. This additional flexibility
in the data structure maintained by the algorithm is crucial in order to
define the subroutine for extracting ranking information, as explained in
the next section.

Supplementary materials 5 6 Giorgio Magri 8 Giorgio Magri Supplementary materials 9 10 Giorgio Magri

Appendix B: Equivalence between Merchant’s and Tesar’s sub-
routines

Supplementary materials 11 12 Giorgio Magri Supplementary materials 13

Appendix A: Merchant’s (2008) CPR

Phonology 31 (2014). Supplementary materials

Review article

Giorgio Magri
CNRS, Université Paris 8 and University of Utrecht

Supplementary materials

This appendix sketches Merchant’s (2008) CPR algorithm. In §1, I explain
how CPR adheres to the architecture in (28), only with a more abstract
representation of the current partial ranking information in terms of ERCs.
I then review CPR’s subroutines for extracting ranking and lexical infor-
mation. I start from the easier case, where they are applied to a single
paradigmatic entry (§3 and §5), and then turn to the extension to contrast
pairs (§4 and §6).

1 ERCs and CPR’s architecture
An elementary ranking condition (ERC) is an assignment of one of the
three symbols l, w and e to each of the constraints in the constraint set
(Prince 2002). An ERC is usually represented as a row of these symbols,
with the constraints annotated on top. To illustrate, an ERC for the constraint
set (5) of the Paka typology is provided in (35). An ERC matrix is a finite
collection of ERCs, stacked one on top of the other (the order does not
matter). An arbitrary ERC matrix is denoted by ù. Given two ERC matrixes
ù1 and ù2, ù1+ù2 denotes the ERC matrix obtained by stacking one on
top of the other (the order does not matter).

14 Giorgio Magri Supplementary materials 15

Bruce Tesar (2014). Output-driven phonology: theory and learning. (Cam-
bridge Studies in Linguistics 139.) Cambridge: Cambridge University
Press. Pp. xix+415.

(35)
e

Id[str] Id[length] Main-L Main-R NoLong WSP
w w l l e|

The phonological underpinning of these notions is as follows. Consider the
mapping (Aa, Xx) of an underlying form Aa to a surface form Xx, which
is thus construed as the winner. For any other loser candidate Yy, consider
the ERC defined in (37). Stack all the ERCs thus constructed for all loser
candidates one on top of the other into an ERC matrix, denoted by ù(Aa,
Xx). Then the OT grammar corresponding to a ranking maps the under-
lying form Aa to the surface form Xx if and only if that ranking is consistent
with the ERC matrix ù(Aa, Xx) corresponding to that mapping.

(37) A constraint has a w provided it prefers the winner mapping (Aa,
Xx) to the loser mapping (Aa, Yy), i.e. it assigns fewer violations
to the former mapping than to the latter.

a.

A constraint has an l provided it instead prefers the loser mapping
(Aa, Yy) to the winner mapping (Aa, Xx), i.e. it assigns fewer
violations to the former mapping than to the latter.

b.

A constraint has an e provided it has no preference for one of the
two mappings (Aa, Xx) and (Aa, Yy), i.e. it assigns the same number
of violations to both.

c.

To illustrate, consider the Paka typology in §2.1 of the paper, focusing on
the mapping (/’pa:’ka/, [’pa:ka]) of the underlying form /’pa:’ka/ to the surface
form [’pa:ka]. The ERC matrix ù(/’pa:’ka/, [’pa:ka]) corresponding to this
mapping is provided in (38). It consists of seven ERCs, because there are
seven loser candidates. For convenience, each ERC is annotated on the left
with the corresponding underlying, winner and loser forms (loser forms
are struck through). The topmost ERC in (38) says that the winner mapping
(/’pa:’ka/, [’pa:ka]) beats the loser mapping (/’pa:’ka/, [pa’ka]), provided at
least one of the two winner-preferring constraints Ident[length] or Main-
L is ranked above the two loser-preferring constraints Main-R and NoLong.

Supplementary materials 3

The join of some ERC matrices ù1, …, ùn is any ERC matrix which satisfies
the two conditions in (39). Any such ERC matrix will be denoted by ∑(ù1,
…, ùn). Condition (39a) says that the join is weaker than (i.e. entailed by)
each matrix ù1, …, ùn. Condition (39b) says that, among all ERC matrices
which are weaker than (i.e. entailed by) each matrix ù1, …, ùn, the join is
a strongest one (i.e the one which entails all the others). In other words,
condition (39a) says that the join captures some of the ranking information
shared by the matrices ù1, …, ùn, and condition (39b) says there is no
shared ranking information which the join does not capture.

(39) Each of the ERC matrices ù1, …, ùn entails their join.a.
If each of the ERC matrices ù1, …, ùn entails some ERC matrix
ù, their join entails ù as well.

b.

Lemma 3 collects some properties of the join which will be used in the rest
of this appendix.

Proof. An ERC matrix ∏ is the join of two ERC matrixes ù1 and ù2

if and only if the set of rankings consistent with ∏ is the union of the
two sets of rankings consistent with ù1 and ù2. Furthermore, the set
of rankings consistent with ù1+ù2 is the intersection of the two sets
of rankings consistent with ù1 and ù2. Claims (i)–(iii) then follow
from elementary set-theoretic manipulations on the sets of consistent
rankings.

Given four ERC matrices ù1, ù2, π1, π2, consider the ERC
matrix ∑(ù1, ù2)+∑(π1, π2) obtained by stacking one on top of
the other the join of ù1 and ù2 and the join of π1 and π2. Then
∑(ù1, ù2)+∑(π1, π2) coincides with the join of the four ERC
matrices ù1+π1, ù1+π2, ù2+π1, ù2+π2.

(iii)

3 A subroutine for extracting ranking information through the join
3.1 Description of the subroutine. The subroutine in (40) takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex and a paradigm
p (line 1). It extends the ranking information encoded in the input ERC
matrix ù by adding to that input ERC matrix some additional ERCs as
follows. The subroutine considers a certain meaning combination Mm (line
2), and it reads o‰ the paradigm p the surface realisation Xx of that meaning
combination Mm (line 3). The subroutine then constructs the set " of all
underlying concatenations Aa which are consistent with the lexicon Lex as
underlying forms for that meaning combination Mm (line 4). This means
that if Lex sets a feature for the root M or the su!x m to a certain value,
then the root morpheme A or the su!x morpheme a of each underlying
form Aa in " has the feature set to that value. Any of these underlying
forms in " could be the actual underlying form according to the partial
lexical information encoded by Lex. In other words, the target grammar
could enforce any of the mappings (Aa, Xx) of any underlying form Aa in
" to the surface form Xx. Thus the best the subroutine can do is to extract
any ranking information shared by all these mappings. This is done by
computing the join of all ERC blocks ù(Aa, Xx) corresponding to all
mappings (Aa, Xx) of all underlying forms Aa in " to the surface form Xx
(line 5). The input ERC matrix ù is updated by adding this join to it (line
6). The ERC matrix thus updated is returned (line 7).

(40) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all concatenations Aa consistent with Lex as

underlying forms for Mm

1.

2.
3.

4.

The join of the ERC blocks ù(Aa, Xx) computed at line 5 is an ERC-
theoretic construct which might very well not correspond, in the sense of
(37), to any mapping of an underlying form to a surface form. For this
reason, CPR needs the additional flexibility of representing the current
(partial) grammatical/ranking information as an ERC matrix rather than
as a (partial) grammar. Appendix B: §1 shows that output-drivenness in
e‰ect guarantees that the join computed in line 5 always corresponds to the
mapping of a certain underlying form to the surface form Xx read at line
3.

3.2 Analysis of the subroutine. Lemma 4 provides a straightforward correct-
ness result for Merchant’s subroutine (40). Note that the proof only uses
property (39a) of the join, not property (39b). In other words, the lemma
hinges only on the fact that the join extracts ranking information which is
shared by all the ERC blocks ù(Aa, Xx). Property (39b) is nonetheless
crucial, because it ensures that the join does not lack any of this shared
ranking informa tion, making subroutine (40) optimal. The crux of
Merchant’s subroutine is its time complexity. Merchant (2008: ch. 4)
develops an elegant algorithm for computing the join which can be used
to implement line 5. Unfortunately, his algorithm needs to compute the
fusional closure of each of the input ERC matrices it has to join. Although
there are no results that I am aware of concerning the time complexity of
that computation, it is most plausibly intractable in the general case.

4 Extension to contrast pairs
4.1 Description of the subroutine. The extension of Merchant’s subroutine
(40) to contrast pairs is provided in (41). This subroutine takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex, and a paradigm
p (line 1). The subroutine considers some contrast pair (line 2). For concrete-
ness, I am assuming here that the two meaning combinations of the contrast
pair share the su!x meaning, i.e. have the shape Mm and Ôm (the case
where they share the root meaning is handled analogously). The
subroutine reads o‰ the paradigm p the surface realisations Xx and ∑π of
those two meaning combinations (line 3). Although x and π are the surface
realisations of the same underlying su!x segment corresponding to the
su!x meaning m, they can be di‰erent, because of morphophonem ic
alternations in the surface realisation of that underlying su!x triggered by
the two di‰erent roots M and Ô. The subroutine then constructs the set
" of all pairs (Aa, ∫a) of underlying concatenations which are consistent
with the lexicon Lex as underlying forms for the meaning combinations
Mm and Ôm and furthermore share the underlying su!x segment a (line
4). The latter requirement encodes the fact that we are focusing on a pair
of meaning combinations Mm and Ôm which share the su!x meaning m.
For each pair (Aa, ∫a) of underlying concatenations in ", the subroutine
considers the corresponding ERC blocks ù(Aa, Xx) and ù(∫a, ∑π), stacks
them together into the ERC matrix ù(Aa, Xx)+ù(∫a, ∑π) and constructs
the join of all ERC matrices thus obtained (line 5). The input ERC matrix
ù is updated by adding this join to it (line 6). The ERC matrix thus updated
is then returned (line 7).

There is a subtlety which should be pointed out here. At line 5, the subroutine
considers the join in (42a), not the one in (42b). The di‰erence is that in
(42a) we sum together the two ERC blocks ù(Aa, Xx) and ù(∫a, ∑π) into
ù(Aa, Xx)+ù(∫a, ∑π) before taking the join. This is indeed appropriate,
because the join in (42a) is stronger than the one in (42b), by Lemma 3.ii.

(42) ∑{ù(Aa, Xx)+ù(∫a, ∑π) | (Aa, ∫a)Œ"}a.
∑{ù(Aa, Xx), ù(∫a, ∑π) | (Aa, ∫a)Œ"}b.

4.2 Analysis of the subroutine. The Correctness Lemma 4 trivially extends
from the original subroutine (40) for single meaning combinations to the
variant (41) for contrast pairs. The ine!ciency of (40) for single meaning
combinations is of course aggravated in (41) for contrast pairs, as the latter
requires taking the join of a larger number of larger ERC matrices. Yet
subroutine (41) applied to the contrast pair (Mm, Ôm) is able to extract
more ranking information than the double applica tion of the original
subroutine (40) to the two separate meaning combinations Mm and Ôm.
To see this, suppose that the root meaning M admits a unique underlying
form A consistent with Lex, the root meaning Ô admits a unique under-
lying form ∫ and the su!x meaning m admits only two underlying forms,
a1 and a2. Suppose we first apply the original subroutine (40) to the meaning
combination Mm. At line 4, it constructs the set " consisting of the two
underlying forms Aa1 and Aa2. At line 5, it computes the join ∑(ù1, ù2)
of the two ERC blocks ù1=ù(Aa1, Xx) and ù2=ù(Aa2, Xx). Suppose
we next apply the original subroutine (40) to the meaning combination
Ôm. At line 4, it constructs the set ", consisting of the two underlying
forms ∫a1 and ∫a2. At line 5, it computes the join ∑(π1, π2) of the two
ERC blocks π1=ù(∫a1, ∑π) and π2=ù(∫a2, ∑π). Ultimately, the two
consecutive applications of the original subroutine (40) to the two meaning
combinations Mm and Ôm extract the ranking information captured by
the sum of the two joins in (43).

Suppose we instead apply subroutine (41) to the contrast pair (Mm, Ôm).
At line 4, it constructs the set ", consisting of the two pairs (Aa1, ∫a1) and
(Aa2, ∫a2). At line 5, it computes the join in (45) of the two ERC blocks
ù(Aa1, Xx)+ù(∫a1, ∑π)=ù1+π1 and ù(Aa2 , Xx)+ù(∫a2, ∑π) =
ù2+π2.

(45) ∑(ù1+π1, ù2+π2)

The join in (45) is stronger than the one in (44), because it joins fewer
matrices (the smaller the number of matrices, the larger the amount of
shared information for the join to extract). This is because the two blocks
ù1+π2 and ù2+π1 have disappeared from the join. This is what we want,
as they correspond to the unreasonable assumption that the su!x m has
di‰erent underlying forms in the two meaning combinations Mm and Ôm.
In other words, since the learner is processing the two meaning combinations
Mm and Ôm together as a contrast pair, it is able to take into account the
fact that these meaning combinations share the su!x meaning m, which
must therefore have the same underlying form in the two cases.

5 A subroutine for extracting lexical information through
inconsistency detection

5.1 Description of the subroutine. Subroutine (46) takes as input some
lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine then considers a certain
meaning combination Mm with some feature unset according to the input
partial lexicon Lex for either the root M or the su!x m (line 2). The goal
of the subroutine is to try to extend the input partial lexicon by setting
some of these unset features. To this end, the subroutine reads o‰ the
paradigm p the surface realisation Xx of the meaning combination Mm
(line 3). It constructs the set " of all underlying concatenations Aa which
are consistent with both the input lexical information Lex and the input
ranking information captured by the grammar G (or the ERC matrix ù)
(line 4). Consistency with the input lexical information means that, if Lex
sets a feature for the root M (or the su!x m) to a certain value, then the
root morpheme A (or the su!x morpheme a) of each underlying form Aa
in " has the feature set to that value. Consistency with the input ranking
information means that the input grammar G (or the input ERC matrix ù)
is consistent with the mapping (Aa, Xx) of each such underlying form Aa
in " to the surface form Xx. The subroutine then looks for a feature which
is unset by Lex for the root meaning M (or the su!x meaning m), such that
each root morpheme A (or each su!x morpheme a) has the same value for
that feature in all underlying concatenations Aa in " (line 5). For any such
feature, it can be concluded that the opposite value is inconsistent with the
available lexical and ranking information. The subroutine thus updates the
partial lexicon Lex by setting that feature to be equal to its constant value

(46) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that:
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G (or

the ERC matrix ù)
if some feature unset for the root M (or for the su!x m) has a

constant value over " for M (for m) then
update the lexicon Lex by setting the feature to that value for

the root M (or for the su!x m)
end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.
8.

This subroutine is called inconsistency detection (cf. Kager 1999, Tesar
et al. 2003, Tesar 2006), because it sets a certain feature to a certain value
based on the detection at line 6 of the fact that any other value for that
feature would be inconsistent with the available lexical and ranking
information.

Proof. Assume by contradiction that the lemma is false. This means
that the subroutine has set some feature j for, say, the root meaning
M to a value which is di‰erent from the value assigned by the target
lexicon. For concreteness, assume that the values assigned by the
subroutine and the target lexicon are + and — respectively. Thus , the
target lexicon assigns to the meaning combination Mm an underlying
form Aa, which has feature j set to the value — in the root A. This
underlying form Aa is consistent with the partial lexicon Lex (because
it is consistent with the target lexicon, which is in turn consistent with
Lex). Furthermore, the mapping (Aa, Xx) of this underlying form Aa
to the surface form Xx is consistent with the input grammar G (because
the target ranking is consistent with both). In other words, this
underlying form Aa satisfies the two conditions stated by the two
subclauses in line 4 and thus belongs to the set " constructed by the
subroutine. Since this underlying form Aa has feature j set equal to
— for the root A, then the subroutine cannot have set that feature to
the opposite value + at line 6.

5.2 Analysis of the subroutine. Lemma 5 provides a straightforward correct-
ness result for inconsistency detection (46). Its time complexity is controlled
by the size of the set " of consistent underlying forms constructed at line 4.
In the worst case (when both the input lexicon and the input ranking
information are empty), " consists of all underlying forms, i.e. all con-
catenations of root and su!x morphemes. In this case, the size of " grows
polynomially in the number of morphemes and thus exponentially in the
number of features. In conclusion, subroutine (46) is e!cient relative to
the generous notion of e!ciency defined in (14), which measures time
complexity in terms of the number of morphemes, but is not e!cient
relative to the more demanding notion of e!ciency defined in (15), which
measures time complexity in terms of the number of features.

Lemma 5
Inconsistency detection (46) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target grammar, that the input (possibly partial)
grammar G (or ERC matrix ù) is consistent with the target grammar

6 Extension to contrast pairs
6.1 Description of the subroutine. The extension of inconsistency detection
(46) to contrast pairs is provided in (47). This subroutine takes as input
some lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine considers a particular
contrast pair (line 2). For concreteness, I am assuming here that the two
meaning combinations of the contrast pair share the su!x meaning, namely
have the shape Mm and Ôm (the case where they share the root meaning
is handled analogously). The subroutine reads o‰ the paradigm p the surface
realisations Xx and ∑π of those two meaning combinations (line 3). It
constructs the set " of all pairs (Aa, ∫a) of underlying concatenations which
are consistent with both the input lexical information Lex and the input
ranking information G (or ù) and furthermore share the underlying su!x
segment a (line 4). The subroutine then looks for a feature which is unset
by Lex for the root meaning M (or the root meaning Ô or the su!x meaning
m), such that each underlying root morpheme A (or each underlying root
morpheme ∫ or each underlying su!x morpheme a) has the same value
for that feature in all pairs (Aa, ∫a) in " (line 5). For any such feature, the
subroutine updates the partial lexicon Lex by setting the feature equal to
its constant value for the root meaning M (or for the root meaning Ô or
for the su!x meaning m) (line 6). The lexicon thus updated is then returned
(line 8).

(47) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G (or
the ERC matrix ù)

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

- the mapping (∫a, ∑π) is consistent with the grammar G
if some unset feature has a constant value over " for any of the three

meanings M, Ô or m then
update the lexicon Lex by setting the feature to the constant

value for that meaning
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.
8.

6.2 Analysis of the subroutine. The Correctness Lemma 5 trivially extends
from the original subroutine (46) for single meaning combinations to the
variant (47) for contrast pairs. Furthermore, the variant for contrast pairs
remains as e!cient as the original version for single meaning combinations,
when e!ciency is generously measured in terms of the number of morphemes
(but again, not when it is measured in terms of the number of features).
Yet a number of authors (including Alderete et al. 2005 and Merchant &
Tesar 2008) have pointed out that (47), applied to the contrast pair (Mm,
Ôm), can extract more lexical information than the double application of
the original subroutine (46) to the two separate meaning combinations Mm
and Ôm. To see this, consider one of the two meaning combinations of the
contrast pair, say Mm. The original subroutine considers all underlying
forms Aa for Mm which are consistent with the input lexical and ranking
information, and only sets those features which are constant across all these
underlying forms. If the number of consistent underlying forms is large,
the number of features which are constant across them is small, and the
subroutine thus extracts little lexical information. (47) might instead be
able to extract more lexical information, because it looks for features which
are constant over a smaller set of underlying forms for Mm, namely those
underlying forms Aa which are not only consistent with the input lexical
and ranking information, but also use a su!x morpheme a which can be
combined with a root morpheme ∫ into an underlying form ∫a for Ôm
which is also consistent with the input lexical and ranking information.

I denote Tesar’s subroutine (29) for the extraction of ranking information
from a single meaning combination as ERIT, and Merchant’s subroutine
(40) as ERIM. Lemma 6 states that, if the underlying typology is output-
driven, then ERIT and ERIM are equivalent, because they update the
current ranking/grammatical information with the ‘same’ information. This
equivalence is striking, given that the time complexity of ERIT is only
linear in the number of features, while the time complexity of ERIM is
unknown, but probably exponential in both the number of features and the
number of morphemes. Output-drivenness thus a‰ords a significant
reduction in time complexity. The Correctness Lemma 1 for ERIT (which
was proven directly in §4.4) can also be made to follow from the Correctness
Lemma 4 for ERIT through the Equivalence Lemma 6.

1 Subroutines for extracting ranking information from a single
meaning combination

Proof. The underlying form Bb constructed by ERIT at line 4 is
consistent with Lex, and therefore belongs to the set " constructed by
ERIM at line 4. Consider one of the underlying forms Aa in this set ".
The two underlying forms Aa and Bb agree in every feature which is
set by the input partial lexicon Lex. Furthermore, Bb and the surface
form Xx agree in every remaining feature. Thus the underlying form
Bb is more similar to the surface form Xx than is the underlying form
Aa. Since the underlying typology is output-driven, then every ranking
which maps the less similar underlying form Aa to Xx also maps the
more similar underlying form Bb to Xx. In other words, any ranking
consistent with the ERC block ù(Aa, Xx) is also consistent with the
ERC block ù(Bb, Xx). Lemma 3.i thus ensures that the ERC block
ù(Bb, Xx) is the join of the ERC blocks ù(Aa, Xx) across all underlying
concatenations Aa in ".

Lemma 6
Suppose that the underlying typology is output-driven and that ERIT

is fed with a partial grammar G and a (possibly partial) lexicon Lex.
Suppose that ERIM is fed with the ERC matrix ù corresponding to
the partial grammar G and the same lexicon Lex. Then the ERC block
corresponding to the mapping (Bb, Xx) constructed by ERIT at line
4 is the join of the ERC blocks ù(Aa, Xx) corresponding to the
underlying forms Aa in " constructed by ERIM at line 5.

between the two implementations is the following: Merchant’s original
subroutine (46) sets any feature which is constant over "; the variant in (48)
instead focuses right from the beginning on a specific feature j, which is
unset for either the root M or the su!x m of the meaning combination Mm
under consideration. In line 3, I am assuming for concreteness that the
feature j is unset for the root M (the case where it is unset for the su!x m
is handled analogously). The modification is only cosmetic: the original
subroutine is equivalent to running this variant for each unset feature.

(48) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a meaning combination Mm in the paradigm p
Require: a feature j unset by Lex for either M or m; for concreteness,

say it is unset for M
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G

if all underlying forms Aa in " have the feature j set to the same
value in the root morpheme A then

update the lexicon Lex by setting the feature j to that value for
the root meaning M

end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.

8.
9.

I denote Tesar’s subroutine (33) for the extraction of lexical information
from a single meaning combination by ELIT, and (the cosmetic variant of)
the original inconsistency detection subroutine (48) by ELIid. Lemma 6
states that, if the underlying typology is output-driven, ELIT and ELIid

are equivalent, because their if-clauses at line 6 are equivalent. This
equivalence is striking, given that the if-clause of ELIT can be checked in
time linear in the number of features, while the if-clause of ELIid requires
time exponential in the number of features in the worst case. Output-
drivenness has thus a‰orded a significant reduction in time complexity.
The Correctness Lemma 2 for ELIT (which was proven directly in §4.5)
can also be made to follow from the Correctness Lemma 4 for ELIid through
the Equivalence Lemma 7.

Proof. To start, let me prove that the if-clause in line 6 of ELIT entails
the if-clause in line 6 of ELIid. Assume by contradiction that the
former if-clause is true while the latter if-clause is false. The hypothesis
that the if-clause of ELIid is false entails in particular that the set " of
consistent underlying forms constructed by ELIid at line 5 contains
an underlying form Aa whose root A disagrees with X relative to the
feature j (indeed, if all the underlying forms Aa in " had a root A
which agreed with X relative to j, the if-clause of ELIid would hold
true). The underlying form Aa and the underlying form Bb constructed
by ELIT at line 5 thus agree in the feature j for the root meaning M,
as they both have the opposite value from X. Furthermore, they agree
in every feature set by the partial lexicon Lex, because they are both
consistent with Lex. Finally, Bb agrees with Xx for every remaining
feature. The underlying form Bb is thus more similar to the surface
form Xx than is the underlying form Aa. Since the mapping (Aa, Xx)
is consistent with G (because Aa belongs to "), there exists a ranking
which is consistent with both. Since the grammar corresponding to
that ranking is output-driven and maps the less similar underlying
form Aa to Xx, it also maps the more similar underlying form Bb to
Xx. In other words, that ranking is also consistent with the mapping
(Bb, Xx). In conclusion, the mapping (Bb, Xx) and the grammar G
are consistent (because both are consistent with the ranking), contra-
dicting the hypothesis that the if-clause of ELIT is true.

Vice versa, let me prove that the if-clause in line 6 of ELIid entails
the if-clause in line 6 of ELIT. Assume by contradiction that the
former if-clause is true, while the latter if-clause is false. The hypothesis
that the if-clause of ELIT is false means that the input (partial) grammar
G is consistent with the mapping (Bb, Xx) of the underlying form Bb
constructed by ELIT at line 5 to the surface form Xx. Since this
underlying form Bb is consistent with Lex, then Bb belongs to the set
" of consistent underlying forms constructed at line 5 by ELIid. Since
B and X disagree relative to the feature j, consider the underlying
form ≥b, identical to Bb but for the fact that ≥ and X instead agree in
the feature j. Obviously, the underlying form ≥b is more similar to
the surface form Xx than is the underlying form Bb. Since (Bb, Xx)
is consistent with G, there exists a ranking which is consistent with
both. Since the grammar corresponding to that ranking is output-
driven and maps the less similar underlying form Bb to Xx, then it
also maps the more similar underlying form ≥b to Xx. In other words,
that ranking is also consistent with the mapping (≥b, Xx). This
underlying form ≥b thus belongs to the set " constructed by ELIid at
line 5.This conclusion contradicts the hypothesis that the if-clause of
ELIid holds, because it shows that " contains two underlying forms
Bb and ≥b, such that B and ≥ disagree in the feature j.Lemma 7

Suppose that the underlying typology is output-driven. Then the two
if-clauses in line 6 of ELIT and ELIid are equivalent.

Tesar’s subroutine for extracting lexical information from contrast pairs
is more involved than his other two subroutines, for extracting lexical and
ranking information from a single meaning combination. For this reason,
the latter two subroutines were reviewed in §4.4 and §4.5, while the former
subroutine is included in this appendix. Here I start out from Merchant’s
subroutine in (47) for extracting lexical information from contrast pairs,
and work towards Tesar’s reformulation, provided below in (52). This
seems to me the best way of making sense of the somewhat complex
formulation of Tesar’s subroutine. I begin by carrying out the same cosmetic
change as in the previous section: I replace the original subroutine (47)
with (49), which only di‰ers because line 3 focuses on a specific feature j,
unset by the input lexicon Lex for one of the three meanings M, Ô and m
of the contrast pair (Mm, Ôm). For concreteness, I assume it is unset for
the root meaning M.

3 Subroutines for extracting lexical information from a contrast
pair

Supplementary materials 1716 Giorgio Magri

(49) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫a, ∑π) is consistent with the grammar G

if all the pairs (Aa, ∫a) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.
9.

the two underlying su!x morphemes a and ¥ coincide, because they are
the underlying form corresponding to the same su!x meaning m. The
condition that a and ¥ coincide is in turn equivalent to the condition that
they agree for each feature y. We could of course relax this condition by
requiring that the two underlying su!x morphemes a and ¥ agree only for
certain features, y1, ..., yn. This intuition leads to the formulation in (50).
It di‰ers from (49) only because of the new line 4, which introduces the
features y1, ..., yn, and because of the additional fifth subclause in the
definition of the set ". Note that line 4 assumes all the features y1, ..., yn

to be unset by the input partial lexicon Lex for the shared su!x m, because
the condition that both a and ¥ are consistent with Lex as underlying forms
for m already entails that they agree on every feature set by Lex for m.

(50) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫¥) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ agree for every

feature y1, ..., yn

if all the pairs (Aa, ∫¥) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

combinations Mm and Ôm one at a time. If instead we consider all unset
y features at line 4, then (50) e‰ectively considers only pairs of underlying
forms for the two meaning combinations which share the underlying su!x,
and is therefore equivalent to the original subroutine (49) for extracting
lexical information from contrast pairs. In the end, depending on the
number of y features considered at line 4, (50) provides a whole range of
subroutines for extracting lexical information in between the weaker (46)
and the stronger (49).

Subroutine (50) can be equivalently restated as (51). Instead of requiring
the two su!x morphemes a and ¥ to coincide for every feature y1, ..., yn,
we consider all possible combinations v1, ..., vn of values of those features
at line 6, and we require both a and ¥ to have those features set equal to
those values in the fifth subclause of line 5.

(51) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫¥ is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ both have the

values v1, ..., vn for the features y1, ..., yn

if all the pairs (Aa, ∫¥) in all the sets "(v1, ..., vn) have the underlying
root A set to the same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

Supplementary materials 1918 Giorgio Magri

By reasoning as in the previous subsection we can easily show that subroutine
(51) is equivalent to (52) under the assumption of output-drivenness.
Indeed, the two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn con-
structed by (52) at line 6 provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (51).

(52) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and
±≤v1, …, vn, as follows:

- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-
lying forms for Mm and Ôm

- B has the opposite value for feature j than X
- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values

v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
if the grammar G is inconsistent with the two mappings (Bbv1, …, vn,

Xx) and (±≤v1, …, vn, ∑π) for any combination of values v1, ..., vn

then
update the lexicon Lex by setting feature j to that constant value

for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

If the features y1, ..., yn considered in line 4 of (52) exhaust the set of
features, then the two subroutines (49) and (52) are equivalent. However,
the running time of (52) is exponential in the number of features in the
latter case, because it needs to consider all combinations v1, ..., vn.

By reasoning as in the previous subsection, we can proceed from Merchant’s
original subroutine (41) for extracting ranking information from contrast
pairs to the variant in (53).

4 Subroutines for extracting ranking information from a contrast
pair

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫¥ is consistent with the lexicon Lex as an underlying form
for Ôm

- the two underlying su!x morphemes a and ¥ both have the
values v1, ..., vn for the features y1, ..., yn

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫¥) in "(v1, ..., vn) for all combinations of values
v1, ..., vn

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.

7.
8.

20 Giorgio Magri

Once again, if we do not consider any y features at line 3, (53) e‰ectively
considers the two meaning combinations of the contrast pair independently
of each other, and thus ends up equivalent to subroutine (40) for extracting
lexical information from single meaning combinations. If we instead consider
all unset y features at line 3, then (53) e‰ectively only considers pairs of
underlying forms for the two meaning combinations which share the
underlying su!x, and is therefore equivalent to Merchant’s original
subroutine (41) for extracting lexical information from contrast pairs.
Ultimately, depending on the number of y features considered at line 3,
(53) provides a whole range of subroutines for extracting ranking information
in between the weaker (40) and the stronger (41).

By reasoning as in §2 of this appendix, we can easily show subroutine
(53) to be equivalent to (54) under the assumption of output-drivenness.
The two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn constructed
by (54) at line 5 again provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (53).

(54)

- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values
v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
compute the join of the ERC matrices ù(Bbv1, …, vn, Xx)+

ù(±≤v1, …, vn, ∑π) for all combinations of values v1, ..., vn

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

6.

7.
8.

Take the simplest case, where we consider a single feature y at line 3.
Assume furthermore that y is binary, i.e. it only takes the values v=‘+’ and
v=‘—’. At line 5, the subroutine constructs the two underlying forms Bb+
and ±≤+, corresponding to the value v=‘+’of feature y (i.e. both b+ and ≤+
have the value ‘+’ for the feature y), and the two underlying forms Bb— and
±≤—, corresponding to the value v=‘—’ (i.e. both b— and ≤— have the value
‘—’ for the feature y). At line 6, we finally compute the join of the two ERC
blocks ù(Bb+, Xx)+ù(±≤+, ∑π) and ù(Bb—, Xx)+ù(±≤—, ∑π). Even in
the simplest case of a single feature y, there is no way around computing
the join.

In summary, Merchant develops a new subroutine for extracting ranking
information through the notion of join. This subroutine can be applied to
either a single meaning combination at a time, as in (40); or to a contrast
pair, as in (41). The latter is more powerful than the former: the subroutine
extracts more ranking information by processing the two meaning
combinations Mm and Ôm as a contrast pair than by processing them
separately. The crux of Merchant’s subroutine for extracting ranking
information is that it relies on the computation of a join, which is time-
consuming. The biggest impact of output-drivenness is that it allows
Merchant’s subroutine for extracting ranking information from a single
meaning combination to be restated without having to compute any join.
The restated subroutine thus runs in time linear in the number of features.
In other words, it is e!cient even relative to the more demanding notion
of e!ciency introduced in §2.6. The situation is unfortunately very di‰erent
when Merchant’s subroutine for extracting ranking information is boosted
by being applied to contrast pairs. In this case, output-drivenness is not
able to circumvent the computation of the join, and thus does not su!ce
to make the subroutine e!cient.

A constraint ranking is consistent with an ERC provided it satisfies con-
dition (36); it is consistent with an ERC matrix provided it is consistent
with each of its rows. An ERC matrix entails another ERC matrix provided

(38) Id
[str]

Id
[length]

Main-
L

Main-
R

No
Long

WSP

w
w

w
w
w
w

w
w
w
w

l
l
l
l

l

w
l

w

/’pa:’ka/, [’pa:ka], [pa’ka]
/’pa:’ka/, [’pa:ka], [pa’ka:]
/’pa:’ka/, [’pa:ka], [pa:’ka]
/’pa:’ka/, [’pa:ka], [pa:’ka:]
/’pa:’ka/, [’pa:ka], [’paka]
/’pa:’ka/, [’pa:ka], [’paka:]
/’pa:’ka/, [’pa:ka], [’pa:ka:]

w
w

w
w

Lemma 3
Suppose that one of the ERC matrices ù1, ù2, …, Rn is entailed
by each of the others. For concreteness, assume that it is ù1 which
is entailed by each of the other ERC matrices ù2, …, Rn. Then
ù1 is the join of ù1, ù2, …, Rn.

(i)

Given the ERC matrices ù1, ù2, ù3, …, Rn, replace two of them
with the ERC matrix obtained by stacking the two matrices one
on top of the other. For concreteness, replace ù1 and ù2 with
ù1+ù2. Then the join of the n®1 ERC matrices ù1+ù2, ù3,
…, Rn entails the join of the original n ERC matrices ù1, ù2, ù3,
…, Rn, while the reverse does not in general hold.

(ii)

compute the join of the ERC matrices ù(Aa, Xx) for all underlying
forms Aa in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.
7.

Proof. Let Aa be the underlying form assign ed to the meanin g
combination Mm by the target lexicon. This underlying form Aa
belongs to the set " constructed by the subroutine at line 4, because
of the hypothesis that the input lexicon Lex is consistent with the
target lexicon. Thus the corresponding ERC block ù(Aa, Xx) is one
of the blocks that the subroutine takes the join of at line 5. Since the
target ranking is consistent with this ERC block ù(Aa, Xx), then it
is also consistent with the join, by property (39a) of the join. Since the
target ranking is also consistent with the input ERC matrix ù, it is

Lemma 4
Merchant’s subroutine (40) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target ranking, that the input ERC matrix ù is
consistent with that target ranking, and that the input (possibly partial)
lexicon Lex is consistent with that target lexicon. The updated ERC
matrix returned by subroutine (40) is also consistent with that target
ranking.

then consistent with the updated ERC matrix returned by the sub-
routine.

(41) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫a) in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

1.

2.

3.

4.

5.

6.
7.

(43) ∑(ù1, ù2)+∑(π1, π2)

Lemma 3.iii ensures that (43) is equivalent to the join in (44). The four
ERC matrices being joined here correspond to all four combinations of
underlying forms for the two meaning combinations Mm and Ôm. In
particular, the learner is also joining together the two ERC blocks ù1+π2

and π2+ù1, whereby the shared su!x meaning m is assigned a di‰erent
underlying form in the case of Mm than in the case of Ôm. In other words,
since the learner is processing the two meaning combinations Mm and Ôm
separately, it is blind to the fact that these meaning combinations share the
su!x meaning m, which must therefore have the same underlying form in
both cases.

(44) ∑(ù1+π1, ù1+π2, ù2+π1, ù2+π2)

for the root meaning M (or for the su!x meaning m) (line 6). The lexicon
thus updated is then returned (line 8).

and that the input partial lexicon Lex is consistent with the target
lexicon. The updated lexicon returned by subroutine (46) is also
consistent with that target lexicon.

2 Subroutines for extracting lexical information from a single
meaning combination

Consider the slight variant (48) of the subroutine (46) for the extraction of
lexical information through inconsistency detection. The only di‰erence

The modification is only cosmetic: the original subroutine (47) is equivalent
to running this variant (49) for each feature which is unset for one of the
three morphemes M, Ô and m.

The set " constructed by the subroutine (49) at line 5 can equivalently
be described as the collection of all pairs (Aa, ∫¥) which satisfy the conditions
expressed by the four subclauses of line 5 plus the additional condition that

If we consider no y features at all in line 4, then (50) e‰ectively considers
the two meaning combinations of the contrast pair independently of each
other, and thus ends up equivalent to subroutine (46) for extracting lexical
information from single meaning combinations, in the sense that the
application of subroutine (50) to the contrast pair (Mm, Ôm) is equivalent
to two consecutive applications of subroutine (46) to the two meaning

Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and ±≤v1,

…, vn as follows
- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-

lying forms for Mm and Ôm

1.

2.

3.

4.

5.

(53) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

1.

2.

3.

4.

Phonology 25.2: Artwork 1 of

Supplementary materials 72 Giorgio Magri

every ranking consistent with the former is also consistent with the latter.
Thus ù1+ù2 entails both ù1 and ù2.

(36) At least one constraint which has a w in the ERC under consideration
is ranked above every constraint which instead has an l (constraints
which have an e play no role in the consistency condition).

2 The join

4 Giorgio Magri

Grammatical information was represented in §4.1.2 as a (possibly partial)
collection G of mappings (Aa, Xx) of an underlying form Aa to a surface
form Xx. Each of these mappings can be equivalently represented with the
corresponding ERC block ù(Aa, Xx). And the grammatical information
G can thus be represented with the ERC matrix obtained by stacking all
these blocks one of top of the other. Merchant’s CPR adopts the architecture
in (28), the only di‰erence being that the current partial grammatical
information is represented not as a partial grammar G but as an ERC matrix
ù. This makes the algorithm more flexible in the type of partial grammatical
information it maintains: any (partial) grammar G can be represented
through the corresponding ERC matrix, while not just any ERC matrix ù
corresponds to some partial collection of mappings. This additional flexibility
in the data structure maintained by the algorithm is crucial in order to
define the subroutine for extracting ranking information, as explained in
the next section.

Supplementary materials 5 6 Giorgio Magri 8 Giorgio Magri Supplementary materials 9 10 Giorgio Magri

Appendix B: Equivalence between Merchant’s and Tesar’s sub-
routines

Supplementary materials 11 12 Giorgio Magri Supplementary materials 13

Appendix A: Merchant’s (2008) CPR

Phonology 31 (2014). Supplementary materials

Review article

Giorgio Magri
CNRS, Université Paris 8 and University of Utrecht

Supplementary materials

This appendix sketches Merchant’s (2008) CPR algorithm. In §1, I explain
how CPR adheres to the architecture in (28), only with a more abstract
representation of the current partial ranking information in terms of ERCs.
I then review CPR’s subroutines for extracting ranking and lexical infor-
mation. I start from the easier case, where they are applied to a single
paradigmatic entry (§3 and §5), and then turn to the extension to contrast
pairs (§4 and §6).

1 ERCs and CPR’s architecture
An elementary ranking condition (ERC) is an assignment of one of the
three symbols l, w and e to each of the constraints in the constraint set
(Prince 2002). An ERC is usually represented as a row of these symbols,
with the constraints annotated on top. To illustrate, an ERC for the constraint
set (5) of the Paka typology is provided in (35). An ERC matrix is a finite
collection of ERCs, stacked one on top of the other (the order does not
matter). An arbitrary ERC matrix is denoted by ù. Given two ERC matrixes
ù1 and ù2, ù1+ù2 denotes the ERC matrix obtained by stacking one on
top of the other (the order does not matter).

14 Giorgio Magri Supplementary materials 15

Bruce Tesar (2014). Output-driven phonology: theory and learning. (Cam-
bridge Studies in Linguistics 139.) Cambridge: Cambridge University
Press. Pp. xix+415.

(35)
e

Id[str] Id[length] Main-L Main-R NoLong WSP
w w l l e|

The phonological underpinning of these notions is as follows. Consider the
mapping (Aa, Xx) of an underlying form Aa to a surface form Xx, which
is thus construed as the winner. For any other loser candidate Yy, consider
the ERC defined in (37). Stack all the ERCs thus constructed for all loser
candidates one on top of the other into an ERC matrix, denoted by ù(Aa,
Xx). Then the OT grammar corresponding to a ranking maps the under-
lying form Aa to the surface form Xx if and only if that ranking is consistent
with the ERC matrix ù(Aa, Xx) corresponding to that mapping.

(37) A constraint has a w provided it prefers the winner mapping (Aa,
Xx) to the loser mapping (Aa, Yy), i.e. it assigns fewer violations
to the former mapping than to the latter.

a.

A constraint has an l provided it instead prefers the loser mapping
(Aa, Yy) to the winner mapping (Aa, Xx), i.e. it assigns fewer
violations to the former mapping than to the latter.

b.

A constraint has an e provided it has no preference for one of the
two mappings (Aa, Xx) and (Aa, Yy), i.e. it assigns the same number
of violations to both.

c.

To illustrate, consider the Paka typology in §2.1 of the paper, focusing on
the mapping (/’pa:’ka/, [’pa:ka]) of the underlying form /’pa:’ka/ to the surface
form [’pa:ka]. The ERC matrix ù(/’pa:’ka/, [’pa:ka]) corresponding to this
mapping is provided in (38). It consists of seven ERCs, because there are
seven loser candidates. For convenience, each ERC is annotated on the left
with the corresponding underlying, winner and loser forms (loser forms
are struck through). The topmost ERC in (38) says that the winner mapping
(/’pa:’ka/, [’pa:ka]) beats the loser mapping (/’pa:’ka/, [pa’ka]), provided at
least one of the two winner-preferring constraints Ident[length] or Main-
L is ranked above the two loser-preferring constraints Main-R and NoLong.

Supplementary materials 3

The join of some ERC matrices ù1, …, ùn is any ERC matrix which satisfies
the two conditions in (39). Any such ERC matrix will be denoted by ∑(ù1,
…, ùn). Condition (39a) says that the join is weaker than (i.e. entailed by)
each matrix ù1, …, ùn. Condition (39b) says that, among all ERC matrices
which are weaker than (i.e. entailed by) each matrix ù1, …, ùn, the join is
a strongest one (i.e the one which entails all the others). In other words,
condition (39a) says that the join captures some of the ranking information
shared by the matrices ù1, …, ùn, and condition (39b) says there is no
shared ranking information which the join does not capture.

(39) Each of the ERC matrices ù1, …, ùn entails their join.a.
If each of the ERC matrices ù1, …, ùn entails some ERC matrix
ù, their join entails ù as well.

b.

Lemma 3 collects some properties of the join which will be used in the rest
of this appendix.

Proof. An ERC matrix ∏ is the join of two ERC matrixes ù1 and ù2

if and only if the set of rankings consistent with ∏ is the union of the
two sets of rankings consistent with ù1 and ù2. Furthermore, the set
of rankings consistent with ù1+ù2 is the intersection of the two sets
of rankings consistent with ù1 and ù2. Claims (i)–(iii) then follow
from elementary set-theoretic manipulations on the sets of consistent
rankings.

Given four ERC matrices ù1, ù2, π1, π2, consider the ERC
matrix ∑(ù1, ù2)+∑(π1, π2) obtained by stacking one on top of
the other the join of ù1 and ù2 and the join of π1 and π2. Then
∑(ù1, ù2)+∑(π1, π2) coincides with the join of the four ERC
matrices ù1+π1, ù1+π2, ù2+π1, ù2+π2.

(iii)

3 A subroutine for extracting ranking information through the join
3.1 Description of the subroutine. The subroutine in (40) takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex and a paradigm
p (line 1). It extends the ranking information encoded in the input ERC
matrix ù by adding to that input ERC matrix some additional ERCs as
follows. The subroutine considers a certain meaning combination Mm (line
2), and it reads o‰ the paradigm p the surface realisation Xx of that meaning
combination Mm (line 3). The subroutine then constructs the set " of all
underlying concatenations Aa which are consistent with the lexicon Lex as
underlying forms for that meaning combination Mm (line 4). This means
that if Lex sets a feature for the root M or the su!x m to a certain value,
then the root morpheme A or the su!x morpheme a of each underlying
form Aa in " has the feature set to that value. Any of these underlying
forms in " could be the actual underlying form according to the partial
lexical information encoded by Lex. In other words, the target grammar
could enforce any of the mappings (Aa, Xx) of any underlying form Aa in
" to the surface form Xx. Thus the best the subroutine can do is to extract
any ranking information shared by all these mappings. This is done by
computing the join of all ERC blocks ù(Aa, Xx) corresponding to all
mappings (Aa, Xx) of all underlying forms Aa in " to the surface form Xx
(line 5). The input ERC matrix ù is updated by adding this join to it (line
6). The ERC matrix thus updated is returned (line 7).

(40) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all concatenations Aa consistent with Lex as

underlying forms for Mm

1.

2.
3.

4.

The join of the ERC blocks ù(Aa, Xx) computed at line 5 is an ERC-
theoretic construct which might very well not correspond, in the sense of
(37), to any mapping of an underlying form to a surface form. For this
reason, CPR needs the additional flexibility of representing the current
(partial) grammatical/ranking information as an ERC matrix rather than
as a (partial) grammar. Appendix B: §1 shows that output-drivenness in
e‰ect guarantees that the join computed in line 5 always corresponds to the
mapping of a certain underlying form to the surface form Xx read at line
3.

3.2 Analysis of the subroutine. Lemma 4 provides a straightforward correct-
ness result for Merchant’s subroutine (40). Note that the proof only uses
property (39a) of the join, not property (39b). In other words, the lemma
hinges only on the fact that the join extracts ranking information which is
shared by all the ERC blocks ù(Aa, Xx). Property (39b) is nonetheless
crucial, because it ensures that the join does not lack any of this shared
ranking informa tion, making subroutine (40) optimal. The crux of
Merchant’s subroutine is its time complexity. Merchant (2008: ch. 4)
develops an elegant algorithm for computing the join which can be used
to implement line 5. Unfortunately, his algorithm needs to compute the
fusional closure of each of the input ERC matrices it has to join. Although
there are no results that I am aware of concerning the time complexity of
that computation, it is most plausibly intractable in the general case.

4 Extension to contrast pairs
4.1 Description of the subroutine. The extension of Merchant’s subroutine
(40) to contrast pairs is provided in (41). This subroutine takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex, and a paradigm
p (line 1). The subroutine considers some contrast pair (line 2). For concrete-
ness, I am assuming here that the two meaning combinations of the contrast
pair share the su!x meaning, i.e. have the shape Mm and Ôm (the case
where they share the root meaning is handled analogously). The
subroutine reads o‰ the paradigm p the surface realisations Xx and ∑π of
those two meaning combinations (line 3). Although x and π are the surface
realisations of the same underlying su!x segment corresponding to the
su!x meaning m, they can be di‰erent, because of morphophonem ic
alternations in the surface realisation of that underlying su!x triggered by
the two di‰erent roots M and Ô. The subroutine then constructs the set
" of all pairs (Aa, ∫a) of underlying concatenations which are consistent
with the lexicon Lex as underlying forms for the meaning combinations
Mm and Ôm and furthermore share the underlying su!x segment a (line
4). The latter requirement encodes the fact that we are focusing on a pair
of meaning combinations Mm and Ôm which share the su!x meaning m.
For each pair (Aa, ∫a) of underlying concatenations in ", the subroutine
considers the corresponding ERC blocks ù(Aa, Xx) and ù(∫a, ∑π), stacks
them together into the ERC matrix ù(Aa, Xx)+ù(∫a, ∑π) and constructs
the join of all ERC matrices thus obtained (line 5). The input ERC matrix
ù is updated by adding this join to it (line 6). The ERC matrix thus updated
is then returned (line 7).

There is a subtlety which should be pointed out here. At line 5, the subroutine
considers the join in (42a), not the one in (42b). The di‰erence is that in
(42a) we sum together the two ERC blocks ù(Aa, Xx) and ù(∫a, ∑π) into
ù(Aa, Xx)+ù(∫a, ∑π) before taking the join. This is indeed appropriate,
because the join in (42a) is stronger than the one in (42b), by Lemma 3.ii.

(42) ∑{ù(Aa, Xx)+ù(∫a, ∑π) | (Aa, ∫a)Œ"}a.
∑{ù(Aa, Xx), ù(∫a, ∑π) | (Aa, ∫a)Œ"}b.

4.2 Analysis of the subroutine. The Correctness Lemma 4 trivially extends
from the original subroutine (40) for single meaning combinations to the
variant (41) for contrast pairs. The ine!ciency of (40) for single meaning
combinations is of course aggravated in (41) for contrast pairs, as the latter
requires taking the join of a larger number of larger ERC matrices. Yet
subroutine (41) applied to the contrast pair (Mm, Ôm) is able to extract
more ranking information than the double applica tion of the original
subroutine (40) to the two separate meaning combinations Mm and Ôm.
To see this, suppose that the root meaning M admits a unique underlying
form A consistent with Lex, the root meaning Ô admits a unique under-
lying form ∫ and the su!x meaning m admits only two underlying forms,
a1 and a2. Suppose we first apply the original subroutine (40) to the meaning
combination Mm. At line 4, it constructs the set " consisting of the two
underlying forms Aa1 and Aa2. At line 5, it computes the join ∑(ù1, ù2)
of the two ERC blocks ù1=ù(Aa1, Xx) and ù2=ù(Aa2, Xx). Suppose
we next apply the original subroutine (40) to the meaning combination
Ôm. At line 4, it constructs the set ", consisting of the two underlying
forms ∫a1 and ∫a2. At line 5, it computes the join ∑(π1, π2) of the two
ERC blocks π1=ù(∫a1, ∑π) and π2=ù(∫a2, ∑π). Ultimately, the two
consecutive applications of the original subroutine (40) to the two meaning
combinations Mm and Ôm extract the ranking information captured by
the sum of the two joins in (43).

Suppose we instead apply subroutine (41) to the contrast pair (Mm, Ôm).
At line 4, it constructs the set ", consisting of the two pairs (Aa1, ∫a1) and
(Aa2, ∫a2). At line 5, it computes the join in (45) of the two ERC blocks
ù(Aa1, Xx)+ù(∫a1, ∑π)=ù1+π1 and ù(Aa2 , Xx)+ù(∫a2, ∑π) =
ù2+π2.

(45) ∑(ù1+π1, ù2+π2)

The join in (45) is stronger than the one in (44), because it joins fewer
matrices (the smaller the number of matrices, the larger the amount of
shared information for the join to extract). This is because the two blocks
ù1+π2 and ù2+π1 have disappeared from the join. This is what we want,
as they correspond to the unreasonable assumption that the su!x m has
di‰erent underlying forms in the two meaning combinations Mm and Ôm.
In other words, since the learner is processing the two meaning combinations
Mm and Ôm together as a contrast pair, it is able to take into account the
fact that these meaning combinations share the su!x meaning m, which
must therefore have the same underlying form in the two cases.

5 A subroutine for extracting lexical information through
inconsistency detection

5.1 Description of the subroutine. Subroutine (46) takes as input some
lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine then considers a certain
meaning combination Mm with some feature unset according to the input
partial lexicon Lex for either the root M or the su!x m (line 2). The goal
of the subroutine is to try to extend the input partial lexicon by setting
some of these unset features. To this end, the subroutine reads o‰ the
paradigm p the surface realisation Xx of the meaning combination Mm
(line 3). It constructs the set " of all underlying concatenations Aa which
are consistent with both the input lexical information Lex and the input
ranking information captured by the grammar G (or the ERC matrix ù)
(line 4). Consistency with the input lexical information means that, if Lex
sets a feature for the root M (or the su!x m) to a certain value, then the
root morpheme A (or the su!x morpheme a) of each underlying form Aa
in " has the feature set to that value. Consistency with the input ranking
information means that the input grammar G (or the input ERC matrix ù)
is consistent with the mapping (Aa, Xx) of each such underlying form Aa
in " to the surface form Xx. The subroutine then looks for a feature which
is unset by Lex for the root meaning M (or the su!x meaning m), such that
each root morpheme A (or each su!x morpheme a) has the same value for
that feature in all underlying concatenations Aa in " (line 5). For any such
feature, it can be concluded that the opposite value is inconsistent with the
available lexical and ranking information. The subroutine thus updates the
partial lexicon Lex by setting that feature to be equal to its constant value

(46) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that:
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G (or

the ERC matrix ù)
if some feature unset for the root M (or for the su!x m) has a

constant value over " for M (for m) then
update the lexicon Lex by setting the feature to that value for

the root M (or for the su!x m)
end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.
8.

This subroutine is called inconsistency detection (cf. Kager 1999, Tesar
et al. 2003, Tesar 2006), because it sets a certain feature to a certain value
based on the detection at line 6 of the fact that any other value for that
feature would be inconsiste nt with the availab le lexical and ranking
information.

Proof. Assume by contradiction that the lemma is false. This means
that the subroutine has set some feature j for, say, the root meaning
M to a value which is di‰erent from the value assigned by the target
lexicon. For concreteness, assume that the values assigned by the
subroutine and the target lexicon are + and — respectively. Thus , the
target lexicon assigns to the meaning combination Mm an underlying
form Aa, which has feature j set to the value — in the root A. This
underlying form Aa is consistent with the partial lexicon Lex (because
it is consistent with the target lexicon, which is in turn consistent with
Lex). Furthermore, the mapping (Aa, Xx) of this underlying form Aa
to the surface form Xx is consistent with the input grammar G (because
the target ranking is consistent with both). In other words, this
underlying form Aa satisfies the two conditions stated by the two
subclauses in line 4 and thus belongs to the set " constructed by the
subroutine. Since this underlying form Aa has feature j set equal to
— for the root A, then the subroutine cannot have set that feature to
the opposite value + at line 6.

5.2 Analysis of the subroutine. Lemma 5 provides a straightforward correct-
ness result for inconsistency detection (46). Its time complexity is controlled
by the size of the set " of consistent underlying forms constructed at line 4.
In the worst case (when both the input lexicon and the input ranking
information are empty), " consists of all underlying forms, i.e. all con-
catenations of root and su!x morphemes. In this case, the size of " grows
polynomially in the number of morphemes and thus exponentially in the
number of features. In conclusion, subroutine (46) is e!cient relative to
the generous notion of e!ciency defined in (14), which measures time
complexity in terms of the number of morphemes, but is not e!cient
relative to the more demanding notion of e!ciency defined in (15), which
measures time complexity in terms of the number of features.

Lemma 5
Inconsistency detection (46) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target grammar, that the input (possibly partial)
grammar G (or ERC matrix ù) is consistent with the target grammar

6 Extension to contrast pairs
6.1 Description of the subroutine. The extension of inconsistency detection
(46) to contrast pairs is provided in (47). This subroutine takes as input
some lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine considers a particular
contrast pair (line 2). For concreteness, I am assuming here that the two
meaning combinations of the contrast pair share the su!x meaning, namely
have the shape Mm and Ôm (the case where they share the root meaning
is handled analogously). The subroutine reads o‰ the paradigm p the surface
realisations Xx and ∑π of those two meaning combinations (line 3). It
constructs the set " of all pairs (Aa, ∫a) of underlying concatenations which
are consistent with both the input lexical information Lex and the input
ranking information G (or ù) and furthermore share the underlying su!x
segment a (line 4). The subroutine then looks for a feature which is unset
by Lex for the root meaning M (or the root meaning Ô or the su!x meaning
m), such that each underlying root morpheme A (or each underlying root
morpheme ∫ or each underlying su!x morpheme a) has the same value
for that feature in all pairs (Aa, ∫a) in " (line 5). For any such feature, the
subroutine updates the partial lexicon Lex by setting the feature equal to
its constant value for the root meaning M (or for the root meaning Ô or
for the su!x meaning m) (line 6). The lexicon thus updated is then returned
(line 8).

(47) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G (or
the ERC matrix ù)

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

- the mapping (∫a, ∑π) is consistent with the grammar G
if some unset feature has a constant value over " for any of the three

meanings M, Ô or m then
update the lexicon Lex by setting the feature to the constant

value for that meaning
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.
8.

6.2 Analysis of the subroutine. The Correctness Lemma 5 trivially extends
from the original subroutine (46) for single meaning combinations to the
variant (47) for contrast pairs. Furthermore, the variant for contrast pairs
remains as e!cient as the original version for single meaning combinations,
when e!ciency is generously measured in terms of the number of morphemes
(but again, not when it is measured in terms of the number of features).
Yet a number of authors (including Alderete et al. 2005 and Merchant &
Tesar 2008) have pointed out that (47), applied to the contrast pair (Mm,
Ôm), can extract more lexical information than the double application of
the original subroutine (46) to the two separate meaning combinations Mm
and Ôm. To see this, consider one of the two meaning combinations of the
contrast pair, say Mm. The original subroutine considers all underlying
forms Aa for Mm which are consistent with the input lexical and ranking
information, and only sets those features which are constant across all these
underlying forms. If the number of consistent underlying forms is large,
the number of features which are constant across them is small, and the
subroutine thus extracts little lexical information. (47) might instead be
able to extract more lexical information, because it looks for features which
are constant over a smaller set of underlying forms for Mm, namely those
underlying forms Aa which are not only consistent with the input lexical
and ranking information, but also use a su!x morpheme a which can be
combined with a root morpheme ∫ into an underlying form ∫a for Ôm
which is also consistent with the input lexical and ranking information.

I denote Tesar’s subroutine (29) for the extraction of ranking information
from a single meaning combination as ERIT, and Merchant’s subroutine
(40) as ERIM. Lemma 6 states that, if the underlying typology is output-
driven, then ERIT and ERIM are equivalent, because they update the
current ranking/grammatical information with the ‘same’ information. This
equivalence is striking, given that the time complexity of ERIT is only
linear in the number of features, while the time complexity of ERIM is
unknown, but probably exponential in both the number of features and the
number of morphemes. Output-drivenness thus a‰ords a significant
reduction in time complexity. The Correctness Lemma 1 for ERIT (which
was proven directly in §4.4) can also be made to follow from the Correctness
Lemma 4 for ERIT through the Equivalence Lemma 6.

1 Subroutines for extracting ranking information from a single
meaning combination

Proof. The underlying form Bb constructed by ERIT at line 4 is
consistent with Lex, and therefore belongs to the set " constructed by
ERIM at line 4. Consider one of the underlying forms Aa in this set ".
The two underlying forms Aa and Bb agree in every feature which is
set by the input partial lexicon Lex. Furthermore, Bb and the surface
form Xx agree in every remaining feature. Thus the underlying form
Bb is more similar to the surface form Xx than is the underlying form
Aa. Since the underlying typology is output-driven, then every ranking
which maps the less similar underlying form Aa to Xx also maps the
more similar underlying form Bb to Xx. In other words, any ranking
consistent with the ERC block ù(Aa, Xx) is also consistent with the
ERC block ù(Bb, Xx). Lemma 3.i thus ensures that the ERC block
ù(Bb, Xx) is the join of the ERC blocks ù(Aa, Xx) across all underlying
concatenations Aa in ".

Lemma 6
Suppose that the underlying typology is output-driven and that ERIT

is fed with a partial grammar G and a (possibly partial) lexicon Lex.
Suppose that ERIM is fed with the ERC matrix ù corresponding to
the partial grammar G and the same lexicon Lex. Then the ERC block
corresponding to the mapping (Bb, Xx) constructed by ERIT at line
4 is the join of the ERC blocks ù(Aa, Xx) corresponding to the
underlying forms Aa in " constructed by ERIM at line 5.

between the two implementations is the following: Merchant’s original
subroutine (46) sets any feature which is constant over "; the variant in (48)
instead focuses right from the beginning on a specific feature j, which is
unset for either the root M or the su!x m of the meaning combination Mm
under consideration. In line 3, I am assuming for concreteness that the
feature j is unset for the root M (the case where it is unset for the su!x m
is handled analogously). The modification is only cosmetic: the original
subroutine is equivalent to running this variant for each unset feature.

(48) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a meaning combination Mm in the paradigm p
Require: a feature j unset by Lex for either M or m; for concreteness,

say it is unset for M
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G

if all underlying forms Aa in " have the feature j set to the same
value in the root morpheme A then

update the lexicon Lex by setting the feature j to that value for
the root meaning M

end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.

8.
9.

I denote Tesar’s subroutine (33) for the extraction of lexical information
from a single meaning combination by ELIT, and (the cosmetic variant of)
the original inconsistency detection subroutine (48) by ELIid. Lemma 6
states that, if the underlying typology is output-driven, ELIT and ELIid

are equivalent, because their if-clauses at line 6 are equivalent. This
equivalence is striking, given that the if-clause of ELIT can be checked in
time linear in the number of features, while the if-clause of ELIid requires
time exponential in the number of features in the worst case. Output-
drivenness has thus a‰orded a significant reduction in time complexity.
The Correctness Lemma 2 for ELIT (which was proven directly in §4.5)
can also be made to follow from the Correctness Lemma 4 for ELIid through
the Equivalence Lemma 7.

Proof. To start, let me prove that the if-clause in line 6 of ELIT entails
the if-clause in line 6 of ELIid. Assume by contradiction that the
former if-clause is true while the latter if-clause is false. The hypothesis
that the if-clause of ELIid is false entails in particular that the set " of
consistent underlying forms constructed by ELIid at line 5 contains
an underlying form Aa whose root A disagrees with X relative to the
feature j (indeed, if all the underlying forms Aa in " had a root A
which agreed with X relative to j, the if-clause of ELIid would hold
true). The underlying form Aa and the underlying form Bb constructed
by ELIT at line 5 thus agree in the feature j for the root meaning M,
as they both have the opposite value from X. Furthermore, they agree
in every feature set by the partial lexicon Lex, because they are both
consistent with Lex. Finally, Bb agrees with Xx for every remaining
feature. The underlying form Bb is thus more similar to the surface
form Xx than is the underlying form Aa. Since the mapping (Aa, Xx)
is consistent with G (because Aa belongs to "), there exists a ranking
which is consistent with both. Since the grammar corresponding to
that ranking is output-driven and maps the less similar underlying
form Aa to Xx, it also maps the more similar underlying form Bb to
Xx. In other words, that ranking is also consistent with the mapping
(Bb, Xx). In conclusion, the mapping (Bb, Xx) and the grammar G
are consistent (because both are consistent with the ranking), contra-
dicting the hypothesis that the if-clause of ELIT is true.

Vice versa, let me prove that the if-clause in line 6 of ELIid entails
the if-clause in line 6 of ELIT. Assume by contradiction that the
former if-clause is true, while the latter if-clause is false. The hypothesis
that the if-clause of ELIT is false means that the input (partial) grammar
G is consistent with the mapping (Bb, Xx) of the underlying form Bb
constructed by ELIT at line 5 to the surface form Xx. Since this
underlying form Bb is consistent with Lex, then Bb belongs to the set
" of consistent underlying forms constructed at line 5 by ELIid. Since
B and X disagree relative to the feature j, consider the underlying
form ≥b, identical to Bb but for the fact that ≥ and X instead agree in
the feature j. Obviously, the underlying form ≥b is more similar to
the surface form Xx than is the underlying form Bb. Since (Bb, Xx)
is consistent with G, there exists a ranking which is consistent with
both. Since the grammar corresponding to that ranking is output-
driven and maps the less similar underlying form Bb to Xx, then it
also maps the more similar underlying form ≥b to Xx. In other words,
that ranking is also consistent with the mapping (≥b, Xx). This
underlying form ≥b thus belongs to the set " constructed by ELIid at
line 5.This conclusion contradicts the hypothesis that the if-clause of
ELIid holds, because it shows that " contains two underlying forms
Bb and ≥b, such that B and ≥ disagree in the feature j.Lemma 7

Suppose that the underlying typology is output-driven. Then the two
if-clauses in line 6 of ELIT and ELIid are equivalent.

Tesar’s subroutine for extracting lexical information from contrast pairs
is more involved than his other two subroutines, for extracting lexical and
ranking information from a single meaning combination. For this reason,
the latter two subroutines were reviewed in §4.4 and §4.5, while the former
subroutine is included in this appendix. Here I start out from Merchant’s
subroutine in (47) for extracting lexical information from contrast pairs,
and work towards Tesar’s reformulation, provided below in (52). This
seems to me the best way of making sense of the somewhat complex
formulation of Tesar’s subroutine. I begin by carrying out the same cosmetic
change as in the previous section: I replace the original subroutine (47)
with (49), which only di‰ers because line 3 focuses on a specific feature j,
unset by the input lexicon Lex for one of the three meanings M, Ô and m
of the contrast pair (Mm, Ôm). For concreteness, I assume it is unset for
the root meaning M.

3 Subroutines for extracting lexical information from a contrast
pair

Supplementary materials 1716 Giorgio Magri

(49) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫a, ∑π) is consistent with the grammar G

if all the pairs (Aa, ∫a) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.
9.

the two underlying su!x morphemes a and ¥ coincide, because they are
the underlying form corresponding to the same su!x meaning m. The
condition that a and ¥ coincide is in turn equivalent to the condition that
they agree for each feature y. We could of course relax this condition by
requiring that the two underlying su!x morphemes a and ¥ agree only for
certain features, y1, ..., yn. This intuition leads to the formulation in (50).
It di‰ers from (49) only because of the new line 4, which introduces the
features y1, ..., yn, and because of the additional fifth subclause in the
definition of the set ". Note that line 4 assumes all the features y1, ..., yn

to be unset by the input partial lexicon Lex for the shared su!x m, because
the condition that both a and ¥ are consistent with Lex as underlying forms
for m already entails that they agree on every feature set by Lex for m.

(50) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫¥) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ agree for every

feature y1, ..., yn

if all the pairs (Aa, ∫¥) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

combinations Mm and Ôm one at a time. If instead we consider all unset
y features at line 4, then (50) e‰ectively considers only pairs of underlying
forms for the two meaning combinations which share the underlying su!x,
and is therefore equivalent to the original subroutine (49) for extracting
lexical information from contrast pairs. In the end, depending on the
number of y features considered at line 4, (50) provides a whole range of
subroutines for extracting lexical information in between the weaker (46)
and the stronger (49).

Subroutine (50) can be equivalently restated as (51). Instead of requiring
the two su!x morphemes a and ¥ to coincide for every feature y1, ..., yn,
we consider all possible combinations v1, ..., vn of values of those features
at line 6, and we require both a and ¥ to have those features set equal to
those values in the fifth subclause of line 5.

(51) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫¥ is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ both have the

values v1, ..., vn for the features y1, ..., yn

if all the pairs (Aa, ∫¥) in all the sets "(v1, ..., vn) have the underlying
root A set to the same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

Supplementary materials 1918 Giorgio Magri

By reasoning as in the previous subsection we can easily show that subroutine
(51) is equivalent to (52) under the assumption of output-drivenness.
Indeed, the two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn con-
structed by (52) at line 6 provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (51).

(52) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and
±≤v1, …, vn, as follows:

- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-
lying forms for Mm and Ôm

- B has the opposite value for feature j than X
- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values

v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
if the grammar G is inconsistent with the two mappings (Bbv1, …, vn,

Xx) and (±≤v1, …, vn, ∑π) for any combination of values v1, ..., vn

then
update the lexicon Lex by setting feature j to that constant value

for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

If the features y1, ..., yn considered in line 4 of (52) exhaust the set of
features, then the two subroutines (49) and (52) are equivalent. However,
the running time of (52) is exponential in the number of features in the
latter case, because it needs to consider all combinations v1, ..., vn.

By reasoning as in the previous subsection, we can proceed from Merchant’s
original subroutine (41) for extracting ranking information from contrast
pairs to the variant in (53).

4 Subroutines for extracting ranking information from a contrast
pair

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫¥ is consistent with the lexicon Lex as an underlying form
for Ôm

- the two underlying su!x morphemes a and ¥ both have the
values v1, ..., vn for the features y1, ..., yn

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫¥) in "(v1, ..., vn) for all combinations of values
v1, ..., vn

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.

7.
8.

20 Giorgio Magri

Once again, if we do not consider any y features at line 3, (53) e‰ectively
considers the two meaning combinations of the contrast pair independently
of each other, and thus ends up equivalent to subroutine (40) for extracting
lexical information from single meaning combinations. If we instead consider
all unset y features at line 3, then (53) e‰ectively only considers pairs of
underlying forms for the two meaning combinations which share the
underlying su!x, and is therefore equivalent to Merchant’s original
subroutine (41) for extracting lexical information from contrast pairs.
Ultimately, depending on the number of y features considered at line 3,
(53) provides a whole range of subroutines for extracting ranking information
in between the weaker (40) and the stronger (41).

By reasoning as in §2 of this appendix, we can easily show subroutine
(53) to be equivalent to (54) under the assumption of output-drivenness.
The two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn constructed
by (54) at line 5 again provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (53).

(54)

- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values
v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
compute the join of the ERC matrices ù(Bbv1, …, vn, Xx)+

ù(±≤v1, …, vn, ∑π) for all combinations of values v1, ..., vn

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

6.

7.
8.

Take the simplest case, where we consider a single feature y at line 3.
Assume furthermore that y is binary, i.e. it only takes the values v=‘+’ and
v=‘—’. At line 5, the subroutine constructs the two underlying forms Bb+
and ±≤+, corresponding to the value v=‘+’of feature y (i.e. both b+ and ≤+
have the value ‘+’ for the feature y), and the two underlying forms Bb— and
±≤—, corresponding to the value v=‘—’ (i.e. both b— and ≤— have the value
‘—’ for the feature y). At line 6, we finally compute the join of the two ERC
blocks ù(Bb+, Xx)+ù(±≤+, ∑π) and ù(Bb—, Xx)+ù(±≤—, ∑π). Even in
the simplest case of a single feature y, there is no way around computing
the join.

In summary, Merchant develops a new subroutine for extracting ranking
information through the notion of join. This subroutine can be applied to
either a single meaning combination at a time, as in (40); or to a contrast
pair, as in (41). The latter is more powerful than the former: the subroutine
extracts more ranking information by processing the two meaning
combinations Mm and Ôm as a contrast pair than by processing them
separately. The crux of Merchant’s subroutine for extracting ranking
information is that it relies on the computation of a join, which is time-
consuming. The biggest impact of output-drivenness is that it allows
Merchant’s subroutine for extracting ranking information from a single
meaning combination to be restated without having to compute any join.
The restated subroutine thus runs in time linear in the number of features.
In other words, it is e!cient even relative to the more demanding notion
of e!ciency introduced in §2.6. The situation is unfortunately very di‰erent
when Merchant’s subroutine for extracting ranking information is boosted
by being applied to contrast pairs. In this case, output-drivenness is not
able to circumvent the computation of the join, and thus does not su!ce
to make the subroutine e!cient.

A constraint ranking is consistent with an ERC provided it satisfies con-
dition (36); it is consistent with an ERC matrix provided it is consistent
with each of its rows. An ERC matrix entails another ERC matrix provided

(38) Id
[str]

Id
[length]

Main-
L

Main-
R

No
Long

WSP

w
w

w
w
w
w

w
w
w
w

l
l
l
l

l

w
l

w

/’pa:’ka/, [’pa:ka], [pa’ka]
/’pa:’ka/, [’pa:ka], [pa’ka:]
/’pa:’ka/, [’pa:ka], [pa:’ka]
/’pa:’ka/, [’pa:ka], [pa:’ka:]
/’pa:’ka/, [’pa:ka], [’paka]
/’pa:’ka/, [’pa:ka], [’paka:]
/’pa:’ka/, [’pa:ka], [’pa:ka:]

w
w

w
w

Lemma 3
Suppose that one of the ERC matrices ù1, ù2, …, Rn is entailed
by each of the others. For concreteness, assume that it is ù1 which
is entailed by each of the other ERC matrices ù2, …, Rn. Then
ù1 is the join of ù1, ù2, …, Rn.

(i)

Given the ERC matrices ù1, ù2, ù3, …, Rn, replace two of them
with the ERC matrix obtained by stacking the two matrices one
on top of the other. For concreteness, replace ù1 and ù2 with
ù1+ù2. Then the join of the n®1 ERC matrices ù1+ù2, ù3,
…, Rn entails the join of the original n ERC matrices ù1, ù2, ù3,
…, Rn, while the reverse does not in general hold.

(ii)

compute the join of the ERC matrices ù(Aa, Xx) for all underlying
forms Aa in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.
7.

Proof. Let Aa be the underlying form assign ed to the meanin g
combination Mm by the target lexicon. This underlying form Aa
belongs to the set " constructed by the subroutine at line 4, because
of the hypothesis that the input lexicon Lex is consistent with the
target lexicon. Thus the corresponding ERC block ù(Aa, Xx) is one
of the blocks that the subroutine takes the join of at line 5. Since the
target ranking is consistent with this ERC block ù(Aa, Xx), then it
is also consistent with the join, by property (39a) of the join. Since the
target ranking is also consistent with the input ERC matrix ù, it is

Lemma 4
Merchant’s subroutine (40) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target ranking, that the input ERC matrix ù is
consistent with that target ranking, and that the input (possibly partial)
lexicon Lex is consistent with that target lexicon. The updated ERC
matrix returned by subroutine (40) is also consistent with that target
ranking.

then consistent with the updated ERC matrix returned by the sub-
routine.

(41) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫a) in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

1.

2.

3.

4.

5.

6.
7.

(43) ∑(ù1, ù2)+∑(π1, π2)

Lemma 3.iii ensures that (43) is equivalent to the join in (44). The four
ERC matrices being joined here correspond to all four combinations of
underlying forms for the two meaning combinations Mm and Ôm. In
particular, the learner is also joining together the two ERC blocks ù1+π2

and π2+ù1, whereby the shared su!x meaning m is assigned a di‰erent
underlying form in the case of Mm than in the case of Ôm. In other words,
since the learner is processing the two meaning combinations Mm and Ôm
separately, it is blind to the fact that these meaning combinations share the
su!x meaning m, which must therefore have the same underlying form in
both cases.

(44) ∑(ù1+π1, ù1+π2, ù2+π1, ù2+π2)

for the root meaning M (or for the su!x meaning m) (line 6). The lexicon
thus updated is then returned (line 8).

and that the input partial lexicon Lex is consistent with the target
lexicon. The updated lexicon returned by subroutine (46) is also
consistent with that target lexicon.

2 Subroutines for extracting lexical information from a single
meaning combination

Consider the slight variant (48) of the subroutine (46) for the extraction of
lexical information through inconsistency detection. The only di‰erence

The modification is only cosmetic: the original subroutine (47) is equivalent
to running this variant (49) for each feature which is unset for one of the
three morphemes M, Ô and m.

The set " constructed by the subroutine (49) at line 5 can equivalently
be described as the collection of all pairs (Aa, ∫¥) which satisfy the conditions
expressed by the four subclauses of line 5 plus the additional condition that

If we consider no y features at all in line 4, then (50) e‰ectively considers
the two meaning combinations of the contrast pair independently of each
other, and thus ends up equivalent to subroutine (46) for extracting lexical
information from single meaning combinations, in the sense that the
application of subroutine (50) to the contrast pair (Mm, Ôm) is equivalent
to two consecutive applications of subroutine (46) to the two meaning

Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and ±≤v1,

…, vn as follows
- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-

lying forms for Mm and Ôm

1.

2.

3.

4.

5.

(53) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

1.

2.

3.

4.

Phonology 25.2: Artwork 1 of

Supplementary materials 72 Giorgio Magri

every ranking consistent with the former is also consistent with the latter.
Thus ù1+ù2 entails both ù1 and ù2.

(36) At least one constraint which has a w in the ERC under consideration
is ranked above every constraint which instead has an l (constraints
which have an e play no role in the consistency condition).

2 The join

4 Giorgio Magri

Grammatical information was represented in §4.1.2 as a (possibly partial)
collection G of mappings (Aa, Xx) of an underlying form Aa to a surface
form Xx. Each of these mappings can be equivalently represented with the
corresponding ERC block ù(Aa, Xx). And the grammatical information
G can thus be represented with the ERC matrix obtained by stacking all
these blocks one of top of the other. Merchant’s CPR adopts the architecture
in (28), the only di‰erence being that the current partial grammatical
information is represented not as a partial grammar G but as an ERC matrix
ù. This makes the algorithm more flexible in the type of partial grammatical
information it maintains: any (partial) grammar G can be represented
through the corresponding ERC matrix, while not just any ERC matrix ù
corresponds to some partial collection of mappings. This additional flexibility
in the data structure maintained by the algorithm is crucial in order to
define the subroutine for extracting ranking information, as explained in
the next section.

Supplementary materials 5 6 Giorgio Magri 8 Giorgio Magri Supplementary materials 9 10 Giorgio Magri

Appendix B: Equivalence between Merchant’s and Tesar’s sub-
routines

Supplementary materials 11 12 Giorgio Magri Supplementary materials 13

Appendix A: Merchant’s (2008) CPR

Phonology 31 (2014). Supplementary materials

Review article

Giorgio Magri
CNRS, Université Paris 8 and University of Utrecht

Supplementary materials

This appendix sketches Merchant’s (2008) CPR algorithm. In §1, I explain
how CPR adheres to the architecture in (28), only with a more abstract
representation of the current partial ranking information in terms of ERCs.
I then review CPR’s subroutines for extracting ranking and lexical infor-
mation. I start from the easier case, where they are applied to a single
paradigmatic entry (§3 and §5), and then turn to the extension to contrast
pairs (§4 and §6).

1 ERCs and CPR’s architecture
An elementary ranking condition (ERC) is an assignment of one of the
three symbols l, w and e to each of the constraints in the constraint set
(Prince 2002). An ERC is usually represented as a row of these symbols,
with the constraints annotated on top. To illustrate, an ERC for the constraint
set (5) of the Paka typology is provided in (35). An ERC matrix is a finite
collection of ERCs, stacked one on top of the other (the order does not
matter). An arbitrary ERC matrix is denoted by ù. Given two ERC matrixes
ù1 and ù2, ù1+ù2 denotes the ERC matrix obtained by stacking one on
top of the other (the order does not matter).

14 Giorgio Magri Supplementary materials 15

Bruce Tesar (2014). Output-driven phonology: theory and learning. (Cam-
bridge Studies in Linguistics 139.) Cambridge: Cambridge University
Press. Pp. xix+415.

(35)
e

Id[str] Id[length] Main-L Main-R NoLong WSP
w w l l e|

The phonological underpinning of these notions is as follows. Consider the
mapping (Aa, Xx) of an underlying form Aa to a surface form Xx, which
is thus construed as the winner. For any other loser candidate Yy, consider
the ERC defined in (37). Stack all the ERCs thus constructed for all loser
candidates one on top of the other into an ERC matrix, denoted by ù(Aa,
Xx). Then the OT grammar corresponding to a ranking maps the under-
lying form Aa to the surface form Xx if and only if that ranking is consistent
with the ERC matrix ù(Aa, Xx) corresponding to that mapping.

(37) A constraint has a w provided it prefers the winner mapping (Aa,
Xx) to the loser mapping (Aa, Yy), i.e. it assigns fewer violations
to the former mapping than to the latter.

a.

A constraint has an l provided it instead prefers the loser mapping
(Aa, Yy) to the winner mapping (Aa, Xx), i.e. it assigns fewer
violations to the former mapping than to the latter.

b.

A constraint has an e provided it has no preference for one of the
two mappings (Aa, Xx) and (Aa, Yy), i.e. it assigns the same number
of violations to both.

c.

To illustrate, consider the Paka typology in §2.1 of the paper, focusing on
the mapping (/’pa:’ka/, [’pa:ka]) of the underlying form /’pa:’ka/ to the surface
form [’pa:ka]. The ERC matrix ù(/’pa:’ka/, [’pa:ka]) corresponding to this
mapping is provided in (38). It consists of seven ERCs, because there are
seven loser candidates. For convenience, each ERC is annotated on the left
with the corresponding underlying, winner and loser forms (loser forms
are struck through). The topmost ERC in (38) says that the winner mapping
(/’pa:’ka/, [’pa:ka]) beats the loser mapping (/’pa:’ka/, [pa’ka]), provided at
least one of the two winner-preferring constraints Ident[length] or Main-
L is ranked above the two loser-preferring constraints Main-R and NoLong.

Supplementary materials 3

The join of some ERC matrices ù1, …, ùn is any ERC matrix which satisfies
the two conditions in (39). Any such ERC matrix will be denoted by ∑(ù1,
…, ùn). Condition (39a) says that the join is weaker than (i.e. entailed by)
each matrix ù1, …, ùn. Condition (39b) says that, among all ERC matrices
which are weaker than (i.e. entailed by) each matrix ù1, …, ùn, the join is
a strongest one (i.e the one which entails all the others). In other words,
condition (39a) says that the join captures some of the ranking information
shared by the matrices ù1, …, ùn, and condition (39b) says there is no
shared ranking information which the join does not capture.

(39) Each of the ERC matrices ù1, …, ùn entails their join.a.
If each of the ERC matrices ù1, …, ùn entails some ERC matrix
ù, their join entails ù as well.

b.

Lemma 3 collects some properties of the join which will be used in the rest
of this appendix.

Proof. An ERC matrix ∏ is the join of two ERC matrixes ù1 and ù2

if and only if the set of rankings consistent with ∏ is the union of the
two sets of rankings consistent with ù1 and ù2. Furthermore, the set
of rankings consistent with ù1+ù2 is the intersection of the two sets
of rankings consistent with ù1 and ù2. Claims (i)–(iii) then follow
from elementary set-theoretic manipulations on the sets of consistent
rankings.

Given four ERC matrices ù1, ù2, π1, π2, consider the ERC
matrix ∑(ù1, ù2)+∑(π1, π2) obtained by stacking one on top of
the other the join of ù1 and ù2 and the join of π1 and π2. Then
∑(ù1, ù2)+∑(π1, π2) coincides with the join of the four ERC
matrices ù1+π1, ù1+π2, ù2+π1, ù2+π2.

(iii)

3 A subroutine for extracting ranking information through the join
3.1 Description of the subroutine. The subroutine in (40) takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex and a paradigm
p (line 1). It extends the ranking information encoded in the input ERC
matrix ù by adding to that input ERC matrix some additional ERCs as
follows. The subroutine considers a certain meaning combination Mm (line
2), and it reads o‰ the paradigm p the surface realisation Xx of that meaning
combination Mm (line 3). The subroutine then constructs the set " of all
underlying concatenations Aa which are consistent with the lexicon Lex as
underlying forms for that meaning combination Mm (line 4). This means
that if Lex sets a feature for the root M or the su!x m to a certain value,
then the root morpheme A or the su!x morpheme a of each underlying
form Aa in " has the feature set to that value. Any of these underlying
forms in " could be the actual underlying form according to the partial
lexical information encoded by Lex. In other words, the target grammar
could enforce any of the mappings (Aa, Xx) of any underlying form Aa in
" to the surface form Xx. Thus the best the subroutine can do is to extract
any ranking information shared by all these mappings. This is done by
computing the join of all ERC blocks ù(Aa, Xx) corresponding to all
mappings (Aa, Xx) of all underlying forms Aa in " to the surface form Xx
(line 5). The input ERC matrix ù is updated by adding this join to it (line
6). The ERC matrix thus updated is returned (line 7).

(40) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all concatenations Aa consistent with Lex as

underlying forms for Mm

1.

2.
3.

4.

The join of the ERC blocks ù(Aa, Xx) computed at line 5 is an ERC-
theoretic construct which might very well not correspond, in the sense of
(37), to any mapping of an underlying form to a surface form. For this
reason, CPR needs the additional flexibility of representing the current
(partial) grammatical/ranking information as an ERC matrix rather than
as a (partial) grammar. Appendix B: §1 shows that output-drivenness in
e‰ect guarantees that the join computed in line 5 always corresponds to the
mapping of a certain underlying form to the surface form Xx read at line
3.

3.2 Analysis of the subroutine. Lemma 4 provides a straightforward correct-
ness result for Merchant’s subroutine (40). Note that the proof only uses
property (39a) of the join, not property (39b). In other words, the lemma
hinges only on the fact that the join extracts ranking information which is
shared by all the ERC blocks ù(Aa, Xx). Property (39b) is nonetheless
crucial, because it ensures that the join does not lack any of this shared
ranking informa tion, making subroutine (40) optimal. The crux of
Merchant’s subroutine is its time complexity. Merchant (2008: ch. 4)
develops an elegant algorithm for computing the join which can be used
to implement line 5. Unfortunately, his algorithm needs to compute the
fusional closure of each of the input ERC matrices it has to join. Although
there are no results that I am aware of concerning the time complexity of
that computation, it is most plausibly intractable in the general case.

4 Extension to contrast pairs
4.1 Description of the subroutine. The extension of Merchant’s subroutine
(40) to contrast pairs is provided in (41). This subroutine takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex, and a paradigm
p (line 1). The subroutine considers some contrast pair (line 2). For concrete-
ness, I am assuming here that the two meaning combinations of the contrast
pair share the su!x meaning, i.e. have the shape Mm and Ôm (the case
where they share the root meaning is handled analogously). The
subroutine reads o‰ the paradigm p the surface realisations Xx and ∑π of
those two meaning combinations (line 3). Although x and π are the surface
realisations of the same underlying su!x segment corresponding to the
su!x meaning m, they can be di‰erent, because of morphophonem ic
alternations in the surface realisation of that underlying su!x triggered by
the two di‰erent roots M and Ô. The subroutine then constructs the set
" of all pairs (Aa, ∫a) of underlying concatenations which are consistent
with the lexicon Lex as underlying forms for the meaning combinations
Mm and Ôm and furthermore share the underlying su!x segment a (line
4). The latter requirement encodes the fact that we are focusing on a pair
of meaning combinations Mm and Ôm which share the su!x meaning m.
For each pair (Aa, ∫a) of underlying concatenations in ", the subroutine
considers the corresponding ERC blocks ù(Aa, Xx) and ù(∫a, ∑π), stacks
them together into the ERC matrix ù(Aa, Xx)+ù(∫a, ∑π) and constructs
the join of all ERC matrices thus obtained (line 5). The input ERC matrix
ù is updated by adding this join to it (line 6). The ERC matrix thus updated
is then returned (line 7).

There is a subtlety which should be pointed out here. At line 5, the subroutine
considers the join in (42a), not the one in (42b). The di‰erence is that in
(42a) we sum together the two ERC blocks ù(Aa, Xx) and ù(∫a, ∑π) into
ù(Aa, Xx)+ù(∫a, ∑π) before taking the join. This is indeed appropriate,
because the join in (42a) is stronger than the one in (42b), by Lemma 3.ii.

(42) ∑{ù(Aa, Xx)+ù(∫a, ∑π) | (Aa, ∫a)Œ"}a.
∑{ù(Aa, Xx), ù(∫a, ∑π) | (Aa, ∫a)Œ"}b.

4.2 Analysis of the subroutine. The Correctness Lemma 4 trivially extends
from the original subroutine (40) for single meaning combinations to the
variant (41) for contrast pairs. The ine!ciency of (40) for single meaning
combinations is of course aggravated in (41) for contrast pairs, as the latter
requires taking the join of a larger number of larger ERC matrices. Yet
subroutine (41) applied to the contrast pair (Mm, Ôm) is able to extract
more ranking information than the double applica tion of the original
subroutine (40) to the two separate meaning combinations Mm and Ôm.
To see this, suppose that the root meaning M admits a unique underlying
form A consistent with Lex, the root meaning Ô admits a unique under-
lying form ∫ and the su!x meaning m admits only two underlying forms,
a1 and a2. Suppose we first apply the original subroutine (40) to the meaning
combination Mm. At line 4, it constructs the set " consisting of the two
underlying forms Aa1 and Aa2. At line 5, it computes the join ∑(ù1, ù2)
of the two ERC blocks ù1=ù(Aa1, Xx) and ù2=ù(Aa2, Xx). Suppose
we next apply the original subroutine (40) to the meaning combination
Ôm. At line 4, it constructs the set ", consisting of the two underlying
forms ∫a1 and ∫a2. At line 5, it computes the join ∑(π1, π2) of the two
ERC blocks π1=ù(∫a1, ∑π) and π2=ù(∫a2, ∑π). Ultimately, the two
consecutive applications of the original subroutine (40) to the two meaning
combinations Mm and Ôm extract the ranking information captured by
the sum of the two joins in (43).

Suppose we instead apply subroutine (41) to the contrast pair (Mm, Ôm).
At line 4, it constructs the set ", consisting of the two pairs (Aa1, ∫a1) and
(Aa2, ∫a2). At line 5, it computes the join in (45) of the two ERC blocks
ù(Aa1, Xx)+ù(∫a1, ∑π)=ù1+π1 and ù(Aa2 , Xx)+ù(∫a2, ∑π) =
ù2+π2.

(45) ∑(ù1+π1, ù2+π2)

The join in (45) is stronger than the one in (44), because it joins fewer
matrices (the smaller the number of matrices, the larger the amount of
shared information for the join to extract). This is because the two blocks
ù1+π2 and ù2+π1 have disappeared from the join. This is what we want,
as they correspond to the unreasonable assumption that the su!x m has
di‰erent underlying forms in the two meaning combinations Mm and Ôm.
In other words, since the learner is processing the two meaning combinations
Mm and Ôm together as a contrast pair, it is able to take into account the
fact that these meaning combinations share the su!x meaning m, which
must therefore have the same underlying form in the two cases.

5 A subroutine for extracting lexical information through
inconsistency detection

5.1 Description of the subroutine. Subroutine (46) takes as input some
lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine then considers a certain
meaning combination Mm with some feature unset according to the input
partial lexicon Lex for either the root M or the su!x m (line 2). The goal
of the subroutine is to try to extend the input partial lexicon by setting
some of these unset features. To this end, the subroutine reads o‰ the
paradigm p the surface realisation Xx of the meaning combination Mm
(line 3). It constructs the set " of all underlying concatenations Aa which
are consistent with both the input lexical information Lex and the input
ranking information captured by the grammar G (or the ERC matrix ù)
(line 4). Consistency with the input lexical information means that, if Lex
sets a feature for the root M (or the su!x m) to a certain value, then the
root morpheme A (or the su!x morpheme a) of each underlying form Aa
in " has the feature set to that value. Consistency with the input ranking
information means that the input grammar G (or the input ERC matrix ù)
is consistent with the mapping (Aa, Xx) of each such underlying form Aa
in " to the surface form Xx. The subroutine then looks for a feature which
is unset by Lex for the root meaning M (or the su!x meaning m), such that
each root morpheme A (or each su!x morpheme a) has the same value for
that feature in all underlying concatenations Aa in " (line 5). For any such
feature, it can be concluded that the opposite value is inconsistent with the
available lexical and ranking information. The subroutine thus updates the
partial lexicon Lex by setting that feature to be equal to its constant value

(46) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that:
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G (or

the ERC matrix ù)
if some feature unset for the root M (or for the su!x m) has a

constant value over " for M (for m) then
update the lexicon Lex by setting the feature to that value for

the root M (or for the su!x m)
end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.
8.

This subroutine is called inconsistency detection (cf. Kager 1999, Tesar
et al. 2003, Tesar 2006), because it sets a certain feature to a certain value
based on the detection at line 6 of the fact that any other value for that
feature would be inconsiste nt with the availab le lexical and ranking
information.

Proof. Assume by contradiction that the lemma is false. This means
that the subroutine has set some feature j for, say, the root meaning
M to a value which is di‰erent from the value assigned by the target
lexicon. For concreteness, assume that the values assigned by the
subroutine and the target lexicon are + and — respectively. Thus , the
target lexicon assigns to the meaning combination Mm an underlying
form Aa, which has feature j set to the value — in the root A. This
underlying form Aa is consistent with the partial lexicon Lex (because
it is consistent with the target lexicon, which is in turn consistent with
Lex). Furthermore, the mapping (Aa, Xx) of this underlying form Aa
to the surface form Xx is consistent with the input grammar G (because
the target ranking is consistent with both). In other words, this
underlying form Aa satisfies the two conditions stated by the two
subclauses in line 4 and thus belongs to the set " constructed by the
subroutine. Since this underlying form Aa has feature j set equal to
— for the root A, then the subroutine cannot have set that feature to
the opposite value + at line 6.

5.2 Analysis of the subroutine. Lemma 5 provides a straightforward correct-
ness result for inconsistency detection (46). Its time complexity is controlled
by the size of the set " of consistent underlying forms constructed at line 4.
In the worst case (when both the input lexicon and the input ranking
information are empty), " consists of all underlying forms, i.e. all con-
catenations of root and su!x morphemes. In this case, the size of " grows
polynomially in the number of morphemes and thus exponentially in the
number of features. In conclusion, subroutine (46) is e!cient relative to
the generous notion of e!ciency defined in (14), which measures time
complexity in terms of the number of morphemes, but is not e!cient
relative to the more demanding notion of e!ciency defined in (15), which
measures time complexity in terms of the number of features.

Lemma 5
Inconsistency detection (46) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target grammar, that the input (possibly partial)
grammar G (or ERC matrix ù) is consistent with the target grammar

6 Extension to contrast pairs
6.1 Description of the subroutine. The extension of inconsistency detection
(46) to contrast pairs is provided in (47). This subroutine takes as input
some lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine considers a particular
contrast pair (line 2). For concreteness, I am assuming here that the two
meaning combinations of the contrast pair share the su!x meaning, namely
have the shape Mm and Ôm (the case where they share the root meaning
is handled analogously). The subroutine reads o‰ the paradigm p the surface
realisations Xx and ∑π of those two meaning combinations (line 3). It
constructs the set " of all pairs (Aa, ∫a) of underlying concatenations which
are consistent with both the input lexical information Lex and the input
ranking information G (or ù) and furthermore share the underlying su!x
segment a (line 4). The subroutine then looks for a feature which is unset
by Lex for the root meaning M (or the root meaning Ô or the su!x meaning
m), such that each underlying root morpheme A (or each underlying root
morpheme ∫ or each underlying su!x morpheme a) has the same value
for that feature in all pairs (Aa, ∫a) in " (line 5). For any such feature, the
subroutine updates the partial lexicon Lex by setting the feature equal to
its constant value for the root meaning M (or for the root meaning Ô or
for the su!x meaning m) (line 6). The lexicon thus updated is then returned
(line 8).

(47) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G (or
the ERC matrix ù)

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

- the mapping (∫a, ∑π) is consistent with the grammar G
if some unset feature has a constant value over " for any of the three

meanings M, Ô or m then
update the lexicon Lex by setting the feature to the constant

value for that meaning
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.
8.

6.2 Analysis of the subroutine. The Correctness Lemma 5 trivially extends
from the original subroutine (46) for single meaning combinations to the
variant (47) for contrast pairs. Furthermore, the variant for contrast pairs
remains as e!cient as the original version for single meaning combinations,
when e!ciency is generously measured in terms of the number of morphemes
(but again, not when it is measured in terms of the number of features).
Yet a number of authors (including Alderete et al. 2005 and Merchant &
Tesar 2008) have pointed out that (47), applied to the contrast pair (Mm,
Ôm), can extract more lexical information than the double application of
the original subroutine (46) to the two separate meaning combinations Mm
and Ôm. To see this, consider one of the two meaning combinations of the
contrast pair, say Mm. The original subroutine considers all underlying
forms Aa for Mm which are consistent with the input lexical and ranking
information, and only sets those features which are constant across all these
underlying forms. If the number of consistent underlying forms is large,
the number of features which are constant across them is small, and the
subroutine thus extracts little lexical information. (47) might instead be
able to extract more lexical information, because it looks for features which
are constant over a smaller set of underlying forms for Mm, namely those
underlying forms Aa which are not only consistent with the input lexical
and ranking information, but also use a su!x morpheme a which can be
combined with a root morpheme ∫ into an underlying form ∫a for Ôm
which is also consistent with the input lexical and ranking information.

I denote Tesar’s subroutine (29) for the extraction of ranking information
from a single meaning combination as ERIT, and Merchant’s subroutine
(40) as ERIM. Lemma 6 states that, if the underlying typology is output-
driven, then ERIT and ERIM are equivalent, because they update the
current ranking/grammatical information with the ‘same’ information. This
equivalence is striking, given that the time complexity of ERIT is only
linear in the number of features, while the time complexity of ERIM is
unknown, but probably exponential in both the number of features and the
number of morphemes. Output-drivenness thus a‰ords a significant
reduction in time complexity. The Correctness Lemma 1 for ERIT (which
was proven directly in §4.4) can also be made to follow from the Correctness
Lemma 4 for ERIT through the Equivalence Lemma 6.

1 Subroutines for extracting ranking information from a single
meaning combination

Proof. The underlying form Bb constructed by ERIT at line 4 is
consistent with Lex, and therefore belongs to the set " constructed by
ERIM at line 4. Consider one of the underlying forms Aa in this set ".
The two underlying forms Aa and Bb agree in every feature which is
set by the input partial lexicon Lex. Furthermore, Bb and the surface
form Xx agree in every remaining feature. Thus the underlying form
Bb is more similar to the surface form Xx than is the underlying form
Aa. Since the underlying typology is output-driven, then every ranking
which maps the less similar underlying form Aa to Xx also maps the
more similar underlying form Bb to Xx. In other words, any ranking
consistent with the ERC block ù(Aa, Xx) is also consistent with the
ERC block ù(Bb, Xx). Lemma 3.i thus ensures that the ERC block
ù(Bb, Xx) is the join of the ERC blocks ù(Aa, Xx) across all underlying
concatenations Aa in ".

Lemma 6
Suppose that the underlying typology is output-driven and that ERIT

is fed with a partial grammar G and a (possibly partial) lexicon Lex.
Suppose that ERIM is fed with the ERC matrix ù corresponding to
the partial grammar G and the same lexicon Lex. Then the ERC block
corresponding to the mapping (Bb, Xx) constructed by ERIT at line
4 is the join of the ERC blocks ù(Aa, Xx) corresponding to the
underlying forms Aa in " constructed by ERIM at line 5.

between the two implementations is the following: Merchant’s original
subroutine (46) sets any feature which is constant over "; the variant in (48)
instead focuses right from the beginning on a specific feature j, which is
unset for either the root M or the su!x m of the meaning combination Mm
under consideration. In line 3, I am assuming for concreteness that the
feature j is unset for the root M (the case where it is unset for the su!x m
is handled analogously). The modification is only cosmetic: the original
subroutine is equivalent to running this variant for each unset feature.

(48) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a meaning combination Mm in the paradigm p
Require: a feature j unset by Lex for either M or m; for concreteness,

say it is unset for M
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G

if all underlying forms Aa in " have the feature j set to the same
value in the root morpheme A then

update the lexicon Lex by setting the feature j to that value for
the root meaning M

end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.

8.
9.

I denote Tesar’s subroutine (33) for the extraction of lexical information
from a single meaning combination by ELIT, and (the cosmetic variant of)
the original inconsistency detection subroutine (48) by ELIid. Lemma 6
states that, if the underlying typology is output-driven, ELIT and ELIid

are equivalent, because their if-clauses at line 6 are equivalent. This
equivalence is striking, given that the if-clause of ELIT can be checked in
time linear in the number of features, while the if-clause of ELIid requires
time exponential in the number of features in the worst case. Output-
drivenness has thus a‰orded a significant reduction in time complexity.
The Correctness Lemma 2 for ELIT (which was proven directly in §4.5)
can also be made to follow from the Correctness Lemma 4 for ELIid through
the Equivalence Lemma 7.

Proof. To start, let me prove that the if-clause in line 6 of ELIT entails
the if-clause in line 6 of ELIid. Assume by contradiction that the
former if-clause is true while the latter if-clause is false. The hypothesis
that the if-clause of ELIid is false entails in particular that the set " of
consistent underlying forms constructed by ELIid at line 5 contains
an underlying form Aa whose root A disagrees with X relative to the
feature j (indeed, if all the underlying forms Aa in " had a root A
which agreed with X relative to j, the if-clause of ELIid would hold
true). The underlying form Aa and the underlying form Bb constructed
by ELIT at line 5 thus agree in the feature j for the root meaning M,
as they both have the opposite value from X. Furthermore, they agree
in every feature set by the partial lexicon Lex, because they are both
consistent with Lex. Finally, Bb agrees with Xx for every remaining
feature. The underlying form Bb is thus more similar to the surface
form Xx than is the underlying form Aa. Since the mapping (Aa, Xx)
is consistent with G (because Aa belongs to "), there exists a ranking
which is consistent with both. Since the grammar corresponding to
that ranking is output-driven and maps the less similar underlying
form Aa to Xx, it also maps the more similar underlying form Bb to
Xx. In other words, that ranking is also consistent with the mapping
(Bb, Xx). In conclusion, the mapping (Bb, Xx) and the grammar G
are consistent (because both are consistent with the ranking), contra-
dicting the hypothesis that the if-clause of ELIT is true.

Vice versa, let me prove that the if-clause in line 6 of ELIid entails
the if-clause in line 6 of ELIT. Assume by contradiction that the
former if-clause is true, while the latter if-clause is false. The hypothesis
that the if-clause of ELIT is false means that the input (partial) grammar
G is consistent with the mapping (Bb, Xx) of the underlying form Bb
constructed by ELIT at line 5 to the surface form Xx. Since this
underlying form Bb is consistent with Lex, then Bb belongs to the set
" of consistent underlying forms constructed at line 5 by ELIid. Since
B and X disagree relative to the feature j, consider the underlying
form ≥b, identical to Bb but for the fact that ≥ and X instead agree in
the feature j. Obviously, the underlying form ≥b is more similar to
the surface form Xx than is the underlying form Bb. Since (Bb, Xx)
is consistent with G, there exists a ranking which is consistent with
both. Since the grammar corresponding to that ranking is output-
driven and maps the less similar underlying form Bb to Xx, then it
also maps the more similar underlying form ≥b to Xx. In other words,
that ranking is also consistent with the mapping (≥b, Xx). This
underlying form ≥b thus belongs to the set " constructed by ELIid at
line 5.This conclusion contradicts the hypothesis that the if-clause of
ELIid holds, because it shows that " contains two underlying forms
Bb and ≥b, such that B and ≥ disagree in the feature j.Lemma 7

Suppose that the underlying typology is output-driven. Then the two
if-clauses in line 6 of ELIT and ELIid are equivalent.

Tesar’s subroutine for extracting lexical information from contrast pairs
is more involved than his other two subroutines, for extracting lexical and
ranking information from a single meaning combination. For this reason,
the latter two subroutines were reviewed in §4.4 and §4.5, while the former
subroutine is included in this appendix. Here I start out from Merchant’s
subroutine in (47) for extracting lexical information from contrast pairs,
and work towards Tesar’s reformulation, provided below in (52). This
seems to me the best way of making sense of the somewhat complex
formulation of Tesar’s subroutine. I begin by carrying out the same cosmetic
change as in the previous section: I replace the original subroutine (47)
with (49), which only di‰ers because line 3 focuses on a specific feature j,
unset by the input lexicon Lex for one of the three meanings M, Ô and m
of the contrast pair (Mm, Ôm). For concreteness, I assume it is unset for
the root meaning M.

3 Subroutines for extracting lexical information from a contrast
pair

Supplementary materials 1716 Giorgio Magri

(49) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫a, ∑π) is consistent with the grammar G

if all the pairs (Aa, ∫a) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.
9.

the two underlying su!x morphemes a and ¥ coincide, because they are
the underlying form corresponding to the same su!x meaning m. The
condition that a and ¥ coincide is in turn equivalent to the condition that
they agree for each feature y. We could of course relax this condition by
requiring that the two underlying su!x morphemes a and ¥ agree only for
certain features, y1, ..., yn. This intuition leads to the formulation in (50).
It di‰ers from (49) only because of the new line 4, which introduces the
features y1, ..., yn, and because of the additional fifth subclause in the
definition of the set ". Note that line 4 assumes all the features y1, ..., yn

to be unset by the input partial lexicon Lex for the shared su!x m, because
the condition that both a and ¥ are consistent with Lex as underlying forms
for m already entails that they agree on every feature set by Lex for m.

(50) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫¥) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ agree for every

feature y1, ..., yn

if all the pairs (Aa, ∫¥) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

combinations Mm and Ôm one at a time. If instead we consider all unset
y features at line 4, then (50) e‰ectively considers only pairs of underlying
forms for the two meaning combinations which share the underlying su!x,
and is therefore equivalent to the original subroutine (49) for extracting
lexical information from contrast pairs. In the end, depending on the
number of y features considered at line 4, (50) provides a whole range of
subroutines for extracting lexical information in between the weaker (46)
and the stronger (49).

Subroutine (50) can be equivalently restated as (51). Instead of requiring
the two su!x morphemes a and ¥ to coincide for every feature y1, ..., yn,
we consider all possible combinations v1, ..., vn of values of those features
at line 6, and we require both a and ¥ to have those features set equal to
those values in the fifth subclause of line 5.

(51) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫¥ is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ both have the

values v1, ..., vn for the features y1, ..., yn

if all the pairs (Aa, ∫¥) in all the sets "(v1, ..., vn) have the underlying
root A set to the same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

Supplementary materials 1918 Giorgio Magri

By reasoning as in the previous subsection we can easily show that subroutine
(51) is equivalent to (52) under the assumption of output-drivenness.
Indeed, the two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn con-
structed by (52) at line 6 provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (51).

(52) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and
±≤v1, …, vn, as follows:

- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-
lying forms for Mm and Ôm

- B has the opposite value for feature j than X
- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values

v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
if the grammar G is inconsistent with the two mappings (Bbv1, …, vn,

Xx) and (±≤v1, …, vn, ∑π) for any combination of values v1, ..., vn

then
update the lexicon Lex by setting feature j to that constant value

for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

If the features y1, ..., yn considered in line 4 of (52) exhaust the set of
features, then the two subroutines (49) and (52) are equivalent. However,
the running time of (52) is exponential in the number of features in the
latter case, because it needs to consider all combinations v1, ..., vn.

By reasoning as in the previous subsection, we can proceed from Merchant’s
original subroutine (41) for extracting ranking information from contrast
pairs to the variant in (53).

4 Subroutines for extracting ranking information from a contrast
pair

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫¥ is consistent with the lexicon Lex as an underlying form
for Ôm

- the two underlying su!x morphemes a and ¥ both have the
values v1, ..., vn for the features y1, ..., yn

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫¥) in "(v1, ..., vn) for all combinations of values
v1, ..., vn

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.

7.
8.

20 Giorgio Magri

Once again, if we do not consider any y features at line 3, (53) e‰ectively
considers the two meaning combinations of the contrast pair independently
of each other, and thus ends up equivalent to subroutine (40) for extracting
lexical information from single meaning combinations. If we instead consider
all unset y features at line 3, then (53) e‰ectively only considers pairs of
underlying forms for the two meaning combinations which share the
underlying su!x, and is therefore equivalent to Merchant’s original
subroutine (41) for extracting lexical information from contrast pairs.
Ultimately, depending on the number of y features considered at line 3,
(53) provides a whole range of subroutines for extracting ranking information
in between the weaker (40) and the stronger (41).

By reasoning as in §2 of this appendix, we can easily show subroutine
(53) to be equivalent to (54) under the assumption of output-drivenness.
The two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn constructed
by (54) at line 5 again provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (53).

(54)

- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values
v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
compute the join of the ERC matrices ù(Bbv1, …, vn, Xx)+

ù(±≤v1, …, vn, ∑π) for all combinations of values v1, ..., vn

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

6.

7.
8.

Take the simplest case, where we consider a single feature y at line 3.
Assume furthermore that y is binary, i.e. it only takes the values v=‘+’ and
v=‘—’. At line 5, the subroutine constructs the two underlying forms Bb+
and ±≤+, corresponding to the value v=‘+’of feature y (i.e. both b+ and ≤+
have the value ‘+’ for the feature y), and the two underlying forms Bb— and
±≤—, corresponding to the value v=‘—’ (i.e. both b— and ≤— have the value
‘—’ for the feature y). At line 6, we finally compute the join of the two ERC
blocks ù(Bb+, Xx)+ù(±≤+, ∑π) and ù(Bb—, Xx)+ù(±≤—, ∑π). Even in
the simplest case of a single feature y, there is no way around computing
the join.

In summary, Merchant develops a new subroutine for extracting ranking
information through the notion of join. This subroutine can be applied to
either a single meaning combination at a time, as in (40); or to a contrast
pair, as in (41). The latter is more powerful than the former: the subroutine
extracts more ranking information by processing the two meaning
combinations Mm and Ôm as a contrast pair than by processing them
separately. The crux of Merchant’s subroutine for extracting ranking
information is that it relies on the computation of a join, which is time-
consuming. The biggest impact of output-drivenness is that it allows
Merchant’s subroutine for extracting ranking information from a single
meaning combination to be restated without having to compute any join.
The restated subroutine thus runs in time linear in the number of features.
In other words, it is e!cient even relative to the more demanding notion
of e!ciency introduced in §2.6. The situation is unfortunately very di‰erent
when Merchant’s subroutine for extracting ranking information is boosted
by being applied to contrast pairs. In this case, output-drivenness is not
able to circumvent the computation of the join, and thus does not su!ce
to make the subroutine e!cient.

A constraint ranking is consistent with an ERC provided it satisfies con-
dition (36); it is consistent with an ERC matrix provided it is consistent
with each of its rows. An ERC matrix entails another ERC matrix provided

(38) Id
[str]

Id
[length]

Main-
L

Main-
R

No
Long

WSP

w
w

w
w
w
w

w
w
w
w

l
l
l
l

l

w
l

w

/’pa:’ka/, [’pa:ka], [pa’ka]
/’pa:’ka/, [’pa:ka], [pa’ka:]
/’pa:’ka/, [’pa:ka], [pa:’ka]
/’pa:’ka/, [’pa:ka], [pa:’ka:]
/’pa:’ka/, [’pa:ka], [’paka]
/’pa:’ka/, [’pa:ka], [’paka:]
/’pa:’ka/, [’pa:ka], [’pa:ka:]

w
w

w
w

Lemma 3
Suppose that one of the ERC matrices ù1, ù2, …, Rn is entailed
by each of the others. For concreteness, assume that it is ù1 which
is entailed by each of the other ERC matrices ù2, …, Rn. Then
ù1 is the join of ù1, ù2, …, Rn.

(i)

Given the ERC matrices ù1, ù2, ù3, …, Rn, replace two of them
with the ERC matrix obtained by stacking the two matrices one
on top of the other. For concreteness, replace ù1 and ù2 with
ù1+ù2. Then the join of the n®1 ERC matrices ù1+ù2, ù3,
…, Rn entails the join of the original n ERC matrices ù1, ù2, ù3,
…, Rn, while the reverse does not in general hold.

(ii)

compute the join of the ERC matrices ù(Aa, Xx) for all underlying
forms Aa in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.
7.

Proof. Let Aa be the underlying form assign ed to the meanin g
combination Mm by the target lexicon. This underlying form Aa
belongs to the set " constructed by the subroutine at line 4, because
of the hypothesis that the input lexicon Lex is consistent with the
target lexicon. Thus the corresponding ERC block ù(Aa, Xx) is one
of the blocks that the subroutine takes the join of at line 5. Since the
target ranking is consistent with this ERC block ù(Aa, Xx), then it
is also consistent with the join, by property (39a) of the join. Since the
target ranking is also consistent with the input ERC matrix ù, it is

Lemma 4
Merchant’s subroutine (40) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target ranking, that the input ERC matrix ù is
consistent with that target ranking, and that the input (possibly partial)
lexicon Lex is consistent with that target lexicon. The updated ERC
matrix returned by subroutine (40) is also consistent with that target
ranking.

then consistent with the updated ERC matrix returned by the sub-
routine.

(41) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫a) in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

1.

2.

3.

4.

5.

6.
7.

(43) ∑(ù1, ù2)+∑(π1, π2)

Lemma 3.iii ensures that (43) is equivalent to the join in (44). The four
ERC matrices being joined here correspond to all four combinations of
underlying forms for the two meaning combinations Mm and Ôm. In
particular, the learner is also joining together the two ERC blocks ù1+π2

and π2+ù1, whereby the shared su!x meaning m is assigned a di‰erent
underlying form in the case of Mm than in the case of Ôm. In other words,
since the learner is processing the two meaning combinations Mm and Ôm
separately, it is blind to the fact that these meaning combinations share the
su!x meaning m, which must therefore have the same underlying form in
both cases.

(44) ∑(ù1+π1, ù1+π2, ù2+π1, ù2+π2)

for the root meaning M (or for the su!x meaning m) (line 6). The lexicon
thus updated is then returned (line 8).

and that the input partial lexicon Lex is consistent with the target
lexicon. The updated lexicon returned by subroutine (46) is also
consistent with that target lexicon.

2 Subroutines for extracting lexical information from a single
meaning combination

Consider the slight variant (48) of the subroutine (46) for the extraction of
lexical information through inconsistency detection. The only di‰erence

The modification is only cosmetic: the original subroutine (47) is equivalent
to running this variant (49) for each feature which is unset for one of the
three morphemes M, Ô and m.

The set " constructed by the subroutine (49) at line 5 can equivalently
be described as the collection of all pairs (Aa, ∫¥) which satisfy the conditions
expressed by the four subclauses of line 5 plus the additional condition that

If we consider no y features at all in line 4, then (50) e‰ectively considers
the two meaning combinations of the contrast pair independently of each
other, and thus ends up equivalent to subroutine (46) for extracting lexical
information from single meaning combinations, in the sense that the
application of subroutine (50) to the contrast pair (Mm, Ôm) is equivalent
to two consecutive applications of subroutine (46) to the two meaning

Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and ±≤v1,

…, vn as follows
- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-

lying forms for Mm and Ôm

1.

2.

3.

4.

5.

(53) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

1.

2.

3.

4.

Phonology 25.2: Artwork 1 of

Supplementary materials 72 Giorgio Magri

every ranking consistent with the former is also consistent with the latter.
Thus ù1+ù2 entails both ù1 and ù2.

(36) At least one constraint which has a w in the ERC under consideration
is ranked above every constraint which instead has an l (constraints
which have an e play no role in the consistency condition).

2 The join

4 Giorgio Magri

Grammatical information was represented in §4.1.2 as a (possibly partial)
collection G of mappings (Aa, Xx) of an underlying form Aa to a surface
form Xx. Each of these mappings can be equivalently represented with the
corresponding ERC block ù(Aa, Xx). And the grammatical information
G can thus be represented with the ERC matrix obtained by stacking all
these blocks one of top of the other. Merchant’s CPR adopts the architecture
in (28), the only di‰erence being that the current partial grammatical
information is represented not as a partial grammar G but as an ERC matrix
ù. This makes the algorithm more flexible in the type of partial grammatical
information it maintains: any (partial) grammar G can be represented
through the corresponding ERC matrix, while not just any ERC matrix ù
corresponds to some partial collection of mappings. This additional flexibility
in the data structure maintained by the algorithm is crucial in order to
define the subroutine for extracting ranking information, as explained in
the next section.

Supplementary materials 5 6 Giorgio Magri 8 Giorgio Magri Supplementary materials 9 10 Giorgio Magri

Appendix B: Equivalence between Merchant’s and Tesar’s sub-
routines

Supplementary materials 11 12 Giorgio Magri Supplementary materials 13

Appendix A: Merchant’s (2008) CPR

Phonology 31 (2014). Supplementary materials

Review article

Giorgio Magri
CNRS, Université Paris 8 and University of Utrecht

Supplementary materials

This appendix sketches Merchant’s (2008) CPR algorithm. In §1, I explain
how CPR adheres to the architecture in (28), only with a more abstract
representation of the current partial ranking information in terms of ERCs.
I then review CPR’s subroutines for extracting ranking and lexical infor-
mation. I start from the easier case, where they are applied to a single
paradigmatic entry (§3 and §5), and then turn to the extension to contrast
pairs (§4 and §6).

1 ERCs and CPR’s architecture
An elementary ranking condition (ERC) is an assignment of one of the
three symbols l, w and e to each of the constraints in the constraint set
(Prince 2002). An ERC is usually represented as a row of these symbols,
with the constraints annotated on top. To illustrate, an ERC for the constraint
set (5) of the Paka typology is provided in (35). An ERC matrix is a finite
collection of ERCs, stacked one on top of the other (the order does not
matter). An arbitrary ERC matrix is denoted by ù. Given two ERC matrixes
ù1 and ù2, ù1+ù2 denotes the ERC matrix obtained by stacking one on
top of the other (the order does not matter).

14 Giorgio Magri Supplementary materials 15

Bruce Tesar (2014). Output-driven phonology: theory and learning. (Cam-
bridge Studies in Linguistics 139.) Cambridge: Cambridge University
Press. Pp. xix+415.

(35)
e

Id[str] Id[length] Main-L Main-R NoLong WSP
w w l l e|

The phonological underpinning of these notions is as follows. Consider the
mapping (Aa, Xx) of an underlying form Aa to a surface form Xx, which
is thus construed as the winner. For any other loser candidate Yy, consider
the ERC defined in (37). Stack all the ERCs thus constructed for all loser
candidates one on top of the other into an ERC matrix, denoted by ù(Aa,
Xx). Then the OT grammar corresponding to a ranking maps the under-
lying form Aa to the surface form Xx if and only if that ranking is consistent
with the ERC matrix ù(Aa, Xx) corresponding to that mapping.

(37) A constraint has a w provided it prefers the winner mapping (Aa,
Xx) to the loser mapping (Aa, Yy), i.e. it assigns fewer violations
to the former mapping than to the latter.

a.

A constraint has an l provided it instead prefers the loser mapping
(Aa, Yy) to the winner mapping (Aa, Xx), i.e. it assigns fewer
violations to the former mapping than to the latter.

b.

A constraint has an e provided it has no preference for one of the
two mappings (Aa, Xx) and (Aa, Yy), i.e. it assigns the same number
of violations to both.

c.

To illustrate, consider the Paka typology in §2.1 of the paper, focusing on
the mapping (/’pa:’ka/, [’pa:ka]) of the underlying form /’pa:’ka/ to the surface
form [’pa:ka]. The ERC matrix ù(/’pa:’ka/, [’pa:ka]) corresponding to this
mapping is provided in (38). It consists of seven ERCs, because there are
seven loser candidates. For convenience, each ERC is annotated on the left
with the corresponding underlying, winner and loser forms (loser forms
are struck through). The topmost ERC in (38) says that the winner mapping
(/’pa:’ka/, [’pa:ka]) beats the loser mapping (/’pa:’ka/, [pa’ka]), provided at
least one of the two winner-preferring constraints Ident[length] or Main-
L is ranked above the two loser-preferring constraints Main-R and NoLong.

Supplementary materials 3

The join of some ERC matrices ù1, …, ùn is any ERC matrix which satisfies
the two conditions in (39). Any such ERC matrix will be denoted by ∑(ù1,
…, ùn). Condition (39a) says that the join is weaker than (i.e. entailed by)
each matrix ù1, …, ùn. Condition (39b) says that, among all ERC matrices
which are weaker than (i.e. entailed by) each matrix ù1, …, ùn, the join is
a strongest one (i.e the one which entails all the others). In other words,
condition (39a) says that the join captures some of the ranking information
shared by the matrices ù1, …, ùn, and condition (39b) says there is no
shared ranking information which the join does not capture.

(39) Each of the ERC matrices ù1, …, ùn entails their join.a.
If each of the ERC matrices ù1, …, ùn entails some ERC matrix
ù, their join entails ù as well.

b.

Lemma 3 collects some properties of the join which will be used in the rest
of this appendix.

Proof. An ERC matrix ∏ is the join of two ERC matrixes ù1 and ù2

if and only if the set of rankings consistent with ∏ is the union of the
two sets of rankings consistent with ù1 and ù2. Furthermore, the set
of rankings consistent with ù1+ù2 is the intersection of the two sets
of rankings consistent with ù1 and ù2. Claims (i)–(iii) then follow
from elementary set-theoretic manipulations on the sets of consistent
rankings.

Given four ERC matrices ù1, ù2, π1, π2, consider the ERC
matrix ∑(ù1, ù2)+∑(π1, π2) obtained by stacking one on top of
the other the join of ù1 and ù2 and the join of π1 and π2. Then
∑(ù1, ù2)+∑(π1, π2) coincides with the join of the four ERC
matrices ù1+π1, ù1+π2, ù2+π1, ù2+π2.

(iii)

3 A subroutine for extracting ranking information through the join
3.1 Description of the subroutine. The subroutine in (40) takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex and a paradigm
p (line 1). It extends the ranking information encoded in the input ERC
matrix ù by adding to that input ERC matrix some additional ERCs as
follows. The subroutine considers a certain meaning combination Mm (line
2), and it reads o‰ the paradigm p the surface realisation Xx of that meaning
combination Mm (line 3). The subroutine then constructs the set " of all
underlying concatenations Aa which are consistent with the lexicon Lex as
underlying forms for that meaning combination Mm (line 4). This means
that if Lex sets a feature for the root M or the su!x m to a certain value,
then the root morpheme A or the su!x morpheme a of each underlying
form Aa in " has the feature set to that value. Any of these underlying
forms in " could be the actual underlying form according to the partial
lexical information encoded by Lex. In other words, the target grammar
could enforce any of the mappings (Aa, Xx) of any underlying form Aa in
" to the surface form Xx. Thus the best the subroutine can do is to extract
any ranking information shared by all these mappings. This is done by
computing the join of all ERC blocks ù(Aa, Xx) corresponding to all
mappings (Aa, Xx) of all underlying forms Aa in " to the surface form Xx
(line 5). The input ERC matrix ù is updated by adding this join to it (line
6). The ERC matrix thus updated is returned (line 7).

(40) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all concatenations Aa consistent with Lex as

underlying forms for Mm

1.

2.
3.

4.

The join of the ERC blocks ù(Aa, Xx) computed at line 5 is an ERC-
theoretic construct which might very well not correspond, in the sense of
(37), to any mapping of an underlying form to a surface form. For this
reason, CPR needs the additional flexibility of representing the current
(partial) grammatical/ranking information as an ERC matrix rather than
as a (partial) grammar. Appendix B: §1 shows that output-drivenness in
e‰ect guarantees that the join computed in line 5 always corresponds to the
mapping of a certain underlying form to the surface form Xx read at line
3.

3.2 Analysis of the subroutine. Lemma 4 provides a straightforward correct-
ness result for Merchant’s subroutine (40). Note that the proof only uses
property (39a) of the join, not property (39b). In other words, the lemma
hinges only on the fact that the join extracts ranking information which is
shared by all the ERC blocks ù(Aa, Xx). Property (39b) is nonetheless
crucial, because it ensures that the join does not lack any of this shared
ranking informa tion, making subroutine (40) optimal. The crux of
Merchant’s subroutine is its time complexity. Merchant (2008: ch. 4)
develops an elegant algorithm for computing the join which can be used
to implement line 5. Unfortunately, his algorithm needs to compute the
fusional closure of each of the input ERC matrices it has to join. Although
there are no results that I am aware of concerning the time complexity of
that computation, it is most plausibly intractable in the general case.

4 Extension to contrast pairs
4.1 Description of the subroutine. The extension of Merchant’s subroutine
(40) to contrast pairs is provided in (41). This subroutine takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex, and a paradigm
p (line 1). The subroutine considers some contrast pair (line 2). For concrete-
ness, I am assuming here that the two meaning combinations of the contrast
pair share the su!x meaning, i.e. have the shape Mm and Ôm (the case
where they share the root meaning is handled analogously). The
subroutine reads o‰ the paradigm p the surface realisations Xx and ∑π of
those two meaning combinations (line 3). Although x and π are the surface
realisations of the same underlying su!x segment corresponding to the
su!x meaning m, they can be di‰erent, because of morphophonem ic
alternations in the surface realisation of that underlying su!x triggered by
the two di‰erent roots M and Ô. The subroutine then constructs the set
" of all pairs (Aa, ∫a) of underlying concatenations which are consistent
with the lexicon Lex as underlying forms for the meaning combinations
Mm and Ôm and furthermore share the underlying su!x segment a (line
4). The latter requirement encodes the fact that we are focusing on a pair
of meaning combinations Mm and Ôm which share the su!x meaning m.
For each pair (Aa, ∫a) of underlying concatenations in ", the subroutine
considers the corresponding ERC blocks ù(Aa, Xx) and ù(∫a, ∑π), stacks
them together into the ERC matrix ù(Aa, Xx)+ù(∫a, ∑π) and constructs
the join of all ERC matrices thus obtained (line 5). The input ERC matrix
ù is updated by adding this join to it (line 6). The ERC matrix thus updated
is then returned (line 7).

There is a subtlety which should be pointed out here. At line 5, the subroutine
considers the join in (42a), not the one in (42b). The di‰erence is that in
(42a) we sum together the two ERC blocks ù(Aa, Xx) and ù(∫a, ∑π) into
ù(Aa, Xx)+ù(∫a, ∑π) before taking the join. This is indeed appropriate,
because the join in (42a) is stronger than the one in (42b), by Lemma 3.ii.

(42) ∑{ù(Aa, Xx)+ù(∫a, ∑π) | (Aa, ∫a)Œ"}a.
∑{ù(Aa, Xx), ù(∫a, ∑π) | (Aa, ∫a)Œ"}b.

4.2 Analysis of the subroutine. The Correctness Lemma 4 trivially extends
from the original subroutine (40) for single meaning combinations to the
variant (41) for contrast pairs. The ine!ciency of (40) for single meaning
combinations is of course aggravated in (41) for contrast pairs, as the latter
requires taking the join of a larger number of larger ERC matrices. Yet
subroutine (41) applied to the contrast pair (Mm, Ôm) is able to extract
more ranking information than the double applica tion of the original
subroutine (40) to the two separate meaning combinations Mm and Ôm.
To see this, suppose that the root meaning M admits a unique underlying
form A consistent with Lex, the root meaning Ô admits a unique under-
lying form ∫ and the su!x meaning m admits only two underlying forms,
a1 and a2. Suppose we first apply the original subroutine (40) to the meaning
combination Mm. At line 4, it constructs the set " consisting of the two
underlying forms Aa1 and Aa2. At line 5, it computes the join ∑(ù1, ù2)
of the two ERC blocks ù1=ù(Aa1, Xx) and ù2=ù(Aa2, Xx). Suppose
we next apply the original subroutine (40) to the meaning combination
Ôm. At line 4, it constructs the set ", consisting of the two underlying
forms ∫a1 and ∫a2. At line 5, it computes the join ∑(π1, π2) of the two
ERC blocks π1=ù(∫a1, ∑π) and π2=ù(∫a2, ∑π). Ultimately, the two
consecutive applications of the original subroutine (40) to the two meaning
combinations Mm and Ôm extract the ranking information captured by
the sum of the two joins in (43).

Suppose we instead apply subroutine (41) to the contrast pair (Mm, Ôm).
At line 4, it constructs the set ", consisting of the two pairs (Aa1, ∫a1) and
(Aa2, ∫a2). At line 5, it computes the join in (45) of the two ERC blocks
ù(Aa1 , Xx)+ù(∫a1, ∑π)=ù1+π1 and ù(Aa2 , Xx)+ù(∫a2, ∑π) =
ù2+π2.

(45) ∑(ù1+π1, ù2+π2)

The join in (45) is stronger than the one in (44), because it joins fewer
matrices (the smaller the number of matrices, the larger the amount of
shared information for the join to extract). This is because the two blocks
ù1+π2 and ù2+π1 have disappeared from the join. This is what we want,
as they correspond to the unreasonable assumption that the su!x m has
di‰erent underlying forms in the two meaning combinations Mm and Ôm.
In other words, since the learner is processing the two meaning combinations
Mm and Ôm together as a contrast pair, it is able to take into account the
fact that these meaning combinations share the su!x meaning m, which
must therefore have the same underlying form in the two cases.

5 A subroutine for extracting lexical information through
inconsistency detection

5.1 Description of the subroutine. Subroutine (46) takes as input some
lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine then considers a certain
meaning combination Mm with some feature unset according to the input
partial lexicon Lex for either the root M or the su!x m (line 2). The goal
of the subroutine is to try to extend the input partial lexicon by setting
some of these unset features. To this end, the subroutine reads o‰ the
paradigm p the surface realisation Xx of the meaning combination Mm
(line 3). It constructs the set " of all underlying concatenations Aa which
are consistent with both the input lexical information Lex and the input
ranking information captured by the grammar G (or the ERC matrix ù)
(line 4). Consistency with the input lexical information means that, if Lex
sets a feature for the root M (or the su!x m) to a certain value, then the
root morpheme A (or the su!x morpheme a) of each underlying form Aa
in " has the feature set to that value. Consistency with the input ranking
information means that the input grammar G (or the input ERC matrix ù)
is consistent with the mapping (Aa, Xx) of each such underlying form Aa
in " to the surface form Xx. The subroutine then looks for a feature which
is unset by Lex for the root meaning M (or the su!x meaning m), such that
each root morpheme A (or each su!x morpheme a) has the same value for
that feature in all underlying concatenations Aa in " (line 5). For any such
feature, it can be concluded that the opposite value is inconsistent with the
available lexical and ranking information. The subroutine thus updates the
partial lexicon Lex by setting that feature to be equal to its constant value

(46) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that:
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G (or

the ERC matrix ù)
if some feature unset for the root M (or for the su!x m) has a

constant value over " for M (for m) then
update the lexicon Lex by setting the feature to that value for

the root M (or for the su!x m)
end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.
8.

This subroutine is called inconsistency detection (cf. Kager 1999, Tesar
et al. 2003, Tesar 2006), because it sets a certain feature to a certain value
based on the detection at line 6 of the fact that any other value for that
feature would be inconsiste nt with the availab le lexical and ranking
information.

Proof. Assume by contradiction that the lemma is false. This means
that the subroutine has set some feature j for, say, the root meaning
M to a value which is di‰erent from the value assigned by the target
lexicon. For concreteness, assume that the values assigned by the
subroutine and the target lexicon are + and — respectively. Thus , the
target lexicon assigns to the meaning combination Mm an underlying
form Aa, which has feature j set to the value — in the root A. This
underlying form Aa is consistent with the partial lexicon Lex (because
it is consistent with the target lexicon, which is in turn consistent with
Lex). Furthermore, the mapping (Aa, Xx) of this underlying form Aa
to the surface form Xx is consistent with the input grammar G (because
the target ranking is consistent with both). In other words, this
underlying form Aa satisfies the two conditions stated by the two
subclauses in line 4 and thus belongs to the set " constructed by the
subroutine. Since this underlying form Aa has feature j set equal to
— for the root A, then the subroutine cannot have set that feature to
the opposite value + at line 6.

5.2 Analysis of the subroutine. Lemma 5 provides a straightforward correct-
ness result for inconsistency detection (46). Its time complexity is controlled
by the size of the set " of consistent underlying forms constructed at line 4.
In the worst case (when both the input lexicon and the input ranking
information are empty), " consists of all underlying forms, i.e. all con-
catenations of root and su!x morphemes. In this case, the size of " grows
polynomially in the number of morphemes and thus exponentially in the
number of features. In conclusion, subroutine (46) is e!cient relative to
the generous notion of e!ciency defined in (14), which measures time
complexity in terms of the number of morphemes, but is not e!cient
relative to the more demanding notion of e!ciency defined in (15), which
measures time complexity in terms of the number of features.

Lemma 5
Inconsistency detection (46) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target grammar, that the input (possibly partial)
grammar G (or ERC matrix ù) is consistent with the target grammar

6 Extension to contrast pairs
6.1 Description of the subroutine. The extension of inconsistency detection
(46) to contrast pairs is provided in (47). This subroutine takes as input
some lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine considers a particular
contrast pair (line 2). For concreteness, I am assuming here that the two
meaning combinations of the contrast pair share the su!x meaning, namely
have the shape Mm and Ôm (the case where they share the root meaning
is handled analogously). The subroutine reads o‰ the paradigm p the surface
realisations Xx and ∑π of those two meaning combinations (line 3). It
constructs the set " of all pairs (Aa, ∫a) of underlying concatenations which
are consistent with both the input lexical information Lex and the input
ranking information G (or ù) and furthermore share the underlying su!x
segment a (line 4). The subroutine then looks for a feature which is unset
by Lex for the root meaning M (or the root meaning Ô or the su!x meaning
m), such that each underlying root morpheme A (or each underlying root
morpheme ∫ or each underlying su!x morpheme a) has the same value
for that feature in all pairs (Aa, ∫a) in " (line 5). For any such feature, the
subroutine updates the partial lexicon Lex by setting the feature equal to
its constant value for the root meaning M (or for the root meaning Ô or
for the su!x meaning m) (line 6). The lexicon thus updated is then returned
(line 8).

(47) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G (or
the ERC matrix ù)

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

- the mapping (∫a, ∑π) is consistent with the grammar G
if some unset feature has a constant value over " for any of the three

meanings M, Ô or m then
update the lexicon Lex by setting the feature to the constant

value for that meaning
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.
8.

6.2 Analysis of the subroutine. The Correctness Lemma 5 trivially extends
from the original subroutine (46) for single meaning combinations to the
variant (47) for contrast pairs. Furthermore, the variant for contrast pairs
remains as e!cient as the original version for single meaning combinations,
when e!ciency is generously measured in terms of the number of morphemes
(but again, not when it is measured in terms of the number of features).
Yet a number of authors (including Alderete et al. 2005 and Merchant &
Tesar 2008) have pointed out that (47), applied to the contrast pair (Mm,
Ôm), can extract more lexical information than the double application of
the original subroutine (46) to the two separate meaning combinations Mm
and Ôm. To see this, consider one of the two meaning combinations of the
contrast pair, say Mm. The original subroutine considers all underlying
forms Aa for Mm which are consistent with the input lexical and ranking
information, and only sets those features which are constant across all these
underlying forms. If the number of consistent underlying forms is large,
the number of features which are constant across them is small, and the
subroutine thus extracts little lexical information. (47) might instead be
able to extract more lexical information, because it looks for features which
are constant over a smaller set of underlying forms for Mm, namely those
underlying forms Aa which are not only consistent with the input lexical
and ranking information, but also use a su!x morpheme a which can be
combined with a root morpheme ∫ into an underlying form ∫a for Ôm
which is also consistent with the input lexical and ranking information.

I denote Tesar’s subroutine (29) for the extraction of ranking information
from a single meaning combination as ERIT, and Merchant’s subroutine
(40) as ERIM. Lemma 6 states that, if the underlying typology is output-
driven, then ERIT and ERIM are equivalent, because they update the
current ranking/grammatical information with the ‘same’ information. This
equivalence is striking, given that the time complexity of ERIT is only
linear in the number of features, while the time complexity of ERIM is
unknown, but probably exponential in both the number of features and the
number of morphemes. Output-drivenness thus a‰ords a significant
reduction in time complexity. The Correctness Lemma 1 for ERIT (which
was proven directly in §4.4) can also be made to follow from the Correctness
Lemma 4 for ERIT through the Equivalence Lemma 6.

1 Subroutines for extracting ranking information from a single
meaning combination

Proof. The underlying form Bb constructed by ERIT at line 4 is
consistent with Lex, and therefore belongs to the set " constructed by
ERIM at line 4. Consider one of the underlying forms Aa in this set ".
The two underlying forms Aa and Bb agree in every feature which is
set by the input partial lexicon Lex. Furthermore, Bb and the surface
form Xx agree in every remaining feature. Thus the underlying form
Bb is more similar to the surface form Xx than is the underlying form
Aa. Since the underlying typology is output-driven, then every ranking
which maps the less similar underlying form Aa to Xx also maps the
more similar underlying form Bb to Xx. In other words, any ranking
consistent with the ERC block ù(Aa, Xx) is also consistent with the
ERC block ù(Bb, Xx). Lemma 3.i thus ensures that the ERC block
ù(Bb, Xx) is the join of the ERC blocks ù(Aa, Xx) across all underlying
concatenations Aa in ".

Lemma 6
Suppose that the underlying typology is output-driven and that ERIT

is fed with a partial grammar G and a (possibly partial) lexicon Lex.
Suppose that ERIM is fed with the ERC matrix ù corresponding to
the partial grammar G and the same lexicon Lex. Then the ERC block
corresponding to the mapping (Bb, Xx) constructed by ERIT at line
4 is the join of the ERC blocks ù(Aa, Xx) corresponding to the
underlying forms Aa in " constructed by ERIM at line 5.

between the two implementations is the following: Merchant’s original
subroutine (46) sets any feature which is constant over "; the variant in (48)
instead focuses right from the beginning on a specific feature j, which is
unset for either the root M or the su!x m of the meaning combination Mm
under consideration. In line 3, I am assuming for concreteness that the
feature j is unset for the root M (the case where it is unset for the su!x m
is handled analogously). The modification is only cosmetic: the original
subroutine is equivalent to running this variant for each unset feature.

(48) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a meaning combination Mm in the paradigm p
Require: a feature j unset by Lex for either M or m; for concreteness,

say it is unset for M
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G

if all underlying forms Aa in " have the feature j set to the same
value in the root morpheme A then

update the lexicon Lex by setting the feature j to that value for
the root meaning M

end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.

8.
9.

I denote Tesar’s subroutine (33) for the extraction of lexical information
from a single meaning combination by ELIT, and (the cosmetic variant of)
the original inconsistency detection subroutine (48) by ELIid. Lemma 6
states that, if the underlying typology is output-driven, ELIT and ELIid

are equivalent, because their if-clauses at line 6 are equivalent. This
equivalence is striking, given that the if-clause of ELIT can be checked in
time linear in the number of features, while the if-clause of ELIid requires
time exponential in the number of features in the worst case. Output-
drivenness has thus a‰orded a significant reduction in time complexity.
The Correctness Lemma 2 for ELIT (which was proven directly in §4.5)
can also be made to follow from the Correctness Lemma 4 for ELIid through
the Equivalence Lemma 7.

Proof. To start, let me prove that the if-clause in line 6 of ELIT entails
the if-clause in line 6 of ELIid. Assume by contradiction that the
former if-clause is true while the latter if-clause is false. The hypothesis
that the if-clause of ELIid is false entails in particular that the set " of
consistent underlying forms constructed by ELIid at line 5 contains
an underlying form Aa whose root A disagrees with X relative to the
feature j (indeed, if all the underlying forms Aa in " had a root A
which agreed with X relative to j, the if-clause of ELIid would hold
true). The underlying form Aa and the underlying form Bb constructed
by ELIT at line 5 thus agree in the feature j for the root meaning M,
as they both have the opposite value from X. Furthermore, they agree
in every feature set by the partial lexicon Lex, because they are both
consistent with Lex. Finally, Bb agrees with Xx for every remaining
feature. The underlying form Bb is thus more similar to the surface
form Xx than is the underlying form Aa. Since the mapping (Aa, Xx)
is consistent with G (because Aa belongs to "), there exists a ranking
which is consistent with both. Since the grammar corresponding to
that ranking is output-driven and maps the less similar underlying
form Aa to Xx, it also maps the more similar underlying form Bb to
Xx. In other words, that ranking is also consistent with the mapping
(Bb, Xx). In conclusion, the mapping (Bb, Xx) and the grammar G
are consistent (because both are consistent with the ranking), contra-
dicting the hypothesis that the if-clause of ELIT is true.

Vice versa, let me prove that the if-clause in line 6 of ELIid entails
the if-clause in line 6 of ELIT. Assume by contradiction that the
former if-clause is true, while the latter if-clause is false. The hypothesis
that the if-clause of ELIT is false means that the input (partial) grammar
G is consistent with the mapping (Bb, Xx) of the underlying form Bb
constructed by ELIT at line 5 to the surface form Xx. Since this
underlying form Bb is consistent with Lex, then Bb belongs to the set
" of consistent underlying forms constructed at line 5 by ELIid. Since
B and X disagree relative to the feature j, consider the underlying
form ≥b, identical to Bb but for the fact that ≥ and X instead agree in
the feature j. Obviously, the underlying form ≥b is more similar to
the surface form Xx than is the underlying form Bb. Since (Bb, Xx)
is consistent with G, there exists a ranking which is consistent with
both. Since the grammar corresponding to that ranking is output-
driven and maps the less similar underlying form Bb to Xx, then it
also maps the more similar underlying form ≥b to Xx. In other words,
that ranking is also consistent with the mapping (≥b, Xx). This
underlying form ≥b thus belongs to the set " constructed by ELIid at
line 5.This conclusion contradicts the hypothesis that the if-clause of
ELIid holds, because it shows that " contains two underlying forms
Bb and ≥b, such that B and ≥ disagree in the feature j.Lemma 7

Suppose that the underlying typology is output-driven. Then the two
if-clauses in line 6 of ELIT and ELIid are equivalent.

Tesar’s subroutine for extracting lexical information from contrast pairs
is more involved than his other two subroutines, for extracting lexical and
ranking information from a single meaning combination. For this reason,
the latter two subroutines were reviewed in §4.4 and §4.5, while the former
subroutine is included in this appendix. Here I start out from Merchant’s
subroutine in (47) for extracting lexical information from contrast pairs,
and work towards Tesar’s reformulation, provided below in (52). This
seems to me the best way of making sense of the somewhat complex
formulation of Tesar’s subroutine. I begin by carrying out the same cosmetic
change as in the previous section: I replace the original subroutine (47)
with (49), which only di‰ers because line 3 focuses on a specific feature j,
unset by the input lexicon Lex for one of the three meanings M, Ô and m
of the contrast pair (Mm, Ôm). For concreteness, I assume it is unset for
the root meaning M.

3 Subroutines for extracting lexical information from a contrast
pair

Supplementary materials 1716 Giorgio Magri

(49) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫a, ∑π) is consistent with the grammar G

if all the pairs (Aa, ∫a) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.
9.

the two underlying su!x morphemes a and ¥ coincide, because they are
the underlying form corresponding to the same su!x meaning m. The
condition that a and ¥ coincide is in turn equivalent to the condition that
they agree for each feature y. We could of course relax this condition by
requiring that the two underlying su!x morphemes a and ¥ agree only for
certain features, y1, ..., yn. This intuition leads to the formulation in (50).
It di‰ers from (49) only because of the new line 4, which introduces the
features y1, ..., yn, and because of the additional fifth subclause in the
definition of the set ". Note that line 4 assumes all the features y1, ..., yn

to be unset by the input partial lexicon Lex for the shared su!x m, because
the condition that both a and ¥ are consistent with Lex as underlying forms
for m already entails that they agree on every feature set by Lex for m.

(50) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫¥) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ agree for every

feature y1, ..., yn

if all the pairs (Aa, ∫¥) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

combinations Mm and Ôm one at a time. If instead we consider all unset
y features at line 4, then (50) e‰ectively considers only pairs of underlying
forms for the two meaning combinations which share the underlying su!x,
and is therefore equivalent to the original subroutine (49) for extracting
lexical information from contrast pairs. In the end, depending on the
number of y features considered at line 4, (50) provides a whole range of
subroutines for extracting lexical information in between the weaker (46)
and the stronger (49).

Subroutine (50) can be equivalently restated as (51). Instead of requiring
the two su!x morphemes a and ¥ to coincide for every feature y1, ..., yn,
we consider all possible combinations v1, ..., vn of values of those features
at line 6, and we require both a and ¥ to have those features set equal to
those values in the fifth subclause of line 5.

(51) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫¥ is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ both have the

values v1, ..., vn for the features y1, ..., yn

if all the pairs (Aa, ∫¥) in all the sets "(v1, ..., vn) have the underlying
root A set to the same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

Supplementary materials 1918 Giorgio Magri

By reasoning as in the previous subsection we can easily show that subroutine
(51) is equivalent to (52) under the assumption of output-drivenness.
Indeed, the two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn con-
structed by (52) at line 6 provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (51).

(52) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and
±≤v1, …, vn, as follows:

- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-
lying forms for Mm and Ôm

- B has the opposite value for feature j than X
- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values

v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
if the grammar G is inconsistent with the two mappings (Bbv1, …, vn,

Xx) and (±≤v1, …, vn, ∑π) for any combination of values v1, ..., vn

then
update the lexicon Lex by setting feature j to that constant value

for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

If the features y1, ..., yn considered in line 4 of (52) exhaust the set of
features, then the two subroutines (49) and (52) are equivalent. However,
the running time of (52) is exponential in the number of features in the
latter case, because it needs to consider all combinations v1, ..., vn.

By reasoning as in the previous subsection, we can proceed from Merchant’s
original subroutine (41) for extracting ranking information from contrast
pairs to the variant in (53).

4 Subroutines for extracting ranking information from a contrast
pair

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫¥ is consistent with the lexicon Lex as an underlying form
for Ôm

- the two underlying su!x morphemes a and ¥ both have the
values v1, ..., vn for the features y1, ..., yn

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫¥) in "(v1, ..., vn) for all combinations of values
v1, ..., vn

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.

7.
8.

20 Giorgio Magri

Once again, if we do not consider any y features at line 3, (53) e‰ectively
considers the two meaning combinations of the contrast pair independently
of each other, and thus ends up equivalent to subroutine (40) for extracting
lexical information from single meaning combinations. If we instead consider
all unset y features at line 3, then (53) e‰ectively only considers pairs of
underlying forms for the two meaning combinations which share the
underlying su!x, and is therefore equivalent to Merchant’s original
subroutine (41) for extracting lexical information from contrast pairs.
Ultimately, depending on the number of y features considered at line 3,
(53) provides a whole range of subroutines for extracting ranking information
in between the weaker (40) and the stronger (41).

By reasoning as in §2 of this appendix, we can easily show subroutine
(53) to be equivalent to (54) under the assumption of output-drivenness.
The two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn constructed
by (54) at line 5 again provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (53).

(54)

- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values
v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
compute the join of the ERC matrices ù(Bbv1, …, vn, Xx)+

ù(±≤v1, …, vn, ∑π) for all combinations of values v1, ..., vn

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

6.

7.
8.

Take the simplest case, where we consider a single feature y at line 3.
Assume furthermore that y is binary, i.e. it only takes the values v=‘+’ and
v=‘—’. At line 5, the subroutine constructs the two underlying forms Bb+
and ±≤+, corresponding to the value v=‘+’of feature y (i.e. both b+ and ≤+
have the value ‘+’ for the feature y), and the two underlying forms Bb— and
±≤—, corresponding to the value v=‘—’ (i.e. both b— and ≤— have the value
‘—’ for the feature y). At line 6, we finally compute the join of the two ERC
blocks ù(Bb+, Xx)+ù(±≤+, ∑π) and ù(Bb—, Xx)+ù(±≤—, ∑π). Even in
the simplest case of a single feature y, there is no way around computing
the join.

In summary, Merchant develops a new subroutine for extracting ranking
information through the notion of join. This subroutine can be applied to
either a single meaning combination at a time, as in (40); or to a contrast
pair, as in (41). The latter is more powerful than the former: the subroutine
extracts more ranking information by processing the two meaning
combinations Mm and Ôm as a contrast pair than by processing them
separately. The crux of Merchant’s subroutine for extracting ranking
information is that it relies on the computation of a join, which is time-
consuming. The biggest impact of output-drivenness is that it allows
Merchant’s subroutine for extracting ranking information from a single
meaning combination to be restated without having to compute any join.
The restated subroutine thus runs in time linear in the number of features.
In other words, it is e!cient even relative to the more demanding notion
of e!ciency introduced in §2.6. The situation is unfortunately very di‰erent
when Merchant’s subroutine for extracting ranking information is boosted
by being applied to contrast pairs. In this case, output-drivenness is not
able to circumvent the computation of the join, and thus does not su!ce
to make the subroutine e!cient.

A constraint ranking is consistent with an ERC provided it satisfies con-
dition (36); it is consistent with an ERC matrix provided it is consistent
with each of its rows. An ERC matrix entails another ERC matrix provided

(38) Id
[str]

Id
[length]

Main-
L

Main-
R

No
Long

WSP

w
w

w
w
w
w

w
w
w
w

l
l
l
l

l

w
l

w

/’pa:’ka/, [’pa:ka], [pa’ka]
/’pa:’ka/, [’pa:ka], [pa’ka:]
/’pa:’ka/, [’pa:ka], [pa:’ka]
/’pa:’ka/, [’pa:ka], [pa:’ka:]
/’pa:’ka/, [’pa:ka], [’paka]
/’pa:’ka/, [’pa:ka], [’paka:]
/’pa:’ka/, [’pa:ka], [’pa:ka:]

w
w

w
w

Lemma 3
Suppose that one of the ERC matrices ù1, ù2, …, Rn is entailed
by each of the others. For concreteness, assume that it is ù1 which
is entailed by each of the other ERC matrices ù2, …, Rn. Then
ù1 is the join of ù1, ù2, …, Rn.

(i)

Given the ERC matrices ù1, ù2, ù3, …, Rn, replace two of them
with the ERC matrix obtained by stacking the two matrices one
on top of the other. For concreteness, replace ù1 and ù2 with
ù1+ù2. Then the join of the n®1 ERC matrices ù1+ù2, ù3,
…, Rn entails the join of the original n ERC matrices ù1, ù2, ù3,
…, Rn, while the reverse does not in general hold.

(ii)

compute the join of the ERC matrices ù(Aa, Xx) for all underlying
forms Aa in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.
7.

Proof. Let Aa be the underlying form assign ed to the meanin g
combination Mm by the target lexicon. This underlying form Aa
belongs to the set " constructed by the subroutine at line 4, because
of the hypothesis that the input lexicon Lex is consistent with the
target lexicon. Thus the corresponding ERC block ù(Aa, Xx) is one
of the blocks that the subroutine takes the join of at line 5. Since the
target ranking is consistent with this ERC block ù(Aa, Xx), then it
is also consistent with the join, by property (39a) of the join. Since the
target ranking is also consistent with the input ERC matrix ù, it is

Lemma 4
Merchant’s subroutine (40) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target ranking, that the input ERC matrix ù is
consistent with that target ranking, and that the input (possibly partial)
lexicon Lex is consistent with that target lexicon. The updated ERC
matrix returned by subroutine (40) is also consistent with that target
ranking.

then consistent with the updated ERC matrix returned by the sub-
routine.

(41) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫a) in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

1.

2.

3.

4.

5.

6.
7.

(43) ∑(ù1, ù2)+∑(π1, π2)

Lemma 3.iii ensures that (43) is equivalent to the join in (44). The four
ERC matrices being joined here correspond to all four combinations of
underlying forms for the two meaning combinations Mm and Ôm. In
particular, the learner is also joining together the two ERC blocks ù1+π2

and π2+ù1, whereby the shared su!x meaning m is assigned a di‰erent
underlying form in the case of Mm than in the case of Ôm. In other words,
since the learner is processing the two meaning combinations Mm and Ôm
separately, it is blind to the fact that these meaning combinations share the
su!x meaning m, which must therefore have the same underlying form in
both cases.

(44) ∑(ù1+π1, ù1+π2, ù2+π1, ù2+π2)

for the root meaning M (or for the su!x meaning m) (line 6). The lexicon
thus updated is then returned (line 8).

and that the input partial lexicon Lex is consistent with the target
lexicon. The updated lexicon returned by subroutine (46) is also
consistent with that target lexicon.

2 Subroutines for extracting lexical information from a single
meaning combination

Consider the slight variant (48) of the subroutine (46) for the extraction of
lexical information through inconsistency detection. The only di‰erence

The modification is only cosmetic: the original subroutine (47) is equivalent
to running this variant (49) for each feature which is unset for one of the
three morphemes M, Ô and m.

The set " constructed by the subroutine (49) at line 5 can equivalently
be described as the collection of all pairs (Aa, ∫¥) which satisfy the conditions
expressed by the four subclauses of line 5 plus the additional condition that

If we consider no y features at all in line 4, then (50) e‰ectively considers
the two meaning combinations of the contrast pair independently of each
other, and thus ends up equivalent to subroutine (46) for extracting lexical
information from single meaning combinations, in the sense that the
application of subroutine (50) to the contrast pair (Mm, Ôm) is equivalent
to two consecutive applications of subroutine (46) to the two meaning

Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and ±≤v1,

…, vn as follows
- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-

lying forms for Mm and Ôm

1.

2.

3.

4.

5.

(53) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

1.

2.

3.

4.

Phonology 25.2: Artwork 1 of

Supplementary materials 72 Giorgio Magri

every ranking consistent with the former is also consistent with the latter.
Thus ù1+ù2 entails both ù1 and ù2.

(36) At least one constraint which has a w in the ERC under consideration
is ranked above every constraint which instead has an l (constraints
which have an e play no role in the consistency condition).

2 The join

4 Giorgio Magri

Grammatical information was represented in §4.1.2 as a (possibly partial)
collection G of mappings (Aa, Xx) of an underlying form Aa to a surface
form Xx. Each of these mappings can be equivalently represented with the
corresponding ERC block ù(Aa, Xx). And the grammatical information
G can thus be represented with the ERC matrix obtained by stacking all
these blocks one of top of the other. Merchant’s CPR adopts the architecture
in (28), the only di‰erence being that the current partial grammatical
information is represented not as a partial grammar G but as an ERC matrix
ù. This makes the algorithm more flexible in the type of partial grammatical
information it maintains: any (partial) grammar G can be represented
through the corresponding ERC matrix, while not just any ERC matrix ù
corresponds to some partial collection of mappings. This additional flexibility
in the data structure maintained by the algorithm is crucial in order to
define the subroutine for extracting ranking information, as explained in
the next section.

Supplementary materials 5 6 Giorgio Magri 8 Giorgio Magri Supplementary materials 9 10 Giorgio Magri

Appendix B: Equivalence between Merchant’ s and Tesar’s sub-
routines

Supplementary materials 11 12 Giorgio Magri Supplementary materials 13

Appendix A: Merchant’s (2008) CPR

Phonology 31 (2014). Supplementary materials

Review article

Giorgio Magri
CNRS, Université Paris 8 and University of Utrecht

Supplementary materials

This appendix sketches Merchant’s (2008) CPR algorithm. In §1, I explain
how CPR adheres to the architecture in (28), only with a more abstract
representation of the current partial ranking information in terms of ERCs.
I then review CPR’s subroutines for extracting ranking and lexical infor-
mation. I start from the easier case, where they are applied to a single
paradigmatic entry (§3 and §5), and then turn to the extension to contrast
pairs (§4 and §6).

1 ERCs and CPR’s architecture
An elementary ranking condition (ERC) is an assignment of one of the
three symbols l, w and e to each of the constraints in the constraint set
(Prince 2002). An ERC is usually represented as a row of these symbols,
with the constraints annotated on top. To illustrate, an ERC for the constraint
set (5) of the Paka typology is provided in (35). An ERC matrix is a finite
collection of ERCs, stacked one on top of the other (the order does not
matter). An arbitrary ERC matrix is denoted by ù. Given two ERC matrixes
ù1 and ù2, ù1+ù2 denotes the ERC matrix obtained by stacking one on
top of the other (the order does not matter).

14 Giorgio Magri Supplementary materials 15

Bruce Tesar (2014). Output-driven phonology: theory and learning. (Cam-
bridge Studies in Linguistics 139.) Cambridge: Cambridge University
Press. Pp. xix+415.

(35)
e

Id[str] Id[length] Main-L Main-R NoLong WSP
w w l l e|

The phonological underpinning of these notions is as follows. Consider the
mapping (Aa, Xx) of an underlying form Aa to a surface form Xx, which
is thus construed as the winner. For any other loser candidate Yy, consider
the ERC defined in (37). Stack all the ERCs thus constructed for all loser
candidates one on top of the other into an ERC matrix, denoted by ù(Aa,
Xx). Then the OT grammar corresponding to a ranking maps the under-
lying form Aa to the surface form Xx if and only if that ranking is consistent
with the ERC matrix ù(Aa, Xx) corresponding to that mapping.

(37) A constraint has a w provided it prefers the winner mapping (Aa,
Xx) to the loser mapping (Aa, Yy), i.e. it assigns fewer violations
to the former mapping than to the latter.

a.

A constraint has an l provided it instead prefers the loser mapping
(Aa, Yy) to the winner mapping (Aa, Xx), i.e. it assigns fewer
violations to the former mapping than to the latter.

b.

A constraint has an e provided it has no preference for one of the
two mappings (Aa, Xx) and (Aa, Yy), i.e. it assigns the same number
of violations to both.

c.

To illustrate, consider the Paka typology in §2.1 of the paper, focusing on
the mapping (/’pa:’ka/, [’pa:ka]) of the underlying form /’pa:’ka/ to the surface
form [’pa:ka]. The ERC matrix ù(/’pa:’ka/, [’pa:ka]) corresponding to this
mapping is provided in (38). It consists of seven ERCs, because there are
seven loser candidates. For convenience, each ERC is annotated on the left
with the corresponding underlying, winner and loser forms (loser forms
are struck through). The topmost ERC in (38) says that the winner mapping
(/’pa:’ka/, [’pa:ka]) beats the loser mapping (/’pa:’ka/, [pa’ka]), provided at
least one of the two winner-preferring constraints Ident[length] or Main-
L is ranked above the two loser-preferring constraints Main-R and NoLong.

Supplementary materials 3

The join of some ERC matrices ù1, …, ùn is any ERC matrix which satisfies
the two conditions in (39). Any such ERC matrix will be denoted by ∑(ù1,
…, ùn). Condition (39a) says that the join is weaker than (i.e. entailed by)
each matrix ù1, …, ùn. Condition (39b) says that, among all ERC matrices
which are weaker than (i.e. entailed by) each matrix ù1, …, ùn, the join is
a strongest one (i.e the one which entails all the others). In other words,
condition (39a) says that the join captures some of the ranking information
shared by the matrices ù1, …, ùn, and condition (39b) says there is no
shared ranking information which the join does not capture.

(39) Each of the ERC matrices ù1, …, ùn entails their join.a.
If each of the ERC matrices ù1, …, ùn entails some ERC matrix
ù, their join entails ù as well.

b.

Lemma 3 collects some properties of the join which will be used in the rest
of this appendix.

Proof. An ERC matrix ∏ is the join of two ERC matrixes ù1 and ù2

if and only if the set of rankings consistent with ∏ is the union of the
two sets of rankings consistent with ù1 and ù2. Furthermore, the set
of rankings consistent with ù1+ù2 is the intersection of the two sets
of rankings consistent with ù1 and ù2. Claims (i)–(iii) then follow
from elementary set-theoretic manipulations on the sets of consistent
rankings.

Given four ERC matrices ù1, ù2, π1, π2, consider the ERC
matrix ∑(ù1, ù2)+∑(π1, π2) obtained by stacking one on top of
the other the join of ù1 and ù2 and the join of π1 and π2. Then
∑(ù1, ù2)+∑(π1, π2) coincides with the join of the four ERC
matrices ù1+π1, ù1+π2, ù2+π1, ù2+π2.

(iii)

3 A subroutine for extracting ranking information through the join
3.1 Description of the subroutine. The subroutine in (40) takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex and a paradigm
p (line 1). It extends the ranking information encoded in the input ERC
matrix ù by adding to that input ERC matrix some additional ERCs as
follows. The subroutine considers a certain meaning combination Mm (line
2), and it reads o‰ the paradigm p the surface realisation Xx of that meaning
combination Mm (line 3). The subroutine then constructs the set " of all
underlying concatenations Aa which are consistent with the lexicon Lex as
underlying forms for that meaning combination Mm (line 4). This means
that if Lex sets a feature for the root M or the su!x m to a certain value,
then the root morpheme A or the su!x morpheme a of each underlying
form Aa in " has the feature set to that value. Any of these underlying
forms in " could be the actual underlying form according to the partial
lexical information encoded by Lex. In other words, the target grammar
could enforce any of the mappings (Aa, Xx) of any underlying form Aa in
" to the surface form Xx. Thus the best the subroutine can do is to extract
any ranking information shared by all these mappings. This is done by
computing the join of all ERC blocks ù(Aa, Xx) corresponding to all
mappings (Aa, Xx) of all underlying forms Aa in " to the surface form Xx
(line 5). The input ERC matrix ù is updated by adding this join to it (line
6). The ERC matrix thus updated is returned (line 7).

(40) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all concatenations Aa consistent with Lex as

underlying forms for Mm

1.

2.
3.

4.

The join of the ERC blocks ù(Aa, Xx) computed at line 5 is an ERC-
theoretic construct which might very well not correspond, in the sense of
(37), to any mapping of an underlying form to a surface form. For this
reason, CPR needs the additional flexibility of representing the current
(partial) grammatical/ranking information as an ERC matrix rather than
as a (partial) grammar. Appendix B: §1 shows that output-drivenness in
e‰ect guarantees that the join computed in line 5 always corresponds to the
mapping of a certain underlying form to the surface form Xx read at line
3.

3.2 Analysis of the subroutine. Lemma 4 provides a straightforward correct-
ness result for Merchant’s subroutine (40). Note that the proof only uses
property (39a) of the join, not property (39b). In other words, the lemma
hinges only on the fact that the join extracts ranking information which is
shared by all the ERC blocks ù(Aa, Xx). Property (39b) is nonetheless
crucial, because it ensures that the join does not lack any of this shared
ranking informa tion, making subroutine (40) optimal. The crux of
Merchant’s subroutine is its time complexity. Merchant (2008: ch. 4)
develops an elegant algorithm for computing the join which can be used
to implement line 5. Unfortunately, his algorithm needs to compute the
fusional closure of each of the input ERC matrices it has to join. Although
there are no results that I am aware of concerning the time complexity of
that computation, it is most plausibly intractable in the general case.

4 Extension to contrast pairs
4.1 Description of the subroutine. The extension of Merchant’s subroutine
(40) to contrast pairs is provided in (41). This subroutine takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex, and a paradigm
p (line 1). The subroutine considers some contrast pair (line 2). For concrete-
ness, I am assuming here that the two meaning combinations of the contrast
pair share the su!x meaning, i.e. have the shape Mm and Ôm (the case
where they share the root meaning is handled analogously). The
subroutine reads o‰ the paradigm p the surface realisations Xx and ∑π of
those two meaning combinations (line 3). Although x and π are the surface
realisations of the same underlying su!x segment corresponding to the
su!x meaning m, they can be di‰erent, because of morphophonem ic
alternations in the surface realisation of that underlying su!x triggered by
the two di‰erent roots M and Ô. The subroutine then constructs the set
" of all pairs (Aa, ∫a) of underlying concatenations which are consistent
with the lexicon Lex as underlying forms for the meaning combinations
Mm and Ôm and furthermore share the underlying su!x segment a (line
4). The latter requirement encodes the fact that we are focusing on a pair
of meaning combinations Mm and Ôm which share the su!x meaning m.
For each pair (Aa, ∫a) of underlying concatenations in ", the subroutine
considers the corresponding ERC blocks ù(Aa, Xx) and ù(∫a, ∑π), stacks
them together into the ERC matrix ù(Aa, Xx)+ù(∫a, ∑π) and constructs
the join of all ERC matrices thus obtained (line 5). The input ERC matrix
ù is updated by adding this join to it (line 6). The ERC matrix thus updated
is then returned (line 7).

There is a subtlety which should be pointed out here. At line 5, the subroutine
considers the join in (42a), not the one in (42b). The di‰erence is that in
(42a) we sum together the two ERC blocks ù(Aa, Xx) and ù(∫a, ∑π) into
ù(Aa, Xx)+ù(∫a, ∑π) before taking the join. This is indeed appropriate,
because the join in (42a) is stronger than the one in (42b), by Lemma 3.ii.

(42) ∑{ù(Aa, Xx)+ù(∫a, ∑π) | (Aa, ∫a)Œ"}a.
∑{ù(Aa, Xx), ù(∫a, ∑π) | (Aa, ∫a)Œ"}b.

4.2 Analysis of the subroutine. The Correctness Lemma 4 trivially extends
from the original subroutine (40) for single meaning combinations to the
variant (41) for contrast pairs. The ine!ciency of (40) for single meaning
combinations is of course aggravated in (41) for contrast pairs, as the latter
requires taking the join of a larger number of larger ERC matrices. Yet
subroutine (41) applied to the contrast pair (Mm, Ôm) is able to extract
more ranking information than the double applica tion of the original
subroutine (40) to the two separate meaning combinations Mm and Ôm.
To see this, suppose that the root meaning M admits a unique underlying
form A consistent with Lex, the root meaning Ô admits a unique under-
lying form ∫ and the su!x meaning m admits only two underlying forms,
a1 and a2. Suppose we first apply the original subroutine (40) to the meaning
combination Mm. At line 4, it constructs the set " consisting of the two
underlying forms Aa1 and Aa2. At line 5, it computes the join ∑(ù1, ù2)
of the two ERC blocks ù1=ù(Aa1, Xx) and ù2=ù(Aa2, Xx). Suppose
we next apply the original subroutine (40) to the meaning combination
Ôm. At line 4, it constructs the set ", consisting of the two underlying
forms ∫a1 and ∫a2. At line 5, it computes the join ∑(π1, π2) of the two
ERC blocks π1=ù(∫a1, ∑π) and π2=ù(∫a2, ∑π). Ultimately, the two
consecutive applications of the original subroutine (40) to the two meaning
combinations Mm and Ôm extract the ranking information captured by
the sum of the two joins in (43).

Suppose we instead apply subroutine (41) to the contrast pair (Mm, Ôm).
At line 4, it constructs the set ", consisting of the two pairs (Aa1, ∫a1) and
(Aa2, ∫a2). At line 5, it computes the join in (45) of the two ERC blocks
ù(Aa1 , Xx)+ù(∫a1, ∑π)=ù1+π1 and ù(Aa2 , Xx)+ù(∫a2, ∑π) =
ù2+π2.

(45) ∑(ù1+π1, ù2+π2)

The join in (45) is stronger than the one in (44), because it joins fewer
matrices (the smaller the number of matrices, the larger the amount of
shared information for the join to extract). This is because the two blocks
ù1+π2 and ù2+π1 have disappeared from the join. This is what we want,
as they correspond to the unreasonable assumption that the su!x m has
di‰erent underlying forms in the two meaning combinations Mm and Ôm.
In other words, since the learner is processing the two meaning combinations
Mm and Ôm together as a contrast pair, it is able to take into account the
fact that these meaning combinations share the su!x meaning m, which
must therefore have the same underlying form in the two cases.

5 A subroutine for extracting lexical information through
inconsistency detection

5.1 Description of the subroutine. Subroutine (46) takes as input some
lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine then considers a certain
meaning combination Mm with some feature unset according to the input
partial lexicon Lex for either the root M or the su!x m (line 2). The goal
of the subroutine is to try to extend the input partial lexicon by setting
some of these unset features. To this end, the subroutine reads o‰ the
paradigm p the surface realisation Xx of the meaning combination Mm
(line 3). It constructs the set " of all underlying concatenations Aa which
are consistent with both the input lexical information Lex and the input
ranking information captured by the grammar G (or the ERC matrix ù)
(line 4). Consistency with the input lexical information means that, if Lex
sets a feature for the root M (or the su!x m) to a certain value, then the
root morpheme A (or the su!x morpheme a) of each underlying form Aa
in " has the feature set to that value. Consistency with the input ranking
information means that the input grammar G (or the input ERC matrix ù)
is consistent with the mapping (Aa, Xx) of each such underlying form Aa
in " to the surface form Xx. The subroutine then looks for a feature which
is unset by Lex for the root meaning M (or the su!x meaning m), such that
each root morpheme A (or each su!x morpheme a) has the same value for
that feature in all underlying concatenations Aa in " (line 5). For any such
feature, it can be concluded that the opposite value is inconsistent with the
available lexical and ranking information. The subroutine thus updates the
partial lexicon Lex by setting that feature to be equal to its constant value

(46) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that:
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G (or

the ERC matrix ù)
if some feature unset for the root M (or for the su!x m) has a

constant value over " for M (for m) then
update the lexicon Lex by setting the feature to that value for

the root M (or for the su!x m)
end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.
8.

This subroutine is called inconsistency detection (cf. Kager 1999, Tesar
et al. 2003, Tesar 2006), because it sets a certain feature to a certain value
based on the detection at line 6 of the fact that any other value for that
feature would be inconsiste nt with the availab le lexical and ranking
information.

Proof. Assume by contradiction that the lemma is false. This means
that the subroutine has set some feature j for, say, the root meaning
M to a value which is di‰erent from the value assigned by the target
lexicon. For concreteness, assume that the values assigned by the
subroutine and the target lexicon are + and — respectively. Thus , the
target lexicon assigns to the meaning combination Mm an underlying
form Aa, which has feature j set to the value — in the root A. This
underlying form Aa is consistent with the partial lexicon Lex (because
it is consistent with the target lexicon, which is in turn consistent with
Lex). Furthermore, the mapping (Aa, Xx) of this underlying form Aa
to the surface form Xx is consistent with the input grammar G (because
the target ranking is consistent with both). In other words, this
underlying form Aa satisfies the two conditions stated by the two
subclauses in line 4 and thus belongs to the set " constructed by the
subroutine. Since this underlying form Aa has feature j set equal to
— for the root A, then the subroutine cannot have set that feature to
the opposite value + at line 6.

5.2 Analysis of the subroutine. Lemma 5 provides a straightforward correct-
ness result for inconsistency detection (46). Its time complexity is controlled
by the size of the set " of consistent underlying forms constructed at line 4.
In the worst case (when both the input lexicon and the input ranking
information are empty), " consists of all underlying forms, i.e. all con-
catenations of root and su!x morphemes. In this case, the size of " grows
polynomially in the number of morphemes and thus exponentially in the
number of features. In conclusion, subroutine (46) is e!cient relative to
the generous notion of e!ciency defined in (14), which measures time
complexity in terms of the number of morphemes, but is not e!cient
relative to the more demanding notion of e!ciency defined in (15), which
measures time complexity in terms of the number of features.

Lemma 5
Inconsistency detection (46) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target grammar, that the input (possibly partial)
grammar G (or ERC matrix ù) is consistent with the target grammar

6 Extension to contrast pairs
6.1 Description of the subroutine. The extension of inconsistency detection
(46) to contrast pairs is provided in (47). This subroutine takes as input
some lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine considers a particular
contrast pair (line 2). For concreteness, I am assuming here that the two
meaning combinations of the contrast pair share the su!x meaning, namely
have the shape Mm and Ôm (the case where they share the root meaning
is handled analogously). The subroutine reads o‰ the paradigm p the surface
realisations Xx and ∑π of those two meaning combinations (line 3). It
constructs the set " of all pairs (Aa, ∫a) of underlying concatenations which
are consistent with both the input lexical information Lex and the input
ranking information G (or ù) and furthermore share the underlying su!x
segment a (line 4). The subroutine then looks for a feature which is unset
by Lex for the root meaning M (or the root meaning Ô or the su!x meaning
m), such that each underlying root morpheme A (or each underlying root
morpheme ∫ or each underlying su!x morpheme a) has the same value
for that feature in all pairs (Aa, ∫a) in " (line 5). For any such feature, the
subroutine updates the partial lexicon Lex by setting the feature equal to
its constant value for the root meaning M (or for the root meaning Ô or
for the su!x meaning m) (line 6). The lexicon thus updated is then returned
(line 8).

(47) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G (or
the ERC matrix ù)

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

- the mapping (∫a, ∑π) is consistent with the grammar G
if some unset feature has a constant value over " for any of the three

meanings M, Ô or m then
update the lexicon Lex by setting the feature to the constant

value for that meaning
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.
8.

6.2 Analysis of the subroutine. The Correctness Lemma 5 trivially extends
from the original subroutine (46) for single meaning combinations to the
variant (47) for contrast pairs. Furthermore, the variant for contrast pairs
remains as e!cient as the original version for single meaning combinations,
when e!ciency is generously measured in terms of the number of morphemes
(but again, not when it is measured in terms of the number of features).
Yet a number of authors (including Alderete et al. 2005 and Merchant &
Tesar 2008) have pointed out that (47), applied to the contrast pair (Mm,
Ôm), can extract more lexical information than the double application of
the original subroutine (46) to the two separate meaning combinations Mm
and Ôm. To see this, consider one of the two meaning combinations of the
contrast pair, say Mm. The original subroutine considers all underlying
forms Aa for Mm which are consistent with the input lexical and ranking
information, and only sets those features which are constant across all these
underlying forms. If the number of consistent underlying forms is large,
the number of features which are constant across them is small, and the
subroutine thus extracts little lexical information. (47) might instead be
able to extract more lexical information, because it looks for features which
are constant over a smaller set of underlying forms for Mm, namely those
underlying forms Aa which are not only consistent with the input lexical
and ranking information, but also use a su!x morpheme a which can be
combined with a root morpheme ∫ into an underlying form ∫a for Ôm
which is also consistent with the input lexical and ranking information.

I denote Tesar’s subroutine (29) for the extraction of ranking information
from a single meaning combination as ERIT, and Merchant’s subroutine
(40) as ERIM. Lemma 6 states that, if the underlying typology is output-
driven, then ERIT and ERIM are equivalent, because they update the
current ranking/grammatical information with the ‘same’ information. This
equivalence is striking, given that the time complexity of ERIT is only
linear in the number of features, while the time complexity of ERIM is
unknown, but probably exponential in both the number of features and the
numbe r of morphemes. Output-drivenne ss thus a‰ords a significa nt
reduction in time complexity. The Correctness Lemma 1 for ERIT (which
was proven directly in §4.4) can also be made to follow from the Correctness
Lemma 4 for ERIT through the Equivalence Lemma 6.

1 Subroutines for extracting ranking information from a single
meaning combination

Proof. The underlying form Bb constructed by ERIT at line 4 is
consistent with Lex, and therefore belongs to the set " constructed by
ERIM at line 4. Consider one of the underlying forms Aa in this set ".
The two underlying forms Aa and Bb agree in every feature which is
set by the input partial lexicon Lex. Furthermore, Bb and the surface
form Xx agree in every remaining feature. Thus the underlying form
Bb is more similar to the surface form Xx than is the underlying form
Aa. Since the underlying typology is output-driven, then every ranking
which maps the less similar underlying form Aa to Xx also maps the
more similar underlying form Bb to Xx. In other words, any ranking
consistent with the ERC block ù(Aa, Xx) is also consistent with the
ERC block ù(Bb, Xx). Lemma 3.i thus ensures that the ERC block
ù(Bb, Xx) is the join of the ERC blocks ù(Aa, Xx) across all underlying
concatenations Aa in ".

Lemma 6
Suppose that the underlying typology is output-driven and that ERIT

is fed with a partial grammar G and a (possibly partial) lexicon Lex.
Suppose that ERIM is fed with the ERC matrix ù corresponding to
the partial grammar G and the same lexicon Lex. Then the ERC block
corresponding to the mapping (Bb, Xx) constructed by ERIT at line
4 is the join of the ERC blocks ù(Aa, Xx) corresponding to the
underlying forms Aa in " constructed by ERIM at line 5.

between the two implementations is the following: Merchant’s original
subroutine (46) sets any feature which is constant over "; the variant in (48)
instead focuses right from the beginning on a specific feature j, which is
unset for either the root M or the su!x m of the meaning combination Mm
under consideration. In line 3, I am assuming for concreteness that the
feature j is unset for the root M (the case where it is unset for the su!x m
is handled analogously). The modification is only cosmetic: the original
subroutine is equivalent to running this variant for each unset feature.

(48) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a meaning combination Mm in the paradigm p
Require: a feature j unset by Lex for either M or m; for concreteness,

say it is unset for M
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G

if all underlying forms Aa in " have the feature j set to the same
value in the root morpheme A then

update the lexicon Lex by setting the feature j to that value for
the root meaning M

end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.

8.
9.

I denote Tesar’s subroutine (33) for the extraction of lexical information
from a single meaning combination by ELIT, and (the cosmetic variant of)
the original inconsistency detection subroutine (48) by ELIid. Lemma 6
states that, if the underlying typology is output-driven, ELIT and ELIid

are equivalent, because their if-clauses at line 6 are equivalent. This
equivalence is striking, given that the if-clause of ELIT can be checked in
time linear in the number of features, while the if-clause of ELIid requires
time exponential in the number of features in the worst case. Output-
drivenness has thus a‰orded a significant reduction in time complexity.
The Correctness Lemma 2 for ELIT (which was proven directly in §4.5)
can also be made to follow from the Correctness Lemma 4 for ELIid through
the Equivalence Lemma 7.

Proof. To start, let me prove that the if-clause in line 6 of ELIT entails
the if-clause in line 6 of ELIid. Assume by contradiction that the
former if-clause is true while the latter if-clause is false. The hypothesis
that the if-clause of ELIid is false entails in particular that the set " of
consistent underlying forms constructed by ELIid at line 5 contains
an underlying form Aa whose root A disagrees with X relative to the
feature j (indeed, if all the underlying forms Aa in " had a root A
which agreed with X relative to j, the if-clause of ELIid would hold
true). The underlying form Aa and the underlying form Bb constructed
by ELIT at line 5 thus agree in the feature j for the root meaning M,
as they both have the opposite value from X. Furthermore, they agree
in every feature set by the partial lexicon Lex, because they are both
consistent with Lex. Finally, Bb agrees with Xx for every remaining
feature. The underlying form Bb is thus more similar to the surface
form Xx than is the underlying form Aa. Since the mapping (Aa, Xx)
is consistent with G (because Aa belongs to "), there exists a ranking
which is consistent with both. Since the grammar corresponding to
that ranking is output-driven and maps the less similar underlying
form Aa to Xx, it also maps the more similar underlying form Bb to
Xx. In other words, that ranking is also consistent with the mapping
(Bb, Xx). In conclusion, the mapping (Bb, Xx) and the grammar G
are consistent (because both are consistent with the ranking), contra-
dicting the hypothesis that the if-clause of ELIT is true.

Vice versa, let me prove that the if-clause in line 6 of ELIid entails
the if-clause in line 6 of ELIT. Assume by contradiction that the
former if-clause is true, while the latter if-clause is false. The hypothesis
that the if-clause of ELIT is false means that the input (partial) grammar
G is consistent with the mapping (Bb, Xx) of the underlying form Bb
constructed by ELIT at line 5 to the surface form Xx. Since this
underlying form Bb is consistent with Lex, then Bb belongs to the set
" of consistent underlying forms constructed at line 5 by ELIid. Since
B and X disagree relative to the feature j, consider the underlying
form ≥b, identical to Bb but for the fact that ≥ and X instead agree in
the feature j. Obviously, the underlying form ≥b is more similar to
the surface form Xx than is the underlying form Bb. Since (Bb, Xx)
is consistent with G, there exists a ranking which is consistent with
both. Since the grammar corresponding to that ranking is output-
driven and maps the less similar underlying form Bb to Xx, then it
also maps the more similar underlying form ≥b to Xx. In other words,
that ranking is also consistent with the mapping (≥b, Xx). This
underlying form ≥b thus belongs to the set " constructed by ELIid at
line 5.This conclusion contradicts the hypothesis that the if-clause of
ELIid holds, because it shows that " contains two underlying forms
Bb and ≥b, such that B and ≥ disagree in the feature j.Lemma 7

Suppose that the underlying typology is output-driven. Then the two
if-clauses in line 6 of ELIT and ELIid are equivalent.

Tesar’s subroutine for extracting lexical information from contrast pairs
is more involved than his other two subroutines, for extracting lexical and
ranking information from a single meaning combination. For this reason,
the latter two subroutines were reviewed in §4.4 and §4.5, while the former
subroutine is included in this appendix. Here I start out from Merchant’s
subroutine in (47) for extracting lexical information from contrast pairs,
and work towards Tesar’s reformulation, provided below in (52). This
seems to me the best way of making sense of the somewhat complex
formulation of Tesar’s subroutine. I begin by carrying out the same cosmetic
change as in the previous section: I replace the original subroutine (47)
with (49), which only di‰ers because line 3 focuses on a specific feature j,
unset by the input lexicon Lex for one of the three meanings M, Ô and m
of the contrast pair (Mm, Ôm). For concreteness, I assume it is unset for
the root meaning M.

3 Subroutines for extracting lexical information from a contrast
pair

Supplementary materials 1716 Giorgio Magri

(49) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫a, ∑π) is consistent with the grammar G

if all the pairs (Aa, ∫a) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.
9.

the two underlying su!x morphemes a and ¥ coincide, because they are
the underlying form corresponding to the same su!x meaning m. The
condition that a and ¥ coincide is in turn equivalent to the condition that
they agree for each feature y. We could of course relax this condition by
requiring that the two underlying su!x morphemes a and ¥ agree only for
certain features, y1, ..., yn. This intuition leads to the formulation in (50).
It di‰ers from (49) only because of the new line 4, which introduces the
features y1, ..., yn, and because of the additional fifth subclause in the
definition of the set ". Note that line 4 assumes all the features y1, ..., yn

to be unset by the input partial lexicon Lex for the shared su!x m, because
the condition that both a and ¥ are consistent with Lex as underlying forms
for m already entails that they agree on every feature set by Lex for m.

(50) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫¥) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ agree for every

feature y1, ..., yn

if all the pairs (Aa, ∫¥) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

combinations Mm and Ôm one at a time. If instead we consider all unset
y features at line 4, then (50) e‰ectively considers only pairs of underlying
forms for the two meaning combinations which share the underlying su!x,
and is therefore equivalent to the original subroutine (49) for extracting
lexical information from contrast pairs. In the end, depending on the
number of y features considered at line 4, (50) provides a whole range of
subroutines for extracting lexical information in between the weaker (46)
and the stronger (49).

Subroutine (50) can be equivalently restated as (51). Instead of requiring
the two su!x morphemes a and ¥ to coincide for every feature y1, ..., yn,
we consider all possible combinations v1, ..., vn of values of those features
at line 6, and we require both a and ¥ to have those features set equal to
those values in the fifth subclause of line 5.

(51) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫¥ is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ both have the

values v1, ..., vn for the features y1, ..., yn

if all the pairs (Aa, ∫¥) in all the sets "(v1, ..., vn) have the underlying
root A set to the same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

Supplementary materials 1918 Giorgio Magri

By reasoning as in the previous subsection we can easily show that subroutine
(51) is equivalent to (52) under the assumption of output-drivenness.
Indeed, the two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn con-
structed by (52) at line 6 provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (51).

(52) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and
±≤v1, …, vn, as follows:

- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-
lying forms for Mm and Ôm

- B has the opposite value for feature j than X
- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values

v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
if the grammar G is inconsistent with the two mappings (Bbv1, …, vn,

Xx) and (±≤v1, …, vn, ∑π) for any combination of values v1, ..., vn

then
update the lexicon Lex by setting feature j to that constant value

for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

If the features y1, ..., yn considered in line 4 of (52) exhaust the set of
features, then the two subroutines (49) and (52) are equivalent. However,
the running time of (52) is exponential in the number of features in the
latter case, because it needs to consider all combinations v1, ..., vn.

By reasoning as in the previous subsection, we can proceed from Merchant’s
original subroutine (41) for extracting ranking information from contrast
pairs to the variant in (53).

4 Subroutines for extracting ranking information from a contrast
pair

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫¥ is consistent with the lexicon Lex as an underlying form
for Ôm

- the two underlying su!x morphemes a and ¥ both have the
values v1, ..., vn for the features y1, ..., yn

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫¥) in "(v1, ..., vn) for all combinations of values
v1, ..., vn

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.

7.
8.

20 Giorgio Magri

Once again, if we do not consider any y features at line 3, (53) e‰ectively
considers the two meaning combinations of the contrast pair independently
of each other, and thus ends up equivalent to subroutine (40) for extracting
lexical information from single meaning combinations. If we instead consider
all unset y features at line 3, then (53) e‰ectively only considers pairs of
underlying forms for the two meaning combinations which share the
underlying su!x, and is therefore equivalent to Merchant’s original
subroutine (41) for extracting lexical information from contrast pairs.
Ultimately, depending on the number of y features considered at line 3,
(53) provides a whole range of subroutines for extracting ranking information
in between the weaker (40) and the stronger (41).

By reasoning as in §2 of this appendix, we can easily show subroutine
(53) to be equivalent to (54) under the assumption of output-drivenness.
The two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn constructed
by (54) at line 5 again provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (53).

(54)

- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values
v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
compute the join of the ERC matrices ù(Bbv1, …, vn, Xx)+

ù(±≤v1, …, vn, ∑π) for all combinations of values v1, ..., vn

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

6.

7.
8.

Take the simplest case, where we consider a single feature y at line 3.
Assume furthermore that y is binary, i.e. it only takes the values v=‘+’ and
v=‘—’. At line 5, the subroutine constructs the two underlying forms Bb+
and ±≤+, corresponding to the value v=‘+’of feature y (i.e. both b+ and ≤+
have the value ‘+’ for the feature y), and the two underlying forms Bb— and
±≤—, corresponding to the value v=‘—’ (i.e. both b— and ≤— have the value
‘—’ for the feature y). At line 6, we finally compute the join of the two ERC
blocks ù(Bb+, Xx)+ù(±≤+, ∑π) and ù(Bb—, Xx)+ù(±≤—, ∑π). Even in
the simplest case of a single feature y, there is no way around computing
the join.

In summary, Merchant develops a new subroutine for extracting ranking
information through the notion of join. This subroutine can be applied to
either a single meaning combination at a time, as in (40); or to a contrast
pair, as in (41). The latter is more powerful than the former: the subroutine
extracts more ranking information by processing the two meaning
combinations Mm and Ôm as a contrast pair than by processing them
separately. The crux of Merchant’s subroutine for extracting ranking
information is that it relies on the computation of a join, which is time-
consuming. The biggest impact of output-drivenness is that it allows
Merchant’s subroutine for extracting ranking information from a single
meaning combination to be restated without having to compute any join.
The restated subroutine thus runs in time linear in the number of features.
In other words, it is e!cient even relative to the more demanding notion
of e!ciency introduced in §2.6. The situation is unfortunately very di‰erent
when Merchant’s subroutine for extracting ranking information is boosted
by being applied to contrast pairs. In this case, output-drivenness is not
able to circumvent the computation of the join, and thus does not su!ce
to make the subroutine e!cient.

A constraint ranking is consistent with an ERC provided it satisfies con-
dition (36); it is consistent with an ERC matrix provided it is consistent
with each of its rows. An ERC matrix entails another ERC matrix provided

(38) Id
[str]

Id
[length]

Main-
L

Main-
R

No
Long

WSP

w
w

w
w
w
w

w
w
w
w

l
l
l
l

l

w
l

w

/’pa:’ka/, [’pa:ka], [pa’ka]
/’pa:’ka/, [’pa:ka], [pa’ka:]
/’pa:’ka/, [’pa:ka], [pa:’ka]
/’pa:’ka/, [’pa:ka], [pa:’ka:]
/’pa:’ka/, [’pa:ka], [’paka]
/’pa:’ka/, [’pa:ka], [’paka:]
/’pa:’ka/, [’pa:ka], [’pa:ka:]

w
w

w
w

Lemma 3
Suppose that one of the ERC matrices ù1, ù2, …, Rn is entailed
by each of the others. For concreteness, assume that it is ù1 which
is entailed by each of the other ERC matrices ù2, …, Rn. Then
ù1 is the join of ù1, ù2, …, Rn.

(i)

Given the ERC matrices ù1, ù2, ù3, …, Rn, replace two of them
with the ERC matrix obtained by stacking the two matrices one
on top of the other. For concreteness, replace ù1 and ù2 with
ù1+ù2. Then the join of the n®1 ERC matrices ù1+ù2, ù3,
…, Rn entails the join of the original n ERC matrices ù1, ù2, ù3,
…, Rn, while the reverse does not in general hold.

(ii)

compute the join of the ERC matrices ù(Aa, Xx) for all underlying
forms Aa in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.
7.

Proof. Let Aa be the underlying form assign ed to the meanin g
combination Mm by the target lexicon. This underlying form Aa
belongs to the set " constructed by the subroutine at line 4, because
of the hypothesis that the input lexicon Lex is consistent with the
target lexicon. Thus the corresponding ERC block ù(Aa, Xx) is one
of the blocks that the subroutine takes the join of at line 5. Since the
target ranking is consistent with this ERC block ù(Aa, Xx), then it
is also consistent with the join, by property (39a) of the join. Since the
target ranking is also consistent with the input ERC matrix ù, it is

Lemma 4
Merchant’s subroutine (40) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target ranking, that the input ERC matrix ù is
consistent with that target ranking, and that the input (possibly partial)
lexicon Lex is consistent with that target lexicon. The updated ERC
matrix returned by subroutine (40) is also consistent with that target
ranking.

then consistent with the updated ERC matrix returned by the sub-
routine.

(41) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫a) in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

1.

2.

3.

4.

5.

6.
7.

(43) ∑(ù1, ù2)+∑(π1, π2)

Lemma 3.iii ensures that (43) is equivalent to the join in (44). The four
ERC matrices being joined here correspond to all four combinations of
underlying forms for the two meaning combinations Mm and Ôm. In
particular, the learner is also joining together the two ERC blocks ù1+π2

and π2+ù1, whereby the shared su!x meaning m is assigned a di‰erent
underlying form in the case of Mm than in the case of Ôm. In other words,
since the learner is processing the two meaning combinations Mm and Ôm
separately, it is blind to the fact that these meaning combinations share the
su!x meaning m, which must therefore have the same underlying form in
both cases.

(44) ∑(ù1+π1, ù1+π2, ù2+π1, ù2+π2)

for the root meaning M (or for the su!x meaning m) (line 6). The lexicon
thus updated is then returned (line 8).

and that the input partial lexicon Lex is consistent with the target
lexicon. The updated lexicon returned by subroutine (46) is also
consistent with that target lexicon.

2 Subroutines for extracting lexical information from a single
meaning combination

Consider the slight variant (48) of the subroutine (46) for the extraction of
lexical information through inconsistency detection. The only di‰erence

The modification is only cosmetic: the original subroutine (47) is equivalent
to running this variant (49) for each feature which is unset for one of the
three morphemes M, Ô and m.

The set " constructed by the subroutine (49) at line 5 can equivalently
be described as the collection of all pairs (Aa, ∫¥) which satisfy the conditions
expressed by the four subclauses of line 5 plus the additional condition that

If we consider no y features at all in line 4, then (50) e‰ectively considers
the two meaning combinations of the contrast pair independently of each
other, and thus ends up equivalent to subroutine (46) for extracting lexical
information from single meaning combinations, in the sense that the
application of subroutine (50) to the contrast pair (Mm, Ôm) is equivalent
to two consecutive applications of subroutine (46) to the two meaning

Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and ±≤v1,

…, vn as follows
- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-

lying forms for Mm and Ôm

1.

2.

3.

4.

5.

(53) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

1.

2.

3.

4.

Phonology 25.2: Artwork 1 of

Supplementary materials 72 Giorgio Magri

every ranking consistent with the former is also consistent with the latter.
Thus ù1+ù2 entails both ù1 and ù2.

(36) At least one constraint which has a w in the ERC under consideration
is ranked above every constraint which instead has an l (constraints
which have an e play no role in the consistency condition).

2 The join

4 Giorgio Magri

Grammatical information was represented in §4.1.2 as a (possibly partial)
collection G of mappings (Aa, Xx) of an underlying form Aa to a surface
form Xx. Each of these mappings can be equivalently represented with the
corresponding ERC block ù(Aa, Xx). And the grammatical information
G can thus be represented with the ERC matrix obtained by stacking all
these blocks one of top of the other. Merchant’s CPR adopts the architecture
in (28), the only di‰erence being that the current partial grammatical
information is represented not as a partial grammar G but as an ERC matrix
ù. This makes the algorithm more flexible in the type of partial grammatical
information it maintains: any (partial) grammar G can be represented
through the corresponding ERC matrix, while not just any ERC matrix ù
corresponds to some partial collection of mappings. This additional flexibility
in the data structure maintained by the algorithm is crucial in order to
define the subroutine for extracting ranking information, as explained in
the next section.

Supplementary materials 5 6 Giorgio Magri 8 Giorgio Magri Supplementary materials 9 10 Giorgio Magri

Appendix B: Equivalence between Merchant’ s and Tesar’s sub-
routines

Supplementary materials 11 12 Giorgio Magri Supplementary materials 13

Appendix A: Merchant’s (2008) CPR

Phonology 31 (2014). Supplementary materials

Review article

Giorgio Magri
CNRS, Université Paris 8 and University of Utrecht

Supplementary materials

This appendix sketches Merchant’s (2008) CPR algorithm. In §1, I explain
how CPR adheres to the architecture in (28), only with a more abstract
representation of the current partial ranking information in terms of ERCs.
I then review CPR’s subroutines for extracting ranking and lexical infor-
mation. I start from the easier case, where they are applied to a single
paradigmatic entry (§3 and §5), and then turn to the extension to contrast
pairs (§4 and §6).

1 ERCs and CPR’s architecture
An elementary ranking condition (ERC) is an assignment of one of the
three symbols l, w and e to each of the constraints in the constraint set
(Prince 2002). An ERC is usually represented as a row of these symbols,
with the constraints annotated on top. To illustrate, an ERC for the constraint
set (5) of the Paka typology is provided in (35). An ERC matrix is a finite
collection of ERCs, stacked one on top of the other (the order does not
matter). An arbitrary ERC matrix is denoted by ù. Given two ERC matrixes
ù1 and ù2, ù1+ù2 denotes the ERC matrix obtained by stacking one on
top of the other (the order does not matter).

14 Giorgio Magri Supplementary materials 15

Bruce Tesar (2014). Output-driven phonology: theory and learning. (Cam-
bridge Studies in Linguistics 139.) Cambridge: Cambridge University
Press. Pp. xix+415.

(35)
e

Id[str] Id[length] Main-L Main-R NoLong WSP
w w l l e|

The phonological underpinning of these notions is as follows. Consider the
mapping (Aa, Xx) of an underlying form Aa to a surface form Xx, which
is thus construed as the winner. For any other loser candidate Yy, consider
the ERC defined in (37). Stack all the ERCs thus constructed for all loser
candidates one on top of the other into an ERC matrix, denoted by ù(Aa,
Xx). Then the OT grammar corresponding to a ranking maps the under-
lying form Aa to the surface form Xx if and only if that ranking is consistent
with the ERC matrix ù(Aa, Xx) corresponding to that mapping.

(37) A constraint has a w provided it prefers the winner mapping (Aa,
Xx) to the loser mapping (Aa, Yy), i.e. it assigns fewer violations
to the former mapping than to the latter.

a.

A constraint has an l provided it instead prefers the loser mapping
(Aa, Yy) to the winner mapping (Aa, Xx), i.e. it assigns fewer
violations to the former mapping than to the latter.

b.

A constraint has an e provided it has no preference for one of the
two mappings (Aa, Xx) and (Aa, Yy), i.e. it assigns the same number
of violations to both.

c.

To illustrate, consider the Paka typology in §2.1 of the paper, focusing on
the mapping (/’pa:’ka/, [’pa:ka]) of the underlying form /’pa:’ka/ to the surface
form [’pa:ka]. The ERC matrix ù(/’pa:’ka/, [’pa:ka]) corresponding to this
mapping is provided in (38). It consists of seven ERCs, because there are
seven loser candidates. For convenience, each ERC is annotated on the left
with the corresponding underlying, winner and loser forms (loser forms
are struck through). The topmost ERC in (38) says that the winner mapping
(/’pa:’ka/, [’pa:ka]) beats the loser mapping (/’pa:’ka/, [pa’ka]), provided at
least one of the two winner-preferring constraints Ident[length] or Main-
L is ranked above the two loser-preferring constraints Main-R and NoLong.

Supplementary materials 3

The join of some ERC matrices ù1, …, ùn is any ERC matrix which satisfies
the two conditions in (39). Any such ERC matrix will be denoted by ∑(ù1,
…, ùn). Condition (39a) says that the join is weaker than (i.e. entailed by)
each matrix ù1, …, ùn. Condition (39b) says that, among all ERC matrices
which are weaker than (i.e. entailed by) each matrix ù1, …, ùn, the join is
a strongest one (i.e the one which entails all the others). In other words,
condition (39a) says that the join captures some of the ranking information
shared by the matrices ù1, …, ùn, and condition (39b) says there is no
shared ranking information which the join does not capture.

(39) Each of the ERC matrices ù1, …, ùn entails their join.a.
If each of the ERC matrices ù1, …, ùn entails some ERC matrix
ù, their join entails ù as well.

b.

Lemma 3 collects some properties of the join which will be used in the rest
of this appendix.

Proof. An ERC matrix ∏ is the join of two ERC matrixes ù1 and ù2

if and only if the set of rankings consistent with ∏ is the union of the
two sets of rankings consistent with ù1 and ù2. Furthermore, the set
of rankings consistent with ù1+ù2 is the intersection of the two sets
of rankings consistent with ù1 and ù2. Claims (i)–(iii) then follow
from elementary set-theoretic manipulations on the sets of consistent
rankings.

Given four ERC matrices ù1, ù2, π1, π2, consider the ERC
matrix ∑(ù1, ù2)+∑(π1, π2) obtained by stacking one on top of
the other the join of ù1 and ù2 and the join of π1 and π2. Then
∑(ù1, ù2)+∑(π1, π2) coincides with the join of the four ERC
matrices ù1+π1, ù1+π2, ù2+π1, ù2+π2.

(iii)

3 A subroutine for extracting ranking information through the join
3.1 Description of the subroutine. The subroutine in (40) takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex and a paradigm
p (line 1). It extends the ranking information encoded in the input ERC
matrix ù by adding to that input ERC matrix some additional ERCs as
follows. The subroutine considers a certain meaning combination Mm (line
2), and it reads o‰ the paradigm p the surface realisation Xx of that meaning
combination Mm (line 3). The subroutine then constructs the set " of all
underlying concatenations Aa which are consistent with the lexicon Lex as
underlying forms for that meaning combination Mm (line 4). This means
that if Lex sets a feature for the root M or the su!x m to a certain value,
then the root morpheme A or the su!x morpheme a of each underlying
form Aa in " has the feature set to that value. Any of these underlying
forms in " could be the actual underlying form according to the partial
lexical information encoded by Lex. In other words, the target grammar
could enforce any of the mappings (Aa, Xx) of any underlying form Aa in
" to the surface form Xx. Thus the best the subroutine can do is to extract
any ranking information shared by all these mappings. This is done by
computing the join of all ERC blocks ù(Aa, Xx) corresponding to all
mappings (Aa, Xx) of all underlying forms Aa in " to the surface form Xx
(line 5). The input ERC matrix ù is updated by adding this join to it (line
6). The ERC matrix thus updated is returned (line 7).

(40) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all concatenations Aa consistent with Lex as

underlying forms for Mm

1.

2.
3.

4.

The join of the ERC blocks ù(Aa, Xx) computed at line 5 is an ERC-
theoretic construct which might very well not correspond, in the sense of
(37), to any mapping of an underlying form to a surface form. For this
reason, CPR needs the additional flexibility of representing the current
(partial) grammatical/ranking information as an ERC matrix rather than
as a (partial) grammar. Appendix B: §1 shows that output-drivenness in
e‰ect guarantees that the join computed in line 5 always corresponds to the
mapping of a certain underlying form to the surface form Xx read at line
3.

3.2 Analysis of the subroutine. Lemma 4 provides a straightforward correct-
ness result for Merchant’s subroutine (40). Note that the proof only uses
property (39a) of the join, not property (39b). In other words, the lemma
hinges only on the fact that the join extracts ranking information which is
shared by all the ERC blocks ù(Aa, Xx). Property (39b) is nonetheless
crucial, because it ensures that the join does not lack any of this shared
ranking informa tion, making subroutine (40) optimal. The crux of
Merchant’s subroutine is its time complexity. Merchant (2008: ch. 4)
develops an elegant algorithm for computing the join which can be used
to implement line 5. Unfortunately, his algorithm needs to compute the
fusional closure of each of the input ERC matrices it has to join. Although
there are no results that I am aware of concerning the time complexity of
that computation, it is most plausibly intractable in the general case.

4 Extension to contrast pairs
4.1 Description of the subroutine. The extension of Merchant’s subroutine
(40) to contrast pairs is provided in (41). This subroutine takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex, and a paradigm
p (line 1). The subroutine considers some contrast pair (line 2). For concrete-
ness, I am assuming here that the two meaning combinations of the contrast
pair share the su!x meaning, i.e. have the shape Mm and Ôm (the case
where they share the root meaning is handled analogously). The
subroutine reads o‰ the paradigm p the surface realisations Xx and ∑π of
those two meaning combinations (line 3). Although x and π are the surface
realisations of the same underlying su!x segment corresponding to the
su!x meaning m, they can be di‰erent, because of morphophonem ic
alternations in the surface realisation of that underlying su!x triggered by
the two di‰erent roots M and Ô. The subroutine then constructs the set
" of all pairs (Aa, ∫a) of underlying concatenations which are consistent
with the lexicon Lex as underlying forms for the meaning combinations
Mm and Ôm and furthermore share the underlying su!x segment a (line
4). The latter requirement encodes the fact that we are focusing on a pair
of meaning combinations Mm and Ôm which share the su!x meaning m.
For each pair (Aa, ∫a) of underlying concatenations in ", the subroutine
considers the corresponding ERC blocks ù(Aa, Xx) and ù(∫a, ∑π), stacks
them together into the ERC matrix ù(Aa, Xx)+ù(∫a, ∑π) and constructs
the join of all ERC matrices thus obtained (line 5). The input ERC matrix
ù is updated by adding this join to it (line 6). The ERC matrix thus updated
is then returned (line 7).

There is a subtlety which should be pointed out here. At line 5, the subroutine
considers the join in (42a), not the one in (42b). The di‰erence is that in
(42a) we sum together the two ERC blocks ù(Aa, Xx) and ù(∫a, ∑π) into
ù(Aa, Xx)+ù(∫a, ∑π) before taking the join. This is indeed appropriate,
because the join in (42a) is stronger than the one in (42b), by Lemma 3.ii.

(42) ∑{ù(Aa, Xx)+ù(∫a, ∑π) | (Aa, ∫a)Œ"}a.
∑{ù(Aa, Xx), ù(∫a, ∑π) | (Aa, ∫a)Œ"}b.

4.2 Analysis of the subroutine. The Correctness Lemma 4 trivially extends
from the original subroutine (40) for single meaning combinations to the
variant (41) for contrast pairs. The ine!ciency of (40) for single meaning
combinations is of course aggravated in (41) for contrast pairs, as the latter
requires taking the join of a larger number of larger ERC matrices. Yet
subroutine (41) applied to the contrast pair (Mm, Ôm) is able to extract
more ranking information than the double applica tion of the original
subroutine (40) to the two separate meaning combinations Mm and Ôm.
To see this, suppose that the root meaning M admits a unique underlying
form A consistent with Lex, the root meaning Ô admits a unique under-
lying form ∫ and the su!x meaning m admits only two underlying forms,
a1 and a2. Suppose we first apply the original subroutine (40) to the meaning
combination Mm. At line 4, it constructs the set " consisting of the two
underlying forms Aa1 and Aa2. At line 5, it computes the join ∑(ù1, ù2)
of the two ERC blocks ù1=ù(Aa1, Xx) and ù2=ù(Aa2, Xx). Suppose
we next apply the original subroutine (40) to the meaning combination
Ôm. At line 4, it constructs the set ", consisting of the two underlying
forms ∫a1 and ∫a2. At line 5, it computes the join ∑(π1, π2) of the two
ERC blocks π1=ù(∫a1, ∑π) and π2=ù(∫a2, ∑π). Ultimately, the two
consecutive applications of the original subroutine (40) to the two meaning
combinations Mm and Ôm extract the ranking information captured by
the sum of the two joins in (43).

Suppose we instead apply subroutine (41) to the contrast pair (Mm, Ôm).
At line 4, it constructs the set ", consisting of the two pairs (Aa1, ∫a1) and
(Aa2, ∫a2). At line 5, it computes the join in (45) of the two ERC blocks
ù(Aa1 , Xx)+ù(∫a1, ∑π)=ù1+π1 and ù(Aa2 , Xx)+ù(∫a2, ∑π) =
ù2+π2.

(45) ∑(ù1+π1, ù2+π2)

The join in (45) is stronger than the one in (44), because it joins fewer
matrices (the smaller the number of matrices, the larger the amount of
shared information for the join to extract). This is because the two blocks
ù1+π2 and ù2+π1 have disappeared from the join. This is what we want,
as they correspond to the unreasonable assumption that the su!x m has
di‰erent underlying forms in the two meaning combinations Mm and Ôm.
In other words, since the learner is processing the two meaning combinations
Mm and Ôm together as a contrast pair, it is able to take into account the
fact that these meaning combinations share the su!x meaning m, which
must therefore have the same underlying form in the two cases.

5 A subroutine for extracting lexical information through
inconsistency detection

5.1 Description of the subroutine. Subroutine (46) takes as input some
lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine then considers a certain
meaning combination Mm with some feature unset according to the input
partial lexicon Lex for either the root M or the su!x m (line 2). The goal
of the subroutine is to try to extend the input partial lexicon by setting
some of these unset features. To this end, the subroutine reads o‰ the
paradigm p the surface realisation Xx of the meaning combination Mm
(line 3). It constructs the set " of all underlying concatenations Aa which
are consistent with both the input lexical information Lex and the input
ranking information captured by the grammar G (or the ERC matrix ù)
(line 4). Consistency with the input lexical information means that, if Lex
sets a feature for the root M (or the su!x m) to a certain value, then the
root morpheme A (or the su!x morpheme a) of each underlying form Aa
in " has the feature set to that value. Consistency with the input ranking
information means that the input grammar G (or the input ERC matrix ù)
is consistent with the mapping (Aa, Xx) of each such underlying form Aa
in " to the surface form Xx. The subroutine then looks for a feature which
is unset by Lex for the root meaning M (or the su!x meaning m), such that
each root morpheme A (or each su!x morpheme a) has the same value for
that feature in all underlying concatenations Aa in " (line 5). For any such
feature, it can be concluded that the opposite value is inconsistent with the
available lexical and ranking information. The subroutine thus updates the
partial lexicon Lex by setting that feature to be equal to its constant value

(46) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that:
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G (or

the ERC matrix ù)
if some feature unset for the root M (or for the su!x m) has a

constant value over " for M (for m) then
update the lexicon Lex by setting the feature to that value for

the root M (or for the su!x m)
end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.
8.

This subroutine is called inconsistency detection (cf. Kager 1999, Tesar
et al. 2003, Tesar 2006), because it sets a certain feature to a certain value
based on the detection at line 6 of the fact that any other value for that
feature would be inconsiste nt with the availab le lexical and ranking
information.

Proof. Assume by contradiction that the lemma is false. This means
that the subroutine has set some feature j for, say, the root meaning
M to a value which is di‰erent from the value assigned by the target
lexicon. For concreteness, assume that the values assigned by the
subroutine and the target lexicon are + and — respectively. Thus , the
target lexicon assigns to the meaning combination Mm an underlying
form Aa, which has feature j set to the value — in the root A. This
underlying form Aa is consistent with the partial lexicon Lex (because
it is consistent with the target lexicon, which is in turn consistent with
Lex). Furthermore, the mapping (Aa, Xx) of this underlying form Aa
to the surface form Xx is consistent with the input grammar G (because
the target ranking is consistent with both). In other words, this
underlying form Aa satisfies the two conditions stated by the two
subclauses in line 4 and thus belongs to the set " constructed by the
subroutine. Since this underlying form Aa has feature j set equal to
— for the root A, then the subroutine cannot have set that feature to
the opposite value + at line 6.

5.2 Analysis of the subroutine. Lemma 5 provides a straightforward correct-
ness result for inconsistency detection (46). Its time complexity is controlled
by the size of the set " of consistent underlying forms constructed at line 4.
In the worst case (when both the input lexicon and the input ranking
information are empty), " consists of all underlying forms, i.e. all con-
catenations of root and su!x morphemes. In this case, the size of " grows
polynomially in the number of morphemes and thus exponentially in the
number of features. In conclusion, subroutine (46) is e!cient relative to
the generous notion of e!ciency defined in (14), which measures time
complexity in terms of the number of morphemes, but is not e!cient
relative to the more demanding notion of e!ciency defined in (15), which
measures time complexity in terms of the number of features.

Lemma 5
Inconsistency detection (46) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target grammar, that the input (possibly partial)
grammar G (or ERC matrix ù) is consistent with the target grammar

6 Extension to contrast pairs
6.1 Description of the subroutine. The extension of inconsistency detection
(46) to contrast pairs is provided in (47). This subroutine takes as input
some lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine considers a particular
contrast pair (line 2). For concreteness, I am assuming here that the two
meaning combinations of the contrast pair share the su!x meaning, namely
have the shape Mm and Ôm (the case where they share the root meaning
is handled analogously). The subroutine reads o‰ the paradigm p the surface
realisations Xx and ∑π of those two meaning combinations (line 3). It
constructs the set " of all pairs (Aa, ∫a) of underlying concatenations which
are consistent with both the input lexical information Lex and the input
ranking information G (or ù) and furthermore share the underlying su!x
segment a (line 4). The subroutine then looks for a feature which is unset
by Lex for the root meaning M (or the root meaning Ô or the su!x meaning
m), such that each underlying root morpheme A (or each underlying root
morpheme ∫ or each underlying su!x morpheme a) has the same value
for that feature in all pairs (Aa, ∫a) in " (line 5). For any such feature, the
subroutine updates the partial lexicon Lex by setting the feature equal to
its constant value for the root meaning M (or for the root meaning Ô or
for the su!x meaning m) (line 6). The lexicon thus updated is then returned
(line 8).

(47) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G (or
the ERC matrix ù)

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

- the mapping (∫a, ∑π) is consistent with the grammar G
if some unset feature has a constant value over " for any of the three

meanings M, Ô or m then
update the lexicon Lex by setting the feature to the constant

value for that meaning
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.
8.

6.2 Analysis of the subroutine. The Correctness Lemma 5 trivially extends
from the original subroutine (46) for single meaning combinations to the
variant (47) for contrast pairs. Furthermore, the variant for contrast pairs
remains as e!cient as the original version for single meaning combinations,
when e!ciency is generously measured in terms of the number of morphemes
(but again, not when it is measured in terms of the number of features).
Yet a number of authors (including Alderete et al. 2005 and Merchant &
Tesar 2008) have pointed out that (47), applied to the contrast pair (Mm,
Ôm), can extract more lexical information than the double application of
the original subroutine (46) to the two separate meaning combinations Mm
and Ôm. To see this, consider one of the two meaning combinations of the
contrast pair, say Mm. The original subroutine considers all underlying
forms Aa for Mm which are consistent with the input lexical and ranking
information, and only sets those features which are constant across all these
underlying forms. If the number of consistent underlying forms is large,
the number of features which are constant across them is small, and the
subroutine thus extracts little lexical information. (47) might instead be
able to extract more lexical information, because it looks for features which
are constant over a smaller set of underlying forms for Mm, namely those
underlying forms Aa which are not only consistent with the input lexical
and ranking information, but also use a su!x morpheme a which can be
combined with a root morpheme ∫ into an underlying form ∫a for Ôm
which is also consistent with the input lexical and ranking information.

I denote Tesar’s subroutine (29) for the extraction of ranking information
from a single meaning combination as ERIT, and Merchant’s subroutine
(40) as ERIM. Lemma 6 states that, if the underlying typology is output-
driven, then ERIT and ERIM are equivalent, because they update the
current ranking/grammatical information with the ‘same’ information. This
equivalence is striking, given that the time complexity of ERIT is only
linear in the number of features, while the time complexity of ERIM is
unknown, but probably exponential in both the number of features and the
numbe r of morphemes. Output-drivenne ss thus a‰ords a significa nt
reduction in time complexity. The Correctness Lemma 1 for ERIT (which
was proven directly in §4.4) can also be made to follow from the Correctness
Lemma 4 for ERIT through the Equivalence Lemma 6.

1 Subroutines for extracting ranking information from a single
meaning combination

Proof. The underlying form Bb constructed by ERIT at line 4 is
consistent with Lex, and therefore belongs to the set " constructed by
ERIM at line 4. Consider one of the underlying forms Aa in this set ".
The two underlying forms Aa and Bb agree in every feature which is
set by the input partial lexicon Lex. Furthermore, Bb and the surface
form Xx agree in every remaining feature. Thus the underlying form
Bb is more similar to the surface form Xx than is the underlying form
Aa. Since the underlying typology is output-driven, then every ranking
which maps the less similar underlying form Aa to Xx also maps the
more similar underlying form Bb to Xx. In other words, any ranking
consistent with the ERC block ù(Aa, Xx) is also consistent with the
ERC block ù(Bb, Xx). Lemma 3.i thus ensures that the ERC block
ù(Bb, Xx) is the join of the ERC blocks ù(Aa, Xx) across all underlying
concatenations Aa in ".

Lemma 6
Suppose that the underlying typology is output-driven and that ERIT

is fed with a partial grammar G and a (possibly partial) lexicon Lex.
Suppose that ERIM is fed with the ERC matrix ù corresponding to
the partial grammar G and the same lexicon Lex. Then the ERC block
corresponding to the mapping (Bb, Xx) constructed by ERIT at line
4 is the join of the ERC blocks ù(Aa, Xx) corresponding to the
underlying forms Aa in " constructed by ERIM at line 5.

between the two implementations is the following: Merchant’s original
subroutine (46) sets any feature which is constant over "; the variant in (48)
instead focuses right from the beginning on a specific feature j, which is
unset for either the root M or the su!x m of the meaning combination Mm
under consideration. In line 3, I am assuming for concreteness that the
feature j is unset for the root M (the case where it is unset for the su!x m
is handled analogously). The modification is only cosmetic: the original
subroutine is equivalent to running this variant for each unset feature.

(48) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a meaning combination Mm in the paradigm p
Require: a feature j unset by Lex for either M or m; for concreteness,

say it is unset for M
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G

if all underlying forms Aa in " have the feature j set to the same
value in the root morpheme A then

update the lexicon Lex by setting the feature j to that value for
the root meaning M

end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.

8.
9.

I denote Tesar’s subroutine (33) for the extraction of lexical information
from a single meaning combination by ELIT, and (the cosmetic variant of)
the original inconsistency detection subroutine (48) by ELIid. Lemma 6
states that, if the underlying typology is output-driven, ELIT and ELIid

are equival ent, because their if-claus es at line 6 are equivalent. This
equivalence is striking, given that the if-clause of ELIT can be checked in
time linear in the number of features, while the if-clause of ELIid requires
time exponential in the number of features in the worst case. Output-
drivenness has thus a‰orded a significant reduction in time complexity.
The Correctness Lemma 2 for ELIT (which was proven directly in §4.5)
can also be made to follow from the Correctness Lemma 4 for ELIid through
the Equivalence Lemma 7.

Proof. To start, let me prove that the if-clause in line 6 of ELIT entails
the if-clause in line 6 of ELIid. Assume by contradiction that the
former if-clause is true while the latter if-clause is false. The hypothesis
that the if-clause of ELIid is false entails in particular that the set " of
consistent underlying forms constructed by ELIid at line 5 contains
an underlying form Aa whose root A disagrees with X relative to the
feature j (indeed, if all the underlying forms Aa in " had a root A
which agreed with X relative to j, the if-clause of ELIid would hold
true). The underlying form Aa and the underlying form Bb constructed
by ELIT at line 5 thus agree in the feature j for the root meaning M,
as they both have the opposite value from X. Furthermore, they agree
in every feature set by the partial lexicon Lex, because they are both
consistent with Lex. Finally, Bb agrees with Xx for every remaining
feature. The underlying form Bb is thus more similar to the surface
form Xx than is the underlying form Aa. Since the mapping (Aa, Xx)
is consistent with G (because Aa belongs to "), there exists a ranking
which is consistent with both. Since the grammar corresponding to
that ranking is output-driven and maps the less similar underlying
form Aa to Xx, it also maps the more similar underlying form Bb to
Xx. In other words, that ranking is also consistent with the mapping
(Bb, Xx). In conclusion, the mapping (Bb, Xx) and the grammar G
are consistent (because both are consistent with the ranking), contra-
dicting the hypothesis that the if-clause of ELIT is true.

Vice versa, let me prove that the if-clause in line 6 of ELIid entails
the if-clause in line 6 of ELIT. Assume by contradiction that the
former if-clause is true, while the latter if-clause is false. The hypothesis
that the if-clause of ELIT is false means that the input (partial) grammar
G is consistent with the mapping (Bb, Xx) of the underlying form Bb
constructed by ELIT at line 5 to the surface form Xx. Since this
underlying form Bb is consistent with Lex, then Bb belongs to the set
" of consistent underlying forms constructed at line 5 by ELIid. Since
B and X disagree relative to the feature j, consider the underlying
form ≥b, identical to Bb but for the fact that ≥ and X instead agree in
the feature j. Obviously, the underlying form ≥b is more similar to
the surface form Xx than is the underlying form Bb. Since (Bb, Xx)
is consistent with G, there exists a ranking which is consistent with
both. Since the grammar corresponding to that ranking is output-
driven and maps the less similar underlying form Bb to Xx, then it
also maps the more similar underlying form ≥b to Xx. In other words,
that ranking is also consistent with the mapping (≥b, Xx). This
underlying form ≥b thus belongs to the set " constructed by ELIid at
line 5.This conclusion contradicts the hypothesis that the if-clause of
ELIid holds, because it shows that " contains two underlying forms
Bb and ≥b, such that B and ≥ disagree in the feature j.Lemma 7

Suppose that the underlying typology is output-driven. Then the two
if-clauses in line 6 of ELIT and ELIid are equivalent.

Tesar’s subroutine for extracting lexical information from contrast pairs
is more involved than his other two subroutines, for extracting lexical and
ranking information from a single meaning combination. For this reason,
the latter two subroutines were reviewed in §4.4 and §4.5, while the former
subroutine is included in this appendix. Here I start out from Merchant’s
subroutine in (47) for extracting lexical information from contrast pairs,
and work towards Tesar’s reformulation, provided below in (52). This
seems to me the best way of making sense of the somewhat complex
formulation of Tesar’s subroutine. I begin by carrying out the same cosmetic
change as in the previous section: I replace the original subroutine (47)
with (49), which only di‰ers because line 3 focuses on a specific feature j,
unset by the input lexicon Lex for one of the three meanings M, Ô and m
of the contrast pair (Mm, Ôm). For concreteness, I assume it is unset for
the root meaning M.

3 Subroutines for extracting lexical information from a contrast
pair

Supplementary materials 1716 Giorgio Magri

(49) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫a, ∑π) is consistent with the grammar G

if all the pairs (Aa, ∫a) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.
9.

the two underlying su!x morphemes a and ¥ coincide, because they are
the underlying form corresponding to the same su!x meaning m. The
condition that a and ¥ coincide is in turn equivalent to the condition that
they agree for each feature y. We could of course relax this condition by
requiring that the two underlying su!x morphemes a and ¥ agree only for
certain features, y1, ..., yn. This intuition leads to the formulation in (50).
It di‰ers from (49) only because of the new line 4, which introduces the
features y1, ..., yn, and because of the additional fifth subclause in the
definition of the set ". Note that line 4 assumes all the features y1, ..., yn

to be unset by the input partial lexicon Lex for the shared su!x m, because
the condition that both a and ¥ are consistent with Lex as underlying forms
for m already entails that they agree on every feature set by Lex for m.

(50) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫¥) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ agree for every

feature y1, ..., yn

if all the pairs (Aa, ∫¥) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

combinations Mm and Ôm one at a time. If instead we consider all unset
y features at line 4, then (50) e‰ectively considers only pairs of underlying
forms for the two meaning combinations which share the underlying su!x,
and is therefore equivalent to the original subroutine (49) for extracting
lexical information from contrast pairs. In the end, depending on the
number of y features considered at line 4, (50) provides a whole range of
subroutines for extracting lexical information in between the weaker (46)
and the stronger (49).

Subroutine (50) can be equivalently restated as (51). Instead of requiring
the two su!x morphemes a and ¥ to coincide for every feature y1, ..., yn,
we consider all possible combinations v1, ..., vn of values of those features
at line 6, and we require both a and ¥ to have those features set equal to
those values in the fifth subclause of line 5.

(51) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫¥ is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ both have the

values v1, ..., vn for the features y1, ..., yn

if all the pairs (Aa, ∫¥) in all the sets "(v1, ..., vn) have the underlying
root A set to the same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

Supplementary materials 1918 Giorgio Magri

By reasoning as in the previous subsection we can easily show that subroutine
(51) is equivalent to (52) under the assumption of output-drivenness.
Indeed, the two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn con-
structed by (52) at line 6 provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (51).

(52) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and
±≤v1, …, vn, as follows:

- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-
lying forms for Mm and Ôm

- B has the opposite value for feature j than X
- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values

v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
if the grammar G is inconsistent with the two mappings (Bbv1, …, vn,

Xx) and (±≤v1, …, vn, ∑π) for any combination of values v1, ..., vn

then
update the lexicon Lex by setting feature j to that constant value

for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

If the features y1, ..., yn considered in line 4 of (52) exhaust the set of
features, then the two subroutines (49) and (52) are equivalent. However,
the running time of (52) is exponential in the number of features in the
latter case, because it needs to consider all combinations v1, ..., vn.

By reasoning as in the previous subsection, we can proceed from Merchant’s
original subroutine (41) for extracting ranking information from contrast
pairs to the variant in (53).

4 Subroutines for extracting ranking information from a contrast
pair

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫¥ is consistent with the lexicon Lex as an underlying form
for Ôm

- the two underlying su!x morphemes a and ¥ both have the
values v1, ..., vn for the features y1, ..., yn

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫¥) in "(v1, ..., vn) for all combinations of values
v1, ..., vn

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.

7.
8.

20 Giorgio Magri

Once again, if we do not consider any y features at line 3, (53) e‰ectively
considers the two meaning combinations of the contrast pair independently
of each other, and thus ends up equivalent to subroutine (40) for extracting
lexical information from single meaning combinations. If we instead consider
all unset y features at line 3, then (53) e‰ectively only considers pairs of
underlying forms for the two meaning combinations which share the
underlying su!x, and is therefore equivalent to Merchant’s original
subroutine (41) for extracting lexical information from contrast pairs.
Ultimately, depending on the number of y features considered at line 3,
(53) provides a whole range of subroutines for extracting ranking information
in between the weaker (40) and the stronger (41).

By reasoning as in §2 of this appendix, we can easily show subroutine
(53) to be equivalent to (54) under the assumption of output-drivenness.
The two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn constructed
by (54) at line 5 again provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (53).

(54)

- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values
v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
compute the join of the ERC matrices ù(Bbv1, …, vn, Xx)+

ù(±≤v1, …, vn, ∑π) for all combinations of values v1, ..., vn

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

6.

7.
8.

Take the simplest case, where we consider a single feature y at line 3.
Assume furthermore that y is binary, i.e. it only takes the values v=‘+’ and
v=‘—’. At line 5, the subroutine constructs the two underlying forms Bb+
and ±≤+, corresponding to the value v=‘+’of feature y (i.e. both b+ and ≤+
have the value ‘+’ for the feature y), and the two underlying forms Bb— and
±≤—, corresponding to the value v=‘—’ (i.e. both b— and ≤— have the value
‘—’ for the feature y). At line 6, we finally compute the join of the two ERC
blocks ù(Bb+, Xx)+ù(±≤+, ∑π) and ù(Bb—, Xx)+ù(±≤—, ∑π). Even in
the simplest case of a single feature y, there is no way around computing
the join.

In summary, Merchant develops a new subroutine for extracting ranking
information through the notion of join. This subroutine can be applied to
either a single meaning combination at a time, as in (40); or to a contrast
pair, as in (41). The latter is more powerful than the former: the subroutine
extracts more ranking information by processing the two meaning
combinations Mm and Ôm as a contrast pair than by processing them
separately. The crux of Merchant’s subroutine for extracting ranking
information is that it relies on the computation of a join, which is time-
consuming. The biggest impact of output-drivenness is that it allows
Merchant’s subroutine for extracting ranking information from a single
meaning combination to be restated without having to compute any join.
The restated subroutine thus runs in time linear in the number of features.
In other words, it is e!cient even relative to the more demanding notion
of e!ciency introduced in §2.6. The situation is unfortunately very di‰erent
when Merchant’s subroutine for extracting ranking information is boosted
by being applied to contrast pairs. In this case, output-drivenness is not
able to circumvent the computation of the join, and thus does not su!ce
to make the subroutine e!cient.

A constraint ranking is consistent with an ERC provided it satisfies con-
dition (36); it is consistent with an ERC matrix provided it is consistent
with each of its rows. An ERC matrix entails another ERC matrix provided

(38) Id
[str]

Id
[length]

Main-
L

Main-
R

No
Long

WSP

w
w

w
w
w
w

w
w
w
w

l
l
l
l

l

w
l

w

/’pa:’ka/, [’pa:ka], [pa’ka]
/’pa:’ka/, [’pa:ka], [pa’ka:]
/’pa:’ka/, [’pa:ka], [pa:’ka]
/’pa:’ka/, [’pa:ka], [pa:’ka:]
/’pa:’ka/, [’pa:ka], [’paka]
/’pa:’ka/, [’pa:ka], [’paka:]
/’pa:’ka/, [’pa:ka], [’pa:ka:]

w
w

w
w

Lemma 3
Suppose that one of the ERC matrices ù1, ù2, …, Rn is entailed
by each of the others. For concreteness, assume that it is ù1 which
is entailed by each of the other ERC matrices ù2, …, Rn. Then
ù1 is the join of ù1, ù2, …, Rn.

(i)

Given the ERC matrices ù1, ù2, ù3, …, Rn, replace two of them
with the ERC matrix obtained by stacking the two matrices one
on top of the other. For concreteness, replace ù1 and ù2 with
ù1+ù2. Then the join of the n®1 ERC matrices ù1+ù2, ù3,
…, Rn entails the join of the original n ERC matrices ù1, ù2, ù3,
…, Rn, while the reverse does not in general hold.

(ii)

compute the join of the ERC matrices ù(Aa, Xx) for all underlying
forms Aa in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.
7.

Proof. Let Aa be the underlying form assign ed to the meanin g
combination Mm by the target lexicon. This underlying form Aa
belongs to the set " constructed by the subroutine at line 4, because
of the hypothesis that the input lexicon Lex is consistent with the
target lexicon. Thus the corresponding ERC block ù(Aa, Xx) is one
of the blocks that the subroutine takes the join of at line 5. Since the
target ranking is consistent with this ERC block ù(Aa, Xx), then it
is also consistent with the join, by property (39a) of the join. Since the
target ranking is also consistent with the input ERC matrix ù, it is

Lemma 4
Merchant’s subroutine (40) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target ranking, that the input ERC matrix ù is
consistent with that target ranking, and that the input (possibly partial)
lexicon Lex is consistent with that target lexicon. The updated ERC
matrix returned by subroutine (40) is also consistent with that target
ranking.

then consistent with the updated ERC matrix returned by the sub-
routine.

(41) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫a) in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

1.

2.

3.

4.

5.

6.
7.

(43) ∑(ù1, ù2)+∑(π1, π2)

Lemma 3.iii ensures that (43) is equivalent to the join in (44). The four
ERC matrices being joined here correspond to all four combinations of
underlying forms for the two meaning combinations Mm and Ôm. In
particular, the learner is also joining together the two ERC blocks ù1+π2

and π2+ù1, whereby the shared su!x meaning m is assigned a di‰erent
underlying form in the case of Mm than in the case of Ôm. In other words,
since the learner is processing the two meaning combinations Mm and Ôm
separately, it is blind to the fact that these meaning combinations share the
su!x meaning m, which must therefore have the same underlying form in
both cases.

(44) ∑(ù1+π1, ù1+π2, ù2+π1, ù2+π2)

for the root meaning M (or for the su!x meaning m) (line 6). The lexicon
thus updated is then returned (line 8).

and that the input partial lexicon Lex is consistent with the target
lexicon. The updated lexicon returned by subroutine (46) is also
consistent with that target lexicon.

2 Subroutines for extracting lexical information from a single
meaning combination

Consider the slight variant (48) of the subroutine (46) for the extraction of
lexical information through inconsistency detection. The only di‰erence

The modification is only cosmetic: the original subroutine (47) is equivalent
to running this variant (49) for each feature which is unset for one of the
three morphemes M, Ô and m.

The set " constructed by the subroutine (49) at line 5 can equivalently
be described as the collection of all pairs (Aa, ∫¥) which satisfy the conditions
expressed by the four subclauses of line 5 plus the additional condition that

If we consider no y features at all in line 4, then (50) e‰ectively considers
the two meaning combinations of the contrast pair independently of each
other, and thus ends up equivalent to subroutine (46) for extracting lexical
information from single meaning combinations, in the sense that the
application of subroutine (50) to the contrast pair (Mm, Ôm) is equivalent
to two consecutive applications of subroutine (46) to the two meaning

Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and ±≤v1,

…, vn as follows
- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-

lying forms for Mm and Ôm

1.

2.

3.

4.

5.

(53) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

1.

2.

3.

4.

Phonology 25.2: Artwork 1 of

Supplementary materials 72 Giorgio Magri

every ranking consistent with the former is also consistent with the latter.
Thus ù1+ù2 entails both ù1 and ù2.

(36) At least one constraint which has a w in the ERC under consideration
is ranked above every constraint which instead has an l (constraints
which have an e play no role in the consistency condition).

2 The join

4 Giorgio Magri

Grammatical information was represented in §4.1.2 as a (possibly partial)
collection G of mappings (Aa, Xx) of an underlying form Aa to a surface
form Xx. Each of these mappings can be equivalently represented with the
corresponding ERC block ù(Aa, Xx). And the grammatical information
G can thus be represented with the ERC matrix obtained by stacking all
these blocks one of top of the other. Merchant’s CPR adopts the architecture
in (28), the only di‰erence being that the current partial grammatical
information is represented not as a partial grammar G but as an ERC matrix
ù. This makes the algorithm more flexible in the type of partial grammatical
information it maintains: any (partial) grammar G can be represented
through the corresponding ERC matrix, while not just any ERC matrix ù
corresponds to some partial collection of mappings. This additional flexibility
in the data structure maintained by the algorithm is crucial in order to
define the subroutine for extracting ranking information, as explained in
the next section.

Supplementary materials 5 6 Giorgio Magri 8 Giorgio Magri Supplementary materials 9 10 Giorgio Magri

Appendix B: Equivalence between Merchant’ s and Tesar’s sub-
routines

Supplementary materials 11 12 Giorgio Magri Supplementary materials 13

Appendix A: Merchant’s (2008) CPR

Phonology 31 (2014). Supplementary materials

Review article

Giorgio Magri
CNRS, Université Paris 8 and University of Utrecht

Supplementary materials

This appendix sketches Merchant’s (2008) CPR algorithm. In §1, I explain
how CPR adheres to the architecture in (28), only with a more abstract
representation of the current partial ranking information in terms of ERCs.
I then review CPR’s subroutines for extracting ranking and lexical infor-
mation. I start from the easier case, where they are applied to a single
paradigmatic entry (§3 and §5), and then turn to the extension to contrast
pairs (§4 and §6).

1ERCs and CPR’s architecture
An elementary ranking condition (ERC) is an assignment of one of the
three symbols l, w and e to each of the constraints in the constraint set
(Prince 2002). An ERC is usually represented as a row of these symbols,
with the constraints annotated on top. To illustrate, an ERC for the constraint
set (5) of the Paka typology is provided in (35). An ERC matrix is a finite
collection of ERCs, stacked one on top of the other (the order does not
matter). An arbitrary ERC matrix is denoted by ù. Given two ERC matrixes
ù1 and ù2, ù1+ù2 denotes the ERC matrix obtained by stacking one on
top of the other (the order does not matter).

14 Giorgio Magri Supplementary materials 15

Bruce Tesar (2014). Output-driven phonology: theory and learning. (Cam-
bridge Studies in Linguistics 139.) Cambridge: Cambridge University
Press. Pp. xix+415.

(35)
e
Id[str]Id[length]Main-LMain-RNoLongWSP
wwlle|

The phonological underpinning of these notions is as follows. Consider the
mapping (Aa, Xx) of an underlying form Aa to a surface form Xx, which
is thus construed as the winner. For any other loser candidate Yy, consider
the ERC defined in (37). Stack all the ERCs thus constructed for all loser
candidates one on top of the other into an ERC matrix, denoted by ù(Aa,
Xx). Then the OT grammar corresponding to a ranking maps the under-
lying form Aa to the surface form Xx if and only if that ranking is consistent
with the ERC matrix ù(Aa, Xx) corresponding to that mapping.

(37) A constraint has a w provided it prefers the winner mapping (Aa,
Xx) to the loser mapping (Aa, Yy), i.e. it assigns fewer violations
to the former mapping than to the latter.

a.

A constraint has an l provided it instead prefers the loser mapping
(Aa, Yy) to the winner mapping (Aa, Xx), i.e. it assigns fewer
violations to the former mapping than to the latter.

b.

A constraint has an e provided it has no preference for one of the
two mappings (Aa, Xx) and (Aa, Yy), i.e. it assigns the same number
of violations to both.

c.

To illustrate, consider the Paka typology in §2.1 of the paper, focusing on
the mapping (/’pa:’ka/, [’pa:ka]) of the underlying form /’pa:’ka/ to the surface
form [’pa:ka]. The ERC matrix ù(/’pa:’ka/, [’pa:ka]) corresponding to this
mapping is provided in (38). It consists of seven ERCs, because there are
seven loser candidates. For convenience, each ERC is annotated on the left
with the corresponding underlying, winner and loser forms (loser forms
are struck through). The topmost ERC in (38) says that the winner mapping
(/’pa:’ka/, [’pa:ka]) beats the loser mapping (/’pa:’ka/, [pa’ka]), provided at
least one of the two winner-preferring constraints Ident[length] or Main-
L is ranked above the two loser-preferring constraints Main-R and NoLong.

Supplementary materials 3

The join of some ERC matrices ù1, …, ùn is any ERC matrix which satisfies
the two conditions in (39). Any such ERC matrix will be denoted by ∑(ù1,
…, ùn). Condition (39a) says that the join is weaker than (i.e. entailed by)
each matrix ù1, …, ùn. Condition (39b) says that, among all ERC matrices
which are weaker than (i.e. entailed by) each matrix ù1, …, ùn, the join is
a strongest one (i.e the one which entails all the others). In other words,
condition (39a) says that the join captures some of the ranking information
shared by the matrices ù1, …, ùn, and condition (39b) says there is no
shared ranking information which the join does not capture.

(39) Each of the ERC matrices ù1, …, ùn entails their join.a.
If each of the ERC matrices ù1, …, ùn entails some ERC matrix
ù, their join entails ù as well.

b.

Lemma 3 collects some properties of the join which will be used in the rest
of this appendix.

Proof. An ERC matrix ∏ is the join of two ERC matrixes ù1 and ù2

if and only if the set of rankings consistent with ∏ is the union of the
two sets of rankings consistent with ù1 and ù2. Furthermore, the set
of rankings consistent with ù1+ù2 is the intersection of the two sets
of rankings consistent with ù1 and ù2. Claims (i)–(iii) then follow
from elementary set-theoretic manipulations on the sets of consistent
rankings.

Given four ERC matrices ù1, ù2, π1, π2, consider the ERC
matrix ∑(ù1, ù2)+∑(π1, π2) obtained by stacking one on top of
the other the join of ù1 and ù2 and the join of π1 and π2. Then
∑(ù1, ù2)+∑(π1, π2) coincides with the join of the four ERC
matrices ù1+π1, ù1+π2, ù2+π1, ù2+π2.

(iii)

3 A subroutine for extracting ranking information through the join
3.1 Description of the subroutine. The subroutine in (40) takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex and a paradigm
p (line 1). It extends the ranking information encoded in the input ERC
matrix ù by adding to that input ERC matrix some additional ERCs as
follows. The subroutine considers a certain meaning combination Mm (line
2), and it reads o‰ the paradigm p the surface realisation Xx of that meaning
combination Mm (line 3). The subroutine then constructs the set " of all
underlying concatenations Aa which are consistent with the lexicon Lex as
underlying forms for that meaning combination Mm (line 4). This means
that if Lex sets a feature for the root M or the su!x m to a certain value,
then the root morpheme A or the su!x morpheme a of each underlying
form Aa in " has the feature set to that value. Any of these underlying
forms in " could be the actual underlying form according to the partial
lexical information encoded by Lex. In other words, the target grammar
could enforce any of the mappings (Aa, Xx) of any underlying form Aa in
" to the surface form Xx. Thus the best the subroutine can do is to extract
any ranking information shared by all these mappings. This is done by
computing the join of all ERC blocks ù(Aa, Xx) corresponding to all
mappings (Aa, Xx) of all underlying forms Aa in " to the surface form Xx
(line 5). The input ERC matrix ù is updated by adding this join to it (line
6). The ERC matrix thus updated is returned (line 7).

(40) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all concatenations Aa consistent with Lex as

underlying forms for Mm

1.

2.
3.

4.

The join of the ERC blocks ù(Aa, Xx) computed at line 5 is an ERC-
theoretic construct which might very well not correspond, in the sense of
(37), to any mapping of an underlying form to a surface form. For this
reason, CPR needs the additional flexibility of representing the current
(partial) grammatical/ranking information as an ERC matrix rather than
as a (partial) grammar. Appendix B: §1 shows that output-drivenness in
e‰ect guarantees that the join computed in line 5 always corresponds to the
mapping of a certain underlying form to the surface form Xx read at line
3.

3.2 Analysis of the subroutine. Lemma 4 provides a straightforward correct-
ness result for Merchant’s subroutine (40). Note that the proof only uses
property (39a) of the join, not property (39b). In other words, the lemma
hinges only on the fact that the join extracts ranking information which is
shared by all the ERC blocks ù(Aa, Xx). Property (39b) is nonetheless
crucial, because it ensures that the join does not lack any of this shared
ranking informa tion, making subroutine (40) optimal. The crux of
Merchant’s subroutine is its time complexity. Merchant (2008: ch. 4)
develops an elegant algorithm for computing the join which can be used
to implement line 5. Unfortunately, his algorithm needs to compute the
fusional closure of each of the input ERC matrices it has to join. Although
there are no results that I am aware of concerning the time complexity of
that computation, it is most plausibly intractable in the general case.

4 Extension to contrast pairs
4.1 Description of the subroutine. The extension of Merchant’s subroutine
(40) to contrast pairs is provided in (41). This subroutine takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex, and a paradigm
p (line 1). The subroutine considers some contrast pair (line 2). For concrete-
ness, I am assuming here that the two meaning combinations of the contrast
pair share the su!x meaning, i.e. have the shape Mm and Ôm (the case
where they share the root meaning is handled analogously). The
subroutine reads o‰ the paradigm p the surface realisations Xx and ∑π of
those two meaning combinations (line 3). Although x and π are the surface
realisations of the same underlying su!x segment corresponding to the
su!x meaning m, they can be di‰erent, because of morphophonem ic
alternations in the surface realisation of that underlying su!x triggered by
the two di‰erent roots M and Ô. The subroutine then constructs the set
" of all pairs (Aa, ∫a) of underlying concatenations which are consistent
with the lexicon Lex as underlying forms for the meaning combinations
Mm and Ôm and furthermore share the underlying su!x segment a (line
4). The latter requirement encodes the fact that we are focusing on a pair
of meaning combinations Mm and Ôm which share the su!x meaning m.
For each pair (Aa, ∫a) of underlying concatenations in ", the subroutine
considers the corresponding ERC blocks ù(Aa, Xx) and ù(∫a, ∑π), stacks
them together into the ERC matrix ù(Aa, Xx)+ù(∫a, ∑π) and constructs
the join of all ERC matrices thus obtained (line 5). The input ERC matrix
ù is updated by adding this join to it (line 6). The ERC matrix thus updated
is then returned (line 7).

There is a subtlety which should be pointed out here. At line 5, the subroutine
considers the join in (42a), not the one in (42b). The di‰erence is that in
(42a) we sum together the two ERC blocks ù(Aa, Xx) and ù(∫a, ∑π) into
ù(Aa, Xx)+ù(∫a, ∑π) before taking the join. This is indeed appropriate,
because the join in (42a) is stronger than the one in (42b), by Lemma 3.ii.

(42) ∑{ù(Aa, Xx)+ù(∫a, ∑π) | (Aa, ∫a)Œ"}a.
∑{ù(Aa, Xx), ù(∫a, ∑π) | (Aa, ∫a)Œ"}b.

4.2 Analysis of the subroutine. The Correctness Lemma 4 trivially extends
from the original subroutine (40) for single meaning combinations to the
variant (41) for contrast pairs. The ine!ciency of (40) for single meaning
combinations is of course aggravated in (41) for contrast pairs, as the latter
requires taking the join of a larger number of larger ERC matrices. Yet
subroutine (41) applied to the contrast pair (Mm, Ôm) is able to extract
more ranking information than the double applica tion of the original
subroutine (40) to the two separate meaning combinations Mm and Ôm.
To see this, suppose that the root meaning M admits a unique underlying
form A consistent with Lex, the root meaning Ô admits a unique under-
lying form ∫ and the su!x meaning m admits only two underlying forms,
a1 and a2. Suppose we first apply the original subroutine (40) to the meaning
combination Mm. At line 4, it constructs the set " consisting of the two
underlying forms Aa1 and Aa2. At line 5, it computes the join ∑(ù1, ù2)
of the two ERC blocks ù1=ù(Aa1, Xx) and ù2=ù(Aa2, Xx). Suppose
we next apply the original subroutine (40) to the meaning combination
Ôm. At line 4, it constructs the set ", consisting of the two underlying
forms ∫a1 and ∫a2. At line 5, it computes the join ∑(π1, π2) of the two
ERC blocks π1=ù(∫a1, ∑π) and π2=ù(∫a2, ∑π). Ultimately, the two
consecutive applications of the original subroutine (40) to the two meaning
combinations Mm and Ôm extract the ranking information captured by
the sum of the two joins in (43).

Suppose we instead apply subroutine (41) to the contrast pair (Mm, Ôm).
At line 4, it constructs the set ", consisting of the two pairs (Aa1, ∫a1) and
(Aa2, ∫a2). At line 5, it computes the join in (45) of the two ERC blocks
ù(Aa1 , Xx)+ù(∫a1, ∑π)=ù1+π1 and ù(Aa2 , Xx)+ù(∫a2, ∑π) =
ù2+π2.

(45) ∑(ù1+π1, ù2+π2)

The join in (45) is stronger than the one in (44), because it joins fewer
matrices (the smaller the number of matrices, the larger the amount of
shared information for the join to extract). This is because the two blocks
ù1+π2 and ù2+π1 have disappeared from the join. This is what we want,
as they correspond to the unreasonable assumption that the su!x m has
di‰erent underlying forms in the two meaning combinations Mm and Ôm.
In other words, since the learner is processing the two meaning combinations
Mm and Ôm together as a contrast pair, it is able to take into account the
fact that these meaning combinations share the su!x meaning m, which
must therefore have the same underlying form in the two cases.

5 A subroutine for extracting lexical information through
inconsistency detection

5.1 Description of the subroutine. Subroutine (46) takes as input some
lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine then considers a certain
meaning combination Mm with some feature unset according to the input
partial lexicon Lex for either the root M or the su!x m (line 2). The goal
of the subroutine is to try to extend the input partial lexicon by setting
some of these unset features. To this end, the subroutine reads o‰ the
paradigm p the surface realisation Xx of the meaning combination Mm
(line 3). It constructs the set " of all underlying concatenations Aa which
are consistent with both the input lexical information Lex and the input
ranking information captured by the grammar G (or the ERC matrix ù)
(line 4). Consistency with the input lexical information means that, if Lex
sets a feature for the root M (or the su!x m) to a certain value, then the
root morpheme A (or the su!x morpheme a) of each underlying form Aa
in " has the feature set to that value. Consistency with the input ranking
information means that the input grammar G (or the input ERC matrix ù)
is consistent with the mapping (Aa, Xx) of each such underlying form Aa
in " to the surface form Xx. The subroutine then looks for a feature which
is unset by Lex for the root meaning M (or the su!x meaning m), such that
each root morpheme A (or each su!x morpheme a) has the same value for
that feature in all underlying concatenations Aa in " (line 5). For any such
feature, it can be concluded that the opposite value is inconsistent with the
available lexical and ranking information. The subroutine thus updates the
partial lexicon Lex by setting that feature to be equal to its constant value

(46) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that:
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G (or

the ERC matrix ù)
if some feature unset for the root M (or for the su!x m) has a

constant value over " for M (for m) then
update the lexicon Lex by setting the feature to that value for

the root M (or for the su!x m)
end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.
8.

This subroutine is called inconsistency detection (cf. Kager 1999, Tesar
et al. 2003, Tesar 2006), because it sets a certain feature to a certain value
based on the detection at line 6 of the fact that any other value for that
feature would be inconsiste nt with the availab le lexical and ranking
information.

Proof. Assume by contradiction that the lemma is false. This means
that the subroutine has set some feature j for, say, the root meaning
M to a value which is di‰erent from the value assigned by the target
lexicon. For concreteness, assume that the values assigned by the
subroutine and the target lexicon are + and — respectively. Thus , the
target lexicon assigns to the meaning combination Mm an underlying
form Aa, which has feature j set to the value — in the root A. This
underlying form Aa is consistent with the partial lexicon Lex (because
it is consistent with the target lexicon, which is in turn consistent with
Lex). Furthermore, the mapping (Aa, Xx) of this underlying form Aa
to the surface form Xx is consistent with the input grammar G (because
the target ranking is consistent with both). In other words, this
underlying form Aa satisfies the two conditions stated by the two
subclauses in line 4 and thus belongs to the set " constructed by the
subroutine. Since this underlying form Aa has feature j set equal to
— for the root A, then the subroutine cannot have set that feature to
the opposite value + at line 6.

5.2 Analysis of the subroutine. Lemma 5 provides a straightforward correct-
ness result for inconsistency detection (46). Its time complexity is controlled
by the size of the set " of consistent underlying forms constructed at line 4.
In the worst case (when both the input lexicon and the input ranking
information are empty), " consists of all underlying forms, i.e. all con-
catenations of root and su!x morphemes. In this case, the size of " grows
polynomially in the number of morphemes and thus exponentially in the
number of features. In conclusion, subroutine (46) is e!cient relative to
the generous notion of e!ciency defined in (14), which measures time
complexity in terms of the number of morphemes, but is not e!cient
relative to the more demanding notion of e!ciency defined in (15), which
measures time complexity in terms of the number of features.

Lemma 5
Inconsistency detection (46) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target grammar, that the input (possibly partial)
grammar G (or ERC matrix ù) is consistent with the target grammar

6 Extension to contrast pairs
6.1 Description of the subroutine. The extension of inconsistency detection
(46) to contrast pairs is provided in (47). This subroutine takes as input
some lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine considers a particular
contrast pair (line 2). For concreteness, I am assuming here that the two
meaning combinations of the contrast pair share the su!x meaning, namely
have the shape Mm and Ôm (the case where they share the root meaning
is handled analogously). The subroutine reads o‰ the paradigm p the surface
realisations Xx and ∑π of those two meaning combinations (line 3). It
constructs the set " of all pairs (Aa, ∫a) of underlying concatenations which
are consistent with both the input lexical information Lex and the input
ranking information G (or ù) and furthermore share the underlying su!x
segment a (line 4). The subroutine then looks for a feature which is unset
by Lex for the root meaning M (or the root meaning Ô or the su!x meaning
m), such that each underlying root morpheme A (or each underlying root
morpheme ∫ or each underlying su!x morpheme a) has the same value
for that feature in all pairs (Aa, ∫a) in " (line 5). For any such feature, the
subroutine updates the partial lexicon Lex by setting the feature equal to
its constant value for the root meaning M (or for the root meaning Ô or
for the su!x meaning m) (line 6). The lexicon thus updated is then returned
(line 8).

(47) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G (or
the ERC matrix ù)

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

- the mapping (∫a, ∑π) is consistent with the grammar G
if some unset feature has a constant value over " for any of the three

meanings M, Ô or m then
update the lexicon Lex by setting the feature to the constant

value for that meaning
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.
8.

6.2 Analysis of the subroutine. The Correctness Lemma 5 trivially extends
from the original subroutine (46) for single meaning combinations to the
variant (47) for contrast pairs. Furthermore, the variant for contrast pairs
remains as e!cient as the original version for single meaning combinations,
when e!ciency is generously measured in terms of the number of morphemes
(but again, not when it is measured in terms of the number of features).
Yet a number of authors (including Alderete et al. 2005 and Merchant &
Tesar 2008) have pointed out that (47), applied to the contrast pair (Mm,
Ôm), can extract more lexical information than the double application of
the original subroutine (46) to the two separate meaning combinations Mm
and Ôm. To see this, consider one of the two meaning combinations of the
contrast pair, say Mm. The original subroutine considers all underlying
forms Aa for Mm which are consistent with the input lexical and ranking
information, and only sets those features which are constant across all these
underlying forms. If the number of consistent underlying forms is large,
the number of features which are constant across them is small, and the
subroutine thus extracts little lexical information. (47) might instead be
able to extract more lexical information, because it looks for features which
are constant over a smaller set of underlying forms for Mm, namely those
underlying forms Aa which are not only consistent with the input lexical
and ranking information, but also use a su!x morpheme a which can be
combined with a root morpheme ∫ into an underlying form ∫a for Ôm
which is also consistent with the input lexical and ranking information.

I denote Tesar’s subroutine (29) for the extraction of ranking information
from a single meaning combination as ERIT, and Merchant’s subroutine
(40) as ERIM. Lemma 6 states that, if the underlying typology is output-
driven, then ERIT and ERIM are equivalent, because they update the
current ranking/grammatical information with the ‘same’ information. This
equivalence is striking, given that the time complexity of ERIT is only
linear in the number of features, while the time complexity of ERIM is
unknown, but probably exponential in both the number of features and the
numbe r of morphemes. Output-drivenne ss thus a‰ords a significa nt
reduction in time complexity. The Correctness Lemma 1 for ERIT (which
was proven directly in §4.4) can also be made to follow from the Correctness
Lemma 4 for ERIT through the Equivalence Lemma 6.

1 Subroutines for extracting ranking information from a single
meaning combination

Proof. The underlying form Bb constructed by ERIT at line 4 is
consistent with Lex, and therefore belongs to the set " constructed by
ERIM at line 4. Consider one of the underlying forms Aa in this set ".
The two underlying forms Aa and Bb agree in every feature which is
set by the input partial lexicon Lex. Furthermore, Bb and the surface
form Xx agree in every remaining feature. Thus the underlying form
Bb is more similar to the surface form Xx than is the underlying form
Aa. Since the underlying typology is output-driven, then every ranking
which maps the less similar underlying form Aa to Xx also maps the
more similar underlying form Bb to Xx. In other words, any ranking
consistent with the ERC block ù(Aa, Xx) is also consistent with the
ERC block ù(Bb, Xx). Lemma 3.i thus ensures that the ERC block
ù(Bb, Xx) is the join of the ERC blocks ù(Aa, Xx) across all underlying
concatenations Aa in ".

Lemma 6
Suppose that the underlying typology is output-driven and that ERIT

is fed with a partial grammar G and a (possibly partial) lexicon Lex.
Suppose that ERIM is fed with the ERC matrix ù corresponding to
the partial grammar G and the same lexicon Lex. Then the ERC block
corresponding to the mapping (Bb, Xx) constructed by ERIT at line
4 is the join of the ERC blocks ù(Aa, Xx) corresponding to the
underlying forms Aa in " constructed by ERIM at line 5.

between the two implementations is the following: Merchant’s original
subroutine (46) sets any feature which is constant over "; the variant in (48)
instead focuses right from the beginning on a specific feature j, which is
unset for either the root M or the su!x m of the meaning combination Mm
under consideration. In line 3, I am assuming for concreteness that the
feature j is unset for the root M (the case where it is unset for the su!x m
is handled analogously). The modification is only cosmetic: the original
subroutine is equivalent to running this variant for each unset feature.

(48) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a meaning combination Mm in the paradigm p
Require: a feature j unset by Lex for either M or m; for concreteness,

say it is unset for M
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G

if all underlying forms Aa in " have the feature j set to the same
value in the root morpheme A then

update the lexicon Lex by setting the feature j to that value for
the root meaning M

end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.

8.
9.

I denote Tesar’s subroutine (33) for the extraction of lexical information
from a single meaning combination by ELIT, and (the cosmetic variant of)
the original inconsistency detection subroutine (48) by ELIid. Lemma 6
states that, if the underlying typology is output-driven, ELIT and ELIid

are equival ent, because their if-claus es at line 6 are equivalent. This
equivalence is striking, given that the if-clause of ELIT can be checked in
time linear in the number of features, while the if-clause of ELIid requires
time exponential in the number of features in the worst case. Output-
drivenness has thus a‰orded a significant reduction in time complexity.
The Correctness Lemma 2 for ELIT (which was proven directly in §4.5)
can also be made to follow from the Correctness Lemma 4 for ELIid through
the Equivalence Lemma 7.

Proof. To start, let me prove that the if-clause in line 6 of ELIT entails
the if-clause in line 6 of ELIid . Assume by contradiction that the
former if-clause is true while the latter if-clause is false. The hypothesis
that the if-clause of ELIid is false entails in particular that the set " of
consistent underlying forms constructed by ELIid at line 5 contains
an underlying form Aa whose root A disagrees with X relative to the
feature j (indeed, if all the underlying forms Aa in " had a root A
which agreed with X relative to j, the if-clause of ELIid would hold
true). The underlying form Aa and the underlying form Bb constructed
by ELIT at line 5 thus agree in the feature j for the root meaning M,
as they both have the opposite value from X. Furthermore, they agree
in every feature set by the partial lexicon Lex, because they are both
consistent with Lex. Finally, Bb agrees with Xx for every remaining
feature. The underlying form Bb is thus more similar to the surface
form Xx than is the underlying form Aa. Since the mapping (Aa, Xx)
is consistent with G (because Aa belongs to "), there exists a ranking
which is consistent with both. Since the grammar corresponding to
that ranking is output-driven and maps the less similar underlying
form Aa to Xx, it also maps the more similar underlying form Bb to
Xx. In other words, that ranking is also consistent with the mapping
(Bb, Xx). In conclusion, the mapping (Bb, Xx) and the grammar G
are consistent (because both are consistent with the ranking), contra-
dicting the hypothesis that the if-clause of ELIT is true.

Vice versa, let me prove that the if-clause in line 6 of ELIid entails
the if-clause in line 6 of ELIT. Assume by contradiction that the
former if-clause is true, while the latter if-clause is false. The hypothesis
that the if-clause of ELIT is false means that the input (partial) grammar
G is consistent with the mapping (Bb, Xx) of the underlying form Bb
constructed by ELIT at line 5 to the surface form Xx. Since this
underlying form Bb is consistent with Lex, then Bb belongs to the set
" of consistent underlying forms constructed at line 5 by ELIid. Since
B and X disagree relative to the feature j, consider the underlying
form ≥b, identical to Bb but for the fact that ≥ and X instead agree in
the feature j. Obviously, the underlying form ≥b is more similar to
the surface form Xx than is the underlying form Bb. Since (Bb, Xx)
is consistent with G, there exists a ranking which is consistent with
both. Since the grammar corresponding to that ranking is output-
driven and maps the less similar underlying form Bb to Xx, then it
also maps the more similar underlying form ≥b to Xx. In other words,
that ranking is also consis tent with the mapping (≥b, Xx). This
underlying form ≥b thus belongs to the set " constructed by ELIid at
line 5.This conclusion contradicts the hypothesis that the if-clause of
ELIid holds, because it shows that " contains two underlying forms
Bb and ≥b, such that B and ≥ disagree in the feature j.Lemma 7

Suppose that the underlying typology is output-driven. Then the two
if-clauses in line 6 of ELIT and ELIid are equivalent.

Tesar’s subroutine for extracting lexical information from contrast pairs
is more involved than his other two subroutines, for extracting lexical and
ranking information from a single meaning combination. For this reason,
the latter two subroutines were reviewed in §4.4 and §4.5, while the former
subroutine is included in this appendix. Here I start out from Merchant’s
subroutine in (47) for extracting lexical information from contrast pairs,
and work towards Tesar’s reformulation, provided below in (52). This
seems to me the best way of making sense of the somewhat complex
formulation of Tesar’s subroutine. I begin by carrying out the same cosmetic
change as in the previous section: I replace the original subroutine (47)
with (49), which only di‰ers because line 3 focuses on a specific feature j,
unset by the input lexicon Lex for one of the three meanings M, Ô and m
of the contrast pair (Mm, Ôm). For concreteness, I assume it is unset for
the root meaning M.

3 Subroutines for extracting lexical information from a contrast
pair

Supplementary materials 1716 Giorgio Magri

(49) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫a, ∑π) is consistent with the grammar G

if all the pairs (Aa, ∫a) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.
9.

the two underlying su!x morphemes a and ¥ coincide, because they are
the underlying form corresponding to the same su!x meaning m. The
condition that a and ¥ coincide is in turn equivalent to the condition that
they agree for each feature y. We could of course relax this condition by
requiring that the two underlying su!x morphemes a and ¥ agree only for
certain features, y1, ..., yn. This intuition leads to the formulation in (50).
It di‰ers from (49) only because of the new line 4, which introduces the
features y1, ..., yn, and because of the additional fifth subclause in the
definition of the set ". Note that line 4 assumes all the features y1, ..., yn

to be unset by the input partial lexicon Lex for the shared su!x m, because
the condition that both a and ¥ are consistent with Lex as underlying forms
for m already entails that they agree on every feature set by Lex for m.

(50) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫¥) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ agree for every

feature y1, ..., yn

if all the pairs (Aa, ∫¥) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

combinations Mm and Ôm one at a time. If instead we consider all unset
y features at line 4, then (50) e‰ectively considers only pairs of underlying
forms for the two meaning combinations which share the underlying su!x,
and is therefore equivalent to the original subroutine (49) for extracting
lexical information from contrast pairs. In the end, depending on the
number of y features considered at line 4, (50) provides a whole range of
subroutines for extracting lexical information in between the weaker (46)
and the stronger (49).

Subroutine (50) can be equivalently restated as (51). Instead of requiring
the two su!x morphemes a and ¥ to coincide for every feature y1, ..., yn,
we consider all possible combinations v1, ..., vn of values of those features
at line 6, and we require both a and ¥ to have those features set equal to
those values in the fifth subclause of line 5.

(51) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫¥ is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ both have the

values v1, ..., vn for the features y1, ..., yn

if all the pairs (Aa, ∫¥) in all the sets "(v1, ..., vn) have the underlying
root A set to the same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

Supplementary materials 1918 Giorgio Magri

By reasoning as in the previous subsection we can easily show that subroutine
(51) is equivalent to (52) under the assumption of output-drivenness.
Indeed, the two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn con-
structed by (52) at line 6 provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (51).

(52) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and
±≤v1, …, vn, as follows:

- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-
lying forms for Mm and Ôm

- B has the opposite value for feature j than X
- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values

v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
if the grammar G is inconsistent with the two mappings (Bbv1, …, vn,

Xx) and (±≤v1, …, vn, ∑π) for any combination of values v1, ..., vn

then
update the lexicon Lex by setting feature j to that constant value

for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

If the features y1, ..., yn considered in line 4 of (52) exhaust the set of
features, then the two subroutines (49) and (52) are equivalent. However,
the running time of (52) is exponential in the number of features in the
latter case, because it needs to consider all combinations v1, ..., vn.

By reasoning as in the previous subsection, we can proceed from Merchant’s
original subroutine (41) for extracting ranking information from contrast
pairs to the variant in (53).

4 Subroutines for extracting ranking information from a contrast
pair

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫¥ is consistent with the lexicon Lex as an underlying form
for Ôm

- the two underlying su!x morphemes a and ¥ both have the
values v1, ..., vn for the features y1, ..., yn

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫¥) in "(v1, ..., vn) for all combinations of values
v1, ..., vn

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.

7.
8.

20 Giorgio Magri

Once again, if we do not consider any y features at line 3, (53) e‰ectively
considers the two meaning combinations of the contrast pair independently
of each other, and thus ends up equivalent to subroutine (40) for extracting
lexical information from single meaning combinations. If we instead consider
all unset y features at line 3, then (53) e‰ectively only considers pairs of
underlying forms for the two meaning combinations which share the
underlying su!x, and is therefore equivalent to Merchant’s original
subroutine (41) for extracting lexical information from contrast pairs.
Ultimately, depending on the number of y features considered at line 3,
(53) provides a whole range of subroutines for extracting ranking information
in between the weaker (40) and the stronger (41).

By reasoning as in §2 of this appendix, we can easily show subroutine
(53) to be equivalent to (54) under the assumption of output-drivenness.
The two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn constructed
by (54) at line 5 again provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (53).

(54)

- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values
v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
compute the join of the ERC matrices ù(Bbv1, …, vn, Xx)+

ù(±≤v1, …, vn, ∑π) for all combinations of values v1, ..., vn

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

6.

7.
8.

Take the simplest case, where we consider a single feature y at line 3.
Assume furthermore that y is binary, i.e. it only takes the values v=‘+’ and
v=‘—’. At line 5, the subroutine constructs the two underlying forms Bb+
and ±≤+, corresponding to the value v=‘+’of feature y (i.e. both b+ and ≤+
have the value ‘+’ for the feature y), and the two underlying forms Bb— and
±≤—, corresponding to the value v=‘—’ (i.e. both b— and ≤— have the value
‘—’ for the feature y). At line 6, we finally compute the join of the two ERC
blocks ù(Bb+, Xx)+ù(±≤+, ∑π) and ù(Bb—, Xx)+ù(±≤—, ∑π). Even in
the simplest case of a single feature y, there is no way around computing
the join.

In summary, Merchant develops a new subroutine for extracting ranking
information through the notion of join. This subroutine can be applied to
either a single meaning combination at a time, as in (40); or to a contrast
pair, as in (41). The latter is more powerful than the former: the subroutine
extracts more ranking information by processing the two meaning
combinations Mm and Ôm as a contrast pair than by processing them
separately. The crux of Merchant’s subroutine for extracting ranking
information is that it relies on the computation of a join, which is time-
consuming. The biggest impact of output-drivenness is that it allows
Merchant’s subroutine for extracting ranking information from a single
meaning combination to be restated without having to compute any join.
The restated subroutine thus runs in time linear in the number of features.
In other words, it is e!cient even relative to the more demanding notion
of e!ciency introduced in §2.6. The situation is unfortunately very di‰erent
when Merchant’s subroutine for extracting ranking information is boosted
by being applied to contrast pairs. In this case, output-drivenness is not
able to circumvent the computation of the join, and thus does not su!ce
to make the subroutine e!cient.

A constraint ranking is consistent with an ERC provided it satisfies con-
dition (36); it is consistent with an ERC matrix provided it is consistent
with each of its rows. An ERC matrix entails another ERC matrix provided

(38) Id
[str]

Id
[length]

Main-
L

Main-
R

No
Long

WSP

w
w

w
w
w
w

w
w
w
w

l
l
l
l

l

w
l

w

/’pa:’ka/, [’pa:ka], [pa’ka]
/’pa:’ka/, [’pa:ka], [pa’ka:]
/’pa:’ka/, [’pa:ka], [pa:’ka]
/’pa:’ka/, [’pa:ka], [pa:’ka:]
/’pa:’ka/, [’pa:ka], [’paka]
/’pa:’ka/, [’pa:ka], [’paka:]
/’pa:’ka/, [’pa:ka], [’pa:ka:]

w
w

w
w

Lemma 3
Suppose that one of the ERC matrices ù1, ù2, …, Rn is entailed
by each of the others. For concreteness, assume that it is ù1 which
is entailed by each of the other ERC matrices ù2, …, Rn. Then
ù1 is the join of ù1, ù2, …, Rn.

(i)

Given the ERC matrices ù1, ù2, ù3, …, Rn, replace two of them
with the ERC matrix obtained by stacking the two matrices one
on top of the other. For concreteness, replace ù1 and ù2 with
ù1+ù2. Then the join of the n®1 ERC matrices ù1+ù2, ù3,
…, Rn entails the join of the original n ERC matrices ù1, ù2, ù3,
…, Rn, while the reverse does not in general hold.

(ii)

compute the join of the ERC matrices ù(Aa, Xx) for all underlying
forms Aa in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.
7.

Proof. Let Aa be the underlying form assign ed to the meanin g
combination Mm by the target lexicon. This underlying form Aa
belongs to the set " constructed by the subroutine at line 4, because
of the hypothesis that the input lexicon Lex is consistent with the
target lexicon. Thus the corresponding ERC block ù(Aa, Xx) is one
of the blocks that the subroutine takes the join of at line 5. Since the
target ranking is consistent with this ERC block ù(Aa, Xx), then it
is also consistent with the join, by property (39a) of the join. Since the
target ranking is also consistent with the input ERC matrix ù, it is

Lemma 4
Merchant’s subroutine (40) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target ranking, that the input ERC matrix ù is
consistent with that target ranking, and that the input (possibly partial)
lexicon Lex is consistent with that target lexicon. The updated ERC
matrix returned by subroutine (40) is also consistent with that target
ranking.

then consistent with the updated ERC matrix returned by the sub-
routine.

(41) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫a) in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

1.

2.

3.

4.

5.

6.
7.

(43) ∑(ù1, ù2)+∑(π1, π2)

Lemma 3.iii ensures that (43) is equivalent to the join in (44). The four
ERC matrices being joined here correspond to all four combinations of
underlying forms for the two meaning combinations Mm and Ôm. In
particular, the learner is also joining together the two ERC blocks ù1+π2

and π2+ù1, whereby the shared su!x meaning m is assigned a di‰erent
underlying form in the case of Mm than in the case of Ôm. In other words,
since the learner is processing the two meaning combinations Mm and Ôm
separately, it is blind to the fact that these meaning combinations share the
su!x meaning m, which must therefore have the same underlying form in
both cases.

(44) ∑(ù1+π1, ù1+π2, ù2+π1, ù2+π2)

for the root meaning M (or for the su!x meaning m) (line 6). The lexicon
thus updated is then returned (line 8).

and that the input partial lexicon Lex is consistent with the target
lexicon. The updated lexicon returned by subroutine (46) is also
consistent with that target lexicon.

2 Subroutines for extracting lexical information from a single
meaning combination

Consider the slight variant (48) of the subroutine (46) for the extraction of
lexical information through inconsistency detection. The only di‰erence

The modification is only cosmetic: the original subroutine (47) is equivalent
to running this variant (49) for each feature which is unset for one of the
three morphemes M, Ô and m.

The set " constructed by the subroutine (49) at line 5 can equivalently
be described as the collection of all pairs (Aa, ∫¥) which satisfy the conditions
expressed by the four subclauses of line 5 plus the additional condition that

If we consider no y features at all in line 4, then (50) e‰ectively considers
the two meaning combinations of the contrast pair independently of each
other, and thus ends up equivalent to subroutine (46) for extracting lexical
information from single meaning combinations, in the sense that the
application of subroutine (50) to the contrast pair (Mm, Ôm) is equivalent
to two consecutive applications of subroutine (46) to the two meaning

Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and ±≤v1,

…, vn as follows
- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-

lying forms for Mm and Ôm

1.

2.

3.

4.

5.

(53) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

1.

2.

3.

4.

Phonology 25.2: Artwork 1 of

Supplementary materials 72Giorgio Magri

every ranking consistent with the former is also consistent with the latter.
Thus ù1+ù2 entails both ù1 and ù2.

(36)At least one constraint which has a w in the ERC under consideration
is ranked above every constraint which instead has an l (constraints
which have an e play no role in the consistency condition).

2 The join

4 Giorgio Magri

Grammatical information was represented in §4.1.2 as a (possibly partial)
collection G of mappings (Aa, Xx) of an underlying form Aa to a surface
form Xx. Each of these mappings can be equivalently represented with the
corresponding ERC block ù(Aa, Xx). And the grammatical information
G can thus be represented with the ERC matrix obtained by stacking all
these blocks one of top of the other. Merchant’s CPR adopts the architecture
in (28), the only di‰erence being that the current partial grammatical
information is represented not as a partial grammar G but as an ERC matrix
ù. This makes the algorithm more flexible in the type of partial grammatical
information it maintains: any (partial) grammar G can be represented
through the corresponding ERC matrix, while not just any ERC matrix ù
corresponds to some partial collection of mappings. This additional flexibility
in the data structure maintained by the algorithm is crucial in order to
define the subroutine for extracting ranking information, as explained in
the next section.

Supplementary materials 5 6 Giorgio Magri 8 Giorgio Magri Supplementary materials 9 10 Giorgio Magri

Appendix B: Equivalence between Merchant’ s and Tesar’s sub-
routines

Supplementary materials 11 12 Giorgio Magri Supplementary materials 13

Appendix A: Merchant’s (2008) CPR

Phonology 31 (2014). Supplementary materials

Review article

Giorgio Magri
CNRS, Université Paris 8 and University of Utrecht

Supplementary materials

This appendix sketches Merchant’s (2008) CPR algorithm. In §1, I explain
how CPR adheres to the architecture in (28), only with a more abstract
representation of the current partial ranking information in terms of ERCs.
I then review CPR’s subroutines for extracting ranking and lexical infor-
mation. I start from the easier case, where they are applied to a single
paradigmatic entry (§3 and §5), and then turn to the extension to contrast
pairs (§4 and §6).

1ERCs and CPR’s architecture
An elementary ranking condition (ERC) is an assignment of one of the
three symbols l, w and e to each of the constraints in the constraint set
(Prince 2002). An ERC is usually represented as a row of these symbols,
with the constraints annotated on top. To illustrate, an ERC for the constraint
set (5) of the Paka typology is provided in (35). An ERC matrix is a finite
collection of ERCs, stacked one on top of the other (the order does not
matter). An arbitrary ERC matrix is denoted by ù. Given two ERC matrixes
ù1 and ù2, ù1+ù2 denotes the ERC matrix obtained by stacking one on
top of the other (the order does not matter).

14 Giorgio Magri Supplementary materials 15

Bruce Tesar (2014). Output-driven phonology: theory and learning. (Cam-
bridge Studies in Linguistics 139.) Cambridge: Cambridge University
Press. Pp. xix+415.

(35)
e
Id[str]Id[length]Main-LMain-RNoLongWSP
wwlle|

The phonological underpinning of these notions is as follows. Consider the
mapping (Aa, Xx) of an underlying form Aa to a surface form Xx, which
is thus construed as the winner. For any other loser candidate Yy, consider
the ERC defined in (37). Stack all the ERCs thus constructed for all loser
candidates one on top of the other into an ERC matrix, denoted by ù(Aa,
Xx). Then the OT grammar corresponding to a ranking maps the under-
lying form Aa to the surface form Xx if and only if that ranking is consistent
with the ERC matrix ù(Aa, Xx) corresponding to that mapping.

(37)A constraint has a w provided it prefers the winner mapping (Aa,
Xx) to the loser mapping (Aa, Yy), i.e. it assigns fewer violations
to the former mapping than to the latter.

a.

A constraint has an l provided it instead prefers the loser mapping
(Aa, Yy) to the winner mapping (Aa, Xx), i.e. it assigns fewer
violations to the former mapping than to the latter.

b.

A constraint has an e provided it has no preference for one of the
two mappings (Aa, Xx) and (Aa, Yy), i.e. it assigns the same number
of violations to both.

c.

To illustrate, consider the Paka typology in §2.1 of the paper, focusing on
the mapping (/’pa:’ka/, [’pa:ka]) of the underlying form /’pa:’ka/ to the surface
form [’pa:ka]. The ERC matrix ù(/’pa:’ka/, [’pa:ka]) corresponding to this
mapping is provided in (38). It consists of seven ERCs, because there are
seven loser candidates. For convenience, each ERC is annotated on the left
with the corresponding underlying, winner and loser forms (loser forms
are struck through). The topmost ERC in (38) says that the winner mapping
(/’pa:’ka/, [’pa:ka]) beats the loser mapping (/’pa:’ka/, [pa’ka]), provided at
least one of the two winner-preferring constraints Ident[length] or Main-
L is ranked above the two loser-preferring constraints Main-R and NoLong.

Supplementary materials 3

The join of some ERC matrices ù1, …, ùn is any ERC matrix which satisfies
the two conditions in (39). Any such ERC matrix will be denoted by ∑(ù1,
…, ùn). Condition (39a) says that the join is weaker than (i.e. entailed by)
each matrix ù1, …, ùn. Condition (39b) says that, among all ERC matrices
which are weaker than (i.e. entailed by) each matrix ù1, …, ùn, the join is
a strongest one (i.e the one which entails all the others). In other words,
condition (39a) says that the join captures some of the ranking information
shared by the matrices ù1, …, ùn, and condition (39b) says there is no
shared ranking information which the join does not capture.

(39) Each of the ERC matrices ù1, …, ùn entails their join.a.
If each of the ERC matrices ù1, …, ùn entails some ERC matrix
ù, their join entails ù as well.

b.

Lemma 3 collects some properties of the join which will be used in the rest
of this appendix.

Proof. An ERC matrix ∏ is the join of two ERC matrixes ù1 and ù2

if and only if the set of rankings consistent with ∏ is the union of the
two sets of rankings consistent with ù1 and ù2. Furthermore, the set
of rankings consistent with ù1+ù2 is the intersection of the two sets
of rankings consistent with ù1 and ù2. Claims (i)–(iii) then follow
from elementary set-theoretic manipulations on the sets of consistent
rankings.

Given four ERC matrices ù1, ù2, π1, π2, consider the ERC
matrix ∑(ù1, ù2)+∑(π1, π2) obtained by stacking one on top of
the other the join of ù1 and ù2 and the join of π1 and π2. Then
∑(ù1, ù2)+∑(π1, π2) coincides with the join of the four ERC
matrices ù1+π1, ù1+π2, ù2+π1, ù2+π2.

(iii)

3 A subroutine for extracting ranking information through the join
3.1 Description of the subroutine. The subroutine in (40) takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex and a paradigm
p (line 1). It extends the ranking information encoded in the input ERC
matrix ù by adding to that input ERC matrix some additional ERCs as
follows. The subroutine considers a certain meaning combination Mm (line
2), and it reads o‰ the paradigm p the surface realisation Xx of that meaning
combination Mm (line 3). The subroutine then constructs the set " of all
underlying concatenations Aa which are consistent with the lexicon Lex as
underlying forms for that meaning combination Mm (line 4). This means
that if Lex sets a feature for the root M or the su!x m to a certain value,
then the root morpheme A or the su!x morpheme a of each underlying
form Aa in " has the feature set to that value. Any of these underlying
forms in " could be the actual underlying form according to the partial
lexical information encoded by Lex. In other words, the target grammar
could enforce any of the mappings (Aa, Xx) of any underlying form Aa in
" to the surface form Xx. Thus the best the subroutine can do is to extract
any ranking information shared by all these mappings. This is done by
computing the join of all ERC blocks ù(Aa, Xx) corresponding to all
mappings (Aa, Xx) of all underlying forms Aa in " to the surface form Xx
(line 5). The input ERC matrix ù is updated by adding this join to it (line
6). The ERC matrix thus updated is returned (line 7).

(40) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all concatenations Aa consistent with Lex as

underlying forms for Mm

1.

2.
3.

4.

The join of the ERC blocks ù(Aa, Xx) computed at line 5 is an ERC-
theoretic construct which might very well not correspond, in the sense of
(37), to any mapping of an underlying form to a surface form. For this
reason, CPR needs the additional flexibility of representing the current
(partial) grammatical/ranking information as an ERC matrix rather than
as a (partial) grammar. Appendix B: §1 shows that output-drivenness in
e‰ect guarantees that the join computed in line 5 always corresponds to the
mapping of a certain underlying form to the surface form Xx read at line
3.

3.2 Analysis of the subroutine. Lemma 4 provides a straightforward correct-
ness result for Merchant’s subroutine (40). Note that the proof only uses
property (39a) of the join, not property (39b). In other words, the lemma
hinges only on the fact that the join extracts ranking information which is
shared by all the ERC blocks ù(Aa, Xx). Property (39b) is nonetheless
crucial, because it ensures that the join does not lack any of this shared
ranking informa tion, making subroutine (40) optimal. The crux of
Merchant’s subroutine is its time complexity. Merchant (2008: ch. 4)
develops an elegant algorithm for computing the join which can be used
to implement line 5. Unfortunately, his algorithm needs to compute the
fusional closure of each of the input ERC matrices it has to join. Although
there are no results that I am aware of concerning the time complexity of
that computation, it is most plausibly intractable in the general case.

4 Extension to contrast pairs
4.1 Description of the subroutine. The extension of Merchant’s subroutine
(40) to contrast pairs is provided in (41). This subroutine takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex, and a paradigm
p (line 1). The subroutine considers some contrast pair (line 2). For concrete-
ness, I am assuming here that the two meaning combinations of the contrast
pair share the su!x meaning, i.e. have the shape Mm and Ôm (the case
where they share the root meaning is handled analogously). The
subroutine reads o‰ the paradigm p the surface realisations Xx and ∑π of
those two meaning combinations (line 3). Although x and π are the surface
realisations of the same underlying su!x segment corresponding to the
su!x meaning m, they can be di‰erent, because of morphophonem ic
alternations in the surface realisation of that underlying su!x triggered by
the two di‰erent roots M and Ô. The subroutine then constructs the set
" of all pairs (Aa, ∫a) of underlying concatenations which are consistent
with the lexicon Lex as underlying forms for the meaning combinations
Mm and Ôm and furthermore share the underlying su!x segment a (line
4). The latter requirement encodes the fact that we are focusing on a pair
of meaning combinations Mm and Ôm which share the su!x meaning m.
For each pair (Aa, ∫a) of underlying concatenations in ", the subroutine
considers the corresponding ERC blocks ù(Aa, Xx) and ù(∫a, ∑π), stacks
them together into the ERC matrix ù(Aa, Xx)+ù(∫a, ∑π) and constructs
the join of all ERC matrices thus obtained (line 5). The input ERC matrix
ù is updated by adding this join to it (line 6). The ERC matrix thus updated
is then returned (line 7).

There is a subtlety which should be pointed out here. At line 5, the subroutine
considers the join in (42a), not the one in (42b). The di‰erence is that in
(42a) we sum together the two ERC blocks ù(Aa, Xx) and ù(∫a, ∑π) into
ù(Aa, Xx)+ù(∫a, ∑π) before taking the join. This is indeed appropriate,
because the join in (42a) is stronger than the one in (42b), by Lemma 3.ii.

(42) ∑{ù(Aa, Xx)+ù(∫a, ∑π) | (Aa, ∫a)Œ"}a.
∑{ù(Aa, Xx), ù(∫a, ∑π) | (Aa, ∫a)Œ"}b.

4.2 Analysis of the subroutine. The Correctness Lemma 4 trivially extends
from the original subroutine (40) for single meaning combinations to the
variant (41) for contrast pairs. The ine!ciency of (40) for single meaning
combinations is of course aggravated in (41) for contrast pairs, as the latter
requires taking the join of a larger number of larger ERC matrices. Yet
subroutine (41) applied to the contrast pair (Mm, Ôm) is able to extract
more ranking information than the double applica tion of the original
subroutine (40) to the two separate meaning combinations Mm and Ôm.
To see this, suppose that the root meaning M admits a unique underlying
form A consistent with Lex, the root meaning Ô admits a unique under-
lying form ∫ and the su!x meaning m admits only two underlying forms,
a1 and a2. Suppose we first apply the original subroutine (40) to the meaning
combination Mm. At line 4, it constructs the set " consisting of the two
underlying forms Aa1 and Aa2. At line 5, it computes the join ∑(ù1, ù2)
of the two ERC blocks ù1=ù(Aa1, Xx) and ù2=ù(Aa2, Xx). Suppose
we next apply the original subroutine (40) to the meaning combination
Ôm. At line 4, it constructs the set ", consisting of the two underlying
forms ∫a1 and ∫a2. At line 5, it computes the join ∑(π1, π2) of the two
ERC blocks π1=ù(∫a1, ∑π) and π2=ù(∫a2, ∑π). Ultimately, the two
consecutive applications of the original subroutine (40) to the two meaning
combinations Mm and Ôm extract the ranking information captured by
the sum of the two joins in (43).

Suppose we instead apply subroutine (41) to the contrast pair (Mm, Ôm).
At line 4, it constructs the set ", consisting of the two pairs (Aa1, ∫a1) and
(Aa2, ∫a2). At line 5, it computes the join in (45) of the two ERC blocks
ù(Aa1 , Xx)+ù(∫a1, ∑π)=ù1+π1 and ù(Aa2 , Xx)+ù(∫a2, ∑π) =
ù2+π2.

(45) ∑(ù1+π1, ù2+π2)

The join in (45) is stronger than the one in (44), because it joins fewer
matrices (the smaller the number of matrices, the larger the amount of
shared information for the join to extract). This is because the two blocks
ù1+π2 and ù2+π1 have disappeared from the join. This is what we want,
as they correspond to the unreasonable assumption that the su!x m has
di‰erent underlying forms in the two meaning combinations Mm and Ôm.
In other words, since the learner is processing the two meaning combinations
Mm and Ôm together as a contrast pair, it is able to take into account the
fact that these meaning combinations share the su!x meaning m, which
must therefore have the same underlying form in the two cases.

5 A subroutine for extracting lexical information through
inconsistency detection

5.1 Description of the subroutine. Subroutine (46) takes as input some
lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine then considers a certain
meaning combination Mm with some feature unset according to the input
partial lexicon Lex for either the root M or the su!x m (line 2). The goal
of the subroutine is to try to extend the input partial lexicon by setting
some of these unset features. To this end, the subroutine reads o‰ the
paradigm p the surface realisation Xx of the meaning combination Mm
(line 3). It constructs the set " of all underlying concatenations Aa which
are consistent with both the input lexical information Lex and the input
ranking information captured by the grammar G (or the ERC matrix ù)
(line 4). Consistency with the input lexical information means that, if Lex
sets a feature for the root M (or the su!x m) to a certain value, then the
root morpheme A (or the su!x morpheme a) of each underlying form Aa
in " has the feature set to that value. Consistency with the input ranking
information means that the input grammar G (or the input ERC matrix ù)
is consistent with the mapping (Aa, Xx) of each such underlying form Aa
in " to the surface form Xx. The subroutine then looks for a feature which
is unset by Lex for the root meaning M (or the su!x meaning m), such that
each root morpheme A (or each su!x morpheme a) has the same value for
that feature in all underlying concatenations Aa in " (line 5). For any such
feature, it can be concluded that the opposite value is inconsistent with the
available lexical and ranking information. The subroutine thus updates the
partial lexicon Lex by setting that feature to be equal to its constant value

(46) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that:
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G (or

the ERC matrix ù)
if some feature unset for the root M (or for the su!x m) has a

constant value over " for M (for m) then
update the lexicon Lex by setting the feature to that value for

the root M (or for the su!x m)
end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.
8.

This subroutine is called inconsistency detection (cf. Kager 1999, Tesar
et al. 2003, Tesar 2006), because it sets a certain feature to a certain value
based on the detection at line 6 of the fact that any other value for that
feature would be inconsiste nt with the availab le lexical and ranking
information.

Proof. Assume by contradiction that the lemma is false. This means
that the subroutine has set some feature j for, say, the root meaning
M to a value which is di‰erent from the value assigned by the target
lexicon. For concreteness, assume that the values assigned by the
subroutine and the target lexicon are + and — respectively. Thus , the
target lexicon assigns to the meaning combination Mm an underlying
form Aa, which has feature j set to the value — in the root A. This
underlying form Aa is consistent with the partial lexicon Lex (because
it is consistent with the target lexicon, which is in turn consistent with
Lex). Furthermore, the mapping (Aa, Xx) of this underlying form Aa
to the surface form Xx is consistent with the input grammar G (because
the target ranking is consistent with both). In other words, this
underlying form Aa satisfies the two conditions stated by the two
subclauses in line 4 and thus belongs to the set " constructed by the
subroutine. Since this underlying form Aa has feature j set equal to
— for the root A, then the subroutine cannot have set that feature to
the opposite value + at line 6.

5.2 Analysis of the subroutine. Lemma 5 provides a straightforward correct-
ness result for inconsistency detection (46). Its time complexity is controlled
by the size of the set " of consistent underlying forms constructed at line 4.
In the worst case (when both the input lexicon and the input ranking
information are empty), " consists of all underlying forms, i.e. all con-
catenations of root and su!x morphemes. In this case, the size of " grows
polynomially in the number of morphemes and thus exponentially in the
number of features. In conclusion, subroutine (46) is e!cient relative to
the generous notion of e!ciency defined in (14), which measures time
complexity in terms of the number of morphemes, but is not e!cient
relative to the more demanding notion of e!ciency defined in (15), which
measures time complexity in terms of the number of features.

Lemma 5
Inconsistency detection (46) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target grammar, that the input (possibly partial)
grammar G (or ERC matrix ù) is consistent with the target grammar

6 Extension to contrast pairs
6.1 Description of the subroutine. The extension of inconsistency detection
(46) to contrast pairs is provided in (47). This subroutine takes as input
some lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine considers a particular
contrast pair (line 2). For concreteness, I am assuming here that the two
meaning combinations of the contrast pair share the su!x meaning, namely
have the shape Mm and Ôm (the case where they share the root meaning
is handled analogously). The subroutine reads o‰ the paradigm p the surface
realisations Xx and ∑π of those two meaning combinations (line 3). It
constructs the set " of all pairs (Aa, ∫a) of underlying concatenations which
are consistent with both the input lexical information Lex and the input
ranking information G (or ù) and furthermore share the underlying su!x
segment a (line 4). The subroutine then looks for a feature which is unset
by Lex for the root meaning M (or the root meaning Ô or the su!x meaning
m), such that each underlying root morpheme A (or each underlying root
morpheme ∫ or each underlying su!x morpheme a) has the same value
for that feature in all pairs (Aa, ∫a) in " (line 5). For any such feature, the
subroutine updates the partial lexicon Lex by setting the feature equal to
its constant value for the root meaning M (or for the root meaning Ô or
for the su!x meaning m) (line 6). The lexicon thus updated is then returned
(line 8).

(47) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G (or
the ERC matrix ù)

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

- the mapping (∫a, ∑π) is consistent with the grammar G
if some unset feature has a constant value over " for any of the three

meanings M, Ô or m then
update the lexicon Lex by setting the feature to the constant

value for that meaning
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.
8.

6.2 Analysis of the subroutine. The Correctness Lemma 5 trivially extends
from the original subroutine (46) for single meaning combinations to the
variant (47) for contrast pairs. Furthermore, the variant for contrast pairs
remains as e!cient as the original version for single meaning combinations,
when e!ciency is generously measured in terms of the number of morphemes
(but again, not when it is measured in terms of the number of features).
Yet a number of authors (including Alderete et al. 2005 and Merchant &
Tesar 2008) have pointed out that (47), applied to the contrast pair (Mm,
Ôm), can extract more lexical information than the double application of
the original subroutine (46) to the two separate meaning combinations Mm
and Ôm. To see this, consider one of the two meaning combinations of the
contrast pair, say Mm. The original subroutine considers all underlying
forms Aa for Mm which are consistent with the input lexical and ranking
information, and only sets those features which are constant across all these
underlying forms. If the number of consistent underlying forms is large,
the number of features which are constant across them is small, and the
subroutine thus extracts little lexical information. (47) might instead be
able to extract more lexical information, because it looks for features which
are constant over a smaller set of underlying forms for Mm, namely those
underlying forms Aa which are not only consistent with the input lexical
and ranking information, but also use a su!x morpheme a which can be
combined with a root morpheme ∫ into an underlying form ∫a for Ôm
which is also consistent with the input lexical and ranking information.

I denote Tesar’s subroutine (29) for the extraction of ranking information
from a single meaning combination as ERIT, and Merchant’s subroutine
(40) as ERIM. Lemma 6 states that, if the underlying typology is output-
driven, then ERIT and ERIM are equivalent, because they update the
current ranking/grammatical information with the ‘same’ information. This
equivalence is striking, given that the time complexity of ERIT is only
linear in the number of features, while the time complexity of ERIM is
unknown, but probably exponential in both the number of features and the
numbe r of morphemes. Output-drivenne ss thus a‰ords a significa nt
reduction in time complexity. The Correctness Lemma 1 for ERIT (which
was proven directly in §4.4) can also be made to follow from the Correctness
Lemma 4 for ERIT through the Equivalence Lemma 6.

1 Subroutines for extracting ranking information from a single
meaning combination

Proof. The underlying form Bb constructed by ERIT at line 4 is
consistent with Lex, and therefore belongs to the set " constructed by
ERIM at line 4. Consider one of the underlying forms Aa in this set ".
The two underlying forms Aa and Bb agree in every feature which is
set by the input partial lexicon Lex. Furthermore, Bb and the surface
form Xx agree in every remaining feature. Thus the underlying form
Bb is more similar to the surface form Xx than is the underlying form
Aa. Since the underlying typology is output-driven, then every ranking
which maps the less similar underlying form Aa to Xx also maps the
more similar underlying form Bb to Xx. In other words, any ranking
consistent with the ERC block ù(Aa, Xx) is also consistent with the
ERC block ù(Bb, Xx). Lemma 3.i thus ensures that the ERC block
ù(Bb, Xx) is the join of the ERC blocks ù(Aa, Xx) across all underlying
concatenations Aa in ".

Lemma 6
Suppose that the underlying typology is output-driven and that ERIT

is fed with a partial grammar G and a (possibly partial) lexicon Lex.
Suppose that ERIM is fed with the ERC matrix ù corresponding to
the partial grammar G and the same lexicon Lex. Then the ERC block
corresponding to the mapping (Bb, Xx) constructed by ERIT at line
4 is the join of the ERC blocks ù(Aa, Xx) corresponding to the
underlying forms Aa in " constructed by ERIM at line 5.

between the two implementations is the following: Merchant’s original
subroutine (46) sets any feature which is constant over "; the variant in (48)
instead focuses right from the beginning on a specific feature j, which is
unset for either the root M or the su!x m of the meaning combination Mm
under consideration. In line 3, I am assuming for concreteness that the
feature j is unset for the root M (the case where it is unset for the su!x m
is handled analogously). The modification is only cosmetic: the original
subroutine is equivalent to running this variant for each unset feature.

(48) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a meaning combination Mm in the paradigm p
Require: a feature j unset by Lex for either M or m; for concreteness,

say it is unset for M
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G

if all underlying forms Aa in " have the feature j set to the same
value in the root morpheme A then

update the lexicon Lex by setting the feature j to that value for
the root meaning M

end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.

8.
9.

I denote Tesar’s subroutine (33) for the extraction of lexical information
from a single meaning combination by ELIT, and (the cosmetic variant of)
the original inconsistency detection subroutine (48) by ELIid. Lemma 6
states that, if the underlying typology is output-driven, ELIT and ELIid

are equival ent, because their if-claus es at line 6 are equivalent. This
equivalence is striking, given that the if-clause of ELIT can be checked in
time linear in the number of features, while the if-clause of ELIid requires
time exponential in the number of features in the worst case. Output-
drivenness has thus a‰orded a significant reduction in time complexity.
The Correctness Lemma 2 for ELIT (which was proven directly in §4.5)
can also be made to follow from the Correctness Lemma 4 for ELIid through
the Equivalence Lemma 7.

Proof. To start, let me prove that the if-clause in line 6 of ELIT entails
the if-clause in line 6 of ELIid . Assume by contradiction that the
former if-clause is true while the latter if-clause is false. The hypothesis
that the if-clause of ELIid is false entails in particular that the set " of
consistent underlying forms constructed by ELIid at line 5 contains
an underlying form Aa whose root A disagrees with X relative to the
feature j (indeed, if all the underlying forms Aa in " had a root A
which agreed with X relative to j, the if-clause of ELIid would hold
true). The underlying form Aa and the underlying form Bb constructed
by ELIT at line 5 thus agree in the feature j for the root meaning M,
as they both have the opposite value from X. Furthermore, they agree
in every feature set by the partial lexicon Lex, because they are both
consistent with Lex. Finally, Bb agrees with Xx for every remaining
feature. The underlying form Bb is thus more similar to the surface
form Xx than is the underlying form Aa. Since the mapping (Aa, Xx)
is consistent with G (because Aa belongs to "), there exists a ranking
which is consistent with both. Since the grammar corresponding to
that ranking is output-driven and maps the less similar underlying
form Aa to Xx, it also maps the more similar underlying form Bb to
Xx. In other words, that ranking is also consistent with the mapping
(Bb, Xx). In conclusion, the mapping (Bb, Xx) and the grammar G
are consistent (because both are consistent with the ranking), contra-
dicting the hypothesis that the if-clause of ELIT is true.

Vice versa, let me prove that the if-clause in line 6 of ELIid entails
the if-clause in line 6 of ELIT. Assume by contradiction that the
former if-clause is true, while the latter if-clause is false. The hypothesis
that the if-clause of ELIT is false means that the input (partial) grammar
G is consistent with the mapping (Bb, Xx) of the underlying form Bb
constructed by ELIT at line 5 to the surface form Xx. Since this
underlying form Bb is consistent with Lex, then Bb belongs to the set
" of consistent underlying forms constructed at line 5 by ELIid. Since
B and X disagree relative to the feature j, consider the underlying
form ≥b, identical to Bb but for the fact that ≥ and X instead agree in
the feature j. Obviously, the underlying form ≥b is more similar to
the surface form Xx than is the underlying form Bb. Since (Bb, Xx)
is consistent with G, there exists a ranking which is consistent with
both. Since the grammar corresponding to that ranking is output-
driven and maps the less similar underlying form Bb to Xx, then it
also maps the more similar underlying form ≥b to Xx. In other words,
that ranking is also consis tent with the mapping (≥b, Xx). This
underlying form ≥b thus belongs to the set " constructed by ELIid at
line 5.This conclusion contradicts the hypothesis that the if-clause of
ELIid holds, because it shows that " contains two underlying forms
Bb and ≥b, such that B and ≥ disagree in the feature j.Lemma 7

Suppose that the underlying typology is output-driven. Then the two
if-clauses in line 6 of ELIT and ELIid are equivalent.

Tesar’s subroutine for extracting lexical information from contrast pairs
is more involved than his other two subroutines, for extracting lexical and
ranking information from a single meaning combination. For this reason,
the latter two subroutines were reviewed in §4.4 and §4.5, while the former
subroutine is included in this appendix. Here I start out from Merchant’s
subroutine in (47) for extracting lexical information from contrast pairs,
and work towards Tesar’s reformulation, provided below in (52). This
seems to me the best way of making sense of the somewhat complex
formulation of Tesar’s subroutine. I begin by carrying out the same cosmetic
change as in the previous section: I replace the original subroutine (47)
with (49), which only di‰ers because line 3 focuses on a specific feature j,
unset by the input lexicon Lex for one of the three meanings M, Ô and m
of the contrast pair (Mm, Ôm). For concreteness, I assume it is unset for
the root meaning M.

3 Subroutines for extracting lexical information from a contrast
pair

Supplementary materials 1716 Giorgio Magri

(49) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫a, ∑π) is consistent with the grammar G

if all the pairs (Aa, ∫a) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.
9.

the two underlying su!x morphemes a and ¥ coincide, because they are
the underlying form corresponding to the same su!x meaning m. The
condition that a and ¥ coincide is in turn equivalent to the condition that
they agree for each feature y. We could of course relax this condition by
requiring that the two underlying su!x morphemes a and ¥ agree only for
certain features, y1, ..., yn. This intuition leads to the formulation in (50).
It di‰ers from (49) only because of the new line 4, which introduces the
features y1, ..., yn, and because of the additional fifth subclause in the
definition of the set ". Note that line 4 assumes all the features y1, ..., yn

to be unset by the input partial lexicon Lex for the shared su!x m, because
the condition that both a and ¥ are consistent with Lex as underlying forms
for m already entails that they agree on every feature set by Lex for m.

(50) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫¥) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ agree for every

feature y1, ..., yn

if all the pairs (Aa, ∫¥) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

combinations Mm and Ôm one at a time. If instead we consider all unset
y features at line 4, then (50) e‰ectively considers only pairs of underlying
forms for the two meaning combinations which share the underlying su!x,
and is therefore equivalent to the original subroutine (49) for extracting
lexical information from contrast pairs. In the end, depending on the
number of y features considered at line 4, (50) provides a whole range of
subroutines for extracting lexical information in between the weaker (46)
and the stronger (49).

Subroutine (50) can be equivalently restated as (51). Instead of requiring
the two su!x morphemes a and ¥ to coincide for every feature y1, ..., yn,
we consider all possible combinations v1, ..., vn of values of those features
at line 6, and we require both a and ¥ to have those features set equal to
those values in the fifth subclause of line 5.

(51) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫¥ is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ both have the

values v1, ..., vn for the features y1, ..., yn

if all the pairs (Aa, ∫¥) in all the sets "(v1, ..., vn) have the underlying
root A set to the same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

Supplementary materials 1918 Giorgio Magri

By reasoning as in the previous subsection we can easily show that subroutine
(51) is equivalent to (52) under the assumption of output-drivenness.
Indeed, the two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn con-
structed by (52) at line 6 provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (51).

(52) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and
±≤v1, …, vn, as follows:

- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-
lying forms for Mm and Ôm

- B has the opposite value for feature j than X
- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values

v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
if the grammar G is inconsistent with the two mappings (Bbv1, …, vn,

Xx) and (±≤v1, …, vn, ∑π) for any combination of values v1, ..., vn

then
update the lexicon Lex by setting feature j to that constant value

for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

If the features y1, ..., yn considered in line 4 of (52) exhaust the set of
features, then the two subroutines (49) and (52) are equivalent. However,
the running time of (52) is exponential in the number of features in the
latter case, because it needs to consider all combinations v1, ..., vn.

By reasoning as in the previous subsection, we can proceed from Merchant’s
original subroutine (41) for extracting ranking information from contrast
pairs to the variant in (53).

4 Subroutines for extracting ranking information from a contrast
pair

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫¥ is consistent with the lexicon Lex as an underlying form
for Ôm

- the two underlying su!x morphemes a and ¥ both have the
values v1, ..., vn for the features y1, ..., yn

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫¥) in "(v1, ..., vn) for all combinations of values
v1, ..., vn

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.

7.
8.

20 Giorgio Magri

Once again, if we do not consider any y features at line 3, (53) e‰ectively
considers the two meaning combinations of the contrast pair independently
of each other, and thus ends up equivalent to subroutine (40) for extracting
lexical information from single meaning combinations. If we instead consider
all unset y features at line 3, then (53) e‰ectively only considers pairs of
underlying forms for the two meaning combinations which share the
underlying su!x, and is therefore equivalent to Merchant’s original
subroutine (41) for extracting lexical information from contrast pairs.
Ultimately, depending on the number of y features considered at line 3,
(53) provides a whole range of subroutines for extracting ranking information
in between the weaker (40) and the stronger (41).

By reasoning as in §2 of this appendix, we can easily show subroutine
(53) to be equivalent to (54) under the assumption of output-drivenness.
The two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn constructed
by (54) at line 5 again provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (53).

(54)

- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values
v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
compute the join of the ERC matrices ù(Bbv1, …, vn, Xx)+

ù(±≤v1, …, vn, ∑π) for all combinations of values v1, ..., vn

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

6.

7.
8.

Take the simplest case, where we consider a single feature y at line 3.
Assume furthermore that y is binary, i.e. it only takes the values v=‘+’ and
v=‘—’. At line 5, the subroutine constructs the two underlying forms Bb+
and ±≤+, corresponding to the value v=‘+’of feature y (i.e. both b+ and ≤+
have the value ‘+’ for the feature y), and the two underlying forms Bb— and
±≤—, corresponding to the value v=‘—’ (i.e. both b— and ≤— have the value
‘—’ for the feature y). At line 6, we finally compute the join of the two ERC
blocks ù(Bb+, Xx)+ù(±≤+, ∑π) and ù(Bb—, Xx)+ù(±≤—, ∑π). Even in
the simplest case of a single feature y, there is no way around computing
the join.

In summary, Merchant develops a new subroutine for extracting ranking
information through the notion of join. This subroutine can be applied to
either a single meaning combination at a time, as in (40); or to a contrast
pair, as in (41). The latter is more powerful than the former: the subroutine
extracts more ranking information by processing the two meaning
combinations Mm and Ôm as a contrast pair than by processing them
separately. The crux of Merchant’s subroutine for extracting ranking
information is that it relies on the computation of a join, which is time-
consuming. The biggest impact of output-drivenness is that it allows
Merchant’s subroutine for extracting ranking information from a single
meaning combination to be restated without having to compute any join.
The restated subroutine thus runs in time linear in the number of features.
In other words, it is e!cient even relative to the more demanding notion
of e!ciency introduced in §2.6. The situation is unfortunately very di‰erent
when Merchant’s subroutine for extracting ranking information is boosted
by being applied to contrast pairs. In this case, output-drivenness is not
able to circumvent the computation of the join, and thus does not su!ce
to make the subroutine e!cient.

A constraint ranking is consistent with an ERC provided it satisfies con-
dition (36); it is consistent with an ERC matrix provided it is consistent
with each of its rows. An ERC matrix entails another ERC matrix provided

(38)Id
[str]
Id
[length]
Main-
L
Main-
R
No
Long
WSP

w
w

w
w
w
w

w
w
w
w

l
l
l
l

l

w
l

w

/’pa:’ka/, [’pa:ka], [pa’ka]
/’pa:’ka/, [’pa:ka], [pa’ka:]
/’pa:’ka/, [’pa:ka], [pa:’ka]
/’pa:’ka/, [’pa:ka], [pa:’ka:]
/’pa:’ka/, [’pa:ka], [’paka]
/’pa:’ka/, [’pa:ka], [’paka:]
/’pa:’ka/, [’pa:ka], [’pa:ka:]

w
w

w
w

Lemma 3
Suppose that one of the ERC matrices ù1, ù2, …, Rn is entailed
by each of the others. For concreteness, assume that it is ù1 which
is entailed by each of the other ERC matrices ù2, …, Rn. Then
ù1 is the join of ù1, ù2, …, Rn.

(i)

Given the ERC matrices ù1, ù2, ù3, …, Rn, replace two of them
with the ERC matrix obtained by stacking the two matrices one
on top of the other. For concreteness, replace ù1 and ù2 with
ù1+ù2. Then the join of the n®1 ERC matrices ù1+ù2, ù3,
…, Rn entails the join of the original n ERC matrices ù1, ù2, ù3,
…, Rn, while the reverse does not in general hold.

(ii)

compute the join of the ERC matrices ù(Aa, Xx) for all underlying
forms Aa in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.
7.

Proof. Let Aa be the underlying form assign ed to the meanin g
combination Mm by the target lexicon. This underlying form Aa
belongs to the set " constructed by the subroutine at line 4, because
of the hypothesis that the input lexicon Lex is consistent with the
target lexicon. Thus the corresponding ERC block ù(Aa, Xx) is one
of the blocks that the subroutine takes the join of at line 5. Since the
target ranking is consistent with this ERC block ù(Aa, Xx), then it
is also consistent with the join, by property (39a) of the join. Since the
target ranking is also consistent with the input ERC matrix ù, it is

Lemma 4
Merchant’s subroutine (40) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target ranking, that the input ERC matrix ù is
consistent with that target ranking, and that the input (possibly partial)
lexicon Lex is consistent with that target lexicon. The updated ERC
matrix returned by subroutine (40) is also consistent with that target
ranking.

then consistent with the updated ERC matrix returned by the sub-
routine.

(41) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫a) in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

1.

2.

3.

4.

5.

6.
7.

(43) ∑(ù1, ù2)+∑(π1, π2)

Lemma 3.iii ensures that (43) is equivalent to the join in (44). The four
ERC matrices being joined here correspond to all four combinations of
underlying forms for the two meaning combinations Mm and Ôm. In
particular, the learner is also joining together the two ERC blocks ù1+π2

and π2+ù1, whereby the shared su!x meaning m is assigned a di‰erent
underlying form in the case of Mm than in the case of Ôm. In other words,
since the learner is processing the two meaning combinations Mm and Ôm
separately, it is blind to the fact that these meaning combinations share the
su!x meaning m, which must therefore have the same underlying form in
both cases.

(44) ∑(ù1+π1, ù1+π2, ù2+π1, ù2+π2)

for the root meaning M (or for the su!x meaning m) (line 6). The lexicon
thus updated is then returned (line 8).

and that the input partial lexicon Lex is consistent with the target
lexicon. The updated lexicon returned by subroutine (46) is also
consistent with that target lexicon.

2 Subroutines for extracting lexical information from a single
meaning combination

Consider the slight variant (48) of the subroutine (46) for the extraction of
lexical information through inconsistency detection. The only di‰erence

The modification is only cosmetic: the original subroutine (47) is equivalent
to running this variant (49) for each feature which is unset for one of the
three morphemes M, Ô and m.

The set " constructed by the subroutine (49) at line 5 can equivalently
be described as the collection of all pairs (Aa, ∫¥) which satisfy the conditions
expressed by the four subclauses of line 5 plus the additional condition that

If we consider no y features at all in line 4, then (50) e‰ectively considers
the two meaning combinations of the contrast pair independently of each
other, and thus ends up equivalent to subroutine (46) for extracting lexical
information from single meaning combinations, in the sense that the
application of subroutine (50) to the contrast pair (Mm, Ôm) is equivalent
to two consecutive applications of subroutine (46) to the two meaning

Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and ±≤v1,

…, vn as follows
- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-

lying forms for Mm and Ôm

1.

2.

3.

4.

5.

(53) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

1.

2.

3.

4.

Phonology 25.2: Artwork 1 of

Supplementary materials 72Giorgio Magri

every ranking consistent with the former is also consistent with the latter.
Thus ù1+ù2 entails both ù1 and ù2.

(36)At least one constraint which has a w in the ERC under consideration
is ranked above every constraint which instead has an l (constraints
which have an e play no role in the consistency condition).

2The join

4 Giorgio Magri

Grammatical information was represented in §4.1.2 as a (possibly partial)
collection G of mappings (Aa, Xx) of an underlying form Aa to a surface
form Xx. Each of these mappings can be equivalently represented with the
corresponding ERC block ù(Aa, Xx). And the grammatical information
G can thus be represented with the ERC matrix obtained by stacking all
these blocks one of top of the other. Merchant’s CPR adopts the architecture
in (28), the only di‰erence being that the current partial grammatical
information is represented not as a partial grammar G but as an ERC matrix
ù. This makes the algorithm more flexible in the type of partial grammatical
information it maintains: any (partial) grammar G can be represented
through the corresponding ERC matrix, while not just any ERC matrix ù
corresponds to some partial collection of mappings. This additional flexibility
in the data structure maintained by the algorithm is crucial in order to
define the subroutine for extracting ranking information, as explained in
the next section.

Supplementary materials 5 6 Giorgio Magri 8 Giorgio Magri Supplementary materials 9 10 Giorgio Magri

Appendix B: Equivalence between Merchant’ s and Tesar’s sub-
routines

Supplementary materials 11 12 Giorgio Magri Supplementary materials 13

Appendix A: Merchant’s (2008) CPR

Phonology 31 (2014). Supplementary materials

Review article

Giorgio Magri
CNRS, Université Paris 8 and University of Utrecht

Supplementary materials

This appendix sketches Merchant’s (2008) CPR algorithm. In §1, I explain
how CPR adheres to the architecture in (28), only with a more abstract
representation of the current partial ranking information in terms of ERCs.
I then review CPR’s subroutines for extracting ranking and lexical infor-
mation. I start from the easier case, where they are applied to a single
paradigmatic entry (§3 and §5), and then turn to the extension to contrast
pairs (§4 and §6).

1ERCs and CPR’s architecture
An elementary ranking condition (ERC) is an assignment of one of the
three symbols l, w and e to each of the constraints in the constraint set
(Prince 2002). An ERC is usually represented as a row of these symbols,
with the constraints annotated on top. To illustrate, an ERC for the constraint
set (5) of the Paka typology is provided in (35). An ERC matrix is a finite
collection of ERCs, stacked one on top of the other (the order does not
matter). An arbitrary ERC matrix is denoted by ù. Given two ERC matrixes
ù1 and ù2, ù1+ù2 denotes the ERC matrix obtained by stacking one on
top of the other (the order does not matter).

14 Giorgio Magri Supplementary materials 15

Bruce Tesar (2014). Output-driven phonology: theory and learning. (Cam-
bridge Studies in Linguistics 139.) Cambridge: Cambridge University
Press. Pp. xix+415.

(35)
e
Id[str]Id[length]Main-LMain-RNoLongWSP
wwlle|

The phonological underpinning of these notions is as follows. Consider the
mapping (Aa, Xx) of an underlying form Aa to a surface form Xx, which
is thus construed as the winner. For any other loser candidate Yy, consider
the ERC defined in (37). Stack all the ERCs thus constructed for all loser
candidates one on top of the other into an ERC matrix, denoted by ù(Aa,
Xx). Then the OT grammar corresponding to a ranking maps the under-
lying form Aa to the surface form Xx if and only if that ranking is consistent
with the ERC matrix ù(Aa, Xx) corresponding to that mapping.

(37)A constraint has a w provided it prefers the winner mapping (Aa,
Xx) to the loser mapping (Aa, Yy), i.e. it assigns fewer violations
to the former mapping than to the latter.

a.

A constraint has an l provided it instead prefers the loser mapping
(Aa, Yy) to the winner mapping (Aa, Xx), i.e. it assigns fewer
violations to the former mapping than to the latter.

b.

A constraint has an e provided it has no preference for one of the
two mappings (Aa, Xx) and (Aa, Yy), i.e. it assigns the same number
of violations to both.

c.

To illustrate, consider the Paka typology in §2.1 of the paper, focusing on
the mapping (/’pa:’ka/, [’pa:ka]) of the underlying form /’pa:’ka/ to the surface
form [’pa:ka]. The ERC matrix ù(/’pa:’ka/, [’pa:ka]) corresponding to this
mapping is provided in (38). It consists of seven ERCs, because there are
seven loser candidates. For convenience, each ERC is annotated on the left
with the corresponding underlying, winner and loser forms (loser forms
are struck through). The topmost ERC in (38) says that the winner mapping
(/’pa:’ka/, [’pa:ka]) beats the loser mapping (/’pa:’ka/, [pa’ka]), provided at
least one of the two winner-preferring constraints Ident[length] or Main-
L is ranked above the two loser-preferring constraints Main-R and NoLong.

Supplementary materials3

The join of some ERC matrices ù1, …, ùn is any ERC matrix which satisfies
the two conditions in (39). Any such ERC matrix will be denoted by ∑(ù1,
…, ùn). Condition (39a) says that the join is weaker than (i.e. entailed by)
each matrix ù1, …, ùn. Condition (39b) says that, among all ERC matrices
which are weaker than (i.e. entailed by) each matrix ù1, …, ùn, the join is
a strongest one (i.e the one which entails all the others). In other words,
condition (39a) says that the join captures some of the ranking information
shared by the matrices ù1, …, ùn, and condition (39b) says there is no
shared ranking information which the join does not capture.

(39)Each of the ERC matrices ù1, …, ùn entails their join.a.
If each of the ERC matrices ù1, …, ùn entails some ERC matrix
ù, their join entails ù as well.
b.

Lemma 3 collects some properties of the join which will be used in the rest
of this appendix.

Proof. An ERC matrix ∏ is the join of two ERC matrixes ù1 and ù2

if and only if the set of rankings consistent with ∏ is the union of the
two sets of rankings consistent with ù1 and ù2. Furthermore, the set
of rankings consistent with ù1+ù2 is the intersection of the two sets
of rankings consistent with ù1 and ù2. Claims (i)–(iii) then follow
from elementary set-theoretic manipulations on the sets of consistent
rankings.

Given four ERC matrices ù1, ù2, π1, π2, consider the ERC
matrix ∑(ù1, ù2)+∑(π1, π2) obtained by stacking one on top of
the other the join of ù1 and ù2 and the join of π1 and π2. Then
∑(ù1, ù2)+∑(π1, π2) coincides with the join of the four ERC
matrices ù1+π1, ù1+π2, ù2+π1, ù2+π2.

(iii)

3 A subroutine for extracting ranking information through the join
3.1 Description of the subroutine. The subroutine in (40) takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex and a paradigm
p (line 1). It extends the ranking information encoded in the input ERC
matrix ù by adding to that input ERC matrix some additional ERCs as
follows. The subroutine considers a certain meaning combination Mm (line
2), and it reads o‰ the paradigm p the surface realisation Xx of that meaning
combination Mm (line 3). The subroutine then constructs the set " of all
underlying concatenations Aa which are consistent with the lexicon Lex as
underlying forms for that meaning combination Mm (line 4). This means
that if Lex sets a feature for the root M or the su!x m to a certain value,
then the root morpheme A or the su!x morpheme a of each underlying
form Aa in " has the feature set to that value. Any of these underlying
forms in " could be the actual underlying form according to the partial
lexical information encoded by Lex. In other words, the target grammar
could enforce any of the mappings (Aa, Xx) of any underlying form Aa in
" to the surface form Xx. Thus the best the subroutine can do is to extract
any ranking information shared by all these mappings. This is done by
computing the join of all ERC blocks ù(Aa, Xx) corresponding to all
mappings (Aa, Xx) of all underlying forms Aa in " to the surface form Xx
(line 5). The input ERC matrix ù is updated by adding this join to it (line
6). The ERC matrix thus updated is returned (line 7).

(40) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all concatenations Aa consistent with Lex as

underlying forms for Mm

1.

2.
3.

4.

The join of the ERC blocks ù(Aa, Xx) computed at line 5 is an ERC-
theoretic construct which might very well not correspond, in the sense of
(37), to any mapping of an underlying form to a surface form. For this
reason, CPR needs the additional flexibility of representing the current
(partial) grammatical/ranking information as an ERC matrix rather than
as a (partial) grammar. Appendix B: §1 shows that output-drivenness in
e‰ect guarantees that the join computed in line 5 always corresponds to the
mapping of a certain underlying form to the surface form Xx read at line
3.

3.2 Analysis of the subroutine. Lemma 4 provides a straightforward correct-
ness result for Merchant’s subroutine (40). Note that the proof only uses
property (39a) of the join, not property (39b). In other words, the lemma
hinges only on the fact that the join extracts ranking information which is
shared by all the ERC blocks ù(Aa, Xx). Property (39b) is nonetheless
crucial, because it ensures that the join does not lack any of this shared
ranking informa tion, making subroutine (40) optimal. The crux of
Merchant’s subroutine is its time complexity. Merchant (2008: ch. 4)
develops an elegant algorithm for computing the join which can be used
to implement line 5. Unfortunately, his algorithm needs to compute the
fusional closure of each of the input ERC matrices it has to join. Although
there are no results that I am aware of concerning the time complexity of
that computation, it is most plausibly intractable in the general case.

4 Extension to contrast pairs
4.1 Description of the subroutine. The extension of Merchant’s subroutine
(40) to contrast pairs is provided in (41). This subroutine takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex, and a paradigm
p (line 1). The subroutine considers some contrast pair (line 2). For concrete-
ness, I am assuming here that the two meaning combinations of the contrast
pair share the su!x meaning, i.e. have the shape Mm and Ôm (the case
where they share the root meaning is handled analogously). The
subroutine reads o‰ the paradigm p the surface realisations Xx and ∑π of
those two meaning combinations (line 3). Although x and π are the surface
realisations of the same underlying su!x segment corresponding to the
su!x meaning m, they can be di‰erent, because of morphophonem ic
alternations in the surface realisation of that underlying su!x triggered by
the two di‰erent roots M and Ô. The subroutine then constructs the set
" of all pairs (Aa, ∫a) of underlying concatenations which are consistent
with the lexicon Lex as underlying forms for the meaning combinations
Mm and Ôm and furthermore share the underlying su!x segment a (line
4). The latter requirement encodes the fact that we are focusing on a pair
of meaning combinations Mm and Ôm which share the su!x meaning m.
For each pair (Aa, ∫a) of underlying concatenations in ", the subroutine
considers the corresponding ERC blocks ù(Aa, Xx) and ù(∫a, ∑π), stacks
them together into the ERC matrix ù(Aa, Xx)+ù(∫a, ∑π) and constructs
the join of all ERC matrices thus obtained (line 5). The input ERC matrix
ù is updated by adding this join to it (line 6). The ERC matrix thus updated
is then returned (line 7).

There is a subtlety which should be pointed out here. At line 5, the subroutine
considers the join in (42a), not the one in (42b). The di‰erence is that in
(42a) we sum together the two ERC blocks ù(Aa, Xx) and ù(∫a, ∑π) into
ù(Aa, Xx)+ù(∫a, ∑π) before taking the join. This is indeed appropriate,
because the join in (42a) is stronger than the one in (42b), by Lemma 3.ii.

(42) ∑{ù(Aa, Xx)+ù(∫a, ∑π) | (Aa, ∫a)Œ"}a.
∑{ù(Aa, Xx), ù(∫a, ∑π) | (Aa, ∫a)Œ"}b.

4.2 Analysis of the subroutine. The Correctness Lemma 4 trivially extends
from the original subroutine (40) for single meaning combinations to the
variant (41) for contrast pairs. The ine!ciency of (40) for single meaning
combinations is of course aggravated in (41) for contrast pairs, as the latter
requires taking the join of a larger number of larger ERC matrices. Yet
subroutine (41) applied to the contrast pair (Mm, Ôm) is able to extract
more ranking information than the double applica tion of the original
subroutine (40) to the two separate meaning combinations Mm and Ôm.
To see this, suppose that the root meaning M admits a unique underlying
form A consistent with Lex, the root meaning Ô admits a unique under-
lying form ∫ and the su!x meaning m admits only two underlying forms,
a1 and a2. Suppose we first apply the original subroutine (40) to the meaning
combination Mm. At line 4, it constructs the set " consisting of the two
underlying forms Aa1 and Aa2. At line 5, it computes the join ∑(ù1, ù2)
of the two ERC blocks ù1=ù(Aa1, Xx) and ù2=ù(Aa2, Xx). Suppose
we next apply the original subroutine (40) to the meaning combination
Ôm. At line 4, it constructs the set ", consisting of the two underlying
forms ∫a1 and ∫a2. At line 5, it computes the join ∑(π1, π2) of the two
ERC blocks π1=ù(∫a1, ∑π) and π2=ù(∫a2, ∑π). Ultimately, the two
consecutive applications of the original subroutine (40) to the two meaning
combinations Mm and Ôm extract the ranking information captured by
the sum of the two joins in (43).

Suppose we instead apply subroutine (41) to the contrast pair (Mm, Ôm).
At line 4, it constructs the set ", consisting of the two pairs (Aa1, ∫a1) and
(Aa2, ∫a2). At line 5, it computes the join in (45) of the two ERC blocks
ù(Aa1 , Xx)+ù(∫a1, ∑π)=ù1+π1 and ù(Aa2 , Xx)+ù(∫a2, ∑π) =
ù2+π2.

(45) ∑(ù1+π1, ù2+π2)

The join in (45) is stronger than the one in (44), because it joins fewer
matrices (the smaller the number of matrices, the larger the amount of
shared information for the join to extract). This is because the two blocks
ù1+π2 and ù2+π1 have disappeared from the join. This is what we want,
as they correspond to the unreasonable assumption that the su!x m has
di‰erent underlying forms in the two meaning combinations Mm and Ôm.
In other words, since the learner is processing the two meaning combinations
Mm and Ôm together as a contrast pair, it is able to take into account the
fact that these meaning combinations share the su!x meaning m, which
must therefore have the same underlying form in the two cases.

5 A subroutine for extracting lexical information through
inconsistency detection

5.1 Description of the subroutine. Subroutine (46) takes as input some
lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine then considers a certain
meaning combination Mm with some feature unset according to the input
partial lexicon Lex for either the root M or the su!x m (line 2). The goal
of the subroutine is to try to extend the input partial lexicon by setting
some of these unset features. To this end, the subroutine reads o‰ the
paradigm p the surface realisation Xx of the meaning combination Mm
(line 3). It constructs the set " of all underlying concatenations Aa which
are consistent with both the input lexical information Lex and the input
ranking information captured by the grammar G (or the ERC matrix ù)
(line 4). Consistency with the input lexical information means that, if Lex
sets a feature for the root M (or the su!x m) to a certain value, then the
root morpheme A (or the su!x morpheme a) of each underlying form Aa
in " has the feature set to that value. Consistency with the input ranking
information means that the input grammar G (or the input ERC matrix ù)
is consistent with the mapping (Aa, Xx) of each such underlying form Aa
in " to the surface form Xx. The subroutine then looks for a feature which
is unset by Lex for the root meaning M (or the su!x meaning m), such that
each root morpheme A (or each su!x morpheme a) has the same value for
that feature in all underlying concatenations Aa in " (line 5). For any such
feature, it can be concluded that the opposite value is inconsistent with the
available lexical and ranking information. The subroutine thus updates the
partial lexicon Lex by setting that feature to be equal to its constant value

(46) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that:
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G (or

the ERC matrix ù)
if some feature unset for the root M (or for the su!x m) has a

constant value over " for M (for m) then
update the lexicon Lex by setting the feature to that value for

the root M (or for the su!x m)
end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.
8.

This subroutine is called inconsistency detection (cf. Kager 1999, Tesar
et al. 2003, Tesar 2006), because it sets a certain feature to a certain value
based on the detection at line 6 of the fact that any other value for that
feature would be inconsiste nt with the availab le lexical and ranking
information.

Proof. Assume by contradiction that the lemma is false. This means
that the subroutine has set some feature j for, say, the root meaning
M to a value which is di‰erent from the value assigned by the target
lexicon. For concreteness, assume that the values assigned by the
subroutine and the target lexicon are + and — respectively. Thus , the
target lexicon assigns to the meaning combination Mm an underlying
form Aa, which has feature j set to the value — in the root A. This
underlying form Aa is consistent with the partial lexicon Lex (because
it is consistent with the target lexicon, which is in turn consistent with
Lex). Furthermore, the mapping (Aa, Xx) of this underlying form Aa
to the surface form Xx is consistent with the input grammar G (because
the target ranking is consistent with both). In other words, this
underlying form Aa satisfies the two conditions stated by the two
subclauses in line 4 and thus belongs to the set " constructed by the
subroutine. Since this underlying form Aa has feature j set equal to
— for the root A, then the subroutine cannot have set that feature to
the opposite value + at line 6.

5.2 Analysis of the subroutine. Lemma 5 provides a straightforward correct-
ness result for inconsistency detection (46). Its time complexity is controlled
by the size of the set " of consistent underlying forms constructed at line 4.
In the worst case (when both the input lexicon and the input ranking
information are empty), " consists of all underlying forms, i.e. all con-
catenations of root and su!x morphemes. In this case, the size of " grows
polynomially in the number of morphemes and thus exponentially in the
number of features. In conclusion, subroutine (46) is e!cient relative to
the generous notion of e!ciency defined in (14), which measures time
complexity in terms of the number of morphemes, but is not e!cient
relative to the more demanding notion of e!ciency defined in (15), which
measures time complexity in terms of the number of features.

Lemma 5
Inconsistency detection (46) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target grammar, that the input (possibly partial)
grammar G (or ERC matrix ù) is consistent with the target grammar

6 Extension to contrast pairs
6.1 Description of the subroutine. The extension of inconsistency detection
(46) to contrast pairs is provided in (47). This subroutine takes as input
some lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine considers a particular
contrast pair (line 2). For concreteness, I am assuming here that the two
meaning combinations of the contrast pair share the su!x meaning, namely
have the shape Mm and Ôm (the case where they share the root meaning
is handled analogously). The subroutine reads o‰ the paradigm p the surface
realisations Xx and ∑π of those two meaning combinations (line 3). It
constructs the set " of all pairs (Aa, ∫a) of underlying concatenations which
are consistent with both the input lexical information Lex and the input
ranking information G (or ù) and furthermore share the underlying su!x
segment a (line 4). The subroutine then looks for a feature which is unset
by Lex for the root meaning M (or the root meaning Ô or the su!x meaning
m), such that each underlying root morpheme A (or each underlying root
morpheme ∫ or each underlying su!x morpheme a) has the same value
for that feature in all pairs (Aa, ∫a) in " (line 5). For any such feature, the
subroutine updates the partial lexicon Lex by setting the feature equal to
its constant value for the root meaning M (or for the root meaning Ô or
for the su!x meaning m) (line 6). The lexicon thus updated is then returned
(line 8).

(47) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G (or
the ERC matrix ù)

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

- the mapping (∫a, ∑π) is consistent with the grammar G
if some unset feature has a constant value over " for any of the three

meanings M, Ô or m then
update the lexicon Lex by setting the feature to the constant

value for that meaning
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.
8.

6.2 Analysis of the subroutine. The Correctness Lemma 5 trivially extends
from the original subroutine (46) for single meaning combinations to the
variant (47) for contrast pairs. Furthermore, the variant for contrast pairs
remains as e!cient as the original version for single meaning combinations,
when e!ciency is generously measured in terms of the number of morphemes
(but again, not when it is measured in terms of the number of features).
Yet a number of authors (including Alderete et al. 2005 and Merchant &
Tesar 2008) have pointed out that (47), applied to the contrast pair (Mm,
Ôm), can extract more lexical information than the double application of
the original subroutine (46) to the two separate meaning combinations Mm
and Ôm. To see this, consider one of the two meaning combinations of the
contrast pair, say Mm. The original subroutine considers all underlying
forms Aa for Mm which are consistent with the input lexical and ranking
information, and only sets those features which are constant across all these
underlying forms. If the number of consistent underlying forms is large,
the number of features which are constant across them is small, and the
subroutine thus extracts little lexical information. (47) might instead be
able to extract more lexical information, because it looks for features which
are constant over a smaller set of underlying forms for Mm, namely those
underlying forms Aa which are not only consistent with the input lexical
and ranking information, but also use a su!x morpheme a which can be
combined with a root morpheme ∫ into an underlying form ∫a for Ôm
which is also consistent with the input lexical and ranking information.

I denote Tesar’s subroutine (29) for the extraction of ranking information
from a single meaning combination as ERIT, and Merchant’s subroutine
(40) as ERIM. Lemma 6 states that, if the underlying typology is output-
driven, then ERIT and ERIM are equivalent, because they update the
current ranking/grammatical information with the ‘same’ information. This
equivalence is striking, given that the time complexity of ERIT is only
linear in the number of features, while the time complexity of ERIM is
unknown, but probably exponential in both the number of features and the
numbe r of morphemes. Output-drivenne ss thus a‰ords a significa nt
reduction in time complexity. The Correctness Lemma 1 for ERIT (which
was proven directly in §4.4) can also be made to follow from the Correctness
Lemma 4 for ERIT through the Equivalence Lemma 6.

1 Subroutines for extracting ranking information from a single
meaning combination

Proof. The underlying form Bb constructed by ERIT at line 4 is
consistent with Lex, and therefore belongs to the set " constructed by
ERIM at line 4. Consider one of the underlying forms Aa in this set ".
The two underlying forms Aa and Bb agree in every feature which is
set by the input partial lexicon Lex. Furthermore, Bb and the surface
form Xx agree in every remaining feature. Thus the underlying form
Bb is more similar to the surface form Xx than is the underlying form
Aa. Since the underlying typology is output-driven, then every ranking
which maps the less similar underlying form Aa to Xx also maps the
more similar underlying form Bb to Xx. In other words, any ranking
consistent with the ERC block ù(Aa, Xx) is also consistent with the
ERC block ù(Bb, Xx). Lemma 3.i thus ensures that the ERC block
ù(Bb, Xx) is the join of the ERC blocks ù(Aa, Xx) across all underlying
concatenations Aa in ".

Lemma 6
Suppose that the underlying typology is output-driven and that ERIT

is fed with a partial grammar G and a (possibly partial) lexicon Lex.
Suppose that ERIM is fed with the ERC matrix ù corresponding to
the partial grammar G and the same lexicon Lex. Then the ERC block
corresponding to the mapping (Bb, Xx) constructed by ERIT at line
4 is the join of the ERC blocks ù(Aa, Xx) corresponding to the
underlying forms Aa in " constructed by ERIM at line 5.

between the two implementations is the following: Merchant’s original
subroutine (46) sets any feature which is constant over "; the variant in (48)
instead focuses right from the beginning on a specific feature j, which is
unset for either the root M or the su!x m of the meaning combination Mm
under consideration. In line 3, I am assuming for concreteness that the
feature j is unset for the root M (the case where it is unset for the su!x m
is handled analogously). The modification is only cosmetic: the original
subroutine is equivalent to running this variant for each unset feature.

(48) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a meaning combination Mm in the paradigm p
Require: a feature j unset by Lex for either M or m; for concreteness,

say it is unset for M
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G

if all underlying forms Aa in " have the feature j set to the same
value in the root morpheme A then

update the lexicon Lex by setting the feature j to that value for
the root meaning M

end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.

8.
9.

I denote Tesar’s subroutine (33) for the extraction of lexical information
from a single meaning combination by ELIT, and (the cosmetic variant of)
the original inconsistency detection subroutine (48) by ELIid. Lemma 6
states that, if the underlying typology is output-driven, ELIT and ELIid

are equival ent, because their if-claus es at line 6 are equivalent. This
equivalence is striking, given that the if-clause of ELIT can be checked in
time linear in the number of features, while the if-clause of ELIid requires
time exponential in the number of features in the worst case. Output-
drivenness has thus a‰orded a significant reduction in time complexity.
The Correctness Lemma 2 for ELIT (which was proven directly in §4.5)
can also be made to follow from the Correctness Lemma 4 for ELIid through
the Equivalence Lemma 7.

Proof. To start, let me prove that the if-clause in line 6 of ELIT entails
the if-clause in line 6 of ELIid . Assume by contradiction that the
former if-clause is true while the latter if-clause is false. The hypothesis
that the if-clause of ELIid is false entails in particular that the set " of
consistent underlying forms constructed by ELIid at line 5 contains
an underlying form Aa whose root A disagrees with X relative to the
feature j (indeed, if all the underlying forms Aa in " had a root A
which agreed with X relative to j, the if-clause of ELIid would hold
true). The underlying form Aa and the underlying form Bb constructed
by ELIT at line 5 thus agree in the feature j for the root meaning M,
as they both have the opposite value from X. Furthermore, they agree
in every feature set by the partial lexicon Lex, because they are both
consistent with Lex. Finally, Bb agrees with Xx for every remaining
feature. The underlying form Bb is thus more similar to the surface
form Xx than is the underlying form Aa. Since the mapping (Aa, Xx)
is consistent with G (because Aa belongs to "), there exists a ranking
which is consistent with both. Since the grammar corresponding to
that ranking is output-driven and maps the less similar underlying
form Aa to Xx, it also maps the more similar underlying form Bb to
Xx. In other words, that ranking is also consistent with the mapping
(Bb, Xx). In conclusion, the mapping (Bb, Xx) and the grammar G
are consistent (because both are consistent with the ranking), contra-
dicting the hypothesis that the if-clause of ELIT is true.

Vice versa, let me prove that the if-clause in line 6 of ELIid entails
the if-clause in line 6 of ELIT. Assume by contradiction that the
former if-clause is true, while the latter if-clause is false. The hypothesis
that the if-clause of ELIT is false means that the input (partial) grammar
G is consistent with the mapping (Bb, Xx) of the underlying form Bb
constructed by ELIT at line 5 to the surface form Xx. Since this
underlying form Bb is consistent with Lex, then Bb belongs to the set
" of consistent underlying forms constructed at line 5 by ELIid. Since
B and X disagree relative to the feature j, consider the underlying
form ≥b, identical to Bb but for the fact that ≥ and X instead agree in
the feature j. Obviously, the underlying form ≥b is more similar to
the surface form Xx than is the underlying form Bb. Since (Bb, Xx)
is consistent with G, there exists a ranking which is consistent with
both. Since the grammar corresponding to that ranking is output-
driven and maps the less similar underlying form Bb to Xx, then it
also maps the more similar underlying form ≥b to Xx. In other words,
that ranking is also consis tent with the mapping (≥b, Xx). This
underlying form ≥b thus belongs to the set " constructed by ELIid at
line 5.This conclusion contradicts the hypothesis that the if-clause of
ELIid holds, because it shows that " contains two underlying forms
Bb and ≥b, such that B and ≥ disagree in the feature j.Lemma 7

Suppose that the underlying typology is output-driven. Then the two
if-clauses in line 6 of ELIT and ELIid are equivalent.

Tesar’s subroutine for extracting lexical information from contrast pairs
is more involved than his other two subroutines, for extracting lexical and
ranking information from a single meaning combination. For this reason,
the latter two subroutines were reviewed in §4.4 and §4.5, while the former
subroutine is included in this appendix. Here I start out from Merchant’s
subroutine in (47) for extracting lexical information from contrast pairs,
and work towards Tesar’s reformulation, provided below in (52). This
seems to me the best way of making sense of the somewhat complex
formulation of Tesar’s subroutine. I begin by carrying out the same cosmetic
change as in the previous section: I replace the original subroutine (47)
with (49), which only di‰ers because line 3 focuses on a specific feature j,
unset by the input lexicon Lex for one of the three meanings M, Ô and m
of the contrast pair (Mm, Ôm). For concreteness, I assume it is unset for
the root meaning M.

3 Subroutines for extracting lexical information from a contrast
pair

Supplementary materials 1716 Giorgio Magri

(49) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫a, ∑π) is consistent with the grammar G

if all the pairs (Aa, ∫a) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.
9.

the two underlying su!x morphemes a and ¥ coincide, because they are
the underlying form corresponding to the same su!x meaning m. The
condition that a and ¥ coincide is in turn equivalent to the condition that
they agree for each feature y. We could of course relax this condition by
requiring that the two underlying su!x morphemes a and ¥ agree only for
certain features, y1, ..., yn. This intuition leads to the formulation in (50).
It di‰ers from (49) only because of the new line 4, which introduces the
features y1, ..., yn, and because of the additional fifth subclause in the
definition of the set ". Note that line 4 assumes all the features y1, ..., yn

to be unset by the input partial lexicon Lex for the shared su!x m, because
the condition that both a and ¥ are consistent with Lex as underlying forms
for m already entails that they agree on every feature set by Lex for m.

(50) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫¥) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ agree for every

feature y1, ..., yn

if all the pairs (Aa, ∫¥) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

combinations Mm and Ôm one at a time. If instead we consider all unset
y features at line 4, then (50) e‰ectively considers only pairs of underlying
forms for the two meaning combinations which share the underlying su!x,
and is therefore equivalent to the original subroutine (49) for extracting
lexical information from contrast pairs. In the end, depending on the
number of y features considered at line 4, (50) provides a whole range of
subroutines for extracting lexical information in between the weaker (46)
and the stronger (49).

Subroutine (50) can be equivalently restated as (51). Instead of requiring
the two su!x morphemes a and ¥ to coincide for every feature y1, ..., yn,
we consider all possible combinations v1, ..., vn of values of those features
at line 6, and we require both a and ¥ to have those features set equal to
those values in the fifth subclause of line 5.

(51) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫¥ is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ both have the

values v1, ..., vn for the features y1, ..., yn

if all the pairs (Aa, ∫¥) in all the sets "(v1, ..., vn) have the underlying
root A set to the same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

Supplementary materials 1918 Giorgio Magri

By reasoning as in the previous subsection we can easily show that subroutine
(51) is equivalent to (52) under the assumption of output-drivenness.
Indeed, the two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn con-
structed by (52) at line 6 provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (51).

(52) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and
±≤v1, …, vn, as follows:

- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-
lying forms for Mm and Ôm

- B has the opposite value for feature j than X
- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values

v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
if the grammar G is inconsistent with the two mappings (Bbv1, …, vn,

Xx) and (±≤v1, …, vn, ∑π) for any combination of values v1, ..., vn

then
update the lexicon Lex by setting feature j to that constant value

for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

If the features y1, ..., yn considered in line 4 of (52) exhaust the set of
features, then the two subroutines (49) and (52) are equivalent. However,
the running time of (52) is exponential in the number of features in the
latter case, because it needs to consider all combinations v1, ..., vn.

By reasoning as in the previous subsection, we can proceed from Merchant’s
original subroutine (41) for extracting ranking information from contrast
pairs to the variant in (53).

4 Subroutines for extracting ranking information from a contrast
pair

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫¥ is consistent with the lexicon Lex as an underlying form
for Ôm

- the two underlying su!x morphemes a and ¥ both have the
values v1, ..., vn for the features y1, ..., yn

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫¥) in "(v1, ..., vn) for all combinations of values
v1, ..., vn

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.

7.
8.

20 Giorgio Magri

Once again, if we do not consider any y features at line 3, (53) e‰ectively
considers the two meaning combinations of the contrast pair independently
of each other, and thus ends up equivalent to subroutine (40) for extracting
lexical information from single meaning combinations. If we instead consider
all unset y features at line 3, then (53) e‰ectively only considers pairs of
underlying forms for the two meaning combinations which share the
underlying su!x, and is therefore equivalent to Merchant’s original
subroutine (41) for extracting lexical information from contrast pairs.
Ultimately, depending on the number of y features considered at line 3,
(53) provides a whole range of subroutines for extracting ranking information
in between the weaker (40) and the stronger (41).

By reasoning as in §2 of this appendix, we can easily show subroutine
(53) to be equivalent to (54) under the assumption of output-drivenness.
The two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn constructed
by (54) at line 5 again provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (53).

(54)

- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values
v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
compute the join of the ERC matrices ù(Bbv1, …, vn, Xx)+

ù(±≤v1, …, vn, ∑π) for all combinations of values v1, ..., vn

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

6.

7.
8.

Take the simplest case, where we consider a single feature y at line 3.
Assume furthermore that y is binary, i.e. it only takes the values v=‘+’ and
v=‘—’. At line 5, the subroutine constructs the two underlying forms Bb+
and ±≤+, corresponding to the value v=‘+’of feature y (i.e. both b+ and ≤+
have the value ‘+’ for the feature y), and the two underlying forms Bb— and
±≤—, corresponding to the value v=‘—’ (i.e. both b— and ≤— have the value
‘—’ for the feature y). At line 6, we finally compute the join of the two ERC
blocks ù(Bb+, Xx)+ù(±≤+, ∑π) and ù(Bb—, Xx)+ù(±≤—, ∑π). Even in
the simplest case of a single feature y, there is no way around computing
the join.

In summary, Merchant develops a new subroutine for extracting ranking
information through the notion of join. This subroutine can be applied to
either a single meaning combination at a time, as in (40); or to a contrast
pair, as in (41). The latter is more powerful than the former: the subroutine
extracts more ranking information by processing the two meaning
combinations Mm and Ôm as a contrast pair than by processing them
separately. The crux of Merchant’s subroutine for extracting ranking
information is that it relies on the computation of a join, which is time-
consuming. The biggest impact of output-drivenness is that it allows
Merchant’s subroutine for extracting ranking information from a single
meaning combination to be restated without having to compute any join.
The restated subroutine thus runs in time linear in the number of features.
In other words, it is e!cient even relative to the more demanding notion
of e!ciency introduced in §2.6. The situation is unfortunately very di‰erent
when Merchant’s subroutine for extracting ranking information is boosted
by being applied to contrast pairs. In this case, output-drivenness is not
able to circumvent the computation of the join, and thus does not su!ce
to make the subroutine e!cient.

A constraint ranking is consistent with an ERC provided it satisfies con-
dition (36); it is consistent with an ERC matrix provided it is consistent
with each of its rows. An ERC matrix entails another ERC matrix provided

(38)Id
[str]
Id
[length]
Main-
L
Main-
R
No
Long
WSP

w
w

w
w
w
w

w
w
w
w

l
l
l
l

l

w
l

w

/’pa:’ka/, [’pa:ka], [pa’ka]
/’pa:’ka/, [’pa:ka], [pa’ka:]
/’pa:’ka/, [’pa:ka], [pa:’ka]
/’pa:’ka/, [’pa:ka], [pa:’ka:]
/’pa:’ka/, [’pa:ka], [’paka]
/’pa:’ka/, [’pa:ka], [’paka:]
/’pa:’ka/, [’pa:ka], [’pa:ka:]

w
w

w
w

Lemma 3
Suppose that one of the ERC matrices ù1, ù2, …, Rn is entailed
by each of the others. For concreteness, assume that it is ù1 which
is entailed by each of the other ERC matrices ù2, …, Rn. Then
ù1 is the join of ù1, ù2, …, Rn.

(i)

Given the ERC matrices ù1, ù2, ù3, …, Rn, replace two of them
with the ERC matrix obtained by stacking the two matrices one
on top of the other. For concreteness, replace ù1 and ù2 with
ù1+ù2. Then the join of the n®1 ERC matrices ù1+ù2, ù3,
…, Rn entails the join of the original n ERC matrices ù1, ù2, ù3,
…, Rn, while the reverse does not in general hold.

(ii)

compute the join of the ERC matrices ù(Aa, Xx) for all underlying
forms Aa in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.
7.

Proof. Let Aa be the underlying form assign ed to the meanin g
combination Mm by the target lexicon. This underlying form Aa
belongs to the set " constructed by the subroutine at line 4, because
of the hypothesis that the input lexicon Lex is consistent with the
target lexicon. Thus the corresponding ERC block ù(Aa, Xx) is one
of the blocks that the subroutine takes the join of at line 5. Since the
target ranking is consistent with this ERC block ù(Aa, Xx), then it
is also consistent with the join, by property (39a) of the join. Since the
target ranking is also consistent with the input ERC matrix ù, it is

Lemma 4
Merchant’s subroutine (40) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target ranking, that the input ERC matrix ù is
consistent with that target ranking, and that the input (possibly partial)
lexicon Lex is consistent with that target lexicon. The updated ERC
matrix returned by subroutine (40) is also consistent with that target
ranking.

then consistent with the updated ERC matrix returned by the sub-
routine.

(41) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫a) in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

1.

2.

3.

4.

5.

6.
7.

(43) ∑(ù1, ù2)+∑(π1, π2)

Lemma 3.iii ensures that (43) is equivalent to the join in (44). The four
ERC matrices being joined here correspond to all four combinations of
underlying forms for the two meaning combinations Mm and Ôm. In
particular, the learner is also joining together the two ERC blocks ù1+π2

and π2+ù1, whereby the shared su!x meaning m is assigned a di‰erent
underlying form in the case of Mm than in the case of Ôm. In other words,
since the learner is processing the two meaning combinations Mm and Ôm
separately, it is blind to the fact that these meaning combinations share the
su!x meaning m, which must therefore have the same underlying form in
both cases.

(44) ∑(ù1+π1, ù1+π2, ù2+π1, ù2+π2)

for the root meaning M (or for the su!x meaning m) (line 6). The lexicon
thus updated is then returned (line 8).

and that the input partial lexicon Lex is consistent with the target
lexicon. The updated lexicon returned by subroutine (46) is also
consistent with that target lexicon.

2 Subroutines for extracting lexical information from a single
meaning combination

Consider the slight variant (48) of the subroutine (46) for the extraction of
lexical information through inconsistency detection. The only di‰erence

The modification is only cosmetic: the original subroutine (47) is equivalent
to running this variant (49) for each feature which is unset for one of the
three morphemes M, Ô and m.

The set " constructed by the subroutine (49) at line 5 can equivalently
be described as the collection of all pairs (Aa, ∫¥) which satisfy the conditions
expressed by the four subclauses of line 5 plus the additional condition that

If we consider no y features at all in line 4, then (50) e‰ectively considers
the two meaning combinations of the contrast pair independently of each
other, and thus ends up equivalent to subroutine (46) for extracting lexical
information from single meaning combinati ons, in the sense that the
application of subroutine (50) to the contrast pair (Mm, Ôm) is equivalent
to two consecutive applications of subroutine (46) to the two meaning

Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and ±≤v1,

…, vn as follows
- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-

lying forms for Mm and Ôm

1.

2.

3.

4.

5.

(53) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

1.

2.

3.

4.

Phonology 25.2: Artwork 1 of

Supplementary materials 72Giorgio Magri

every ranking consistent with the former is also consistent with the latter.
Thus ù1+ù2 entails both ù1 and ù2.

(36)At least one constraint which has a w in the ERC under consideration
is ranked above every constraint which instead has an l (constraints
which have an e play no role in the consistency condition).

2The join

4Giorgio Magri

Grammatical information was represented in §4.1.2 as a (possibly partial)
collection G of mappings (Aa, Xx) of an underlying form Aa to a surface
form Xx. Each of these mappings can be equivalently represented with the
corresponding ERC block ù(Aa, Xx). And the grammatical information
G can thus be represented with the ERC matrix obtained by stacking all
these blocks one of top of the other. Merchant’s CPR adopts the architecture
in (28), the only di‰erence being that the current partial grammatical
information is represented not as a partial grammar G but as an ERC matrix
ù. This makes the algorithm more flexible in the type of partial grammatical
information it maintains: any (partial) grammar G can be represented
through the corresponding ERC matrix, while not just any ERC matrix ù
corresponds to some partial collection of mappings. This additional flexibility
in the data structure maintained by the algorithm is crucial in order to
define the subroutine for extracting ranking information, as explained in
the next section.

Supplementary materials 5 6 Giorgio Magri 8 Giorgio Magri Supplementary materials 9 10 Giorgio Magri

Appendix B: Equivalence between Merchant’ s and Tesar’s sub-
routines

Supplementary materials 11 12 Giorgio Magri Supplementary materials 13

Appendix A: Merchant’s (2008) CPR

Phonology 31 (2014). Supplementary materials

Review article

Giorgio Magri
CNRS, Université Paris 8 and University of Utrecht

Supplementary materials

This appendix sketches Merchant’s (2008) CPR algorithm. In §1, I explain
how CPR adheres to the architecture in (28), only with a more abstract
representation of the current partial ranking information in terms of ERCs.
I then review CPR’s subroutines for extracting ranking and lexical infor-
mation. I start from the easier case, where they are applied to a single
paradigmatic entry (§3 and §5), and then turn to the extension to contrast
pairs (§4 and §6).

1ERCs and CPR’s architecture
An elementary ranking condition (ERC) is an assignment of one of the
three symbols l, w and e to each of the constraints in the constraint set
(Prince 2002). An ERC is usually represented as a row of these symbols,
with the constraints annotated on top. To illustrate, an ERC for the constraint
set (5) of the Paka typology is provided in (35). An ERC matrix is a finite
collection of ERCs, stacked one on top of the other (the order does not
matter). An arbitrary ERC matrix is denoted by ù. Given two ERC matrixes
ù1 and ù2, ù1+ù2 denotes the ERC matrix obtained by stacking one on
top of the other (the order does not matter).

14 Giorgio Magri Supplementary materials 15

Bruce Tesar (2014). Output-driven phonology: theory and learning. (Cam-
bridge Studies in Linguistics 139.) Cambridge: Cambridge University
Press. Pp. xix+415.

(35)
e
Id[str]Id[length]Main-LMain-RNoLongWSP
wwlle|

The phonological underpinning of these notions is as follows. Consider the
mapping (Aa, Xx) of an underlying form Aa to a surface form Xx, which
is thus construed as the winner. For any other loser candidate Yy, consider
the ERC defined in (37). Stack all the ERCs thus constructed for all loser
candidates one on top of the other into an ERC matrix, denoted by ù(Aa,
Xx). Then the OT grammar corresponding to a ranking maps the under-
lying form Aa to the surface form Xx if and only if that ranking is consistent
with the ERC matrix ù(Aa, Xx) corresponding to that mapping.

(37)A constraint has a w provided it prefers the winner mapping (Aa,
Xx) to the loser mapping (Aa, Yy), i.e. it assigns fewer violations
to the former mapping than to the latter.

a.

A constraint has an l provided it instead prefers the loser mapping
(Aa, Yy) to the winner mapping (Aa, Xx), i.e. it assigns fewer
violations to the former mapping than to the latter.

b.

A constraint has an e provided it has no preference for one of the
two mappings (Aa, Xx) and (Aa, Yy), i.e. it assigns the same number
of violations to both.

c.

To illustrate, consider the Paka typology in §2.1 of the paper, focusing on
the mapping (/’pa:’ka/, [’pa:ka]) of the underlying form /’pa:’ka/ to the surface
form [’pa:ka]. The ERC matrix ù(/’pa:’ka/, [’pa:ka]) corresponding to this
mapping is provided in (38). It consists of seven ERCs, because there are
seven loser candidates. For convenience, each ERC is annotated on the left
with the corresponding underlying, winner and loser forms (loser forms
are struck through). The topmost ERC in (38) says that the winner mapping
(/’pa:’ka/, [’pa:ka]) beats the loser mapping (/’pa:’ka/, [pa’ka]), provided at
least one of the two winner-preferring constraints Ident[length] or Main-
L is ranked above the two loser-preferring constraints Main-R and NoLong.

Supplementary materials3

The join of some ERC matrices ù1, …, ùn is any ERC matrix which satisfies
the two conditions in (39). Any such ERC matrix will be denoted by ∑(ù1,
…, ùn). Condition (39a) says that the join is weaker than (i.e. entailed by)
each matrix ù1, …, ùn. Condition (39b) says that, among all ERC matrices
which are weaker than (i.e. entailed by) each matrix ù1, …, ùn, the join is
a strongest one (i.e the one which entails all the others). In other words,
condition (39a) says that the join captures some of the ranking information
shared by the matrices ù1, …, ùn, and condition (39b) says there is no
shared ranking information which the join does not capture.

(39)Each of the ERC matrices ù1, …, ùn entails their join.a.
If each of the ERC matrices ù1, …, ùn entails some ERC matrix
ù, their join entails ù as well.
b.

Lemma 3 collects some properties of the join which will be used in the rest
of this appendix.

Proof. An ERC matrix ∏ is the join of two ERC matrixes ù1 and ù2
if and only if the set of rankings consistent with ∏ is the union of the
two sets of rankings consistent with ù1 and ù2. Furthermore, the set
of rankings consistent with ù1+ù2 is the intersection of the two sets
of rankings consistent with ù1 and ù2. Claims (i)–(iii) then follow
from elementary set-theoretic manipulations on the sets of consistent
rankings.

Given four ERC matrices ù1, ù2, π1, π2, consider the ERC
matrix ∑(ù1, ù2)+∑(π1, π2) obtained by stacking one on top of
the other the join of ù1 and ù2 and the join of π1 and π2. Then
∑(ù1, ù2)+∑(π1, π2) coincides with the join of the four ERC
matrices ù1+π1, ù1+π2, ù2+π1, ù2+π2.

(iii)

3A subroutine for extracting ranking information through the join
3.1 Description of the subroutine.The subroutine in (40) takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex and a paradigm
p (line 1). It extends the ranking information encoded in the input ERC
matrix ù by adding to that input ERC matrix some additional ERCs as
follows. The subroutine considers a certain meaning combination Mm (line
2), and it reads o‰ the paradigm p the surface realisation Xx of that meaning
combination Mm (line 3). The subroutine then constructs the set " of all
underlying concatenations Aa which are consistent with the lexicon Lex as
underlying forms for that meaning combination Mm (line 4). This means
that if Lex sets a feature for the root M or the su!x m to a certain value,
then the root morpheme A or the su!x morpheme a of each underlying
form Aa in " has the feature set to that value. Any of these underlying
forms in " could be the actual underlying form according to the partial
lexical information encoded by Lex. In other words, the target grammar
could enforce any of the mappings (Aa, Xx) of any underlying form Aa in
" to the surface form Xx. Thus the best the subroutine can do is to extract
any ranking information shared by all these mappings. This is done by
computing the join of all ERC blocks ù(Aa, Xx) corresponding to all
mappings (Aa, Xx) of all underlying forms Aa in " to the surface form Xx
(line 5). The input ERC matrix ù is updated by adding this join to it (line
6). The ERC matrix thus updated is returned (line 7).

(40)Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p
Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm
o‰ the paradigm p
construct the set " of all concatenations Aa consistent with Lex as
underlying forms for Mm

1.

2.
3.

4.

The join of the ERC blocks ù(Aa, Xx) computed at line 5 is an ERC-
theoretic construct which might very well not correspond, in the sense of
(37), to any mapping of an underlying form to a surface form. For this
reason, CPR needs the additional flexibility of representing the current
(partial) grammatical/ranking information as an ERC matrix rather than
as a (partial) grammar. Appendix B: §1 shows that output-drivenness in
e‰ect guarantees that the join computed in line 5 always corresponds to the
mapping of a certain underlying form to the surface form Xx read at line
3.

3.2 Analysis of the subroutine. Lemma 4 provides a straightforward correct-
ness result for Merchant’s subroutine (40). Note that the proof only uses
property (39a) of the join, not property (39b). In other words, the lemma
hinges only on the fact that the join extracts ranking information which is
shared by all the ERC blocks ù(Aa, Xx). Property (39b) is nonetheless
crucial, because it ensures that the join does not lack any of this shared
ranking informa tion, making subroutine (40) optimal. The crux of
Merchant’s subroutine is its time complexity. Merchant (2008: ch. 4)
develops an elegant algorithm for computing the join which can be used
to implement line 5. Unfortunately, his algorithm needs to compute the
fusional closure of each of the input ERC matrices it has to join. Although
there are no results that I am aware of concerning the time complexity of
that computation, it is most plausibly intractable in the general case.

4 Extension to contrast pairs
4.1 Description of the subroutine. The extension of Merchant’s subroutine
(40) to contrast pairs is provided in (41). This subroutine takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex, and a paradigm
p (line 1). The subroutine considers some contrast pair (line 2). For concrete-
ness, I am assuming here that the two meaning combinations of the contrast
pair share the su!x meaning, i.e. have the shape Mm and Ôm (the case
where they share the root meaning is handled analogously). The
subroutine reads o‰ the paradigm p the surface realisations Xx and ∑π of
those two meaning combinations (line 3). Although x and π are the surface
realisations of the same underlying su!x segment corresponding to the
su!x meaning m, they can be di‰erent, because of morphophonem ic
alternations in the surface realisation of that underlying su!x triggered by
the two di‰erent roots M and Ô. The subroutine then constructs the set
" of all pairs (Aa, ∫a) of underlying concatenations which are consistent
with the lexicon Lex as underlying forms for the meaning combinations
Mm and Ôm and furthermore share the underlying su!x segment a (line
4). The latter requirement encodes the fact that we are focusing on a pair
of meaning combinations Mm and Ôm which share the su!x meaning m.
For each pair (Aa, ∫a) of underlying concatenations in ", the subroutine
considers the corresponding ERC blocks ù(Aa, Xx) and ù(∫a, ∑π), stacks
them together into the ERC matrix ù(Aa, Xx)+ù(∫a, ∑π) and constructs
the join of all ERC matrices thus obtained (line 5). The input ERC matrix
ù is updated by adding this join to it (line 6). The ERC matrix thus updated
is then returned (line 7).

There is a subtlety which should be pointed out here. At line 5, the subroutine
considers the join in (42a), not the one in (42b). The di‰erence is that in
(42a) we sum together the two ERC blocks ù(Aa, Xx) and ù(∫a, ∑π) into
ù(Aa, Xx)+ù(∫a, ∑π) before taking the join. This is indeed appropriate,
because the join in (42a) is stronger than the one in (42b), by Lemma 3.ii.

(42) ∑{ù(Aa, Xx)+ù(∫a, ∑π) | (Aa, ∫a)Œ"}a.
∑{ù(Aa, Xx), ù(∫a, ∑π) | (Aa, ∫a)Œ"}b.

4.2 Analysis of the subroutine. The Correctness Lemma 4 trivially extends
from the original subroutine (40) for single meaning combinations to the
variant (41) for contrast pairs. The ine!ciency of (40) for single meaning
combinations is of course aggravated in (41) for contrast pairs, as the latter
requires taking the join of a larger number of larger ERC matrices. Yet
subroutine (41) applied to the contrast pair (Mm, Ôm) is able to extract
more ranking information than the double applica tion of the original
subroutine (40) to the two separate meaning combinations Mm and Ôm.
To see this, suppose that the root meaning M admits a unique underlying
form A consistent with Lex, the root meaning Ô admits a unique under-
lying form ∫ and the su!x meaning m admits only two underlying forms,
a1 and a2. Suppose we first apply the original subroutine (40) to the meaning
combination Mm. At line 4, it constructs the set " consisting of the two
underlying forms Aa1 and Aa2. At line 5, it computes the join ∑(ù1, ù2)
of the two ERC blocks ù1=ù(Aa1, Xx) and ù2=ù(Aa2, Xx). Suppose
we next apply the original subroutine (40) to the meaning combination
Ôm. At line 4, it constructs the set ", consisting of the two underlying
forms ∫a1 and ∫a2. At line 5, it computes the join ∑(π1, π2) of the two
ERC blocks π1=ù(∫a1, ∑π) and π2=ù(∫a2, ∑π). Ultimately, the two
consecutive applications of the original subroutine (40) to the two meaning
combinations Mm and Ôm extract the ranking information captured by
the sum of the two joins in (43).

Suppose we instead apply subroutine (41) to the contrast pair (Mm, Ôm).
At line 4, it constructs the set ", consisting of the two pairs (Aa1, ∫a1) and
(Aa2, ∫a2). At line 5, it computes the join in (45) of the two ERC blocks
ù(Aa1 , Xx)+ù(∫a1, ∑π)=ù1+π1 and ù(Aa2 , Xx)+ù(∫a2, ∑π) =
ù2+π2.

(45) ∑(ù1+π1, ù2+π2)

The join in (45) is stronger than the one in (44), because it joins fewer
matrices (the smaller the number of matrices, the larger the amount of
shared information for the join to extract). This is because the two blocks
ù1+π2 and ù2+π1 have disappeared from the join. This is what we want,
as they correspond to the unreasonable assumption that the su!x m has
di‰erent underlying forms in the two meaning combinations Mm and Ôm.
In other words, since the learner is processing the two meaning combinations
Mm and Ôm together as a contrast pair, it is able to take into account the
fact that these meaning combinations share the su!x meaning m, which
must therefore have the same underlying form in the two cases.

5 A subroutine for extracting lexical information through
inconsistency detection

5.1 Description of the subroutine. Subroutine (46) takes as input some
lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine then considers a certain
meaning combination Mm with some feature unset according to the input
partial lexicon Lex for either the root M or the su!x m (line 2). The goal
of the subroutine is to try to extend the input partial lexicon by setting
some of these unset features. To this end, the subroutine reads o‰ the
paradigm p the surface realisation Xx of the meaning combination Mm
(line 3). It constructs the set " of all underlying concatenations Aa which
are consistent with both the input lexical information Lex and the input
ranking information captured by the grammar G (or the ERC matrix ù)
(line 4). Consistency with the input lexical information means that, if Lex
sets a feature for the root M (or the su!x m) to a certain value, then the
root morpheme A (or the su!x morpheme a) of each underlying form Aa
in " has the feature set to that value. Consistency with the input ranking
information means that the input grammar G (or the input ERC matrix ù)
is consistent with the mapping (Aa, Xx) of each such underlying form Aa
in " to the surface form Xx. The subroutine then looks for a feature which
is unset by Lex for the root meaning M (or the su!x meaning m), such that
each root morpheme A (or each su!x morpheme a) has the same value for
that feature in all underlying concatenations Aa in " (line 5). For any such
feature, it can be concluded that the opposite value is inconsistent with the
available lexical and ranking information. The subroutine thus updates the
partial lexicon Lex by setting that feature to be equal to its constant value

(46) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that:
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G (or

the ERC matrix ù)
if some feature unset for the root M (or for the su!x m) has a

constant value over " for M (for m) then
update the lexicon Lex by setting the feature to that value for

the root M (or for the su!x m)
end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.
8.

This subroutine is called inconsistency detection (cf. Kager 1999, Tesar
et al. 2003, Tesar 2006), because it sets a certain feature to a certain value
based on the detection at line 6 of the fact that any other value for that
feature would be inconsiste nt with the availab le lexical and ranking
information.

Proof. Assume by contradiction that the lemma is false. This means
that the subroutine has set some feature j for, say, the root meaning
M to a value which is di‰erent from the value assigned by the target
lexicon. For concreteness, assume that the values assigned by the
subroutine and the target lexicon are + and — respectively. Thus , the
target lexicon assigns to the meaning combination Mm an underlying
form Aa, which has feature j set to the value — in the root A. This
underlying form Aa is consistent with the partial lexicon Lex (because
it is consistent with the target lexicon, which is in turn consistent with
Lex). Furthermore, the mapping (Aa, Xx) of this underlying form Aa
to the surface form Xx is consistent with the input grammar G (because
the target ranking is consistent with both). In other words, this
underlying form Aa satisfies the two conditions stated by the two
subclauses in line 4 and thus belongs to the set " constructed by the
subroutine. Since this underlying form Aa has feature j set equal to
— for the root A, then the subroutine cannot have set that feature to
the opposite value + at line 6.

5.2 Analysis of the subroutine. Lemma 5 provides a straightforward correct-
ness result for inconsistency detection (46). Its time complexity is controlled
by the size of the set " of consistent underlying forms constructed at line 4.
In the worst case (when both the input lexicon and the input ranking
information are empty), " consists of all underlying forms, i.e. all con-
catenations of root and su!x morphemes. In this case, the size of " grows
polynomially in the number of morphemes and thus exponentially in the
number of features. In conclusion, subroutine (46) is e!cient relative to
the generous notion of e!ciency defined in (14), which measures time
complexity in terms of the number of morphemes, but is not e!cient
relative to the more demanding notion of e!ciency defined in (15), which
measures time complexity in terms of the number of features.

Lemma 5
Inconsistency detection (46) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target grammar, that the input (possibly partial)
grammar G (or ERC matrix ù) is consistent with the target grammar

6 Extension to contrast pairs
6.1 Description of the subroutine. The extension of inconsistency detection
(46) to contrast pairs is provided in (47). This subroutine takes as input
some lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine considers a particular
contrast pair (line 2). For concreteness, I am assuming here that the two
meaning combinations of the contrast pair share the su!x meaning, namely
have the shape Mm and Ôm (the case where they share the root meaning
is handled analogously). The subroutine reads o‰ the paradigm p the surface
realisations Xx and ∑π of those two meaning combinations (line 3). It
constructs the set " of all pairs (Aa, ∫a) of underlying concatenations which
are consistent with both the input lexical information Lex and the input
ranking information G (or ù) and furthermore share the underlying su!x
segment a (line 4). The subroutine then looks for a feature which is unset
by Lex for the root meaning M (or the root meaning Ô or the su!x meaning
m), such that each underlying root morpheme A (or each underlying root
morpheme ∫ or each underlying su!x morpheme a) has the same value
for that feature in all pairs (Aa, ∫a) in " (line 5). For any such feature, the
subroutine updates the partial lexicon Lex by setting the feature equal to
its constant value for the root meaning M (or for the root meaning Ô or
for the su!x meaning m) (line 6). The lexicon thus updated is then returned
(line 8).

(47) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G (or
the ERC matrix ù)

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

- the mapping (∫a, ∑π) is consistent with the grammar G
if some unset feature has a constant value over " for any of the three

meanings M, Ô or m then
update the lexicon Lex by setting the feature to the constant

value for that meaning
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.
8.

6.2 Analysis of the subroutine. The Correctness Lemma 5 trivially extends
from the original subroutine (46) for single meaning combinations to the
variant (47) for contrast pairs. Furthermore, the variant for contrast pairs
remains as e!cient as the original version for single meaning combinations,
when e!ciency is generously measured in terms of the number of morphemes
(but again, not when it is measured in terms of the number of features).
Yet a number of authors (including Alderete et al. 2005 and Merchant &
Tesar 2008) have pointed out that (47), applied to the contrast pair (Mm,
Ôm), can extract more lexical information than the double application of
the original subroutine (46) to the two separate meaning combinations Mm
and Ôm. To see this, consider one of the two meaning combinations of the
contrast pair, say Mm. The original subroutine considers all underlying
forms Aa for Mm which are consistent with the input lexical and ranking
information, and only sets those features which are constant across all these
underlying forms. If the number of consistent underlying forms is large,
the number of features which are constant across them is small, and the
subroutine thus extracts little lexical information. (47) might instead be
able to extract more lexical information, because it looks for features which
are constant over a smaller set of underlying forms for Mm, namely those
underlying forms Aa which are not only consistent with the input lexical
and ranking information, but also use a su!x morpheme a which can be
combined with a root morpheme ∫ into an underlying form ∫a for Ôm
which is also consistent with the input lexical and ranking information.

I denote Tesar’s subroutine (29) for the extraction of ranking information
from a single meaning combination as ERIT, and Merchant’s subroutine
(40) as ERIM. Lemma 6 states that, if the underlying typology is output-
driven, then ERIT and ERIM are equivalent, because they update the
current ranking/grammatical information with the ‘same’ information. This
equivalence is striking, given that the time complexity of ERIT is only
linear in the number of features, while the time complexity of ERIM is
unknown, but probably exponential in both the number of features and the
numbe r of morphemes. Output-drivenne ss thus a‰ords a significa nt
reduction in time complexity. The Correctness Lemma 1 for ERIT (which
was proven directly in §4.4) can also be made to follow from the Correctness
Lemma 4 for ERIT through the Equivalence Lemma 6.

1 Subroutines for extracting ranking information from a single
meaning combination

Proof. The underlying form Bb constructed by ERIT at line 4 is
consistent with Lex, and therefore belongs to the set " constructed by
ERIM at line 4. Consider one of the underlying forms Aa in this set ".
The two underlying forms Aa and Bb agree in every feature which is
set by the input partial lexicon Lex. Furthermore, Bb and the surface
form Xx agree in every remaining feature. Thus the underlying form
Bb is more similar to the surface form Xx than is the underlying form
Aa. Since the underlying typology is output-driven, then every ranking
which maps the less similar underlying form Aa to Xx also maps the
more similar underlying form Bb to Xx. In other words, any ranking
consistent with the ERC block ù(Aa, Xx) is also consistent with the
ERC block ù(Bb, Xx). Lemma 3.i thus ensures that the ERC block
ù(Bb, Xx) is the join of the ERC blocks ù(Aa, Xx) across all underlying
concatenations Aa in ".

Lemma 6
Suppose that the underlying typology is output-driven and that ERIT

is fed with a partial grammar G and a (possibly partial) lexicon Lex.
Suppose that ERIM is fed with the ERC matrix ù corresponding to
the partial grammar G and the same lexicon Lex. Then the ERC block
corresponding to the mapping (Bb, Xx) constructed by ERIT at line
4 is the join of the ERC blocks ù(Aa, Xx) corresponding to the
underlying forms Aa in " constructed by ERIM at line 5.

between the two implementations is the following: Merchant’s original
subroutine (46) sets any feature which is constant over "; the variant in (48)
instead focuses right from the beginning on a specific feature j, which is
unset for either the root M or the su!x m of the meaning combination Mm
under consideration. In line 3, I am assuming for concreteness that the
feature j is unset for the root M (the case where it is unset for the su!x m
is handled analogously). The modification is only cosmetic: the original
subroutine is equivalent to running this variant for each unset feature.

(48) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a meaning combination Mm in the paradigm p
Require: a feature j unset by Lex for either M or m; for concreteness,

say it is unset for M
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G

if all underlying forms Aa in " have the feature j set to the same
value in the root morpheme A then

update the lexicon Lex by setting the feature j to that value for
the root meaning M

end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.

8.
9.

I denote Tesar’s subroutine (33) for the extraction of lexical information
from a single meaning combination by ELIT, and (the cosmetic variant of)
the original inconsistency detection subroutine (48) by ELIid. Lemma 6
states that, if the underlying typology is output-driven, ELIT and ELIid

are equival ent, because their if-claus es at line 6 are equivalent. This
equivalence is striking, given that the if-clause of ELIT can be checked in
time linear in the number of features, while the if-clause of ELIid requires
time exponential in the number of features in the worst case. Output-
drivenness has thus a‰orded a significant reduction in time complexity.
The Correctness Lemma 2 for ELIT (which was proven directly in §4.5)
can also be made to follow from the Correctness Lemma 4 for ELIid through
the Equivalence Lemma 7.

Proof. To start, let me prove that the if-clause in line 6 of ELIT entails
the if-clause in line 6 of ELIid . Assume by contradiction that the
former if-clause is true while the latter if-clause is false. The hypothesis
that the if-clause of ELIid is false entails in particular that the set " of
consistent underlying forms constructed by ELIid at line 5 contains
an underlying form Aa whose root A disagrees with X relative to the
feature j (indeed, if all the underlying forms Aa in " had a root A
which agreed with X relative to j, the if-clause of ELIid would hold
true). The underlying form Aa and the underlying form Bb constructed
by ELIT at line 5 thus agree in the feature j for the root meaning M,
as they both have the opposite value from X. Furthermore, they agree
in every feature set by the partial lexicon Lex, because they are both
consistent with Lex. Finally, Bb agrees with Xx for every remaining
feature. The underlying form Bb is thus more similar to the surface
form Xx than is the underlying form Aa. Since the mapping (Aa, Xx)
is consistent with G (because Aa belongs to "), there exists a ranking
which is consistent with both. Since the grammar corresponding to
that ranking is output-driven and maps the less similar underlying
form Aa to Xx, it also maps the more similar underlying form Bb to
Xx. In other words, that ranking is also consistent with the mapping
(Bb, Xx). In conclusion, the mapping (Bb, Xx) and the grammar G
are consistent (because both are consistent with the ranking), contra-
dicting the hypothesis that the if-clause of ELIT is true.

Vice versa, let me prove that the if-clause in line 6 of ELIid entails
the if-clause in line 6 of ELIT. Assume by contradiction that the
former if-clause is true, while the latter if-clause is false. The hypothesis
that the if-clause of ELIT is false means that the input (partial) grammar
G is consistent with the mapping (Bb, Xx) of the underlying form Bb
constructed by ELIT at line 5 to the surface form Xx. Since this
underlying form Bb is consistent with Lex, then Bb belongs to the set
" of consistent underlying forms constructed at line 5 by ELIid. Since
B and X disagree relative to the feature j, consider the underlying
form ≥b, identical to Bb but for the fact that ≥ and X instead agree in
the feature j. Obviously, the underlying form ≥b is more similar to
the surface form Xx than is the underlying form Bb. Since (Bb, Xx)
is consistent with G, there exists a ranking which is consistent with
both. Since the grammar corresponding to that ranking is output-
driven and maps the less similar underlying form Bb to Xx, then it
also maps the more similar underlying form ≥b to Xx. In other words,
that ranking is also consis tent with the mapping (≥b, Xx). This
underlying form ≥b thus belongs to the set " constructed by ELIid at
line 5.This conclusion contradicts the hypothesis that the if-clause of
ELIid holds, because it shows that " contains two underlying forms
Bb and ≥b, such that B and ≥ disagree in the feature j.Lemma 7

Suppose that the underlying typology is output-driven. Then the two
if-clauses in line 6 of ELIT and ELIid are equivalent.

Tesar’s subroutine for extracting lexical information from contrast pairs
is more involved than his other two subroutines, for extracting lexical and
ranking information from a single meaning combination. For this reason,
the latter two subroutines were reviewed in §4.4 and §4.5, while the former
subroutine is included in this appendix. Here I start out from Merchant’s
subroutine in (47) for extracting lexical information from contrast pairs,
and work towards Tesar’s reformulation, provided below in (52). This
seems to me the best way of making sense of the somewhat complex
formulation of Tesar’s subroutine. I begin by carrying out the same cosmetic
change as in the previous section: I replace the original subroutine (47)
with (49), which only di‰ers because line 3 focuses on a specific feature j,
unset by the input lexicon Lex for one of the three meanings M, Ô and m
of the contrast pair (Mm, Ôm). For concreteness, I assume it is unset for
the root meaning M.

3 Subroutines for extracting lexical information from a contrast
pair

Supplementary materials 1716 Giorgio Magri

(49) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫a, ∑π) is consistent with the grammar G

if all the pairs (Aa, ∫a) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.
9.

the two underlying su!x morphemes a and ¥ coincide, because they are
the underlying form corresponding to the same su!x meaning m. The
condition that a and ¥ coincide is in turn equivalent to the condition that
they agree for each feature y. We could of course relax this condition by
requiring that the two underlying su!x morphemes a and ¥ agree only for
certain features, y1, ..., yn. This intuition leads to the formulation in (50).
It di‰ers from (49) only because of the new line 4, which introduces the
features y1, ..., yn, and because of the additional fifth subclause in the
definition of the set ". Note that line 4 assumes all the features y1, ..., yn

to be unset by the input partial lexicon Lex for the shared su!x m, because
the condition that both a and ¥ are consistent with Lex as underlying forms
for m already entails that they agree on every feature set by Lex for m.

(50) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫¥) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ agree for every

feature y1, ..., yn

if all the pairs (Aa, ∫¥) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

combinations Mm and Ôm one at a time. If instead we consider all unset
y features at line 4, then (50) e‰ectively considers only pairs of underlying
forms for the two meaning combinations which share the underlying su!x,
and is therefore equivalent to the original subroutine (49) for extracting
lexical information from contrast pairs. In the end, depending on the
number of y features considered at line 4, (50) provides a whole range of
subroutines for extracting lexical information in between the weaker (46)
and the stronger (49).

Subroutine (50) can be equivalently restated as (51). Instead of requiring
the two su!x morphemes a and ¥ to coincide for every feature y1, ..., yn,
we consider all possible combinations v1, ..., vn of values of those features
at line 6, and we require both a and ¥ to have those features set equal to
those values in the fifth subclause of line 5.

(51) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫¥ is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ both have the

values v1, ..., vn for the features y1, ..., yn

if all the pairs (Aa, ∫¥) in all the sets "(v1, ..., vn) have the underlying
root A set to the same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

Supplementary materials 1918 Giorgio Magri

By reasoning as in the previous subsection we can easily show that subroutine
(51) is equivalent to (52) under the assumption of output-dr ivenness.
Indeed, the two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn con-
structed by (52) at line 6 provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (51).

(52) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and
±≤v1, …, vn, as follows:

- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-
lying forms for Mm and Ôm

- B has the opposite value for feature j than X
- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values

v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
if the grammar G is inconsistent with the two mappings (Bbv1, …, vn,

Xx) and (±≤v1, …, vn, ∑π) for any combination of values v1, ..., vn

then
update the lexicon Lex by setting feature j to that constant value

for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

If the features y1, ..., yn considered in line 4 of (52) exhaust the set of
features, then the two subroutines (49) and (52) are equivalent. However,
the running time of (52) is exponential in the number of features in the
latter case, because it needs to consider all combinations v1, ..., vn.

By reasoning as in the previous subsection, we can proceed from Merchant’s
original subroutine (41) for extracting ranking information from contrast
pairs to the variant in (53).

4 Subroutines for extracting ranking information from a contrast
pair

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫¥ is consistent with the lexicon Lex as an underlying form
for Ôm

- the two underlying su!x morphemes a and ¥ both have the
values v1, ..., vn for the features y1, ..., yn

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫¥) in "(v1, ..., vn) for all combinations of values
v1, ..., vn

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.

7.
8.

20 Giorgio Magri

Once again, if we do not consider any y features at line 3, (53) e‰ectively
considers the two meaning combinations of the contrast pair independently
of each other, and thus ends up equivalent to subroutine (40) for extracting
lexical information from single meaning combinations. If we instead consider
all unset y features at line 3, then (53) e‰ectively only considers pairs of
underlying forms for the two meaning combinations which share the
underlying su!x, and is therefore equivalent to Merchant’s original
subroutine (41) for extracting lexical information from contrast pairs.
Ultimately, depending on the number of y features considered at line 3,
(53) provides a whole range of subroutines for extracting ranking information
in between the weaker (40) and the stronger (41).

By reasoning as in §2 of this appendix, we can easily show subroutine
(53) to be equivalent to (54) under the assumption of output-drivenness.
The two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn constructed
by (54) at line 5 again provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (53).

(54)

- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values
v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
compute the join of the ERC matrices ù(Bbv1, …, vn, Xx)+

ù(±≤v1, …, vn, ∑π) for all combinations of values v1, ..., vn

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

6.

7.
8.

Take the simplest case, where we consider a single feature y at line 3.
Assume furthermore that y is binary, i.e. it only takes the values v=‘+’ and
v=‘—’. At line 5, the subroutine constructs the two underlying forms Bb+
and ±≤+, corresponding to the value v=‘+’of feature y (i.e. both b+ and ≤+
have the value ‘+’ for the feature y), and the two underlying forms Bb— and
±≤—, corresponding to the value v=‘—’ (i.e. both b— and ≤— have the value
‘—’ for the feature y). At line 6, we finally compute the join of the two ERC
blocks ù(Bb+, Xx)+ù(±≤+, ∑π) and ù(Bb—, Xx)+ù(±≤—, ∑π). Even in
the simplest case of a single feature y, there is no way around computing
the join.

In summary, Merchant develops a new subroutine for extracting ranking
information through the notion of join. This subroutine can be applied to
either a single meaning combination at a time, as in (40); or to a contrast
pair, as in (41). The latter is more powerful than the former: the subroutine
extracts more ranking information by processing the two meaning
combinations Mm and Ôm as a contrast pair than by processing them
separately. The crux of Merchant’s subroutine for extracting ranking
information is that it relies on the computation of a join, which is time-
consuming. The biggest impact of output-drivenness is that it allows
Merchant’s subroutine for extracting ranking information from a single
meaning combination to be restated without having to compute any join.
The restated subroutine thus runs in time linear in the number of features.
In other words, it is e!cient even relative to the more demanding notion
of e!ciency introduced in §2.6. The situation is unfortunately very di‰erent
when Merchant’s subroutine for extracting ranking information is boosted
by being applied to contrast pairs. In this case, output-drivenness is not
able to circumvent the computation of the join, and thus does not su!ce
to make the subroutine e!cient.

A constraint ranking is consistent with an ERC provided it satisfies con-
dition (36); it is consistent with an ERC matrix provided it is consistent
with each of its rows. An ERC matrix entails another ERC matrix provided

(38)Id
[str]
Id
[length]
Main-
L
Main-
R
No
Long
WSP

w
w

w
w
w
w

w
w
w
w

l
l
l
l

l

w
l

w

/’pa:’ka/, [’pa:ka], [pa’ka]
/’pa:’ka/, [’pa:ka], [pa’ka:]
/’pa:’ka/, [’pa:ka], [pa:’ka]
/’pa:’ka/, [’pa:ka], [pa:’ka:]
/’pa:’ka/, [’pa:ka], [’paka]
/’pa:’ka/, [’pa:ka], [’paka:]
/’pa:’ka/, [’pa:ka], [’pa:ka:]

w
w

w
w

Lemma 3
Suppose that one of the ERC matrices ù1, ù2, …, Rn is entailed
by each of the others. For concreteness, assume that it is ù1 which
is entailed by each of the other ERC matrices ù2, …, Rn. Then
ù1 is the join of ù1, ù2, …, Rn.

(i)

Given the ERC matrices ù1, ù2, ù3, …, Rn, replace two of them
with the ERC matrix obtained by stacking the two matrices one
on top of the other. For concreteness, replace ù1 and ù2 with
ù1+ù2. Then the join of the n®1 ERC matrices ù1+ù2, ù3,
…, Rn entails the join of the original n ERC matrices ù1, ù2, ù3,
…, Rn, while the reverse does not in general hold.

(ii)

compute the join of the ERC matrices ù(Aa, Xx) for all underlying
forms Aa in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.
7.

Proof. Let Aa be the underlying form assign ed to the meanin g
combination Mm by the target lexicon. This underlying form Aa
belongs to the set " constructed by the subroutine at line 4, because
of the hypothesis that the input lexicon Lex is consistent with the
target lexicon. Thus the corresponding ERC block ù(Aa, Xx) is one
of the blocks that the subroutine takes the join of at line 5. Since the
target ranking is consistent with this ERC block ù(Aa, Xx), then it
is also consistent with the join, by property (39a) of the join. Since the
target ranking is also consistent with the input ERC matrix ù, it is

Lemma 4
Merchant’s subroutine (40) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target ranking, that the input ERC matrix ù is
consistent with that target ranking, and that the input (possibly partial)
lexicon Lex is consistent with that target lexicon. The updated ERC
matrix returned by subroutine (40) is also consistent with that target
ranking.

then consistent with the updated ERC matrix returned by the sub-
routine.

(41) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫a) in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

1.

2.

3.

4.

5.

6.
7.

(43) ∑(ù1, ù2)+∑(π1, π2)

Lemma 3.iii ensures that (43) is equivalent to the join in (44). The four
ERC matrices being joined here correspond to all four combinations of
underlying forms for the two meaning combinations Mm and Ôm. In
particular, the learner is also joining together the two ERC blocks ù1+π2

and π2+ù1, whereby the shared su!x meaning m is assigned a di‰erent
underlying form in the case of Mm than in the case of Ôm. In other words,
since the learner is processing the two meaning combinations Mm and Ôm
separately, it is blind to the fact that these meaning combinations share the
su!x meaning m, which must therefore have the same underlying form in
both cases.

(44) ∑(ù1+π1, ù1+π2, ù2+π1, ù2+π2)

for the root meaning M (or for the su!x meaning m) (line 6). The lexicon
thus updated is then returned (line 8).

and that the input partial lexicon Lex is consistent with the target
lexicon. The updated lexicon returned by subroutine (46) is also
consistent with that target lexicon.

2 Subroutines for extracting lexical information from a single
meaning combination

Consider the slight variant (48) of the subroutine (46) for the extraction of
lexical information through inconsistency detection. The only di‰erence

The modification is only cosmetic: the original subroutine (47) is equivalent
to running this variant (49) for each feature which is unset for one of the
three morphemes M, Ô and m.

The set " constructed by the subroutine (49) at line 5 can equivalently
be described as the collection of all pairs (Aa, ∫¥) which satisfy the conditions
expressed by the four subclauses of line 5 plus the additional condition that

If we consider no y features at all in line 4, then (50) e‰ectively considers
the two meaning combinations of the contrast pair independently of each
other, and thus ends up equivalent to subroutine (46) for extracting lexical
information from single meaning combinati ons, in the sense that the
application of subroutine (50) to the contrast pair (Mm, Ôm) is equivalent
to two consecutive applications of subroutine (46) to the two meaning

Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and ±≤v1,

…, vn as follows
- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-

lying forms for Mm and Ôm

1.

2.

3.

4.

5.

(53) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

1.

2.

3.

4.

Phonology 25.2: Artwork 1 of

Supplementary materials 72Giorgio Magri

every ranking consistent with the former is also consistent with the latter.
Thus ù1+ù2 entails both ù1 and ù2.

(36)At least one constraint which has a w in the ERC under consideration
is ranked above every constraint which instead has an l (constraints
which have an e play no role in the consistency condition).

2The join

4Giorgio Magri

Grammatical information was represented in §4.1.2 as a (possibly partial)
collection G of mappings (Aa, Xx) of an underlying form Aa to a surface
form Xx. Each of these mappings can be equivalently represented with the
corresponding ERC block ù(Aa, Xx). And the grammatical information
G can thus be represented with the ERC matrix obtained by stacking all
these blocks one of top of the other. Merchant’s CPR adopts the architecture
in (28), the only di‰erence being that the current partial grammatical
information is represented not as a partial grammar G but as an ERC matrix
ù. This makes the algorithm more flexible in the type of partial grammatical
information it maintains: any (partial) grammar G can be represented
through the corresponding ERC matrix, while not just any ERC matrix ù
corresponds to some partial collection of mappings. This additional flexibility
in the data structure maintained by the algorithm is crucial in order to
define the subroutine for extracting ranking information, as explained in
the next section.

Supplementary materials5 6 Giorgio Magri 8 Giorgio Magri Supplementary materials 9 10 Giorgio Magri

Appendix B: Equivalence between Merchant’ s and Tesar’s sub-
routines

Supplementary materials 11 12 Giorgio Magri Supplementary materials 13

Appendix A: Merchant’s (2008) CPR

Phonology 31 (2014). Supplementary materials

Review article

Giorgio Magri
CNRS, Université Paris 8 and University of Utrecht

Supplementary materials

This appendix sketches Merchant’s (2008) CPR algorithm. In §1, I explain
how CPR adheres to the architecture in (28), only with a more abstract
representation of the current partial ranking information in terms of ERCs.
I then review CPR’s subroutines for extracting ranking and lexical infor-
mation. I start from the easier case, where they are applied to a single
paradigmatic entry (§3 and §5), and then turn to the extension to contrast
pairs (§4 and §6).

1ERCs and CPR’s architecture
An elementary ranking condition (ERC) is an assignment of one of the
three symbols l, w and e to each of the constraints in the constraint set
(Prince 2002). An ERC is usually represented as a row of these symbols,
with the constraints annotated on top. To illustrate, an ERC for the constraint
set (5) of the Paka typology is provided in (35). An ERC matrix is a finite
collection of ERCs, stacked one on top of the other (the order does not
matter). An arbitrary ERC matrix is denoted by ù. Given two ERC matrixes
ù1 and ù2, ù1+ù2 denotes the ERC matrix obtained by stacking one on
top of the other (the order does not matter).

14 Giorgio Magri Supplementary materials 15

Bruce Tesar (2014). Output-driven phonology: theory and learning. (Cam-
bridge Studies in Linguistics 139.) Cambridge: Cambridge University
Press. Pp. xix+415.

(35)
e
Id[str]Id[length]Main-LMain-RNoLongWSP
wwlle|

The phonological underpinning of these notions is as follows. Consider the
mapping (Aa, Xx) of an underlying form Aa to a surface form Xx, which
is thus construed as the winner. For any other loser candidate Yy, consider
the ERC defined in (37). Stack all the ERCs thus constructed for all loser
candidates one on top of the other into an ERC matrix, denoted by ù(Aa,
Xx). Then the OT grammar corresponding to a ranking maps the under-
lying form Aa to the surface form Xx if and only if that ranking is consistent
with the ERC matrix ù(Aa, Xx) corresponding to that mapping.

(37)A constraint has a w provided it prefers the winner mapping (Aa,
Xx) to the loser mapping (Aa, Yy), i.e. it assigns fewer violations
to the former mapping than to the latter.

a.

A constraint has an l provided it instead prefers the loser mapping
(Aa, Yy) to the winner mapping (Aa, Xx), i.e. it assigns fewer
violations to the former mapping than to the latter.

b.

A constraint has an e provided it has no preference for one of the
two mappings (Aa, Xx) and (Aa, Yy), i.e. it assigns the same number
of violations to both.

c.

To illustrate, consider the Paka typology in §2.1 of the paper, focusing on
the mapping (/’pa:’ka/, [’pa:ka]) of the underlying form /’pa:’ka/ to the surface
form [’pa:ka]. The ERC matrix ù(/’pa:’ka/, [’pa:ka]) corresponding to this
mapping is provided in (38). It consists of seven ERCs, because there are
seven loser candidates. For convenience, each ERC is annotated on the left
with the corresponding underlying, winner and loser forms (loser forms
are struck through). The topmost ERC in (38) says that the winner mapping
(/’pa:’ka/, [’pa:ka]) beats the loser mapping (/’pa:’ka/, [pa’ka]), provided at
least one of the two winner-preferring constraints Ident[length] or Main-
L is ranked above the two loser-preferring constraints Main-R and NoLong.

Supplementary materials3

The join of some ERC matrices ù1, …, ùn is any ERC matrix which satisfies
the two conditions in (39). Any such ERC matrix will be denoted by ∑(ù1,
…, ùn). Condition (39a) says that the join is weaker than (i.e. entailed by)
each matrix ù1, …, ùn. Condition (39b) says that, among all ERC matrices
which are weaker than (i.e. entailed by) each matrix ù1, …, ùn, the join is
a strongest one (i.e the one which entails all the others). In other words,
condition (39a) says that the join captures some of the ranking information
shared by the matrices ù1, …, ùn, and condition (39b) says there is no
shared ranking information which the join does not capture.

(39)Each of the ERC matrices ù1, …, ùn entails their join.a.
If each of the ERC matrices ù1, …, ùn entails some ERC matrix
ù, their join entails ù as well.
b.

Lemma 3 collects some properties of the join which will be used in the rest
of this appendix.

Proof. An ERC matrix ∏ is the join of two ERC matrixes ù1 and ù2
if and only if the set of rankings consistent with ∏ is the union of the
two sets of rankings consistent with ù1 and ù2. Furthermore, the set
of rankings consistent with ù1+ù2 is the intersection of the two sets
of rankings consistent with ù1 and ù2. Claims (i)–(iii) then follow
from elementary set-theoretic manipulations on the sets of consistent
rankings.

Given four ERC matrices ù1, ù2, π1, π2, consider the ERC
matrix ∑(ù1, ù2)+∑(π1, π2) obtained by stacking one on top of
the other the join of ù1 and ù2 and the join of π1 and π2. Then
∑(ù1, ù2)+∑(π1, π2) coincides with the join of the four ERC
matrices ù1+π1, ù1+π2, ù2+π1, ù2+π2.

(iii)

3A subroutine for extracting ranking information through the join
3.1 Description of the subroutine.The subroutine in (40) takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex and a paradigm
p (line 1). It extends the ranking information encoded in the input ERC
matrix ù by adding to that input ERC matrix some additional ERCs as
follows. The subroutine considers a certain meaning combination Mm (line
2), and it reads o‰ the paradigm p the surface realisation Xx of that meaning
combination Mm (line 3). The subroutine then constructs the set " of all
underlying concatenations Aa which are consistent with the lexicon Lex as
underlying forms for that meaning combination Mm (line 4). This means
that if Lex sets a feature for the root M or the su!x m to a certain value,
then the root morpheme A or the su!x morpheme a of each underlying
form Aa in " has the feature set to that value. Any of these underlying
forms in " could be the actual underlying form according to the partial
lexical information encoded by Lex. In other words, the target grammar
could enforce any of the mappings (Aa, Xx) of any underlying form Aa in
" to the surface form Xx. Thus the best the subroutine can do is to extract
any ranking information shared by all these mappings. This is done by
computing the join of all ERC blocks ù(Aa, Xx) corresponding to all
mappings (Aa, Xx) of all underlying forms Aa in " to the surface form Xx
(line 5). The input ERC matrix ù is updated by adding this join to it (line
6). The ERC matrix thus updated is returned (line 7).

(40)Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p
Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm
o‰ the paradigm p
construct the set " of all concatenations Aa consistent with Lex as
underlying forms for Mm

1.

2.
3.

4.

The join of the ERC blocks ù(Aa, Xx) computed at line 5 is an ERC-
theoretic construct which might very well not correspond, in the sense of
(37), to any mapping of an underlying form to a surface form. For this
reason, CPR needs the additional flexibility of representing the current
(partial) grammatical/ranking information as an ERC matrix rather than
as a (partial) grammar. Appendix B: §1 shows that output-drivenness in
e‰ect guarantees that the join computed in line 5 always corresponds to the
mapping of a certain underlying form to the surface form Xx read at line
3.

3.2 Analysis of the subroutine.Lemma 4 provides a straightforward correct-
ness result for Merchant’s subroutine (40). Note that the proof only uses
property (39a) of the join, not property (39b). In other words, the lemma
hinges only on the fact that the join extracts ranking information which is
shared by all the ERC blocks ù(Aa, Xx). Property (39b) is nonetheless
crucial, because it ensures that the join does not lack any of this shared
ranking informa tion, making subroutine (40) optimal. The crux of
Merchant’s subroutine is its time complexity. Merchant (2008: ch. 4)
develops an elegant algorithm for computing the join which can be used
to implement line 5. Unfortunately, his algorithm needs to compute the
fusional closure of each of the input ERC matrices it has to join. Although
there are no results that I am aware of concerning the time complexity of
that computation, it is most plausibly intractable in the general case.

4 Extension to contrast pairs
4.1 Description of the subroutine. The extension of Merchant’s subroutine
(40) to contrast pairs is provided in (41). This subroutine takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex, and a paradigm
p (line 1). The subroutine considers some contrast pair (line 2). For concrete-
ness, I am assuming here that the two meaning combinations of the contrast
pair share the su!x meaning, i.e. have the shape Mm and Ôm (the case
where they share the root meaning is handled analogously). The
subroutine reads o‰ the paradigm p the surface realisations Xx and ∑π of
those two meaning combinations (line 3). Although x and π are the surface
realisations of the same underlying su!x segment corresponding to the
su!x meaning m, they can be di‰erent, because of morphophonem ic
alternations in the surface realisation of that underlying su!x triggered by
the two di‰erent roots M and Ô. The subroutine then constructs the set
" of all pairs (Aa, ∫a) of underlying concatenations which are consistent
with the lexicon Lex as underlying forms for the meaning combinations
Mm and Ôm and furthermore share the underlying su!x segment a (line
4). The latter requirement encodes the fact that we are focusing on a pair
of meaning combinations Mm and Ôm which share the su!x meaning m.
For each pair (Aa, ∫a) of underlying concatenations in ", the subroutine
considers the corresponding ERC blocks ù(Aa, Xx) and ù(∫a, ∑π), stacks
them together into the ERC matrix ù(Aa, Xx)+ù(∫a, ∑π) and constructs
the join of all ERC matrices thus obtained (line 5). The input ERC matrix
ù is updated by adding this join to it (line 6). The ERC matrix thus updated
is then returned (line 7).

There is a subtlety which should be pointed out here. At line 5, the subroutine
considers the join in (42a), not the one in (42b). The di‰erence is that in
(42a) we sum together the two ERC blocks ù(Aa, Xx) and ù(∫a, ∑π) into
ù(Aa, Xx)+ù(∫a, ∑π) before taking the join. This is indeed appropriate,
because the join in (42a) is stronger than the one in (42b), by Lemma 3.ii.

(42) ∑{ù(Aa, Xx)+ù(∫a, ∑π) | (Aa, ∫a)Œ"}a.
∑{ù(Aa, Xx), ù(∫a, ∑π) | (Aa, ∫a)Œ"}b.

4.2 Analysis of the subroutine. The Correctness Lemma 4 trivially extends
from the original subroutine (40) for single meaning combinations to the
variant (41) for contrast pairs. The ine!ciency of (40) for single meaning
combinations is of course aggravated in (41) for contrast pairs, as the latter
requires taking the join of a larger number of larger ERC matrices. Yet
subroutine (41) applied to the contrast pair (Mm, Ôm) is able to extract
more ranking information than the double applica tion of the original
subroutine (40) to the two separate meaning combinations Mm and Ôm.
To see this, suppose that the root meaning M admits a unique underlying
form A consistent with Lex, the root meaning Ô admits a unique under-
lying form ∫ and the su!x meaning m admits only two underlying forms,
a1 and a2. Suppose we first apply the original subroutine (40) to the meaning
combination Mm. At line 4, it constructs the set " consisting of the two
underlying forms Aa1 and Aa2. At line 5, it computes the join ∑(ù1, ù2)
of the two ERC blocks ù1=ù(Aa1, Xx) and ù2=ù(Aa2, Xx). Suppose
we next apply the original subroutine (40) to the meaning combination
Ôm. At line 4, it constructs the set ", consisting of the two underlying
forms ∫a1 and ∫a2. At line 5, it computes the join ∑(π1, π2) of the two
ERC blocks π1=ù(∫a1, ∑π) and π2=ù(∫a2, ∑π). Ultimately, the two
consecutive applications of the original subroutine (40) to the two meaning
combinations Mm and Ôm extract the ranking information captured by
the sum of the two joins in (43).

Suppose we instead apply subroutine (41) to the contrast pair (Mm, Ôm).
At line 4, it constructs the set ", consisting of the two pairs (Aa1, ∫a1) and
(Aa2, ∫a2). At line 5, it computes the join in (45) of the two ERC blocks
ù(Aa1 , Xx)+ù(∫a1, ∑π)=ù1+π1 and ù(Aa2 , Xx)+ù(∫a2, ∑π) =
ù2+π2.

(45) ∑(ù1+π1, ù2+π2)

The join in (45) is stronger than the one in (44), because it joins fewer
matrices (the smaller the number of matrices, the larger the amount of
shared information for the join to extract). This is because the two blocks
ù1+π2 and ù2+π1 have disappeared from the join. This is what we want,
as they correspond to the unreasonable assumption that the su!x m has
di‰erent underlying forms in the two meaning combinations Mm and Ôm.
In other words, since the learner is processing the two meaning combinations
Mm and Ôm together as a contrast pair, it is able to take into account the
fact that these meaning combinations share the su!x meaning m, which
must therefore have the same underlying form in the two cases.

5 A subroutine for extracting lexical information through
inconsistency detection

5.1 Description of the subroutine. Subroutine (46) takes as input some
lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine then considers a certain
meaning combination Mm with some feature unset according to the input
partial lexicon Lex for either the root M or the su!x m (line 2). The goal
of the subroutine is to try to extend the input partial lexicon by setting
some of these unset features. To this end, the subroutine reads o‰ the
paradigm p the surface realisation Xx of the meaning combination Mm
(line 3). It constructs the set " of all underlying concatenations Aa which
are consistent with both the input lexical information Lex and the input
ranking information captured by the grammar G (or the ERC matrix ù)
(line 4). Consistency with the input lexical information means that, if Lex
sets a feature for the root M (or the su!x m) to a certain value, then the
root morpheme A (or the su!x morpheme a) of each underlying form Aa
in " has the feature set to that value. Consistency with the input ranking
information means that the input grammar G (or the input ERC matrix ù)
is consistent with the mapping (Aa, Xx) of each such underlying form Aa
in " to the surface form Xx. The subroutine then looks for a feature which
is unset by Lex for the root meaning M (or the su!x meaning m), such that
each root morpheme A (or each su!x morpheme a) has the same value for
that feature in all underlying concatenations Aa in " (line 5). For any such
feature, it can be concluded that the opposite value is inconsistent with the
available lexical and ranking information. The subroutine thus updates the
partial lexicon Lex by setting that feature to be equal to its constant value

(46) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that:
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G (or

the ERC matrix ù)
if some feature unset for the root M (or for the su!x m) has a

constant value over " for M (for m) then
update the lexicon Lex by setting the feature to that value for

the root M (or for the su!x m)
end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.
8.

This subroutine is called inconsistency detection (cf. Kager 1999, Tesar
et al. 2003, Tesar 2006), because it sets a certain feature to a certain value
based on the detection at line 6 of the fact that any other value for that
feature would be inconsiste nt with the availab le lexical and ranking
information.

Proof. Assume by contradiction that the lemma is false. This means
that the subroutine has set some feature j for, say, the root meaning
M to a value which is di‰erent from the value assigned by the target
lexicon. For concreteness, assume that the values assigned by the
subroutine and the target lexicon are + and — respectively. Thus , the
target lexicon assigns to the meaning combination Mm an underlying
form Aa, which has feature j set to the value — in the root A. This
underlying form Aa is consistent with the partial lexicon Lex (because
it is consistent with the target lexicon, which is in turn consistent with
Lex). Furthermore, the mapping (Aa, Xx) of this underlying form Aa
to the surface form Xx is consistent with the input grammar G (because
the target ranking is consistent with both). In other words, this
underlying form Aa satisfies the two conditions stated by the two
subclauses in line 4 and thus belongs to the set " constructed by the
subroutine. Since this underlying form Aa has feature j set equal to
— for the root A, then the subroutine cannot have set that feature to
the opposite value + at line 6.

5.2 Analysis of the subroutine. Lemma 5 provides a straightforward correct-
ness result for inconsistency detection (46). Its time complexity is controlled
by the size of the set " of consistent underlying forms constructed at line 4.
In the worst case (when both the input lexicon and the input ranking
information are empty), " consists of all underlying forms, i.e. all con-
catenations of root and su!x morphemes. In this case, the size of " grows
polynomially in the number of morphemes and thus exponentially in the
number of features. In conclusion, subroutine (46) is e!cient relative to
the generous notion of e!ciency defined in (14), which measures time
complexity in terms of the number of morphemes, but is not e!cient
relative to the more demanding notion of e!ciency defined in (15), which
measures time complexity in terms of the number of features.

Lemma 5
Inconsistency detection (46) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target grammar, that the input (possibly partial)
grammar G (or ERC matrix ù) is consistent with the target grammar

6 Extension to contrast pairs
6.1 Description of the subroutine. The extension of inconsistency detection
(46) to contrast pairs is provided in (47). This subroutine takes as input
some lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine considers a particular
contrast pair (line 2). For concreteness, I am assuming here that the two
meaning combinations of the contrast pair share the su!x meaning, namely
have the shape Mm and Ôm (the case where they share the root meaning
is handled analogously). The subroutine reads o‰ the paradigm p the surface
realisations Xx and ∑π of those two meaning combinations (line 3). It
constructs the set " of all pairs (Aa, ∫a) of underlying concatenations which
are consistent with both the input lexical information Lex and the input
ranking information G (or ù) and furthermore share the underlying su!x
segment a (line 4). The subroutine then looks for a feature which is unset
by Lex for the root meaning M (or the root meaning Ô or the su!x meaning
m), such that each underlying root morpheme A (or each underlying root
morpheme ∫ or each underlying su!x morpheme a) has the same value
for that feature in all pairs (Aa, ∫a) in " (line 5). For any such feature, the
subroutine updates the partial lexicon Lex by setting the feature equal to
its constant value for the root meaning M (or for the root meaning Ô or
for the su!x meaning m) (line 6). The lexicon thus updated is then returned
(line 8).

(47) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G (or
the ERC matrix ù)

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

- the mapping (∫a, ∑π) is consistent with the grammar G
if some unset feature has a constant value over " for any of the three

meanings M, Ô or m then
update the lexicon Lex by setting the feature to the constant

value for that meaning
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.
8.

6.2 Analysis of the subroutine. The Correctness Lemma 5 trivially extends
from the original subroutine (46) for single meaning combinations to the
variant (47) for contrast pairs. Furthermore, the variant for contrast pairs
remains as e!cient as the original version for single meaning combinations,
when e!ciency is generously measured in terms of the number of morphemes
(but again, not when it is measured in terms of the number of features).
Yet a number of authors (including Alderete et al. 2005 and Merchant &
Tesar 2008) have pointed out that (47), applied to the contrast pair (Mm,
Ôm), can extract more lexical information than the double application of
the original subroutine (46) to the two separate meaning combinations Mm
and Ôm. To see this, consider one of the two meaning combinations of the
contrast pair, say Mm. The original subroutine considers all underlying
forms Aa for Mm which are consistent with the input lexical and ranking
information, and only sets those features which are constant across all these
underlying forms. If the number of consistent underlying forms is large,
the number of features which are constant across them is small, and the
subroutine thus extracts little lexical information. (47) might instead be
able to extract more lexical information, because it looks for features which
are constant over a smaller set of underlying forms for Mm, namely those
underlying forms Aa which are not only consistent with the input lexical
and ranking information, but also use a su!x morpheme a which can be
combined with a root morpheme ∫ into an underlying form ∫a for Ôm
which is also consistent with the input lexical and ranking information.

I denote Tesar’s subroutine (29) for the extraction of ranking information
from a single meaning combination as ERIT, and Merchant’s subroutine
(40) as ERIM. Lemma 6 states that, if the underlying typology is output-
driven, then ERIT and ERIM are equivalent, because they update the
current ranking/grammatical information with the ‘same’ information. This
equivalence is striking, given that the time complexity of ERIT is only
linear in the number of features, while the time complexity of ERIM is
unknown, but probably exponential in both the number of features and the
numbe r of morphemes. Output-drivenne ss thus a‰ords a significa nt
reduction in time complexity. The Correctness Lemma 1 for ERIT (which
was proven directly in §4.4) can also be made to follow from the Correctness
Lemma 4 for ERIT through the Equivalence Lemma 6.

1 Subroutines for extracting ranking information from a single
meaning combination

Proof. The underlying form Bb constructed by ERIT at line 4 is
consistent with Lex, and therefore belongs to the set " constructed by
ERIM at line 4. Consider one of the underlying forms Aa in this set ".
The two underlying forms Aa and Bb agree in every feature which is
set by the input partial lexicon Lex. Furthermore, Bb and the surface
form Xx agree in every remaining feature. Thus the underlying form
Bb is more similar to the surface form Xx than is the underlying form
Aa. Since the underlying typology is output-driven, then every ranking
which maps the less similar underlying form Aa to Xx also maps the
more similar underlying form Bb to Xx. In other words, any ranking
consistent with the ERC block ù(Aa, Xx) is also consistent with the
ERC block ù(Bb, Xx). Lemma 3.i thus ensures that the ERC block
ù(Bb, Xx) is the join of the ERC blocks ù(Aa, Xx) across all underlying
concatenations Aa in ".

Lemma 6
Suppose that the underlying typology is output-driven and that ERIT

is fed with a partial grammar G and a (possibly partial) lexicon Lex.
Suppose that ERIM is fed with the ERC matrix ù corresponding to
the partial grammar G and the same lexicon Lex. Then the ERC block
corresponding to the mapping (Bb, Xx) constructed by ERIT at line
4 is the join of the ERC blocks ù(Aa, Xx) corresponding to the
underlying forms Aa in " constructed by ERIM at line 5.

between the two implementations is the following: Merchant’s original
subroutine (46) sets any feature which is constant over "; the variant in (48)
instead focuses right from the beginning on a specific feature j, which is
unset for either the root M or the su!x m of the meaning combination Mm
under consideration. In line 3, I am assuming for concreteness that the
feature j is unset for the root M (the case where it is unset for the su!x m
is handled analogously). The modification is only cosmetic: the original
subroutine is equivalent to running this variant for each unset feature.

(48) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a meaning combination Mm in the paradigm p
Require: a feature j unset by Lex for either M or m; for concreteness,

say it is unset for M
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G

if all underlying forms Aa in " have the feature j set to the same
value in the root morpheme A then

update the lexicon Lex by setting the feature j to that value for
the root meaning M

end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.

8.
9.

I denote Tesar’s subroutine (33) for the extraction of lexical information
from a single meaning combination by ELIT, and (the cosmetic variant of)
the original inconsistency detection subroutine (48) by ELIid. Lemma 6
states that, if the underlying typology is output-driven, ELIT and ELIid

are equival ent, because their if-claus es at line 6 are equivalent. This
equivalence is striking, given that the if-clause of ELIT can be checked in
time linear in the number of features, while the if-clause of ELIid requires
time exponential in the number of features in the worst case. Output-
drivenness has thus a‰orded a significant reduction in time complexity.
The Correctness Lemma 2 for ELIT (which was proven directly in §4.5)
can also be made to follow from the Correctness Lemma 4 for ELIid through
the Equivalence Lemma 7.

Proof. To start, let me prove that the if-clause in line 6 of ELIT entails
the if-clause in line 6 of ELIid . Assume by contradiction that the
former if-clause is true while the latter if-clause is false. The hypothesis
that the if-clause of ELIid is false entails in particular that the set " of
consistent underlying forms constructed by ELIid at line 5 contains
an underlying form Aa whose root A disagrees with X relative to the
feature j (indeed, if all the underlying forms Aa in " had a root A
which agreed with X relative to j, the if-clause of ELIid would hold
true). The underlying form Aa and the underlying form Bb constructed
by ELIT at line 5 thus agree in the feature j for the root meaning M,
as they both have the opposite value from X. Furthermore, they agree
in every feature set by the partial lexicon Lex, because they are both
consistent with Lex. Finally, Bb agrees with Xx for every remaining
feature. The underlying form Bb is thus more similar to the surface
form Xx than is the underlying form Aa. Since the mapping (Aa, Xx)
is consistent with G (because Aa belongs to "), there exists a ranking
which is consistent with both. Since the grammar corresponding to
that ranking is output-driven and maps the less similar underlying
form Aa to Xx, it also maps the more similar underlying form Bb to
Xx. In other words, that ranking is also consistent with the mapping
(Bb, Xx). In conclusion, the mapping (Bb, Xx) and the grammar G
are consistent (because both are consistent with the ranking), contra-
dicting the hypothesis that the if-clause of ELIT is true.

Vice versa, let me prove that the if-clause in line 6 of ELIid entails
the if-clause in line 6 of ELIT. Assume by contradiction that the
former if-clause is true, while the latter if-clause is false. The hypothesis
that the if-clause of ELIT is false means that the input (partial) grammar
G is consistent with the mapping (Bb, Xx) of the underlying form Bb
constructed by ELIT at line 5 to the surface form Xx. Since this
underlying form Bb is consistent with Lex, then Bb belongs to the set
" of consistent underlying forms constructed at line 5 by ELIid. Since
B and X disagree relative to the feature j, consider the underlying
form ≥b, identical to Bb but for the fact that ≥ and X instead agree in
the feature j. Obviously, the underlying form ≥b is more similar to
the surface form Xx than is the underlying form Bb. Since (Bb, Xx)
is consistent with G, there exists a ranking which is consistent with
both. Since the grammar corresponding to that ranking is output-
driven and maps the less similar underlying form Bb to Xx, then it
also maps the more similar underlying form ≥b to Xx. In other words,
that ranking is also consis tent with the mapping (≥b, Xx). This
underlying form ≥b thus belongs to the set " constructed by ELIid at
line 5.This conclusion contradicts the hypothesis that the if-clause of
ELIid holds, because it shows that " contains two underlying forms
Bb and ≥b, such that B and ≥ disagree in the feature j.Lemma 7

Suppose that the underlying typology is output-driven. Then the two
if-clauses in line 6 of ELIT and ELIid are equivalent.

Tesar’s subroutine for extracting lexical information from contrast pairs
is more involved than his other two subroutines, for extracting lexical and
ranking information from a single meaning combination. For this reason,
the latter two subroutines were reviewed in §4.4 and §4.5, while the former
subroutine is included in this appendix. Here I start out from Merchant’s
subroutine in (47) for extracting lexical information from contrast pairs,
and work towards Tesar’s reformulation, provided below in (52). This
seems to me the best way of making sense of the somewhat complex
formulation of Tesar’s subroutine. I begin by carrying out the same cosmetic
change as in the previous section: I replace the original subroutine (47)
with (49), which only di‰ers because line 3 focuses on a specific feature j,
unset by the input lexicon Lex for one of the three meanings M, Ô and m
of the contrast pair (Mm, Ôm). For concreteness, I assume it is unset for
the root meaning M.

3 Subroutines for extracting lexical information from a contrast
pair

Supplementary materials 1716 Giorgio Magri

(49) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫a, ∑π) is consistent with the grammar G

if all the pairs (Aa, ∫a) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.
9.

the two underlying su!x morphemes a and ¥ coincide, because they are
the underlying form corresponding to the same su!x meaning m. The
condition that a and ¥ coincide is in turn equivalent to the condition that
they agree for each feature y. We could of course relax this condition by
requiring that the two underlying su!x morphemes a and ¥ agree only for
certain features, y1, ..., yn. This intuition leads to the formulation in (50).
It di‰ers from (49) only because of the new line 4, which introduces the
features y1, ..., yn, and because of the additional fifth subclause in the
definition of the set ". Note that line 4 assumes all the features y1, ..., yn

to be unset by the input partial lexicon Lex for the shared su!x m, because
the condition that both a and ¥ are consistent with Lex as underlying forms
for m already entails that they agree on every feature set by Lex for m.

(50) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫¥) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ agree for every

feature y1, ..., yn

if all the pairs (Aa, ∫¥) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

combinations Mm and Ôm one at a time. If instead we consider all unset
y features at line 4, then (50) e‰ectively considers only pairs of underlying
forms for the two meaning combinations which share the underlying su!x,
and is therefore equivalent to the original subroutine (49) for extracting
lexical information from contrast pairs. In the end, depending on the
number of y features considered at line 4, (50) provides a whole range of
subroutines for extracting lexical information in between the weaker (46)
and the stronger (49).

Subroutine (50) can be equivalently restated as (51). Instead of requiring
the two su!x morphemes a and ¥ to coincide for every feature y1, ..., yn,
we consider all possible combinations v1, ..., vn of values of those features
at line 6, and we require both a and ¥ to have those features set equal to
those values in the fifth subclause of line 5.

(51) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫¥ is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ both have the

values v1, ..., vn for the features y1, ..., yn

if all the pairs (Aa, ∫¥) in all the sets "(v1, ..., vn) have the underlying
root A set to the same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

Supplementary materials 1918 Giorgio Magri

By reasoning as in the previous subsection we can easily show that subroutine
(51) is equivalent to (52) under the assumption of output-dr ivenness.
Indeed, the two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn con-
structed by (52) at line 6 provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (51).

(52) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and
±≤v1, …, vn, as follows:

- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-
lying forms for Mm and Ôm

- B has the opposite value for feature j than X
- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values

v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
if the grammar G is inconsistent with the two mappings (Bbv1, …, vn,

Xx) and (±≤v1, …, vn, ∑π) for any combination of values v1, ..., vn

then
update the lexicon Lex by setting feature j to that constant value

for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

If the features y1, ..., yn considered in line 4 of (52) exhaust the set of
features, then the two subroutines (49) and (52) are equivalent. However,
the running time of (52) is exponential in the number of features in the
latter case, because it needs to consider all combinations v1, ..., vn.

By reasoning as in the previous subsection, we can proceed from Merchant’s
original subroutine (41) for extracting ranking information from contrast
pairs to the variant in (53).

4 Subroutines for extracting ranking information from a contrast
pair

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫¥ is consistent with the lexicon Lex as an underlying form
for Ôm

- the two underlying su!x morphemes a and ¥ both have the
values v1, ..., vn for the features y1, ..., yn

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫¥) in "(v1, ..., vn) for all combinations of values
v1, ..., vn

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.

7.
8.

20 Giorgio Magri

Once again, if we do not consider any y features at line 3, (53) e‰ectively
considers the two meaning combinations of the contrast pair independently
of each other, and thus ends up equivalent to subroutine (40) for extracting
lexical information from single meaning combinations. If we instead consider
all unset y features at line 3, then (53) e‰ectively only considers pairs of
underlying forms for the two meaning combinations which share the
underlying su!x, and is therefore equivalent to Merchant’s original
subroutine (41) for extracting lexical information from contrast pairs.
Ultimately, depending on the number of y features considered at line 3,
(53) provides a whole range of subroutines for extracting ranking information
in between the weaker (40) and the stronger (41).

By reasoning as in §2 of this appendix, we can easily show subroutine
(53) to be equivalent to (54) under the assumption of output-drivenness.
The two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn constructed
by (54) at line 5 again provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (53).

(54)

- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values
v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
compute the join of the ERC matrices ù(Bbv1, …, vn, Xx)+

ù(±≤v1, …, vn, ∑π) for all combinations of values v1, ..., vn

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

6.

7.
8.

Take the simplest case, where we consider a single feature y at line 3.
Assume furthermore that y is binary, i.e. it only takes the values v=‘+’ and
v=‘—’. At line 5, the subroutine constructs the two underlying forms Bb+
and ±≤+, corresponding to the value v=‘+’of feature y (i.e. both b+ and ≤+
have the value ‘+’ for the feature y), and the two underlying forms Bb— and
±≤—, corresponding to the value v=‘—’ (i.e. both b— and ≤— have the value
‘—’ for the feature y). At line 6, we finally compute the join of the two ERC
blocks ù(Bb+, Xx)+ù(±≤+, ∑π) and ù(Bb—, Xx)+ù(±≤—, ∑π). Even in
the simplest case of a single feature y, there is no way around computing
the join.

In summary, Merchant develops a new subroutine for extracting ranking
information through the notion of join. This subroutine can be applied to
either a single meaning combination at a time, as in (40); or to a contrast
pair, as in (41). The latter is more powerful than the former: the subroutine
extracts more ranking information by processing the two meaning
combinations Mm and Ôm as a contrast pair than by processing them
separately. The crux of Merchant’s subroutine for extracting ranking
information is that it relies on the computation of a join, which is time-
consuming. The biggest impact of output-drivenness is that it allows
Merchant’s subroutine for extracting ranking information from a single
meaning combination to be restated without having to compute any join.
The restated subroutine thus runs in time linear in the number of features.
In other words, it is e!cient even relative to the more demanding notion
of e!ciency introduced in §2.6. The situation is unfortunately very di‰erent
when Merchant’s subroutine for extracting ranking information is boosted
by being applied to contrast pairs. In this case, output-drivenness is not
able to circumvent the computation of the join, and thus does not su!ce
to make the subroutine e!cient.

A constraint ranking is consistent with an ERC provided it satisfies con-
dition (36); it is consistent with an ERC matrix provided it is consistent
with each of its rows. An ERC matrix entails another ERC matrix provided

(38)Id
[str]
Id
[length]
Main-
L
Main-
R
No
Long
WSP

w
w

w
w
w
w

w
w
w
w

l
l
l
l

l

w
l

w

/’pa:’ka/, [’pa:ka], [pa’ka]
/’pa:’ka/, [’pa:ka], [pa’ka:]
/’pa:’ka/, [’pa:ka], [pa:’ka]
/’pa:’ka/, [’pa:ka], [pa:’ka:]
/’pa:’ka/, [’pa:ka], [’paka]
/’pa:’ka/, [’pa:ka], [’paka:]
/’pa:’ka/, [’pa:ka], [’pa:ka:]

w
w

w
w

Lemma 3
Suppose that one of the ERC matrices ù1, ù2, …, Rn is entailed
by each of the others. For concreteness, assume that it is ù1 which
is entailed by each of the other ERC matrices ù2, …, Rn. Then
ù1 is the join of ù1, ù2, …, Rn.

(i)

Given the ERC matrices ù1, ù2, ù3, …, Rn, replace two of them
with the ERC matrix obtained by stacking the two matrices one
on top of the other. For concreteness, replace ù1 and ù2 with
ù1+ù2. Then the join of the n®1 ERC matrices ù1+ù2, ù3,
…, Rn entails the join of the original n ERC matrices ù1, ù2, ù3,
…, Rn, while the reverse does not in general hold.

(ii)

compute the join of the ERC matrices ù(Aa, Xx) for all underlying
forms Aa in "
add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.
7.

Proof. Let Aa be the underlying form assign ed to the meanin g
combination Mm by the target lexicon. This underlying form Aa
belongs to the set " constructed by the subroutine at line 4, because
of the hypothesis that the input lexicon Lex is consistent with the
target lexicon. Thus the corresponding ERC block ù(Aa, Xx) is one
of the blocks that the subroutine takes the join of at line 5. Since the
target ranking is consistent with this ERC block ù(Aa, Xx), then it
is also consistent with the join, by property (39a) of the join. Since the
target ranking is also consistent with the input ERC matrix ù, it is

Lemma 4
Merchant’s subroutine (40) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target ranking, that the input ERC matrix ù is
consistent with that target ranking, and that the input (possibly partial)
lexicon Lex is consistent with that target lexicon. The updated ERC
matrix returned by subroutine (40) is also consistent with that target
ranking.

then consistent with the updated ERC matrix returned by the sub-
routine.

(41) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫a) in "

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

1.

2.

3.

4.

5.

6.
7.

(43) ∑(ù1, ù2)+∑(π1, π2)

Lemma 3.iii ensures that (43) is equivalent to the join in (44). The four
ERC matrices being joined here correspond to all four combinations of
underlying forms for the two meaning combinations Mm and Ôm. In
particular, the learner is also joining together the two ERC blocks ù1+π2

and π2+ù1, whereby the shared su!x meaning m is assigned a di‰erent
underlying form in the case of Mm than in the case of Ôm. In other words,
since the learner is processing the two meaning combinations Mm and Ôm
separately, it is blind to the fact that these meaning combinations share the
su!x meaning m, which must therefore have the same underlying form in
both cases.

(44) ∑(ù1+π1, ù1+π2, ù2+π1, ù2+π2)

for the root meaning M (or for the su!x meaning m) (line 6). The lexicon
thus updated is then returned (line 8).

and that the input partial lexicon Lex is consistent with the target
lexicon. The updated lexicon returned by subroutine (46) is also
consistent with that target lexicon.

2 Subroutines for extracting lexical information from a single
meaning combination

Consider the slight variant (48) of the subroutine (46) for the extraction of
lexical information through inconsistency detection. The only di‰erence

The modification is only cosmetic: the original subroutine (47) is equivalent
to running this variant (49) for each feature which is unset for one of the
three morphemes M, Ô and m.

The set " constructed by the subroutine (49) at line 5 can equivalently
be described as the collection of all pairs (Aa, ∫¥) which satisfy the conditions
expressed by the four subclauses of line 5 plus the additional condition that

If we consider no y features at all in line 4, then (50) e‰ectively considers
the two meaning combinations of the contrast pair independently of each
other, and thus ends up equivalent to subroutine (46) for extracting lexical
information from single meaning combinati ons, in the sense that the
application of subroutine (50) to the contrast pair (Mm, Ôm) is equivalent
to two consecutive applications of subroutine (46) to the two meaning

Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and ±≤v1,

…, vn as follows
- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-

lying forms for Mm and Ôm

1.

2.

3.

4.

5.

(53) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

1.

2.

3.

4.

Phonology 25.2: Artwork 1 of

Supplementary materials 72Giorgio Magri

every ranking consistent with the former is also consistent with the latter.
Thus ù1+ù2 entails both ù1 and ù2.

(36)At least one constraint which has a w in the ERC under consideration
is ranked above every constraint which instead has an l (constraints
which have an e play no role in the consistency condition).

2The join

4Giorgio Magri

Grammatical information was represented in §4.1.2 as a (possibly partial)
collection G of mappings (Aa, Xx) of an underlying form Aa to a surface
form Xx. Each of these mappings can be equivalently represented with the
corresponding ERC block ù(Aa, Xx). And the grammatical information
G can thus be represented with the ERC matrix obtained by stacking all
these blocks one of top of the other. Merchant’s CPR adopts the architecture
in (28), the only di‰erence being that the current partial grammatical
information is represented not as a partial grammar G but as an ERC matrix
ù. This makes the algorithm more flexible in the type of partial grammatical
information it maintains: any (partial) grammar G can be represented
through the corresponding ERC matrix, while not just any ERC matrix ù
corresponds to some partial collection of mappings. This additional flexibility
in the data structure maintained by the algorithm is crucial in order to
define the subroutine for extracting ranking information, as explained in
the next section.

Supplementary materials56Giorgio Magri 8 Giorgio Magri Supplementary materials 9 10 Giorgio Magri

Appendix B: Equivalence between Merchant’ s and Tesar’s sub-
routines

Supplementary materials 11 12 Giorgio Magri Supplementary materials 13

Appendix A: Merchant’s (2008) CPR

Phonology 31 (2014). Supplementary materials

Review article

Giorgio Magri
CNRS, Université Paris 8 and University of Utrecht

Supplementary materials

This appendix sketches Merchant’s (2008) CPR algorithm. In §1, I explain
how CPR adheres to the architecture in (28), only with a more abstract
representation of the current partial ranking information in terms of ERCs.
I then review CPR’s subroutines for extracting ranking and lexical infor-
mation. I start from the easier case, where they are applied to a single
paradigmatic entry (§3 and §5), and then turn to the extension to contrast
pairs (§4 and §6).

1ERCs and CPR’s architecture
An elementary ranking condition (ERC) is an assignment of one of the
three symbols l, w and e to each of the constraints in the constraint set
(Prince 2002). An ERC is usually represented as a row of these symbols,
with the constraints annotated on top. To illustrate, an ERC for the constraint
set (5) of the Paka typology is provided in (35). An ERC matrix is a finite
collection of ERCs, stacked one on top of the other (the order does not
matter). An arbitrary ERC matrix is denoted by ù. Given two ERC matrixes
ù1 and ù2, ù1+ù2 denotes the ERC matrix obtained by stacking one on
top of the other (the order does not matter).

14 Giorgio Magri Supplementary materials 15

Bruce Tesar (2014). Output-driven phonology: theory and learning. (Cam-
bridge Studies in Linguistics 139.) Cambridge: Cambridge University
Press. Pp. xix+415.

(35)
e
Id[str]Id[length]Main-LMain-RNoLongWSP
wwlle|

The phonological underpinning of these notions is as follows. Consider the
mapping (Aa, Xx) of an underlying form Aa to a surface form Xx, which
is thus construed as the winner. For any other loser candidate Yy, consider
the ERC defined in (37). Stack all the ERCs thus constructed for all loser
candidates one on top of the other into an ERC matrix, denoted by ù(Aa,
Xx). Then the OT grammar corresponding to a ranking maps the under-
lying form Aa to the surface form Xx if and only if that ranking is consistent
with the ERC matrix ù(Aa, Xx) corresponding to that mapping.

(37)A constraint has a w provided it prefers the winner mapping (Aa,
Xx) to the loser mapping (Aa, Yy), i.e. it assigns fewer violations
to the former mapping than to the latter.

a.

A constraint has an l provided it instead prefers the loser mapping
(Aa, Yy) to the winner mapping (Aa, Xx), i.e. it assigns fewer
violations to the former mapping than to the latter.

b.

A constraint has an e provided it has no preference for one of the
two mappings (Aa, Xx) and (Aa, Yy), i.e. it assigns the same number
of violations to both.

c.

To illustrate, consider the Paka typology in §2.1 of the paper, focusing on
the mapping (/’pa:’ka/, [’pa:ka]) of the underlying form /’pa:’ka/ to the surface
form [’pa:ka]. The ERC matrix ù(/’pa:’ka/, [’pa:ka]) corresponding to this
mapping is provided in (38). It consists of seven ERCs, because there are
seven loser candidates. For convenience, each ERC is annotated on the left
with the corresponding underlying, winner and loser forms (loser forms
are struck through). The topmost ERC in (38) says that the winner mapping
(/’pa:’ka/, [’pa:ka]) beats the loser mapping (/’pa:’ka/, [pa’ka]), provided at
least one of the two winner-preferring constraints Ident[length] or Main-
L is ranked above the two loser-preferring constraints Main-R and NoLong.

Supplementary materials3

The join of some ERC matrices ù1, …, ùn is any ERC matrix which satisfies
the two conditions in (39). Any such ERC matrix will be denoted by ∑(ù1,
…, ùn). Condition (39a) says that the join is weaker than (i.e. entailed by)
each matrix ù1, …, ùn. Condition (39b) says that, among all ERC matrices
which are weaker than (i.e. entailed by) each matrix ù1, …, ùn, the join is
a strongest one (i.e the one which entails all the others). In other words,
condition (39a) says that the join captures some of the ranking information
shared by the matrices ù1, …, ùn, and condition (39b) says there is no
shared ranking information which the join does not capture.

(39)Each of the ERC matrices ù1, …, ùn entails their join.a.
If each of the ERC matrices ù1, …, ùn entails some ERC matrix
ù, their join entails ù as well.
b.

Lemma 3 collects some properties of the join which will be used in the rest
of this appendix.

Proof. An ERC matrix ∏ is the join of two ERC matrixes ù1 and ù2
if and only if the set of rankings consistent with ∏ is the union of the
two sets of rankings consistent with ù1 and ù2. Furthermore, the set
of rankings consistent with ù1+ù2 is the intersection of the two sets
of rankings consistent with ù1 and ù2. Claims (i)–(iii) then follow
from elementary set-theoretic manipulations on the sets of consistent
rankings.

Given four ERC matrices ù1, ù2, π1, π2, consider the ERC
matrix ∑(ù1, ù2)+∑(π1, π2) obtained by stacking one on top of
the other the join of ù1 and ù2 and the join of π1 and π2. Then
∑(ù1, ù2)+∑(π1, π2) coincides with the join of the four ERC
matrices ù1+π1, ù1+π2, ù2+π1, ù2+π2.

(iii)

3A subroutine for extracting ranking information through the join
3.1 Description of the subroutine.The subroutine in (40) takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex and a paradigm
p (line 1). It extends the ranking information encoded in the input ERC
matrix ù by adding to that input ERC matrix some additional ERCs as
follows. The subroutine considers a certain meaning combination Mm (line
2), and it reads o‰ the paradigm p the surface realisation Xx of that meaning
combination Mm (line 3). The subroutine then constructs the set " of all
underlying concatenations Aa which are consistent with the lexicon Lex as
underlying forms for that meaning combination Mm (line 4). This means
that if Lex sets a feature for the root M or the su!x m to a certain value,
then the root morpheme A or the su!x morpheme a of each underlying
form Aa in " has the feature set to that value. Any of these underlying
forms in " could be the actual underlying form according to the partial
lexical information encoded by Lex. In other words, the target grammar
could enforce any of the mappings (Aa, Xx) of any underlying form Aa in
" to the surface form Xx. Thus the best the subroutine can do is to extract
any ranking information shared by all these mappings. This is done by
computing the join of all ERC blocks ù(Aa, Xx) corresponding to all
mappings (Aa, Xx) of all underlying forms Aa in " to the surface form Xx
(line 5). The input ERC matrix ù is updated by adding this join to it (line
6). The ERC matrix thus updated is returned (line 7).

(40)Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p
Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm
o‰ the paradigm p
construct the set " of all concatenations Aa consistent with Lex as
underlying forms for Mm

1.

2.
3.

4.

The join of the ERC blocks ù(Aa, Xx) computed at line 5 is an ERC-
theoretic construct which might very well not correspond, in the sense of
(37), to any mapping of an underlying form to a surface form. For this
reason, CPR needs the additional flexibility of representing the current
(partial) grammatical/ranking information as an ERC matrix rather than
as a (partial) grammar. Appendix B: §1 shows that output-drivenness in
e‰ect guarantees that the join computed in line 5 always corresponds to the
mapping of a certain underlying form to the surface form Xx read at line
3.

3.2 Analysis of the subroutine.Lemma 4 provides a straightforward correct-
ness result for Merchant’s subroutine (40). Note that the proof only uses
property (39a) of the join, not property (39b). In other words, the lemma
hinges only on the fact that the join extracts ranking information which is
shared by all the ERC blocks ù(Aa, Xx). Property (39b) is nonetheless
crucial, because it ensures that the join does not lack any of this shared
ranking informa tion, making subroutine (40) optimal. The crux of
Merchant’s subroutine is its time complexity. Merchant (2008: ch. 4)
develops an elegant algorithm for computing the join which can be used
to implement line 5. Unfortunately, his algorithm needs to compute the
fusional closure of each of the input ERC matrices it has to join. Although
there are no results that I am aware of concerning the time complexity of
that computation, it is most plausibly intractable in the general case.

4Extension to contrast pairs
4.1 Description of the subroutine.The extension of Merchant’s subroutine
(40) to contrast pairs is provided in (41). This subroutine takes as input
some ranking information in the form of an ERC matrix ù, some lexical
information in the form of a (possibly partial) lexicon Lex, and a paradigm
p (line 1). The subroutine considers some contrast pair (line 2). For concrete-
ness, I am assuming here that the two meaning combinations of the contrast
pair share the su!x meaning, i.e. have the shape Mm and Ôm (the case
where they share the root meaning is handled analogously). The
subroutine reads o‰ the paradigm p the surface realisations Xx and ∑π of
those two meaning combinations (line 3). Although x and π are the surface
realisations of the same underlying su!x segment corresponding to the
su!x meaning m, they can be di‰erent, because of morphophonem ic
alternations in the surface realisation of that underlying su!x triggered by
the two di‰erent roots M and Ô. The subroutine then constructs the set
" of all pairs (Aa, ∫a) of underlying concatenations which are consistent
with the lexicon Lex as underlying forms for the meaning combinations
Mm and Ôm and furthermore share the underlying su!x segment a (line
4). The latter requirement encodes the fact that we are focusing on a pair
of meaning combinations Mm and Ôm which share the su!x meaning m.
For each pair (Aa, ∫a) of underlying concatenations in ", the subroutine
considers the corresponding ERC blocks ù(Aa, Xx) and ù(∫a, ∑π), stacks
them together into the ERC matrix ù(Aa, Xx)+ù(∫a, ∑π) and constructs
the join of all ERC matrices thus obtained (line 5). The input ERC matrix
ù is updated by adding this join to it (line 6). The ERC matrix thus updated
is then returned (line 7).

There is a subtlety which should be pointed out here. At line 5, the subroutine
considers the join in (42a), not the one in (42b). The di‰erence is that in
(42a) we sum together the two ERC blocks ù(Aa, Xx) and ù(∫a, ∑π) into
ù(Aa, Xx)+ù(∫a, ∑π) before taking the join. This is indeed appropriate,
because the join in (42a) is stronger than the one in (42b), by Lemma 3.ii.

(42) ∑{ù(Aa, Xx)+ù(∫a, ∑π) | (Aa, ∫a)Œ"}a.
∑{ù(Aa, Xx), ù(∫a, ∑π) | (Aa, ∫a)Œ"}b.

4.2 Analysis of the subroutine. The Correctness Lemma 4 trivially extends
from the original subroutine (40) for single meaning combinations to the
variant (41) for contrast pairs. The ine!ciency of (40) for single meaning
combinations is of course aggravated in (41) for contrast pairs, as the latter
requires taking the join of a larger number of larger ERC matrices. Yet
subroutine (41) applied to the contrast pair (Mm, Ôm) is able to extract
more ranking information than the double applica tion of the original
subroutine (40) to the two separate meaning combinations Mm and Ôm.
To see this, suppose that the root meaning M admits a unique underlying
form A consistent with Lex, the root meaning Ô admits a unique under-
lying form ∫ and the su!x meaning m admits only two underlying forms,
a1 and a2. Suppose we first apply the original subroutine (40) to the meaning
combination Mm. At line 4, it constructs the set " consisting of the two
underlying forms Aa1 and Aa2. At line 5, it computes the join ∑(ù1, ù2)
of the two ERC blocks ù1=ù(Aa1, Xx) and ù2=ù(Aa2, Xx). Suppose
we next apply the original subroutine (40) to the meaning combination
Ôm. At line 4, it constructs the set ", consisting of the two underlying
forms ∫a1 and ∫a2. At line 5, it computes the join ∑(π1, π2) of the two
ERC blocks π1=ù(∫a1, ∑π) and π2=ù(∫a2, ∑π). Ultimately, the two
consecutive applications of the original subroutine (40) to the two meaning
combinations Mm and Ôm extract the ranking information captured by
the sum of the two joins in (43).

Suppose we instead apply subroutine (41) to the contrast pair (Mm, Ôm).
At line 4, it constructs the set ", consisting of the two pairs (Aa1, ∫a1) and
(Aa2, ∫a2). At line 5, it computes the join in (45) of the two ERC blocks
ù(Aa1 , Xx)+ù(∫a1, ∑π)=ù1+π1 and ù(Aa2 , Xx)+ù(∫a2, ∑π) =
ù2+π2.

(45) ∑(ù1+π1, ù2+π2)

The join in (45) is stronger than the one in (44), because it joins fewer
matrices (the smaller the number of matrices, the larger the amount of
shared information for the join to extract). This is because the two blocks
ù1+π2 and ù2+π1 have disappeared from the join. This is what we want,
as they correspond to the unreasonable assumption that the su!x m has
di‰erent underlying forms in the two meaning combinations Mm and Ôm.
In other words, since the learner is processing the two meaning combinations
Mm and Ôm together as a contrast pair, it is able to take into account the
fact that these meaning combinations share the su!x meaning m, which
must therefore have the same underlying form in the two cases.

5 A subroutine for extracting lexical information through
inconsistency detection

5.1 Description of the subroutine. Subroutine (46) takes as input some
lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine then considers a certain
meaning combination Mm with some feature unset according to the input
partial lexicon Lex for either the root M or the su!x m (line 2). The goal
of the subroutine is to try to extend the input partial lexicon by setting
some of these unset features. To this end, the subroutine reads o‰ the
paradigm p the surface realisation Xx of the meaning combination Mm
(line 3). It constructs the set " of all underlying concatenations Aa which
are consistent with both the input lexical information Lex and the input
ranking information captured by the grammar G (or the ERC matrix ù)
(line 4). Consistency with the input lexical information means that, if Lex
sets a feature for the root M (or the su!x m) to a certain value, then the
root morpheme A (or the su!x morpheme a) of each underlying form Aa
in " has the feature set to that value. Consistency with the input ranking
information means that the input grammar G (or the input ERC matrix ù)
is consistent with the mapping (Aa, Xx) of each such underlying form Aa
in " to the surface form Xx. The subroutine then looks for a feature which
is unset by Lex for the root meaning M (or the su!x meaning m), such that
each root morpheme A (or each su!x morpheme a) has the same value for
that feature in all underlying concatenations Aa in " (line 5). For any such
feature, it can be concluded that the opposite value is inconsistent with the
available lexical and ranking information. The subroutine thus updates the
partial lexicon Lex by setting that feature to be equal to its constant value

(46) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a meaning combination Mm in the paradigm p
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that:
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G (or

the ERC matrix ù)
if some feature unset for the root M (or for the su!x m) has a

constant value over " for M (for m) then
update the lexicon Lex by setting the feature to that value for

the root M (or for the su!x m)
end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.
8.

This subroutine is called inconsistency detection (cf. Kager 1999, Tesar
et al. 2003, Tesar 2006), because it sets a certain feature to a certain value
based on the detection at line 6 of the fact that any other value for that
feature would be inconsiste nt with the availab le lexical and ranking
information.

Proof. Assume by contradiction that the lemma is false. This means
that the subroutine has set some feature j for, say, the root meaning
M to a value which is di‰erent from the value assigned by the target
lexicon. For concreteness, assume that the values assigned by the
subroutine and the target lexicon are + and — respectively. Thus , the
target lexicon assigns to the meaning combination Mm an underlying
form Aa, which has feature j set to the value — in the root A. This
underlying form Aa is consistent with the partial lexicon Lex (because
it is consistent with the target lexicon, which is in turn consistent with
Lex). Furthermore, the mapping (Aa, Xx) of this underlying form Aa
to the surface form Xx is consistent with the input grammar G (because
the target ranking is consistent with both). In other words, this
underlying form Aa satisfies the two conditions stated by the two
subclauses in line 4 and thus belongs to the set " constructed by the
subroutine. Since this underlying form Aa has feature j set equal to
— for the root A, then the subroutine cannot have set that feature to
the opposite value + at line 6.

5.2 Analysis of the subroutine. Lemma 5 provides a straightforward correct-
ness result for inconsistency detection (46). Its time complexity is controlled
by the size of the set " of consistent underlying forms constructed at line 4.
In the worst case (when both the input lexicon and the input ranking
information are empty), " consists of all underlying forms, i.e. all con-
catenations of root and su!x morphemes. In this case, the size of " grows
polynomially in the number of morphemes and thus exponentially in the
number of features. In conclusion, subroutine (46) is e!cient relative to
the generous notion of e!ciency defined in (14), which measures time
complexity in terms of the number of morphemes, but is not e!cient
relative to the more demanding notion of e!ciency defined in (15), which
measures time complexity in terms of the number of features.

Lemma 5
Inconsistency detection (46) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target grammar, that the input (possibly partial)
grammar G (or ERC matrix ù) is consistent with the target grammar

6 Extension to contrast pairs
6.1 Description of the subroutine. The extension of inconsistency detection
(46) to contrast pairs is provided in (47). This subroutine takes as input
some lexical information in the form of a partial lexicon Lex, some ranking
information in the form of a (possibly partial) grammar G (or an ERC
matrix ù) and a paradigm p (line 1). The subroutine considers a particular
contrast pair (line 2). For concreteness, I am assuming here that the two
meaning combinations of the contrast pair share the su!x meaning, namely
have the shape Mm and Ôm (the case where they share the root meaning
is handled analogously). The subroutine reads o‰ the paradigm p the surface
realisations Xx and ∑π of those two meaning combinations (line 3). It
constructs the set " of all pairs (Aa, ∫a) of underlying concatenations which
are consistent with both the input lexical information Lex and the input
ranking information G (or ù) and furthermore share the underlying su!x
segment a (line 4). The subroutine then looks for a feature which is unset
by Lex for the root meaning M (or the root meaning Ô or the su!x meaning
m), such that each underlying root morpheme A (or each underlying root
morpheme ∫ or each underlying su!x morpheme a) has the same value
for that feature in all pairs (Aa, ∫a) in " (line 5). For any such feature, the
subroutine updates the partial lexicon Lex by setting the feature equal to
its constant value for the root meaning M (or for the root meaning Ô or
for the su!x meaning m) (line 6). The lexicon thus updated is then returned
(line 8).

(47) Require: a partial lexicon Lex, a (possibly partial) grammar G (or
an ERC matrix ù), a paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G (or
the ERC matrix ù)

- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm

- the mapping (∫a, ∑π) is consistent with the grammar G
if some unset feature has a constant value over " for any of the three

meanings M, Ô or m then
update the lexicon Lex by setting the feature to the constant

value for that meaning
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.
8.

6.2 Analysis of the subroutine. The Correctness Lemma 5 trivially extends
from the original subroutine (46) for single meaning combinations to the
variant (47) for contrast pairs. Furthermore, the variant for contrast pairs
remains as e!cient as the original version for single meaning combinations,
when e!ciency is generously measured in terms of the number of morphemes
(but again, not when it is measured in terms of the number of features).
Yet a number of authors (including Alderete et al. 2005 and Merchant &
Tesar 2008) have pointed out that (47), applied to the contrast pair (Mm,
Ôm), can extract more lexical information than the double application of
the original subroutine (46) to the two separate meaning combinations Mm
and Ôm. To see this, consider one of the two meaning combinations of the
contrast pair, say Mm. The original subroutine considers all underlying
forms Aa for Mm which are consistent with the input lexical and ranking
information, and only sets those features which are constant across all these
underlying forms. If the number of consistent underlying forms is large,
the number of features which are constant across them is small, and the
subroutine thus extracts little lexical information. (47) might instead be
able to extract more lexical information, because it looks for features which
are constant over a smaller set of underlying forms for Mm, namely those
underlying forms Aa which are not only consistent with the input lexical
and ranking information, but also use a su!x morpheme a which can be
combined with a root morpheme ∫ into an underlying form ∫a for Ôm
which is also consistent with the input lexical and ranking information.

I denote Tesar’s subroutine (29) for the extraction of ranking information
from a single meaning combination as ERIT, and Merchant’s subroutine
(40) as ERIM. Lemma 6 states that, if the underlying typology is output-
driven, then ERIT and ERIM are equivalent, because they update the
current ranking/grammatical information with the ‘same’ information. This
equivalence is striking, given that the time complexity of ERIT is only
linear in the number of features, while the time complexity of ERIM is
unknown, but probably exponential in both the number of features and the
numbe r of morphemes. Output-drivenne ss thus a‰ords a significa nt
reduction in time complexity. The Correctness Lemma 1 for ERIT (which
was proven directly in §4.4) can also be made to follow from the Correctness
Lemma 4 for ERIT through the Equivalence Lemma 6.

1 Subroutines for extracting ranking information from a single
meaning combination

Proof. The underlying form Bb constructed by ERIT at line 4 is
consistent with Lex, and therefore belongs to the set " constructed by
ERIM at line 4. Consider one of the underlying forms Aa in this set ".
The two underlying forms Aa and Bb agree in every feature which is
set by the input partial lexicon Lex. Furthermore, Bb and the surface
form Xx agree in every remaining feature. Thus the underlying form
Bb is more similar to the surface form Xx than is the underlying form
Aa. Since the underlying typology is output-driven, then every ranking
which maps the less similar underlying form Aa to Xx also maps the
more similar underlying form Bb to Xx. In other words, any ranking
consistent with the ERC block ù(Aa, Xx) is also consistent with the
ERC block ù(Bb, Xx). Lemma 3.i thus ensures that the ERC block
ù(Bb, Xx) is the join of the ERC blocks ù(Aa, Xx) across all underlying
concatenations Aa in ".

Lemma 6
Suppose that the underlying typology is output-driven and that ERIT

is fed with a partial grammar G and a (possibly partial) lexicon Lex.
Suppose that ERIM is fed with the ERC matrix ù corresponding to
the partial grammar G and the same lexicon Lex. Then the ERC block
corresponding to the mapping (Bb, Xx) constructed by ERIT at line
4 is the join of the ERC blocks ù(Aa, Xx) corresponding to the
underlying forms Aa in " constructed by ERIM at line 5.

between the two implementations is the following: Merchant’s original
subroutine (46) sets any feature which is constant over "; the variant in (48)
instead focuses right from the beginning on a specific feature j, which is
unset for either the root M or the su!x m of the meaning combination Mm
under consideration. In line 3, I am assuming for concreteness that the
feature j is unset for the root M (the case where it is unset for the su!x m
is handled analogously). The modification is only cosmetic: the original
subroutine is equivalent to running this variant for each unset feature.

(48) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a meaning combination Mm in the paradigm p
Require: a feature j unset by Lex for either M or m; for concreteness,

say it is unset for M
read the surface realisation Xx of the meaning combination Mm

o‰ the paradigm p
construct the set " of all the underlying concatenations Aa such

that
- Aa is consistent with the lexicon Lex as an underlying form

for Mm
- the mapping (Aa, Xx) is consistent with the grammar G

if all underlying forms Aa in " have the feature j set to the same
value in the root morpheme A then

update the lexicon Lex by setting the feature j to that value for
the root meaning M

end if
Return: the updated lexicon Lex

1.

2.
3.

4.

5.

6.

7.

8.
9.

I denote Tesar’s subroutine (33) for the extraction of lexical information
from a single meaning combination by ELIT, and (the cosmetic variant of)
the original inconsistency detection subroutine (48) by ELIid. Lemma 6
states that, if the underlying typology is output-driven, ELIT and ELIid

are equival ent, because their if-claus es at line 6 are equivalent. This
equivalence is striking, given that the if-clause of ELIT can be checked in
time linear in the number of features, while the if-clause of ELIid requires
time exponential in the number of features in the worst case. Output-
drivenness has thus a‰orded a significant reduction in time complexity.
The Correctness Lemma 2 for ELIT (which was proven directly in §4.5)
can also be made to follow from the Correctness Lemma 4 for ELIid through
the Equivalence Lemma 7.

Proof. To start, let me prove that the if-clause in line 6 of ELIT entails
the if-clause in line 6 of ELIid . Assume by contradiction that the
former if-clause is true while the latter if-clause is false. The hypothesis
that the if-clause of ELIid is false entails in particular that the set " of
consistent underlying forms constructed by ELIid at line 5 contains
an underlying form Aa whose root A disagrees with X relative to the
feature j (indeed, if all the underlying forms Aa in " had a root A
which agreed with X relative to j, the if-clause of ELIid would hold
true). The underlying form Aa and the underlying form Bb constructed
by ELIT at line 5 thus agree in the feature j for the root meaning M,
as they both have the opposite value from X. Furthermore, they agree
in every feature set by the partial lexicon Lex, because they are both
consistent with Lex. Finally, Bb agrees with Xx for every remaining
feature. The underlying form Bb is thus more similar to the surface
form Xx than is the underlying form Aa. Since the mapping (Aa, Xx)
is consistent with G (because Aa belongs to "), there exists a ranking
which is consistent with both. Since the grammar corresponding to
that ranking is output-driven and maps the less similar underlying
form Aa to Xx, it also maps the more similar underlying form Bb to
Xx. In other words, that ranking is also consistent with the mapping
(Bb, Xx). In conclusion, the mapping (Bb, Xx) and the grammar G
are consistent (because both are consistent with the ranking), contra-
dicting the hypothesis that the if-clause of ELIT is true.

Vice versa, let me prove that the if-clause in line 6 of ELIid entails
the if-clause in line 6 of ELIT. Assume by contradiction that the
former if-clause is true, while the latter if-clause is false. The hypothesis
that the if-clause of ELIT is false means that the input (partial) grammar
G is consistent with the mapping (Bb, Xx) of the underlying form Bb
constructed by ELIT at line 5 to the surface form Xx. Since this
underlying form Bb is consistent with Lex, then Bb belongs to the set
" of consistent underlying forms constructed at line 5 by ELIid. Since
B and X disagree relative to the feature j, consider the underlying
form ≥b, identical to Bb but for the fact that ≥ and X instead agree in
the feature j. Obviously, the underlying form ≥b is more similar to
the surface form Xx than is the underlying form Bb. Since (Bb, Xx)
is consistent with G, there exists a ranking which is consistent with
both. Since the grammar corresponding to that ranking is output-
driven and maps the less similar underlying form Bb to Xx, then it
also maps the more similar underlying form ≥b to Xx. In other words,
that ranking is also consis tent with the mapping (≥b, Xx). This
underlying form ≥b thus belongs to the set " constructed by ELIid at
line 5.This conclusion contradicts the hypothesis that the if-clause of
ELIid holds, because it shows that " contains two underlying forms
Bb and ≥b, such that B and ≥ disagree in the feature j.Lemma 7

Suppose that the underlying typology is output-driven. Then the two
if-clauses in line 6 of ELIT and ELIid are equivalent.

Tesar’s subroutine for extracting lexical information from contrast pairs
is more involved than his other two subroutines, for extracting lexical and
ranking information from a single meaning combination. For this reason,
the latter two subroutines were reviewed in §4.4 and §4.5, while the former
subroutine is included in this appendix. Here I start out from Merchant’s
subroutine in (47) for extracting lexical information from contrast pairs,
and work towards Tesar’s reformulation, provided below in (52). This
seems to me the best way of making sense of the somewhat complex
formulation of Tesar’s subroutine. I begin by carrying out the same cosmetic
change as in the previous section: I replace the original subroutine (47)
with (49), which only di‰ers because line 3 focuses on a specific feature j,
unset by the input lexicon Lex for one of the three meanings M, Ô and m
of the contrast pair (Mm, Ôm). For concreteness, I assume it is unset for
the root meaning M.

3 Subroutines for extracting lexical information from a contrast
pair

Supplementary materials 1716 Giorgio Magri

(49) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫a, ∑π) is consistent with the grammar G

if all the pairs (Aa, ∫a) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.
9.

the two underlying su!x morphemes a and ¥ coincide, because they are
the underlying form corresponding to the same su!x meaning m. The
condition that a and ¥ coincide is in turn equivalent to the condition that
they agree for each feature y. We could of course relax this condition by
requiring that the two underlying su!x morphemes a and ¥ agree only for
certain features, y1, ..., yn. This intuition leads to the formulation in (50).
It di‰ers from (49) only because of the new line 4, which introduces the
features y1, ..., yn, and because of the additional fifth subclause in the
definition of the set ". Note that line 4 assumes all the features y1, ..., yn

to be unset by the input partial lexicon Lex for the shared su!x m, because
the condition that both a and ¥ are consistent with Lex as underlying forms
for m already entails that they agree on every feature set by Lex for m.

(50) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

construct the set " of pairs (Aa, ∫¥) of concatenations sharing the
su!x morpheme such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫a is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ agree for every

feature y1, ..., yn

if all the pairs (Aa, ∫¥) in " have the underlying root A set to the
same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

combinations Mm and Ôm one at a time. If instead we consider all unset
y features at line 4, then (50) e‰ectively considers only pairs of underlying
forms for the two meaning combinations which share the underlying su!x,
and is therefore equivalent to the original subroutine (49) for extracting
lexical information from contrast pairs. In the end, depending on the
number of y features considered at line 4, (50) provides a whole range of
subroutines for extracting lexical information in between the weaker (46)
and the stronger (49).

Subroutine (50) can be equivalently restated as (51). Instead of requiring
the two su!x morphemes a and ¥ to coincide for every feature y1, ..., yn,
we consider all possible combinations v1, ..., vn of values of those features
at line 6, and we require both a and ¥ to have those features set equal to
those values in the fifth subclause of line 5.

(51) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that:

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- the mapping (Aa, Xx) is consistent with the grammar G
- ∫¥ is consistent with the lexicon Lex as an underlying form

for Ôm
- the mapping (∫¥, ∑π) is consistent with the grammar G
- the two underlying su!x morphemes a and ¥ both have the

values v1, ..., vn for the features y1, ..., yn

if all the pairs (Aa, ∫¥) in all the sets "(v1, ..., vn) have the underlying
root A set to the same value for feature j then

update the lexicon Lex by setting feature j to that constant value
for the meaning M

end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

Supplementary materials 1918 Giorgio Magri

By reasoning as in the previous subsection we can easily show that subroutine
(51) is equivalent to (52) under the assumption of output-dr ivenness.
Indeed, the two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn con-
structed by (52) at line 6 provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (51).

(52) Require: a partial lexicon Lex, a (possibly partial) grammar G, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: a feature j unset by Lex for M, Ô or m; for concreteness,
say it is unset for M

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisations Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and
±≤v1, …, vn, as follows:

- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-
lying forms for Mm and Ôm

- B has the opposite value for feature j than X
- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values

v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
if the grammar G is inconsistent with the two mappings (Bbv1, …, vn,

Xx) and (±≤v1, …, vn, ∑π) for any combination of values v1, ..., vn

then
update the lexicon Lex by setting feature j to that constant value

for the meaning M
end if
Return: the updated lexicon Lex

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

If the features y1, ..., yn considered in line 4 of (52) exhaust the set of
features, then the two subroutines (49) and (52) are equivalent. However,
the running time of (52) is exponential in the number of features in the
latter case, because it needs to consider all combinations v1, ..., vn.

By reasoning as in the previous subsection, we can proceed from Merchant’s
original subroutine (41) for extracting ranking information from contrast
pairs to the variant in (53).

4 Subroutines for extracting ranking information from a contrast
pair

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the set "(v1, ..., vn) of pairs (Aa, ∫¥) of underlying
concatenations such that

- Aa is consistent with the lexicon Lex as an underlying form
for Mm

- ∫¥ is consistent with the lexicon Lex as an underlying form
for Ôm

- the two underlying su!x morphemes a and ¥ both have the
values v1, ..., vn for the features y1, ..., yn

compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫¥) in "(v1, ..., vn) for all combinations of values
v1, ..., vn

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.

7.
8.

20 Giorgio Magri

Once again, if we do not consider any y features at line 3, (53) e‰ectively
considers the two meaning combinations of the contrast pair independently
of each other, and thus ends up equivalent to subroutine (40) for extracting
lexical information from single meaning combinations. If we instead consider
all unset y features at line 3, then (53) e‰ectively only considers pairs of
underlying forms for the two meaning combinations which share the
underlying su!x, and is therefore equivalent to Merchant ’s original
subroutine (41) for extracting lexical information from contrast pairs.
Ultimately, depending on the number of y features considered at line 3,
(53) provides a whole range of subroutines for extracting ranking information
in between the weaker (40) and the stronger (41).

By reasoning as in §2 of this appendix, we can easily show subroutine
(53) to be equivalent to (54) under the assumption of output-drivenness.
The two underlying concatenations Bbv1, …, vn and ±≤v1, …, vn constructed
by (54) at line 5 again provide a ‘summary’ of the set "(v1, ..., vn) of pairs
of underlying concatenations constructed by (53).

(54)

- bv1, …, vn and ≤v1, …, vn have features y1, ..., yn set to the values
v1, ..., vn

- Bbv1, …, vn and ±≤v1, …, vn are otherwise identical to Xx and ∑π
compute the join of the ERC matrices ù(Bbv1, …, vn, Xx)+

ù(±≤v1, …, vn, ∑π) for all combinations of values v1, ..., vn

add this join to the ERC matrix ù
Return: the updated ERC matrix ù

6.

7.
8.

Take the simplest case, where we consider a single feature y at line 3.
Assume furthermore that y is binary, i.e. it only takes the values v=‘+’ and
v=‘—’. At line 5, the subroutine constructs the two underlying forms Bb+
and ±≤+, corresponding to the value v=‘+’of feature y (i.e. both b+ and ≤+
have the value ‘+’ for the feature y), and the two underlying forms Bb— and
±≤—, corresponding to the value v=‘—’ (i.e. both b— and ≤— have the value
‘—’ for the feature y). At line 6, we finally compute the join of the two ERC
blocks ù(Bb+, Xx)+ù(±≤+, ∑π) and ù(Bb—, Xx)+ù(±≤—, ∑π). Even in
the simplest case of a single feature y, there is no way around computing
the join.

In summary, Merchant develops a new subroutine for extracting ranking
information through the notion of join. This subroutine can be applied to
either a single meaning combination at a time, as in (40); or to a contrast
pair, as in (41). The latter is more powerful than the former: the subroutine
extracts more ranking information by processing the two meaning
combinations Mm and Ôm as a contrast pair than by processing them
separately. The crux of Merchant’s subroutine for extracting ranking
information is that it relies on the computation of a join, which is time-
consuming. The biggest impact of output-drivenness is that it allows
Merchant’s subroutine for extracting ranking information from a single
meaning combination to be restated without having to compute any join.
The restated subroutine thus runs in time linear in the number of features.
In other words, it is e!cient even relative to the more demanding notion
of e!ciency introduced in §2.6. The situation is unfortunately very di‰erent
when Merchant’s subroutine for extracting ranking information is boosted
by being applied to contrast pairs. In this case, output-drivenness is not
able to circumvent the computation of the join, and thus does not su!ce
to make the subroutine e!cient.

A constraint ranking is consistent with an ERC provided it satisfies con-
dition (36); it is consistent with an ERC matrix provided it is consistent
with each of its rows. An ERC matrix entails another ERC matrix provided

(38)Id
[str]
Id
[length]
Main-
L
Main-
R
No
Long
WSP

w
w

w
w
w
w

w
w
w
w

l
l
l
l

l

w
l

w

/’pa:’ka/, [’pa:ka], [pa’ka]
/’pa:’ka/, [’pa:ka], [pa’ka:]
/’pa:’ka/, [’pa:ka], [pa:’ka]
/’pa:’ka/, [’pa:ka], [pa:’ka:]
/’pa:’ka/, [’pa:ka], [’paka]
/’pa:’ka/, [’pa:ka], [’paka:]
/’pa:’ka/, [’pa:ka], [’pa:ka:]

w
w

w
w

Lemma 3
Suppose that one of the ERC matrices ù1, ù2, …, Rn is entailed
by each of the others. For concreteness, assume that it is ù1 which
is entailed by each of the other ERC matrices ù2, …, Rn. Then
ù1 is the join of ù1, ù2, …, Rn.

(i)

Given the ERC matrices ù1, ù2, ù3, …, Rn, replace two of them
with the ERC matrix obtained by stacking the two matrices one
on top of the other. For concreteness, replace ù1 and ù2 with
ù1+ù2. Then the join of the n®1 ERC matrices ù1+ù2, ù3,
…, Rn entails the join of the original n ERC matrices ù1, ù2, ù3,
…, Rn, while the reverse does not in general hold.

(ii)

compute the join of the ERC matrices ù(Aa, Xx) for all underlying
forms Aa in "
add this join to the ERC matrix ù
Return: the updated ERC matrix ù

5.

6.
7.

Proof. Let Aa be the underlying form assign ed to the meanin g
combination Mm by the target lexicon. This underlying form Aa
belongs to the set " constructed by the subroutine at line 4, because
of the hypothesis that the input lexicon Lex is consistent with the
target lexicon. Thus the corresponding ERC block ù(Aa, Xx) is one
of the blocks that the subroutine takes the join of at line 5. Since the
target ranking is consistent with this ERC block ù(Aa, Xx), then it
is also consistent with the join, by property (39a) of the join. Since the
target ranking is also consistent with the input ERC matrix ù, it is

Lemma 4
Merchant’s subroutine (40) preserves consistency, in the following
sense. Assume that the input paradigm p is consistent with some target
lexicon and some target ranking, that the input ERC matrix ù is
consistent with that target ranking, and that the input (possibly partial)
lexicon Lex is consistent with that target lexicon. The updated ERC
matrix returned by subroutine (40) is also consistent with that target
ranking.

then consistent with the updated ERC matrix returned by the sub-
routine.

(41)Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p
Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m
read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p
construct the set " of pairs (Aa, ∫a) of concatenations sharing the
su!x morpheme such that
- Aa is consistent with the lexicon Lex as an underlying form
for Mm
- ∫a is consistent with the lexicon Lex as an underlying form
for Ôm
compute the join of the ERC matrices ù(Aa, Xx)+ù(∫a, ∑π) for
all pairs (Aa, ∫a) in "
add this join to the ERC matrix ù
Return: the updated ERC matrix ù

1.

2.

3.

4.

5.

6.
7.

(43) ∑(ù1, ù2)+∑(π1, π2)

Lemma 3.iii ensures that (43) is equivalent to the join in (44). The four
ERC matrices being joined here correspond to all four combinations of
underlying forms for the two meaning combinations Mm and Ôm. In
particular, the learner is also joining together the two ERC blocks ù1+π2

and π2+ù1, whereby the shared su!x meaning m is assigned a di‰erent
underlying form in the case of Mm than in the case of Ôm. In other words,
since the learner is processing the two meaning combinations Mm and Ôm
separately, it is blind to the fact that these meaning combinations share the
su!x meaning m, which must therefore have the same underlying form in
both cases.

(44) ∑(ù1+π1, ù1+π2, ù2+π1, ù2+π2)

for the root meaning M (or for the su!x meaning m) (line 6). The lexicon
thus updated is then returned (line 8).

and that the input partial lexicon Lex is consistent with the target
lexicon. The updated lexicon returned by subroutine (46) is also
consistent with that target lexicon.

2 Subroutines for extracting lexical information from a single
meaning combination

Consider the slight variant (48) of the subroutine (46) for the extraction of
lexical information through inconsistency detection. The only di‰erence

The modification is only cosmetic: the original subroutine (47) is equivalent
to running this variant (49) for each feature which is unset for one of the
three morphemes M, Ô and m.

The set " constructed by the subroutine (49) at line 5 can equivalently
be described as the collection of all pairs (Aa, ∫¥) which satisfy the conditions
expressed by the four subclauses of line 5 plus the additional condition that

If we consider no y features at all in line 4, then (50) e‰ectively considers
the two meaning combinations of the contrast pair independently of each
other, and thus ends up equivalent to subroutine (46) for extracting lexical
information from single meaning combinati ons, in the sense that the
application of subroutine (50) to the contrast pair (Mm, Ôm) is equivalent
to two consecutive applications of subroutine (46) to the two meaning

Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

For any combination v1, ..., vn of values of the features y1, ..., yn,
construct the two underlying concatenations Bbv1, …, vn and ±≤v1,

…, vn as follows
- Bbv1, …, vn and ±≤v1, …, vn are consistent with Lex as under-

lying forms for Mm and Ôm

1.

2.

3.

4.

5.

(53) Require: an ERC matrix ù, a (possibly partial) lexicon Lex, a
paradigm p

Require: a pair (Mm, Ôm) of meaning concatenations which share,
say, the su!x meaning m

Require: some features y1, ..., yn all unset for the shared su!x
meaning m according to Lex

read the surface realisation Xx and ∑π of Mm and Ôm o‰ the
paradigm p

1.

2.

3.

4.

