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Theorem 1 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the demotion-only re-ranking rule (73) run
on a consistent input ERC matrix corresponding to n constraints
starting from an arbitrary initial ranking vector _init=(Ú1init, …, Úninit)
can perform at most B(_init)+n(n®1)/2 errors before converging.
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We have thus proven the following extension of Theorem 1 from null to
arbitrary initial RVs. Recall that, if the initial RVs are all identical (say, all
null), then B(_init)=0. In this case, the bound B(_init)+n(n®1)/2 provided
by the following theorem thus reduces to the bound n(n®1)/2 already
obtained in §3.

The bound B(_init)+n(n®1)/2 on the worst-case number of errors is tight,
as shown by the same example in (26) in the paper with the ERCs fed in
the fixed order a1£a2£a3 and with the initial ranking vector _init=(4,3,
2,1).

3 Calibrated re-ranking rules
Consider next the calibrated demotion/promotion re-ranking rule (51) from
§6, repeated in (76).

The invariant (72) ensures that the sum of the current RVs can be lower
bounded, as in (77).

As seen in §6.3, the sum of the current RVs is decreased by at least 1/n with
every update. After T updates, it has thus decreased by at least T/n from
the sum of the initial RVs, as stated in (78).

1
2
n(n®1)

(76) Decrease the RV of each of the l undominated loser-preferrers by 1.a.
Increase the RV of each of the w winner-preferrers by p=l/(w+1).b.
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conic property. The update vectors are called conically independent
provided that there are no coe!cients a1, …, am that satisfy the three
conditions in (85); see Bertsekas et al. (2003). In other words, it is not
possible to synthesise the null vector as a conic combination of the update
vectors, unless of course the coe!cients are all set equal to zero.

Fact 6 below says that OT-consistency of the input ERC matrix (with a
unique l per row) entails conic independence of the corresponding update
vectors, and Fact 7 says that conic independence of the update vectors in
turn entails that the EDRA cannot loop. Fact 5 thus follows from the two
auxiliary Facts 6 and 7. The assumption that the input ERCs have a unique
l per row can be easily dropped, as discussed at the end of this section.

Fact 6
Consider an input ERC matrix that has a unique l per row. If it is
consistent, then the corresponding update vectors defined in (83) are
conically independent.

Proof. Recall from Fact 1 that any consistent ERC matrix has the shape in
(22) (repeated in (86)), modulo reordering of its rows and its columns and
relabelling of the constraints. (86) has a top block of rows whose first entry
is w, followed by a second block of rows whose first entry is e and whose
second entry is w, and so on.
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Fact 2 (further generalised)
Assume that the input ERC matrix is consistent with a ranking.
Without loss of generality, assume that this ranking is C1êC1ê…êCn.
Let q1, …, qn be the current RVs entertained by an EDRA in a generic
run on those input ERCs, up to a generic time, starting from arbitrary
initial RVs Ú1init, …, Úninit. Assume that the re-ranking rule used by the
EDRA demotes by 1 only the currently undominated loser-preferrers
(no assumptions are made on constraint promotion). The current RVs
thus satisfy condition (72) for every k=1, …, n. That is, the RV qk of
the constraint Ck assigned to the kth stratum (with the 1st stratum
being the top one) never drops by more than (k®1) below the smallest
initial RV minh=1,…,nÚhinit.

(72) qk}
h=1,…,n

Úhinit®(k®1)min

(73) Decrease the RV of each undominated loser-preferrer by 1.a.
Do nothing to the current RV of the other constraints.b.

2 Demotion-only re-ranking rules
Consider the demotion-only re-ranking rule (17) from §3, repeated in (73).

At least one constraint is demoted at each update. Hence, the total number
T of updates is at most the sum of the number of times C1 has been demoted,
and the number of times C2 has been demoted, etc, as stated in (74a). Each
time constraint Ck is demoted, it is demoted by 1, and it is never promoted.
Hence the number of times that constraint Ck has been demoted up to the
time considered is equal to the distance Úkinit®Úk between its initial RV Úkinit

and its current RV Úk, as stated in (74b). The inequality (72) says that Úk

sits between Úkinit and minh=1,…,nÚhinit®(k®1), as depicted in (75). Thus the
distance between the latter two points upper bounds the distance Úkinit®Úk,
as stated in (74c). Finally, step (e) follows from definition (71) of the constant
B(_init) and from the identity %

n

k=1(k®1)=n(n®1)/2.

Theorem 2 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the calibrated promotion/demotion re-
ranking rule (76) run on a consistent input ERC matrix corresponding
to n constraints starting from an arbitrary initial ranking vector
_init=(Ú1init, …, Úninit) can perform at most nB(_init)+n2(n®1)/2 errors
before converging.
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In the case of an arbitrary initial ranking vector as well, the error-bound
for the calibrated case is worse by a factor of n than the error-bound for
the demotion-only case.

Combining the two inequalities (77) and (78), I conclude that the number
T of updates must be smaller than nB(_init)+n2(n®1)/2. We have thus
proven the following extension of Theorem 2 from null to arbitrary initial
RVs.

In §6, I looked for concreteness at a specific calibrated re-ranking rule,
namely the one in (51) (= (76)), which demotes each of the l undominated
loser-preferrers by 1 and promotes each of the w winner-preferrers by
l/(w+1). Here I look at the generic calibrated re-ranking rule in (79).

Appendix B: Convergence of a generic calibrated re-ranking rule

This re-ranking rule is calibrated as long as d>0. Indeed, the distance of
the promotion amount p from the calibration threshold l/w is controlled by
the constant d: the larger d, the smaller the promotion amount p is with
respect to the calibration threshold. In particular, the case d=1 corresponds
to re-ranking rule (51), and the case where d goes to infinity corresponds
to the demotion-only case p=0 considered in §3.

The reasoning for the case d=1 presented in §6 trivially extends to an
arbitrary d>0, yielding the following generalisation of Theorem 2 of §6.

Theorem 2 (extended to arbitrary calibrated promotion amounts)
An EDRA with the general calibrated re-ranking rule (79) run on a
consistent input ERC matrix corresponding to n constraints starting
from null initial RVs can perform at most the number of mistakes in
(80) before converging, where W is the largest number of winner-
preferrers over all input ERCs.
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Appendix C: Why EDRAs cannot loop
Consider the general re-ranking rule in (82).

Proof. With every update, the sum of the current RVs is decreased by l. It
is furthermore increased by wl/(w+d), as each of the w winner-preferrers
is promoted by l/(w+d). In the end, the sum of the current RVs is thus
decreased by l®(wl/(w+d))=dl/(w+d) . As the number l of undominated
loser-preferrers is at least 1 and the number w of winner-preferrers is at
most W, I conclude that the sum of the current RVs is decreased by at least
T(d/(W+d)) after T updates. On the other hand, the sum of the current
RVs starts at zero and can never become smaller than —n(n®1)/2, by the
generalised Fact 2 stated in §6.2. In conclusion, the number of updates T
in the case of the re-ranking rule (79) must satisfy the inequality
T(d/(W+d)){n(n®1)/2, which yields the error-bound in (80). º

The bound (81) for d=1 gives back the bound n2(n®1)/2 of the original
Theorem 2 in §6. As d increases and the promotion amount p=l/(w+d)
thus gets smaller relative to the calibration threshold l/w, the bound (81)
on the number of mistakes decreases, ensuring faster convergence. In the
limit of d going to infinity, the coe!cient (n®1+ d)/d goes to 1, and the
bound (81) thus becomes the bound n(n®1)/2 already obtained in Theorem
1 of §3 for the case with null p=0 promotion amount.
Note that the cubic rather than quadratic growth in n of the bound (81)
comes from the fact that I have upper bounded the largest number W of
winner-preferrers in a generic input ERC, with n®1. But in most
applications, W is much smaller than n®1, as the winner and loser forms
that correspond to an ERC di‰er only in a few respects, and thus most of
the constraints are even. Furthermore, if the loser forms are properly chosen
so that the input ERCs have as few winner-preferrers as possible, then W
might be forced into a constant in certain applications. In that case, the
error-bound (80) for calibrated promotion grows only quadratically in the
number of constraints n, just like the bound n(n®1)/2 for the demotion-
only case.

As there is a total of n constraints, and each ERC must have at least a
loser-preferrer (ERCs that have no loser-preferrers cannot ever trigger any
update and can therefore be ignored), then the largest number W of winner-
preferrers is upper bound by n®1, and the bound (80) becomes (81).
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Fact 5
If the input ERC matrix is consistent, the EDRA (Fig. 5) with any
promotion/demotion re-ranking rule of the form (82) can never loop
back to a current ranking vector that it had previously made a mistake
on in that same run.

Let m be the total number of input ERCs. To simplify the presentation,
let me start by assuming that the input ERC matrix has a unique l per
ERC. The contribution of the ith ERC ai to the current ranking vector
according to this re-ranking rule can thus be summarised with the cor-
responding update vector ai, as in (83): the entry corresponding to the
loser-preferrer is equal to —1; the entries corresponding to winner-preferrers
are set equal to the corresponding promotion amount p>0; all other entries
are 0.

Throughout this section, I assume that the promotion amount p is never
null. I show that the EDRA with the re-ranking rule (82) cannot loop on
consistent input ERC matrices, as stated in Fact 5, repeated below. The
proof is based on a connection between OT-consistency and conic
independence.

Suppose that the initial RVs are all null. The current ranking vector _t

entertained at time t by the EDRA with the re-ranking rule (82) can be
described as in (84), i.e. as a combination of the update vectors, each
multiplied by the number of updates ait triggered by the corresponding ith
ERC in the run considered up to time t. Equation (43), obtained in the dis-
cussion of Pater’s counterexample in §5.3, is a special case of the general
equation (84). Of course, the coe!cients ait are by definition all non-negative.
Thus the identity (84) can be summarised by saying that the current ranking
vector is a conic combination of the m update vectors.

As the current ranking vector is a conic combination of the update vectors,
it is interesting to study the conic geometry of these vectors, i.e. the formal
properties of their conic combinations. Here is a particularly important
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Suppose that a conic combination of these update vectors (88) with some
non-negative coe!cients yields the null vector, namely that conditions
(85a) and (b) hold. Let’s focus on the first component of this conic combi-
nation, as in (89). The first component of the update vectors in the 1st block
is always positive (recall that p>0 by hypothesis). Suppose there are k
vectors in the 1st block. The first component of the remaining m®k update
vectors is always null. In order for the first component of this conic
combination to be zero, the non-negative coe!cients that multiply the
update vectors in the 1st block must all be null, namely a1=…=ak=0.

The update vectors can now be read straightforwardly from (87): the ith
update vector is obtained by looking at the ith column. Recall that the
mapping (83) from ERCs into update vectors replaces a e with a 0 and a w
with the positive quantity p>0. The collection of update vectors can thus
be made a little more explicit, as in (88). (Each update vector can have a
di‰erent value for the promotion amount p. This fact does not play any
role in the reasoning, so I do not encode it explicitly in the notation, and
use the same p for all update vectors.)
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By moving everything to the right-hand side, (91a) can of course be restated
as in (92a), where I have introduced the coe!cients ai=ait¢®ait for all i=1,
…, m. The property (91b), that ait¢ is larger than or equal to ait because time
t¢ follows time t, can then be restated as (92b), that all coe!cients ai are
non-negative. The property (91c), that some coe!cient ait¢ is di‰erent from
the corresponding coe!cient ait because some update has happened between
times t and t¢, can be restated as the property (92c), that at least one of the
coe!cients ai is non-null.

The conditions in (92) say that the null vector can be synthesised as a conic
combination of the update vectors, without the coe!cients a1, …, am all
being null. This contradicts the hypothesis that the update vectors are
conically independent.º

Fact 7
If the update vectors are conically independent, then the EDRA cannot
loop back to a current ranking vector it had previously updated.

Proof. Suppose by contradiction that the EDRA can indeed loop back to
a ranking vector that it had dismissed at a previous time. This means that
it is possible for the algorithm to walk through a learning path with the
properties in (90).

Assumption (90a), that the ranking vectors _t and _t¢ entertained at times
t and t¢ coincide, can be expressed as the identity (91a), using the description
(84) of the current ranking vector in terms of update vectors. Here, ait and
ait¢ are the number of updates triggered by ERC 1 up to time t and t¢
respectively; an analogous interpretation holds for the other coe!cients.
As the number of updates grows with time, assumption (90b), that time t¢
follows time t, thus entails that the coe!cient ait¢ at time t¢ is larger than
or equal to the corresponding coe!cient ait at time t, as stated in (91b).
Furthermore, assumption (90c) entails that some update has happened at
some time between t and t¢, so that at least one of the coe!cients has
increased by at least 1 from time t to time t¢, as stated in (91c).

10Giorgio Magri

Appendix D: On the number of updates for smallest non-calibrated
promotion
Recall from §7.5 that the aggravated Pater’s ERC matrix for n constraints
is obtained from the corresponding diagonal matrix by adding two w’s to
the right of each l. To illustrate, I give in (93) the matrix corresponding
to n=7 constraints. It has 6= n®1 ERCs; it has a w on every diagonal
entry, followed by an l followed in turn by two more w’s (except for the
last two rows, whose l’s are followed by one and zero w’s respectively).

To conclude the proof of Fact 5, I need to consider the case where the
input ERC matrix contains rows with multiple l’s. The additional di!culty
in this case is that the contribution of the ith ERC to the current ranking
vector depends on the number of currently undominated loser-preferrers,
i.e. it can be di‰erent at di‰erent times, and thus cannot be distilled into
a unique update vector ai, as in (83). But this di!culty can be straight-
forwardly overcome, at the expense of a slightly more cumbersome notation.
Let m be the total number of ERCs. Suppose that the ith ERC has li loser-
preferrers Ck1, …, Ckli. Let C
i

1, …, C
i

2li—1 be all 2
li®1 non-empty subsets
of the set {Ck1, …, Ckli} of loser-preferrers. For every such subset Cij, let
ai, j be the update vector defined as follows: the components corresponding
to the loser-preferrers in the subset Cij are equal to —1; the components
corresponding to winner-preferrers are equal to p; the remaining components
are equal to 0. Furthermore, let ati, j be the number of updates triggered by
this ith ERC up to time t, because all and only the loser-preferrers in the
set Cij were currently undominated. The current ranking vector can then
be expressed as a conic combination of these update vectors through these
non-negative coe!cients, namely _t=%
m

i=1 %j=12
li

—1 ati, j ai, j. Again, these
update vectors ai, j are conically independent. I can thus trivially extend
the preceding reasoning.
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Here is how these equations are obtained. The RV q1 of constraint C1 starts
out null. It is only modified when ERC 1 triggers an update, in which case,
it is increased by 1/3, as ERC 1 contains 3 winner-preferrers. In other
words, the final RV q1 of constraint C1 is 1/3 of the total number a1 of
updates triggered by ERC 1, as stated by the first equation in (95).
Analogously, the RV q2 of constraint C2 starts out null, is decreased by 1
every time ERC 1 triggers an update and is increased by 1/3 every time
ERC 2 triggers an update, whereby we get the second equation in (95). The
remaining equations in (95) are obtained analogously.
The input matrix (93) is only consistent with the ranking C1êC2 …êC7.
As the final ranking vector _=(q1, …, q7) entertained by the EDRA at
convergence is consistent with the input matrix of ERCs, it must therefore
satisfy the six strict inequalities q1>q2, …, q6>q7. Consider for instance
the first of these six inequalities, repeated in (96a). Using the first two
equations in (95), this inequality can be rewritten as in (96b), in terms of
the numbers of updates a1 and a2 triggered by ERC 1 and ERC 2 respectively.
If both sides of inequality (96b) are multiplied by the constant 3, we get
the equivalent inequality (96c). As the variables a1, a2, as well as the
coe!cients, are integers, the strict inequality (96c) is equivalent to the loose
inequality (96d), where I have added 1 to the right-hand side.

The convergence Theorem 3 ensures that after a finite number of errors
the EDRA will converge to a final ranking vector consistent with the input
ERC matrix, and learning will cease. Yet the theorem does not provide any
estimate of the number of errors made before convergence. This section
shows that this number grows exponentially with the number n of constraints,
as anticipated in §7.5.
For concreteness, suppose the input matrix is the aggravated Pater’s
matrix (93), corresponding to n=7 constraints. Let _=(q1, …, q7) be the
final ranking vector the EDRA has converged on. Let a1, …, a6 be the total
number of updates triggered by each of the six input ERCs in the run
considered. The final RVs q1, …, q7 can be expressed in terms of the
coe!cients a1, …, a6, as in (95).

(94)Decrease the RV of the loser-preferrer by 1. a.
Increase the RV of each of the w winner-preferrers by l/w.b.
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The reasoning just developed in the concrete case of the aggravated Pater’s
matrix in (93) corresponding to n=7 constraints extends to the case of an
arbitrary number n of constraints. I can always construct an optimisation
problem akin to (98) that provides a bound on the best-case number of
updates performed by the EDRA on that aggravated Pater’s matrix. The
solution of the optimisation problems thus obtained for the aggravated
Pater’s matrices corresponding to various choices of the number n of
constraints are reported in Table Ia. (These values were computed using
the Matlab file MinimumRunningTime.m. It takes as input the aggravated
Pater’s ERC matrix corresponding to n constraints, for any n. It constructs
the corresponding optimisation problem akin to (98), generalising the
reasoning just presented here in the special case of the aggravated Pater’s
comparative tableaux corresponding to n=7 constraints, and it solves this

The total number of updates performed by the EDRA in the run considered
coincides with the sum a1+…+a6 of the number a1 of updates triggered
by ERC 1 plus the number a2 of updates triggered by ERC 2 and so on
down to the number a6 of updates triggered by ERC 6. Furthermore, these
non-negative numbers a1, …, a6 must satisfy the inequalities in (97). Thus
the number of updates performed by the EDRA to reach convergence
cannot be smaller than the solution of the optimisation problem (98). In
other words, the solution of this optimisation problem provides a bound
on the best-case number of updates performed by the EDRA on the input
matrix (93). As (98) is a linear program, it can be easily solved with standard
linear programming techniques.

By reasoning this way, I conclude that the six strict inequalities q1>q2, …,
q6>q7 are equivalent to the six inequalities in (97) in terms of the number
of updates a1, …, a6 triggered by ERC 1 through ERC 6 respectively.
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optimisation problem using Matlab built-in subroutines for linear pro-
gramming. Aggravated Pater’s comparative matrices for n=5, 7, 9, 11, 13,
15 constraints are provided in the file AggravatedPaterMatrices.txt. Both
files are available here.)
Let me close by pointing out the close parallelism between the reasoning
presented in this section and the explanation for Pater’s (2008) counter-
example against the GLA’s convergence provided in §5.3. The equations
in (95) are analogous to those in (44) in §5.3, and both are a special case of
the vector equation (84) in Appendix C. The inequalities in (97) are analogous
to those in (45) in §5.3. Finally, showing that there are no coe!cient a’s
that solve the inequalities in (97) and add up to a small number corresponds
to the final step of the explanation of Pater’s counterexample, which showed
that there are no coe!cient a’s that solve the inequalities (45).

Appendix A: Extension to arbitrary initial ranking vectors
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Throughout the paper, I have investigated convergence in the case where
the initial RVs Ú1init, …, Úninit were all identical, say all equal to zero (the
actual value does not really matter). In this appendix, I show how to obtain
error bounds for demotion-only and calibrated re-ranking rules in the case
of an arbitrary initial ranking vector _init=(Ú1init, …, Úninit). It turns out that
the properties of the initial ranking vector that are relevant for the error-
bounds can be extracted through the quantity B(_init) defined in (71), namely
the sum of the di‰erence between each initial RV Úkinit and the smallest RV
minh=1Úhinit. Intuitively, this quantity measures how scattered the initial
RVs are. In fact, B(_init) is null for the case of identical initial RVs, small
for RVs close to each other and large if there are some RVs that are very
small and some other RVs that are very large.

n

k=1 h=1
(71) %(Úkinit®minÚhinit)B(_init)=

1 The crucial invariant
Tesar & Smolensky’s (generalised) Fact 2 from §6.2 provides an invariant
for the current RVs entertained by the EDRA in the case of null initial
RVs. It says that the current RVs can never become much smaller than
zero, as long as the EDRA only demotes the loser-preferring constraints
that need to be demoted, i.e. the undominated ones. The reasoning trivially
extends to arbitrary initial ranking values, yielding the following further
generalisation of Fact 2: the current ranking values can never become much
smaller than the smallest initial ranking value.
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In §2.3, I defined OT-consistency between an ERC and a ranking vector
as in (14), repeated below in (99). This appendix qualifies this definition
with some remarks.

Appendix E: On the notion of OT-consistency for ranking vectors

(99)A ranking vector is (OT-)consistent with an ERC provided that each
of its refinements is consistent with that ERC, according to the original
notion of consistency (9).

T&S introduce a variant of the standard OT framework, replacing total
rankings with stratified hierarchies, which can assign multiple constraints
to a single stratum. Stratified hierarchies are thus equivalent to ranking
vectors, which can assign the same ranking values to multiple constraints.
Yet the notion of consistency assumed by T&S is very di‰erent from the
one in (99), as T&S allow for the tie among constraints assigned to the same
stratum to be resolved additively. Without getting into the details of this
alternative definition of OT-consistency, let me illustrate the di‰erence
with an example. Consider the ERC (100a) together with the ranking vector
(100b). Because of the two identical ranking values q1=q2=2, this ranking
vector would represent a stratified hierarchy that assigns both C 1 and C2

to the top stratum, with C 3 ranked underneath.

1Comparison with Tesar & Smolensky’s (1998) notion of OT-
consistency for stratified hierarchies

(100)C3C1C2

()122_=
b.a.C2

ERC

C1

wl[
C3

w]

as the l and the w of the two equally highest-ranked constraints C 1 and C2

‘cancel out’ because of the additive interaction between equally
rankedconstraints. But the ranking vector (100b) is not consistent with the
ERC (100a) according to the definition (99), since the ranking vector (100b)
admits the refinement C2êC1êC3, which is not consistent with the ERC
(100a). As the paper assumes the classical notion of OT-consistency (99),
it is framed squarely within standard OT. Contrary to what suggested by
T&S, there is no need to step outside of the standard OT framework for
algorithmic purposes.
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A reviewer worries that the notion of OT consistency (99), which requires
consistency to hold for all refinements, might not be e!ciently computable.
For instance, if all ranking values are identical, then don’t we have to check
consistency for all n! refinements, causing a complexity explosion? That is
not the case. Here is a way to see this. Let W(a) and L(a) be the sets of
winner- and loser-preferring constraints relative to an ERC a. It turns out
that a ranking vector _=(q1, …, qn) is consistent with an ERC a according
to condition (99) provided the following strict inequality (101) holds, which
says that the largest ranking value over winner-preferrers is larger than the
largest ranking value over loser-preferrers.

Computational e!ciency2

Furthermore, the inequality (101) can be checked in n steps (where n is the
number of constraints). In the end, the consistency condition (99) can thus
be e!ciently computed.
Let me explain why the consistency condition (99) is equivalent to the
strict inequality (101). Suppose that the latter inequality (101) holds. Every
refinement of this ranking vector will then rank the winner-preferrer that
attains the maximum max kÊW(a) Úk above the loser-preferrer that attains
the maximum maxhÊL(a) Úh. In other words, it will rank this winner-preferrer
above every loser-preferrer. Every refinement is thus consistent with the
ERC a, and condition (99) holds. Vice versa, suppose that inequality (101)
does not hold, i.e. the largest ranking value over winner-preferrers is at
most as large as the largest ranking value over loser-preferrers. Thus the
current ranking vector admits a refinement that ranks the loser-preferrer
that attains the maximum maxhÊL(a) Úh above the winner-preferrer that
attains the maximum maxkÊW(a) Úk. In other words, it admits a refinement
that ranks a loser-preferrer above every winner-preferrer. This refinement
is thus not consistent with the ERC a, and condition (99) fails.
Finally, let me explain why inequality (101) can be checked i n n steps
(where n is the number of constraints) . Posit W=—≥ and L=—≥. Scan
through the current ranking values, for k=1, 2, … n. If Úk is larger than

(101)
kÊW(a)
maxÚk
hÊL(a)
maxÚh>

a1®a3+a4>0

Consistency with Pater’s ERC matrix 3
In §5.2, I considered Pater’s (2008) ERC matrix (42). This ERC matrix
requires the ranking C1êC2êC3êC4êC5. Thus, a ranking vector  _=(q1,
q2, q3, q4, q5) is OT-consistent with this ERC matrix according to condition
(99), provided it admits only that ranking as a renement. This means in
turn that the ranking values must satisfy the four strict inequalities q1>q2,
q2>q3, q3>q4 and q4>q5. In §5.3, I showed that these four strict inequalities
can be rewritten as in (45) in terms of the number of updates a1, …, a4,
triggered by the four ERCs in Pater’s ERC matrix. Furthermore, I have
claimed that these inequalities (45) admit no solution. To see this, rewrite
these inequalities (45) as in (102), by moving everything on one side.

If we sum all four inequalities together, we obtain inequality (103a). If we
sum together only the second and third inequalities in (102), we obtain
inequality (103b).

(103)a.
—a1+a3®a4>0b.

As the two inequalities thus derived in (103) are inconsistent, the four
original inequalities (102) admit no solution.

additional reference

Bertsekas, Dimitri P., Angelia Nedic & Asuman E. Ozdaglar (2003). Convex analysis
and optimization. Nashua, NH: Athena Scientific.

According to the alternative definition of OT-consistency introduced by
T&S, the ranking vector (100b) is indeed consistent with the ERC (100a),

W (larger than L) and Ck is winner-preferring (loser-preferring), then set
W=Úk (set L=Úk). After having scanned all ranking values, condition (101)
holds i‰ W>L. This process only takes n steps.
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(75)

qk

Úkinit

h=1,…,n
Úhinit—(k®1)min

Theorem 1 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the demotion-only re-ranking rule (73) run
on a consistent input ERC matrix corresponding to n constraints
starting from an arbitrary initial ranking vector _init=(Ú1init, …, Úninit)
can perform at most B(_init)+n(n®1)/2 errors before converging.

(77) %
n

k=1 h=1,…,n
Úhinitmin ®(k®1)( =n%

n

k=1
qk} )

h=1,…,n
Úhinit®min
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We have thus proven the following extension of Theorem 1 from null to
arbitrary initial RVs. Recall that, if the initial RVs are all identical (say, all
null), then B(_init)=0. In this case, the bound B(_init)+n(n®1)/2 provided
by the following theorem thus reduces to the bound n(n®1)/2 already
obtained in §3.

The bound B(_init)+n(n®1)/2 on the worst-case number of errors is tight,
as shown by the same example in (26) in the paper with the ERCs fed in
the fixed order a1£a2£a3 and with the initial ranking vector _init=(4,3,
2,1).

3 Calibrated re-ranking rules
Consider next the calibrated demotion/promotion re-ranking rule (51) from
§6, repeated in (76).

The invariant (72) ensures that the sum of the current RVs can be lower
bounded, as in (77).

As seen in §6.3, the sum of the current RVs is decreased by at least 1/n with
every update. After T updates, it has thus decreased by at least T/n from
the sum of the initial RVs, as stated in (78).

1
2
n(n®1)

(76) Decrease the RV of each of the l undominated loser-preferrers by 1.a.
Increase the RV of each of the w winner-preferrers by p=l/(w+1).b.
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conic property. The update vectors are called conically independent
provided that there are no coe!cients a1, …, am that satisfy the three
conditions in (85); see Bertsekas et al. (2003). In other words, it is not
possible to synthesise the null vector as a conic combination of the update
vectors, unless of course the coe!cients are all set equal to zero.

Fact 6 below says that OT-consistency of the input ERC matrix (with a
unique l per row) entails conic independence of the corresponding update
vectors, and Fact 7 says that conic independence of the update vectors in
turn entails that the EDRA cannot loop. Fact 5 thus follows from the two
auxiliary Facts 6 and 7. The assumption that the input ERCs have a unique
l per row can be easily dropped, as discussed at the end of this section.

Fact 6
Consider an input ERC matrix that has a unique l per row. If it is
consistent, then the corresponding update vectors defined in (83) are
conically independent.

Proof. Recall from Fact 1 that any consistent ERC matrix has the shape in
(22) (repeated in (86)), modulo reordering of its rows and its columns and
relabelling of the constraints. (86) has a top block of rows whose first entry
is w, followed by a second block of rows whose first entry is e and whose
second entry is w, and so on.

2 Giorgio Magri

Fact 2 (further generalised)
Assume that the input ERC matrix is consistent with a ranking.
Without loss of generality, assume that this ranking is C1êC1ê…êCn.
Let q1, …, qn be the current RVs entertained by an EDRA in a generic
run on those input ERCs, up to a generic time, starting from arbitrary
initial RVs Ú1init, …, Úninit. Assume that the re-ranking rule used by the
EDRA demotes by 1 only the currently undominated loser-preferrers
(no assumptions are made on constraint promotion). The current RVs
thus satisfy condition (72) for every k=1, …, n. That is, the RV qk of
the constraint Ck assigned to the kth stratum (with the 1st stratum
being the top one) never drops by more than (k®1) below the smallest
initial RV minh=1,…,nÚhinit.

(72) qk}
h=1,…,n

Úhinit®(k®1)min

(73) Decrease the RV of each undominated loser-preferrer by 1.a.
Do nothing to the current RV of the other constraints.b.

2 Demotion-only re-ranking rules
Consider the demotion-only re-ranking rule (17) from §3, repeated in (73).

At least one constraint is demoted at each update. Hence, the total number
T of updates is at most the sum of the number of times C1 has been demoted,
and the number of times C2 has been demoted, etc, as stated in (74a). Each
time constraint Ck is demoted, it is demoted by 1, and it is never promoted.
Hence the number of times that constraint Ck has been demoted up to the
time considered is equal to the distance Úkinit®Úk between its initial RV Úkinit

and its current RV Úk, as stated in (74b). The inequality (72) says that Úk

sits between Úkinit and minh=1,…,nÚhinit®(k®1), as depicted in (75). Thus the
distance between the latter two points upper bounds the distance Úkinit®Úk,
as stated in (74c). Finally, step (e) follows from definition (71) of the constant
B(_init) and from the identity %

n

k=1(k®1)=n(n®1)/2.

Theorem 2 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the calibrated promotion/demotion re-
ranking rule (76) run on a consistent input ERC matrix corresponding
to n constraints starting from an arbitrary initial ranking vector
_init=(Ú1init, …, Úninit) can perform at most nB(_init)+n2(n®1)/2 errors
before converging.

4 Giorgio Magri

In the case of an arbitrary initial ranking vector as well, the error-bound
for the calibrated case is worse by a factor of n than the error-bound for
the demotion-only case.

Combining the two inequalities (77) and (78), I conclude that the number
T of updates must be smaller than nB(_init)+n2(n®1)/2. We have thus
proven the following extension of Theorem 2 from null to arbitrary initial
RVs.

In §6, I looked for concreteness at a specific calibrated re-ranking rule,
namely the one in (51) (= (76)), which demotes each of the l undominated
loser-preferrers by 1 and promotes each of the w winner-preferrers by
l/(w+1). Here I look at the generic calibrated re-ranking rule in (79).

Appendix B: Convergence of a generic calibrated re-ranking rule

This re-ranking rule is calibrated as long as d>0. Indeed, the distance of
the promotion amount p from the calibration threshold l/w is controlled by
the constant d: the larger d, the smaller the promotion amount p is with
respect to the calibration threshold. In particular, the case d=1 corresponds
to re-ranking rule (51), and the case where d goes to infinity corresponds
to the demotion-only case p=0 considered in §3.

The reasoning for the case d=1 presented in §6 trivially extends to an
arbitrary d>0, yielding the following generalisation of Theorem 2 of §6.

Theorem 2 (extended to arbitrary calibrated promotion amounts)
An EDRA with the general calibrated re-ranking rule (79) run on a
consistent input ERC matrix corresponding to n constraints starting
from null initial RVs can perform at most the number of mistakes in
(80) before converging, where W is the largest number of winner-
preferrers over all input ERCs.
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Appendix C: Why EDRAs cannot loop
Consider the general re-ranking rule in (82).

Proof. With every update, the sum of the current RVs is decreased by l. It
is furthermore increased by wl/(w+d), as each of the w winner-preferrers
is promoted by l/(w+d). In the end, the sum of the current RVs is thus
decreased by l®(wl/(w+d))=dl/(w+d) . As the number l of undominated
loser-preferrers is at least 1 and the number w of winner-preferrers is at
most W, I conclude that the sum of the current RVs is decreased by at least
T(d/(W+d)) after T updates. On the other hand, the sum of the current
RVs starts at zero and can never become smaller than —n(n®1)/2, by the
generalised Fact 2 stated in §6.2. In conclusion, the number of updates T
in the case of the re-ranking rule (79) must satisfy the inequality
T(d/(W+d)){n(n®1)/2, which yields the error-bound in (80). º

The bound (81) for d=1 gives back the bound n2(n®1)/2 of the original
Theorem 2 in §6. As d increases and the promotion amount p=l/(w+d)
thus gets smaller relative to the calibration threshold l/w, the bound (81)
on the number of mistakes decreases, ensuring faster convergence. In the
limit of d going to infinity, the coe!cient (n®1+ d)/d goes to 1, and the
bound (81) thus becomes the bound n(n®1)/2 already obtained in Theorem
1 of §3 for the case with null p=0 promotion amount.

Note that the cubic rather than quadratic growth in n of the bound (81)
comes from the fact that I have upper bounded the largest number W of
winner-preferrers in a generic input ERC, with n®1. But in most
applications, W is much smaller than n®1, as the winner and loser forms
that correspond to an ERC di‰er only in a few respects, and thus most of
the constraints are even. Furthermore, if the loser forms are properly chosen
so that the input ERCs have as few winner-preferrers as possible, then W
might be forced into a constant in certain applications. In that case, the
error-bound (80) for calibrated promotion grows only quadratically in the
number of constraints n, just like the bound n(n®1)/2 for the demotion-
only case.

As there is a total of n constraints, and each ERC must have at least a
loser-preferrer (ERCs that have no loser-preferrers cannot ever trigger any
update and can therefore be ignored), then the largest number W of winner-
preferrers is upper bound by n®1, and the bound (80) becomes (81).
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Fact 5
If the input ERC matrix is consistent, the EDRA (Fig. 5) with any
promotion/demotion re-ranking rule of the form (82) can never loop
back to a current ranking vector that it had previously made a mistake
on in that same run.

Let m be the total number of input ERCs. To simplify the presentation,
let me start by assuming that the input ERC matrix has a unique l per
ERC. The contribution of the ith ERC ai to the current ranking vector
according to this re-ranking rule can thus be summarised with the cor-
responding update vector ai, as in (83): the entry corresponding to the
loser-preferrer is equal to —1; the entries corresponding to winner-preferrers
are set equal to the corresponding promotion amount p>0; all other entries
are 0.

Throughout this section, I assume that the promotion amount p is never
null. I show that the EDRA with the re-ranking rule (82) cannot loop on
consistent input ERC matrices, as stated in Fact 5, repeated below. The
proof is based on a connection between OT-consistency and conic
independence.

Suppose that the initial RVs are all null. The current ranking vector _t

entertained at time t by the EDRA with the re-ranking rule (82) can be
described as in (84), i.e. as a combination of the update vectors, each
multiplied by the number of updates ait triggered by the corresponding ith
ERC in the run considered up to time t. Equation (43), obtained in the dis-
cussion of Pater’s counterexample in §5.3, is a special case of the general
equation (84). Of course, the coe!cients ait are by definition all non-negative.
Thus the identity (84) can be summarised by saying that the current ranking
vector is a conic combination of the m update vectors.

As the current ranking vector is a conic combination of the update vectors,
it is interesting to study the conic geometry of these vectors, i.e. the formal
properties of their conic combinations. Here is a particularly important

8Giorgio Magri

Suppose that a conic combination of these update vectors (88) with some
non-negative coe!cients yields the null vector, namely that conditions
(85a) and (b) hold. Let’s focus on the first component of this conic combi-
nation, as in (89). The first component of the update vectors in the 1st block
is always positive (recall that p>0 by hypothesis). Suppose there are k
vectors in the 1st block. The first component of the remaining m®k update
vectors is always null. In order for the first component of this conic
combination to be zero, the non-negative coe!cients that multiply the
update vectors in the 1st block must all be null, namely a1=…=ak=0.

The update vectors can now be read straightforwardly from (87): the ith
update vector is obtained by looking at the ith column. Recall that the
mapping (83) from ERCs into update vectors replaces a e with a 0 and a w
with the positive quantity p>0. The collection of update vectors can thus
be made a little more explicit, as in (88). (Each update vector can have a
di‰erent value for the promotion amount p. This fact does not play any
role in the reasoning, so I do not encode it explicitly in the notation, and
use the same p for all update vectors.)
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By moving everything to the right-hand side, (91a) can of course be restated
as in (92a), where I have introduced the coe!cients ai=ait¢®ait for all i=1,
…, m. The property (91b), that ait¢ is larger than or equal to ait because time
t¢ follows time t, can then be restated as (92b), that all coe!cients ai are
non-negative. The property (91c), that some coe!cient ait¢ is di‰erent from
the corresponding coe!cient ait because some update has happened between
times t and t¢, can be restated as the property (92c), that at least one of the
coe!cients ai is non-null.

The conditions in (92) say that the null vector can be synthesised as a conic
combination of the update vectors, without the coe!cients a1, …, am all
being null. This contradicts the hypothesis that the update vectors are
conically independent.º

Fact 7
If the update vectors are conically independent, then the EDRA cannot
loop back to a current ranking vector it had previously updated.

Proof. Suppose by contradiction that the EDRA can indeed loop back to
a ranking vector that it had dismissed at a previous time. This means that
it is possible for the algorithm to walk through a learning path with the
properties in (90).

Assumption (90a), that the ranking vectors _t and _t¢ entertained at times
t and t¢ coincide, can be expressed as the identity (91a), using the description
(84) of the current ranking vector in terms of update vectors. Here, ait and
ait¢ are the number of updates triggered by ERC 1 up to time t and t¢
respectively; an analogous interpretation holds for the other coe!cients.
As the number of updates grows with time, assumption (90b), that time t¢
follows time t, thus entails that the coe!cient ait¢ at time t¢ is larger than
or equal to the corresponding coe!cient ait at time t, as stated in (91b).
Furthermore, assumption (90c) entails that some update has happened at
some time between t and t¢, so that at least one of the coe!cients has
increased by at least 1 from time t to time t¢, as stated in (91c).
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Appendix D: On the number of updates for smallest non-calibrated
promotion
Recall from §7.5 that the aggravated Pater’s ERC matrix for n constraints
is obtained from the corresponding diagonal matrix by adding two w’s to
the right of each l. To illustrate, I give in (93) the matrix corresponding
to n=7 constraints. It has 6= n®1 ERCs; it has a w on every diagonal
entry, followed by an l followed in turn by two more w’s (except for the
last two rows, whose l’s are followed by one and zero w’s respectively).

To conclude the proof of Fact 5, I need to consider the case where the
input ERC matrix contains rows with multiple l’s. The additional di!culty
in this case is that the contribution of the ith ERC to the current ranking
vector depends on the number of currently undominated loser-preferrers,
i.e. it can be di‰erent at di‰erent times, and thus cannot be distilled into
a unique update vector ai, as in (83). But this di!culty can be straight-
forwardly overcome, at the expense of a slightly more cumbersome notation.
Let m be the total number of ERCs. Suppose that the ith ERC has li loser-
preferrers Ck1, …, Ckli. Let C
i

1, …, C
i

2li—1 be all 2
li®1 non-empty subsets
of the set {Ck1, …, Ckli} of loser-preferrers. For every such subset Cij, let
ai, j be the update vector defined as follows: the components corresponding
to the loser-preferrers in the subset Cij are equal to —1; the components
corresponding to winner-preferrers are equal to p; the remaining components
are equal to 0. Furthermore, let ati, j be the number of updates triggered by
this ith ERC up to time t, because all and only the loser-preferrers in the
set Cij were currently undominated. The current ranking vector can then
be expressed as a conic combination of these update vectors through these
non-negative coe!cients, namely _t=%
m

i=1 %j=12
li

—1 ati, j ai, j. Again, these
update vectors ai, j are conically independent. I can thus trivially extend
the preceding reasoning.
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Here is how these equations are obtained. The RV q1 of constraint C1 starts
out null. It is only modified when ERC 1 triggers an update, in which case,
it is increased by 1/3, as ERC 1 contains 3 winner-preferrers. In other
words, the final RV q1 of constraint C1 is 1/3 of the total number a1 of
updates triggered by ERC 1, as stated by the first equation in (95).
Analogously, the RV q2 of constraint C2 starts out null, is decreased by 1
every time ERC 1 triggers an update and is increased by 1/3 every time
ERC 2 triggers an update, whereby we get the second equation in (95). The
remaining equations in (95) are obtained analogously.
The input matrix (93) is only consistent with the ranking C1êC2 …êC7.
As the final ranking vector _=(q1, …, q7) entertained by the EDRA at
convergence is consistent with the input matrix of ERCs, it must therefore
satisfy the six strict inequalities q1>q2, …, q6>q7. Consider for instance
the first of these six inequalities, repeated in (96a). Using the first two
equations in (95), this inequality can be rewritten as in (96b), in terms of
the numbers of updates a1 and a2 triggered by ERC 1 and ERC 2 respectively.
If both sides of inequality (96b) are multiplied by the constant 3, we get
the equivalent inequality (96c). As the variables a1, a2, as well as the
coe!cients, are integers, the strict inequality (96c) is equivalent to the loose
inequality (96d), where I have added 1 to the right-hand side.

The convergence Theorem 3 ensures that after a finite number of errors
the EDRA will converge to a final ranking vector consistent with the input
ERC matrix, and learning will cease. Yet the theorem does not provide any
estimate of the number of errors made before convergence. This section
shows that this number grows exponentially with the number n of constraints,
as anticipated in §7.5.
For concreteness, suppose the input matrix is the aggravated Pater’s
matrix (93), corresponding to n=7 constraints. Let _=(q1, …, q7) be the
final ranking vector the EDRA has converged on. Let a1, …, a6 be the total
number of updates triggered by each of the six input ERCs in the run
considered. The final RVs q1, …, q7 can be expressed in terms of the
coe!cients a1, …, a6, as in (95).

(94)Decrease the RV of the loser-preferrer by 1. a.
Increase the RV of each of the w winner-preferrers by l/w.b.
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The reasoning just developed in the concrete case of the aggravated Pater’s
matrix in (93) corresponding to n=7 constraints extends to the case of an
arbitrary number n of constraints. I can always construct an optimisation
problem akin to (98) that provides a bound on the best-case number of
updates performed by the EDRA on that aggravated Pater’s matrix. The
solution of the optimisation problems thus obtained for the aggravated
Pater’s matrices corresponding to various choices of the number n of
constraints are reported in Table Ia. (These values were computed using
the Matlab file MinimumRunningTime.m. It takes as input the aggravated
Pater’s ERC matrix corresponding to n constraints, for any n. It constructs
the corresponding optimisation problem akin to (98), generalising the
reasoning just presented here in the special case of the aggravated Pater’s
comparative tableaux corresponding to n=7 constraints, and it solves this

The total number of updates performed by the EDRA in the run considered
coincides with the sum a1+…+a6 of the number a1 of updates triggered
by ERC 1 plus the number a2 of updates triggered by ERC 2 and so on
down to the number a6 of updates triggered by ERC 6. Furthermore, these
non-negative numbers a1, …, a6 must satisfy the inequalities in (97). Thus
the number of updates performed by the EDRA to reach convergence
cannot be smaller than the solution of the optimisation problem (98). In
other words, the solution of this optimisation problem provides a bound
on the best-case number of updates performed by the EDRA on the input
matrix (93). As (98) is a linear program, it can be easily solved with standard
linear programming techniques.

By reasoning this way, I conclude that the six strict inequalities q1>q2, …,
q6>q7 are equivalent to the six inequalities in (97) in terms of the number
of updates a1, …, a6 triggered by ERC 1 through ERC 6 respectively.
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optimisation problem using Matlab built-in subroutines for linear pro-
gramming. Aggravated Pater’s comparative matrices for n=5, 7, 9, 11, 13,
15 constraints are provided in the file AggravatedPaterMatrices.txt. Both
files are available here.)
Let me close by pointing out the close parallelism between the reasoning
presented in this section and the explanation for Pater’s (2008) counter-
example against the GLA’s convergence provided in §5.3. The equations
in (95) are analogous to those in (44) in §5.3, and both are a special case of
the vector equation (84) in Appendix C. The inequalities in (97) are analogous
to those in (45) in §5.3. Finally, showing that there are no coe!cient a’s
that solve the inequalities in (97) and add up to a small number corresponds
to the final step of the explanation of Pater’s counterexample, which showed
that there are no coe!cient a’s that solve the inequalities (45).

Appendix A: Extension to arbitrary initial ranking vectors
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Throughout the paper, I have investigated convergence in the case where
the initial RVs Ú1init, …, Úninit were all identical, say all equal to zero (the
actual value does not really matter). In this appendix, I show how to obtain
error bounds for demotion-only and calibrated re-ranking rules in the case
of an arbitrary initial ranking vector _init=(Ú1init, …, Úninit). It turns out that
the properties of the initial ranking vector that are relevant for the error-
bounds can be extracted through the quantity B(_init) defined in (71), namely
the sum of the di‰erence between each initial RV Úkinit and the smallest RV
minh=1Úhinit. Intuitively, this quantity measures how scattered the initial
RVs are. In fact, B(_init) is null for the case of identical initial RVs, small
for RVs close to each other and large if there are some RVs that are very
small and some other RVs that are very large.

1 The crucial invariant
Tesar & Smolensky’s (generalised) Fact 2 from §6.2 provides an invariant
for the current RVs entertained by the EDRA in the case of null initial
RVs. It says that the current RVs can never become much smaller than
zero, as long as the EDRA only demotes the loser-preferring constraints
that need to be demoted, i.e. the undominated ones. The reasoning trivially
extends to arbitrary initial ranking values, yielding the following further
generalisation of Fact 2: the current ranking values can never become much
smaller than the smallest initial ranking value.
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In §2.3, I defined OT-consistency between an ERC and a ranking vector
as in (14), repeated below in (99). This appendix qualifies this definition
with some remarks.

Appendix E: On the notion of OT-consistency for ranking vectors

(99)A ranking vector is (OT-)consistent with an ERC provided that each
of its refinements is consistent with that ERC, according to the original
notion of consistency (9).

T&S introduce a variant of the standard OT framework, replacing total
rankings with stratified hierarchies, which can assign multiple constraints
to a single stratum. Stratified hierarchies are thus equivalent to ranking
vectors, which can assign the same ranking values to multiple constraints.
Yet the notion of consistency assumed by T&S is very di‰erent from the
one in (99), as T&S allow for the tie among constraints assigned to the same
stratum to be resolved additively. Without getting into the details of this
alternative definition of OT-consistency, let me illustrate the di‰erence
with an example. Consider the ERC (100a) together with the ranking vector
(100b). Because of the two identical ranking values q1=q2=2, this ranking
vector would represent a stratified hierarchy that assigns both C 1 and C2

to the top stratum, with C 3 ranked underneath.

1Comparison with Tesar & Smolensky’s (1998) notion of OT-
consistency for stratified hierarchies

(100)C3C1C2

()122_=
b.a.C2

ERC

C1

wl[
C3

w]

as the l and the w of the two equally highest-ranked constraints C 1 and C2

‘cancel out’ because of the additive interaction between equally
rankedconstraints. But the ranking vector (100b) is not consistent with the
ERC (100a) according to the definition (99), since the ranking vector (100b)
admits the refinement C2êC1êC3, which is not consistent with the ERC
(100a). As the paper assumes the classical notion of OT-consistency (99),
it is framed squarely within standard OT. Contrary to what suggested by
T&S, there is no need to step outside of the standard OT framework for
algorithmic purposes.
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A reviewer worries that the notion of OT consistency (99), which requires
consistency to hold for all refinements, might not be e!ciently computable.
For instance, if all ranking values are identical, then don’t we have to check
consistency for all n! refinements, causing a complexity explosion? That is
not the case. Here is a way to see this. Let W(a) and L(a) be the sets of
winner- and loser-preferring constraints relative to an ERC a. It turns out
that a ranking vector _=(q1, …, qn) is consistent with an ERC a according
to condition (99) provided the following strict inequality (101) holds, which
says that the largest ranking value over winner-preferrers is larger than the
largest ranking value over loser-preferrers.

Computational e!ciency2

Furthermore, the inequality (101) can be checked in n steps (where n is the
number of constraints). In the end, the consistency condition (99) can thus
be e!ciently computed.
Let me explain why the consistency condition (99) is equivalent to the
strict inequality (101). Suppose that the latter inequality (101) holds. Every
refinement of this ranking vector will then rank the winner-preferrer that
attains the maximum max kÊW(a) Úk above the loser-preferrer that attains
the maximum maxhÊL(a) Úh. In other words, it will rank this winner-preferrer
above every loser-preferrer. Every refinement is thus consistent with the
ERC a, and condition (99) holds. Vice versa, suppose that inequality (101)
does not hold, i.e. the largest ranking value over winner-preferrers is at
most as large as the largest ranking value over loser-preferrers. Thus the
current ranking vector admits a refinement that ranks the loser-preferrer
that attains the maximum maxhÊL(a) Úh above the winner-preferrer that
attains the maximum maxkÊW(a) Úk. In other words, it admits a refinement
that ranks a loser-preferrer above every winner-preferrer. This refinement
is thus not consistent with the ERC a, and condition (99) fails.
Finally, let me explain why inequality (101) can be checked i n n steps
(where n is the number of constraints) . Posit W=—≥ and L=—≥. Scan
through the current ranking values, for k=1, 2, … n. If Úk is larger than

(101)
kÊW(a)
maxÚk
hÊL(a)
maxÚh>

b.

(74) %
n

k=1
a.

%
n

k=1

c. %
n

k=1

T{

d. %
n

k=1

Úkinit®Úk

(number of demotions of Ck)

Úkinit®
h=1,…,n

Úhinit—(k®1)min ))(

Úkinit®
h=1,…,n

Úhinitmin )( (k®1)+%
n

k=1

e. B(_init)+ n(n®1)

=

{

=

= 1
2

)(

(

a1®a3+a4>0

Consistency with Pater’s ERC matrix 3
In §5.2, I considered Pater’s (2008) ERC matrix (42). This ERC matrix
requires the ranking C1êC2êC3êC4êC5. Thus, a ranking vector  _=(q1,
q2, q3, q4, q5) is OT-consistent with this ERC matrix according to condition
(99), provided it admits only that ranking as a renement. This means in
turn that the ranking values must satisfy the four strict inequalities q1>q2,
q2>q3, q3>q4 and q4>q5. In §5.3, I showed that these four strict inequalities
can be rewritten as in (45) in terms of the number of updates a1, …, a4,
triggered by the four ERCs in Pater’s ERC matrix. Furthermore, I have
claimed that these inequalities (45) admit no solution. To see this, rewrite
these inequalities (45) as in (102), by moving everything on one side.

If we sum all four inequalities together, we obtain inequality (103a). If we
sum together only the second and third inequalities in (102), we obtain
inequality (103b).

(103)a.
—a1+a3®a4>0b.

As the two inequalities thus derived in (103) are inconsistent, the four
original inequalities (102) admit no solution.

additional reference

Bertsekas, Dimitri P., Angelia Nedic & Asuman E. Ozdaglar (2003). Convex analysis
and optimization. Nashua, NH: Athena Scientific.

According to the alternative definition of OT-consistency introduced by
T&S, the ranking vector (100b) is indeed consistent with the ERC (100a),

W (larger than L) and Ck is winner-preferring (loser-preferring), then set
W=Úk (set L=Úk). After having scanned all ranking values, condition (101)
holds i‰ W>L. This process only takes n steps.
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(75)

qk

Úkinit

h=1,…,n
Úhinit—(k®1)min

Theorem 1 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the demotion-only re-ranking rule (73) run
on a consistent input ERC matrix corresponding to n constraints
starting from an arbitrary initial ranking vector _init=(Ú1init, …, Úninit)
can perform at most B(_init)+n(n®1)/2 errors before converging.

(77) %
n

k=1 h=1,…,n
Úhinitmin ®(k®1)( =n%

n

k=1
qk} )

h=1,…,n
Úhinit®min
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We have thus proven the following extension of Theorem 1 from null to
arbitrary initial RVs. Recall that, if the initial RVs are all identical (say, all
null), then B(_init)=0. In this case, the bound B(_init)+n(n®1)/2 provided
by the following theorem thus reduces to the bound n(n®1)/2 already
obtained in §3.

The bound B(_init)+n(n®1)/2 on the worst-case number of errors is tight,
as shown by the same example in (26) in the paper with the ERCs fed in
the fixed order a1£a2£a3 and with the initial ranking vector _init=(4,3,
2,1).

3 Calibrated re-ranking rules
Consider next the calibrated demotion/promotion re-ranking rule (51) from
§6, repeated in (76).

The invariant (72) ensures that the sum of the current RVs can be lower
bounded, as in (77).

(78) %
n

k=1
qk{ T

n
%
n

k=1
Úkinit®

As seen in §6.3, the sum of the current RVs is decreased by at least 1/n with
every update. After T updates, it has thus decreased by at least T/n from
the sum of the initial RVs, as stated in (78).

1
2
n(n®1)

(76) Decrease the RV of each of the l undominated loser-preferrers by 1.a.
Increase the RV of each of the w winner-preferrers by p=l/(w+1).b.
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conic property. The update vectors are called conically independent
provided that there are no coe!cients a1, …, am that satisfy the three
conditions in (85); see Bertsekas et al. (2003). In other words, it is not
possible to synthesise the null vector as a conic combination of the update
vectors, unless of course the coe!cients are all set equal to zero.

Fact 6 below says that OT-consistency of the input ERC matrix (with a
unique l per row) entails conic independence of the corresponding update
vectors, and Fact 7 says that conic independence of the update vectors in
turn entails that the EDRA cannot loop. Fact 5 thus follows from the two
auxiliary Facts 6 and 7. The assumption that the input ERCs have a unique
l per row can be easily dropped, as discussed at the end of this section.

Fact 6
Consider an input ERC matrix that has a unique l per row. If it is
consistent, then the corresponding update vectors defined in (83) are
conically independent.

Proof. Recall from Fact 1 that any consistent ERC matrix has the shape in
(22) (repeated in (86)), modulo reordering of its rows and its columns and
relabelling of the constraints. (86) has a top block of rows whose first entry
is w, followed by a second block of rows whose first entry is e and whose
second entry is w, and so on.

2 Giorgio Magri

Fact 2 (further generalised)
Assume that the input ERC matrix is consistent with a ranking.
Without loss of generality, assume that this ranking is C1êC1ê…êCn.
Let q1, …, qn be the current RVs entertained by an EDRA in a generic
run on those input ERCs, up to a generic time, starting from arbitrary
initial RVs Ú1init, …, Úninit. Assume that the re-ranking rule used by the
EDRA demotes by 1 only the currently undominated loser-preferrers
(no assumptions are made on constraint promotion). The current RVs
thus satisfy condition (72) for every k=1, …, n. That is, the RV qk of
the constraint Ck assigned to the kth stratum (with the 1st stratum
being the top one) never drops by more than (k®1) below the smallest
initial RV minh=1,…,nÚhinit.

(72) qk}
h=1,…,n

Úhinit®(k®1)min

(73) Decrease the RV of each undominated loser-preferrer by 1.a.
Do nothing to the current RV of the other constraints.b.

2 Demotion-only re-ranking rules
Consider the demotion-only re-ranking rule (17) from §3, repeated in (73).

At least one constraint is demoted at each update. Hence, the total number
T of updates is at most the sum of the number of times C1 has been demoted,
and the number of times C2 has been demoted, etc, as stated in (74a). Each
time constraint Ck is demoted, it is demoted by 1, and it is never promoted.
Hence the number of times that constraint Ck has been demoted up to the
time considered is equal to the distance Úkinit®Úk between its initial RV Úkinit

and its current RV Úk, as stated in (74b). The inequality (72) says that Úk

sits between Úkinit and minh=1,…,nÚhinit®(k®1), as depicted in (75). Thus the
distance between the latter two points upper bounds the distance Úkinit®Úk,
as stated in (74c). Finally, step (e) follows from definition (71) of the constant
B(_init) and from the identity %

n

k=1(k®1)=n(n®1)/2.

Theorem 2 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the calibrated promotion/demotion re-
ranking rule (76) run on a consistent input ERC matrix corresponding
to n constraints starting from an arbitrary initial ranking vector
_init=(Ú1init, …, Úninit) can perform at most nB(_init)+n2(n®1)/2 errors
before converging.

4 Giorgio Magri

In the case of an arbitrary initial ranking vector as well, the error-bound
for the calibrated case is worse by a factor of n than the error-bound for
the demotion-only case.

Combining the two inequalities (77) and (78), I conclude that the number
T of updates must be smaller than nB(_init)+n2(n®1)/2. We have thus
proven the following extension of Theorem 2 from null to arbitrary initial
RVs.

In §6, I looked for concreteness at a specific calibrated re-ranking rule,
namely the one in (51) (= (76)), which demotes each of the l undominated
loser-preferrers by 1 and promotes each of the w winner-preferrers by
l/(w+1). Here I look at the generic calibrated re-ranking rule in (79).

Appendix B: Convergence of a generic calibrated re-ranking rule

This re-ranking rule is calibrated as long as d>0. Indeed, the distance of
the promotion amount p from the calibration threshold l/w is controlled by
the constant d: the larger d, the smaller the promotion amount p is with
respect to the calibration threshold. In particular, the case d=1 corresponds
to re-ranking rule (51), and the case where d goes to infinity corresponds
to the demotion-only case p=0 considered in §3.

The reasoning for the case d=1 presented in §6 trivially extends to an
arbitrary d>0, yielding the following generalisation of Theorem 2 of §6.

Theorem 2 (extended to arbitrary calibrated promotion amounts)
An EDRA with the general calibrated re-ranking rule (79) run on a
consistent input ERC matrix corresponding to n constraints starting
from null initial RVs can perform at most the number of mistakes in
(80) before converging, where W is the largest number of winner-
preferrers over all input ERCs.

Supplementary materials 5

Appendix C: Why EDRAs cannot loop
Consider the general re-ranking rule in (82).

Proof. With every update, the sum of the current RVs is decreased by l. It
is furthermore increased by wl/(w+d), as each of the w winner-preferrers
is promoted by l/(w+d). In the end, the sum of the current RVs is thus
decreased by l®(wl/(w+d))=dl/(w+d) . As the number l of undominated
loser-preferrers is at least 1 and the number w of winner-preferrers is at
most W, I conclude that the sum of the current RVs is decreased by at least
T(d/(W+d)) after T updates. On the other hand, the sum of the current
RVs starts at zero and can never become smaller than —n(n®1)/2, by the
generalised Fact 2 stated in §6.2. In conclusion, the number of updates T
in the case of the re-ranking rule (79) must satisfy the inequality
T(d/(W+d)){n(n®1)/2, which yields the error-bound in (80). º

The bound (81) for d=1 gives back the bound n2(n®1)/2 of the original
Theorem 2 in §6. As d increases and the promotion amount p=l/(w+d)
thus gets smaller relative to the calibration threshold l/w, the bound (81)
on the number of mistakes decreases, ensuring faster convergence. In the
limit of d going to infinity, the coe!cient (n®1+d)/d goes to 1, and the
bound (81) thus becomes the bound n(n®1)/2 already obtained in Theorem
1 of §3 for the case with null p=0 promotion amount.

Note that the cubic rather than quadratic growth in n of the bound (81)
comes from the fact that I have upper bounded the largest number W of
winner-preferrers in a generic input ERC, with n®1. But in most
applications, W is much smaller than n®1, as the winner and loser forms
that correspond to an ERC di‰er only in a few respects, and thus most of
the constraints are even. Furthermore, if the loser forms are properly chosen
so that the input ERCs have as few winner-preferrers as possible, then W
might be forced into a constant in certain applications. In that case, the
error-bound (80) for calibrated promotion grows only quadratically in the
number of constraints n, just like the bound n(n®1)/2 for the demotion-
only case.

As there is a total of n constraints, and each ERC must have at least a
loser-preferrer (ERCs that have no loser-preferrers cannot ever trigger any
update and can therefore be ignored), then the largest number W of winner-
preferrers is upper bound by n®1, and the bound (80) becomes (81).

6 Giorgio Magri

Fact 5
If the input ERC matrix is consistent, the EDRA (Fig. 5) with any
promotion/demotion re-ranking rule of the form (82) can never loop
back to a current ranking vector that it had previously made a mistake
on in that same run.

Let m be the total number of input ERCs. To simplify the presentation,
let me start by assuming that the input ERC matrix has a unique l per
ERC. The contribution of the ith ERC ai to the current ranking vector
according to this re-ranking rule can thus be summarised with the cor-
responding update vector ai, as in (83): the entry corresponding to the
loser-preferrer is equal to —1; the entries corresponding to winner-preferrers
are set equal to the corresponding promotion amount p>0; all other entries
are 0.

Throughout this section, I assume that the promotion amount p is never
null. I show that the EDRA with the re-ranking rule (82) cannot loop on
consistent input ERC matrices, as stated in Fact 5, repeated below. The
proof is based on a connection between OT-consistency and conic
independence.

Suppose that the initial RVs are all null. The current ranking vector _t

entertained at time t by the EDRA with the re-ranking rule (82) can be
described as in (84), i.e. as a combination of the update vectors, each
multiplied by the number of updates ait triggered by the corresponding ith
ERC in the run considered up to time t. Equation (43), obtained in the dis-
cussion of Pater’s counterexample in §5.3, is a special case of the general
equation (84). Of course, the coe!cients ait are by definition all non-negative.
Thus the identity (84) can be summarised by saying that the current ranking
vector is a conic combination of the m update vectors.

As the current ranking vector is a conic combination of the update vectors,
it is interesting to study the conic geometry of these vectors, i.e. the formal
properties of their conic combinations. Here is a particularly important

8Giorgio Magri

Suppose that a conic combination of these update vectors (88) with some
non-negative coe!cients yields the null vector, namely that conditions
(85a) and (b) hold. Let’s focus on the first component of this conic combi-
nation, as in (89). The first component of the update vectors in the 1st block
is always positive (recall that p>0 by hypothesis). Suppose there are k
vectors in the 1st block. The first component of the remaining m®k update
vectors is always null. In order for the first component of this conic
combination to be zero, the non-negative coe!cients that multiply the
update vectors in the 1st block must all be null, namely a1=…=ak=0.

The update vectors can now be read straightforwardly from (87): the ith
update vector is obtained by looking at the ith column. Recall that the
mapping (83) from ERCs into update vectors replaces a e with a 0 and a w
with the positive quantity p>0. The collection of update vectors can thus
be made a little more explicit, as in (88). (Each update vector can have a
di‰erent value for the promotion amount p. This fact does not play any
role in the reasoning, so I do not encode it explicitly in the notation, and
use the same p for all update vectors.)
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By moving everything to the right-hand side, (91a) can of course be restated
as in (92a), where I have introduced the coe!cients ai=ait¢®ait for all i=1,
…, m. The property (91b), that ait¢ is larger than or equal to ait because time
t¢ follows time t, can then be restated as (92b), that all coe!cients ai are
non-negative. The property (91c), that some coe!cient ait¢ is di‰erent from
the corresponding coe!cient ait because some update has happened between
times t and t¢, can be restated as the property (92c), that at least one of the
coe!cients ai is non-null.

The conditions in (92) say that the null vector can be synthesised as a conic
combination of the update vectors, without the coe!cients a1, …, am all
being null. This contradicts the hypothesis that the update vectors are
conically independent.º

Fact 7
If the update vectors are conically independent, then the EDRA cannot
loop back to a current ranking vector it had previously updated.

Proof. Suppose by contradiction that the EDRA can indeed loop back to
a ranking vector that it had dismissed at a previous time. This means that
it is possible for the algorithm to walk through a learning path with the
properties in (90).

Assumption (90a), that the ranking vectors _t and _t¢ entertained at times
t and t¢ coincide, can be expressed as the identity (91a), using the description
(84) of the current ranking vector in terms of update vectors. Here, ait and
ait¢ are the number of updates triggered by ERC 1 up to time t and t¢
respectively; an analogous interpretation holds for the other coe!cients.
As the number of updates grows with time, assumption (90b), that time t¢
follows time t, thus entails that the coe!cient ait¢ at time t¢ is larger than
or equal to the corresponding coe!cient ait at time t, as stated in (91b).
Furthermore, assumption (90c) entails that some update has happened at
some time between t and t¢, so that at least one of the coe!cients has
increased by at least 1 from time t to time t¢, as stated in (91c).
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Appendix D: On the number of updates for smallest non-calibrated
promotion
Recall from §7.5 that the aggravated Pater’s ERC matrix for n constraints
is obtained from the corresponding diagonal matrix by adding two w’s to
the right of each l. To illustrate, I give in (93) the matrix corresponding
to n=7 constraints. It has 6= n®1 ERCs; it has a w on every diagonal
entry, followed by an l followed in turn by two more w’s (except for the
last two rows, whose l’s are followed by one and zero w’s respectively).

To conclude the proof of Fact 5, I need to consider the case where the
input ERC matrix contains rows with multiple l’s. The additional di!culty
in this case is that the contribution of the ith ERC to the current ranking
vector depends on the number of currently undominated loser-preferrers,
i.e. it can be di‰erent at di‰erent times, and thus cannot be distilled into
a unique update vector ai, as in (83). But this di!culty can be straight-
forwardly overcome, at the expense of a slightly more cumbersome notation.
Let m be the total number of ERCs. Suppose that the ith ERC has li loser-
preferrers Ck1, …, Ckli. Let C
i

1, …, C
i

2li—1 be all 2
li®1 non-empty subsets
of the set {Ck1, …, Ckli} of loser-preferrers. For every such subset Cij, let
ai, j be the update vector defined as follows: the components corresponding
to the loser-preferrers in the subset Cij are equal to —1; the components
corresponding to winner-preferrers are equal to p; the remaining components
are equal to 0. Furthermore, let ati, j be the number of updates triggered by
this ith ERC up to time t, because all and only the loser-preferrers in the
set Cij were currently undominated. The current ranking vector can then
be expressed as a conic combination of these update vectors through these
non-negative coe!cients, namely _t=%
m

i=1 %j=12
li

—1 ati, j ai, j. Again, these
update vectors ai, j are conically independent. I can thus trivially extend
the preceding reasoning.
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Here is how these equations are obtained. The RV q1 of constraint C1 starts
out null. It is only modified when ERC 1 triggers an update, in which case,
it is increased by 1/3, as ERC 1 contains 3 winner-preferrers. In other
words, the final RV q1 of constraint C1 is 1/3 of the total number a1 of
updates triggered by ERC 1, as stated by the first equation in (95).
Analogously, the RV q2 of constraint C2 starts out null, is decreased by 1
every time ERC 1 triggers an update and is increased by 1/3 every time
ERC 2 triggers an update, whereby we get the second equation in (95). The
remaining equations in (95) are obtained analogously.
The input matrix (93) is only consistent with the ranking C1êC2 …êC7.
As the final ranking vector _=(q1, …, q7) entertained by the EDRA at
convergence is consistent with the input matrix of ERCs, it must therefore
satisfy the six strict inequalities q1>q2, …, q6>q7. Consider for instance
the first of these six inequalities, repeated in (96a). Using the first two
equations in (95), this inequality can be rewritten as in (96b), in terms of
the numbers of updates a1 and a2 triggered by ERC 1 and ERC 2 respectively.
If both sides of inequality (96b) are multiplied by the constant 3, we get
the equivalent inequality (96c). As the variables a1, a2, as well as the
coe!cients, are integers, the strict inequality (96c) is equivalent to the loose
inequality (96d), where I have added 1 to the right-hand side.

The convergence Theorem 3 ensures that after a finite number of errors
the EDRA will converge to a final ranking vector consistent with the input
ERC matrix, and learning will cease. Yet the theorem does not provide any
estimate of the number of errors made before convergence. This section
shows that this number grows exponentially with the number n of constraints,
as anticipated in §7.5.
For concreteness, suppose the input matrix is the aggravated Pater’s
matrix (93), corresponding to n=7 constraints. Let _=(q1, …, q7) be the
final ranking vector the EDRA has converged on. Let a1, …, a6 be the total
number of updates triggered by each of the six input ERCs in the run
considered. The final RVs q1, …, q7 can be expressed in terms of the
coe!cients a1, …, a6, as in (95).

(94)Decrease the RV of the loser-preferrer by 1. a.
Increase the RV of each of the w winner-preferrers by l/w.b.
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The reasoning just developed in the concrete case of the aggravated Pater’s
matrix in (93) corresponding to n=7 constraints extends to the case of an
arbitrary number n of constraints. I can always construct an optimisation
problem akin to (98) that provides a bound on the best-case number of
updates performed by the EDRA on that aggravated Pater’s matrix. The
solution of the optimisation problems thus obtained for the aggravated
Pater’s matrices corresponding to various choices of the number n of
constraints are reported in Table Ia. (These values were computed using
the Matlab file MinimumRunningTime.m. It takes as input the aggravated
Pater’s ERC matrix corresponding to n constraints, for any n. It constructs
the corresponding optimisation problem akin to (98), generalising the
reasoning just presented here in the special case of the aggravated Pater’s
comparative tableaux corresponding to n=7 constraints, and it solves this

The total number of updates performed by the EDRA in the run considered
coincides with the sum a1+…+a6 of the number a1 of updates triggered
by ERC 1 plus the number a2 of updates triggered by ERC 2 and so on
down to the number a6 of updates triggered by ERC 6. Furthermore, these
non-negative numbers a1, …, a6 must satisfy the inequalities in (97). Thus
the number of updates performed by the EDRA to reach convergence
cannot be smaller than the solution of the optimisation problem (98). In
other words, the solution of this optimisation problem provides a bound
on the best-case number of updates performed by the EDRA on the input
matrix (93). As (98) is a linear program, it can be easily solved with standard
linear programming techniques.

By reasoning this way, I conclude that the six strict inequalities q1>q2, …,
q6>q7 are equivalent to the six inequalities in (97) in terms of the number
of updates a1, …, a6 triggered by ERC 1 through ERC 6 respectively.
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optimisation problem using Matlab built-in subroutines for linear pro-
gramming. Aggravated Pater’s comparative matrices for n=5, 7, 9, 11, 13,
15 constraints are provided in the file AggravatedPaterMatrices.txt. Both
files are available here.)
Let me close by pointing out the close parallelism between the reasoning
presented in this section and the explanation for Pater’s (2008) counter-
example against the GLA’s convergence provided in §5.3. The equations
in (95) are analogous to those in (44) in §5.3, and both are a special case of
the vector equation (84) in Appendix C. The inequalities in (97) are analogous
to those in (45) in §5.3. Finally, showing that there are no coe!cient a’s
that solve the inequalities in (97) and add up to a small number corresponds
to the final step of the explanation of Pater’s counterexample, which showed
that there are no coe!cient a’s that solve the inequalities (45).

Appendix A: Extension to arbitrary initial ranking vectors

Phonology 29 (2012). Supplementary materials

Convergence of error-driven
ranking algorithms
Giorgio Magri
CNRS, Université Paris 7

Supplementary materials

Throughout the paper, I have investigated convergence in the case where
the initial RVs Ú1init, …, Úninit were all identical, say all equal to zero (the
actual value does not really matter). In this appendix, I show how to obtain
error bounds for demotion-only and calibrated re-ranking rules in the case
of an arbitrary initial ranking vector _init=(Ú1init, …, Úninit). It turns out that
the properties of the initial ranking vector that are relevant for the error-
bounds can be extracted through the quantity B(_init) defined in (71), namely
the sum of the di‰erence between each initial RV Úkinit and the smallest RV
minh=1Úhinit. Intuitively, this quantity measures how scattered the initial
RVs are. In fact, B(_init) is null for the case of identical initial RVs, small
for RVs close to each other and large if there are some RVs that are very
small and some other RVs that are very large.

1 The crucial invariant
Tesar & Smolensky’s (generalised) Fact 2 from §6.2 provides an invariant
for the current RVs entertained by the EDRA in the case of null initial
RVs. It says that the current RVs can never become much smaller than
zero, as long as the EDRA only demotes the loser-preferring constraints
that need to be demoted, i.e. the undominated ones. The reasoning trivially
extends to arbitrary initial ranking values, yielding the following further
generalisation of Fact 2: the current ranking values can never become much
smaller than the smallest initial ranking value.

14Giorgio Magri

In §2.3, I defined OT-consistency between an ERC and a ranking vector
as in (14), repeated below in (99). This appendix qualifies this definition
with some remarks.

Appendix E: On the notion of OT-consistency for ranking vectors

(99)A ranking vector is (OT-)consistent with an ERC provided that each
of its refinements is consistent with that ERC, according to the original
notion of consistency (9).

T&S introduce a variant of the standard OT framework, replacing total
rankings with stratified hierarchies, which can assign multiple constraints
to a single stratum. Stratified hierarchies are thus equivalent to ranking
vectors, which can assign the same ranking values to multiple constraints.
Yet the notion of consistency assumed by T&S is very di‰erent from the
one in (99), as T&S allow for the tie among constraints assigned to the same
stratum to be resolved additively. Without getting into the details of this
alternative definition of OT-consistency, let me illustrate the di‰erence
with an example. Consider the ERC (100a) together with the ranking vector
(100b). Because of the two identical ranking values q1=q2=2, this ranking
vector would represent a stratified hierarchy that assigns both C 1 and C2

to the top stratum, with C 3 ranked underneath.

1Comparison with Tesar & Smolensky’s (1998) notion of OT-
consistency for stratified hierarchies

(100)C3C1C2

()122_=
b.a.C2

ERC

C1

wl[
C3

w]

as the l and the w of the two equally highest-ranked constraints C 1 and C2

‘cancel out’ because of the additive interaction between equally
rankedconstraints. But the ranking vector (100b) is not consistent with the
ERC (100a) according to the definition (99), since the ranking vector (100b)
admits the refinement C2êC1êC3, which is not consistent with the ERC
(100a). As the paper assumes the classical notion of OT-consistency (99),
it is framed squarely within standard OT. Contrary to what suggested by
T&S, there is no need to step outside of the standard OT framework for
algorithmic purposes.
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A reviewer worries that the notion of OT consistency (99), which requires
consistency to hold for all refinements, might not be e!ciently computable.
For instance, if all ranking values are identical, then don’t we have to check
consistency for all n! refinements, causing a complexity explosion? That is
not the case. Here is a way to see this. Let W(a) and L(a) be the sets of
winner- and loser-preferring constraints relative to an ERC a. It turns out
that a ranking vector _=(q1, …, qn) is consistent with an ERC a according
to condition (99) provided the following strict inequality (101) holds, which
says that the largest ranking value over winner-preferrers is larger than the
largest ranking value over loser-preferrers.

Computational e!ciency2

Furthermore, the inequality (101) can be checked in n steps (where n is the
number of constraints). In the end, the consistency condition (99) can thus
be e!ciently computed.
Let me explain why the consistency condition (99) is equivalent to the
strict inequality (101). Suppose that the latter inequality (101) holds. Every
refinement of this ranking vector will then rank the winner-preferrer that
attains the maximum max kÊW(a) Úk above the loser-preferrer that attains
the maximum maxhÊL(a) Úh. In other words, it will rank this winner-preferrer
above every loser-preferrer. Every refinement is thus consistent with the
ERC a, and condition (99) holds. Vice versa, suppose that inequality (101)
does not hold, i.e. the largest ranking value over winner-preferrers is at
most as large as the largest ranking value over loser-preferrers. Thus the
current ranking vector admits a refinement that ranks the loser-preferrer
that attains the maximum maxhÊL(a) Úh above the winner-preferrer that
attains the maximum maxkÊW(a) Úk. In other words, it admits a refinement
that ranks a loser-preferrer above every winner-preferrer. This refinement
is thus not consistent with the ERC a, and condition (99) fails.
Finally, let me explain why inequality (101) can be checked i n n steps
(where n is the number of constraints) . Posit W=—≥ and L=—≥. Scan
through the current ranking values, for k=1, 2, … n. If Úk is larger than

(101)
kÊW(a)
maxÚk
hÊL(a)
maxÚh>

a1®a3+a4>0

Consistency with Pater’s ERC matrix 3
In §5.2, I considered Pater’s (2008) ERC matrix (42). This ERC matrix
requires the ranking C1êC2êC3êC4êC5. Thus, a ranking vector  _=(q1,
q2, q3, q4, q5) is OT-consistent with this ERC matrix according to condition
(99), provided it admits only that ranking as a renement. This means in
turn that the ranking values must satisfy the four strict inequalities q1>q2,
q2>q3, q3>q4 and q4>q5. In §5.3, I showed that these four strict inequalities
can be rewritten as in (45) in terms of the number of updates a1, …, a4,
triggered by the four ERCs in Pater’s ERC matrix. Furthermore, I have
claimed that these inequalities (45) admit no solution. To see this, rewrite
these inequalities (45) as in (102), by moving everything on one side.

If we sum all four inequalities together, we obtain inequality (103a). If we
sum together only the second and third inequalities in (102), we obtain
inequality (103b).

(103)a.
—a1+a3®a4>0b.

As the two inequalities thus derived in (103) are inconsistent, the four
original inequalities (102) admit no solution.

additional reference

Bertsekas, Dimitri P., Angelia Nedic & Asuman E. Ozdaglar (2003). Convex analysis
and optimization. Nashua, NH: Athena Scientific.

According to the alternative definition of OT-consistency introduced by
T&S, the ranking vector (100b) is indeed consistent with the ERC (100a),

W (larger than L) and Ck is winner-preferring (loser-preferring), then set
W=Úk (set L=Úk). After having scanned all ranking values, condition (101)
holds i‰ W>L. This process only takes n steps.
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(75)

qk

Úkinit

h=1,…,n
Úhinit—(k®1)min

Theorem 1 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the demotion-only re-ranking rule (73) run
on a consistent input ERC matrix corresponding to n constraints
starting from an arbitrary initial ranking vector _init=(Ú1init, …, Úninit)
can perform at most B(_init)+n(n®1)/2 errors before converging.

(77) %
n

k=1 h=1,…,n
Úhinitmin ®(k®1)( =n%

n

k=1
qk} )

h=1,…,n
Úhinit®min
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We have thus proven the following extension of Theorem 1 from null to
arbitrary initial RVs. Recall that, if the initial RVs are all identical (say, all
null), then B(_init)=0. In this case, the bound B(_init)+n(n®1)/2 provided
by the following theorem thus reduces to the bound n(n®1)/2 already
obtained in §3.

The bound B(_init)+n(n®1)/2 on the worst-case number of errors is tight,
as shown by the same example in (26) in the paper with the ERCs fed in
the fixed order a1£a2£a3 and with the initial ranking vector _init=(4,3,
2,1).

3 Calibrated re-ranking rules
Consider next the calibrated demotion/promotion re-ranking rule (51) from
§6, repeated in (76).

The invariant (72) ensures that the sum of the current RVs can be lower
bounded, as in (77).

As seen in §6.3, the sum of the current RVs is decreased by at least 1/n with
every update. After T updates, it has thus decreased by at least T/n from
the sum of the initial RVs, as stated in (78).

1
2
n(n®1)

(76) Decrease the RV of each of the l undominated loser-preferrers by 1.a.
Increase the RV of each of the w winner-preferrers by p=l/(w+1).b.
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conic property. The update vectors are called conically independent
provided that there are no coe!cients a1, …, am that satisfy the three
conditions in (85); see Bertsekas et al. (2003). In other words, it is not
possible to synthesise the null vector as a conic combination of the update
vectors, unless of course the coe!cients are all set equal to zero.

Fact 6 below says that OT-consistency of the input ERC matrix (with a
unique l per row) entails conic independence of the corresponding update
vectors, and Fact 7 says that conic independence of the update vectors in
turn entails that the EDRA cannot loop. Fact 5 thus follows from the two
auxiliary Facts 6 and 7. The assumption that the input ERCs have a unique
l per row can be easily dropped, as discussed at the end of this section.

Fact 6
Consider an input ERC matrix that has a unique l per row. If it is
consistent, then the corresponding update vectors defined in (83) are
conically independent.

Proof. Recall from Fact 1 that any consistent ERC matrix has the shape in
(22) (repeated in (86)), modulo reordering of its rows and its columns and
relabelling of the constraints. (86) has a top block of rows whose first entry
is w, followed by a second block of rows whose first entry is e and whose
second entry is w, and so on.

2 Giorgio Magri

Fact 2 (further generalised)
Assume that the input ERC matrix is consistent with a ranking.
Without loss of generality, assume that this ranking is C1êC1ê…êCn.
Let q1, …, qn be the current RVs entertained by an EDRA in a generic
run on those input ERCs, up to a generic time, starting from arbitrary
initial RVs Ú1init, …, Úninit. Assume that the re-ranking rule used by the
EDRA demotes by 1 only the currently undominated loser-preferrers
(no assumptions are made on constraint promotion). The current RVs
thus satisfy condition (72) for every k=1, …, n. That is, the RV qk of
the constraint Ck assigned to the kth stratum (with the 1st stratum
being the top one) never drops by more than (k®1) below the smallest
initial RV minh=1,…,nÚhinit.

(72) qk}
h=1,…,n

Úhinit®(k®1)min

(73) Decrease the RV of each undominated loser-preferrer by 1.a.
Do nothing to the current RV of the other constraints.b.

2 Demotion-only re-ranking rules
Consider the demotion-only re-ranking rule (17) from §3, repeated in (73).

At least one constraint is demoted at each update. Hence, the total number
T of updates is at most the sum of the number of times C1 has been demoted,
and the number of times C2 has been demoted, etc, as stated in (74a). Each
time constraint Ck is demoted, it is demoted by 1, and it is never promoted.
Hence the number of times that constraint Ck has been demoted up to the
time considered is equal to the distance Úkinit®Úk between its initial RV Úkinit

and its current RV Úk, as stated in (74b). The inequality (72) says that Úk

sits between Úkinit and minh=1,…,nÚhinit®(k®1), as depicted in (75). Thus the
distance between the latter two points upper bounds the distance Úkinit®Úk,
as stated in (74c). Finally, step (e) follows from definition (71) of the constant
B(_init) and from the identity %

n

k=1(k®1)=n(n®1)/2.

Theorem 2 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the calibrated promotion/demotion re-
ranking rule (76) run on a consistent input ERC matrix corresponding
to n constraints starting from an arbitrary initial ranking vector
_init=(Ú1init, …, Úninit) can perform at most nB(_init)+n2(n®1)/2 errors
before converging.

4 Giorgio Magri

In the case of an arbitrary initial ranking vector as well, the error-bound
for the calibrated case is worse by a factor of n than the error-bound for
the demotion-only case.

Combining the two inequalities (77) and (78), I conclude that the number
T of updates must be smaller than nB(_init)+n2(n®1)/2. We have thus
proven the following extension of Theorem 2 from null to arbitrary initial
RVs.

In §6, I looked for concreteness at a specific calibrated re-ranking rule,
namely the one in (51) (= (76)), which demotes each of the l undominated
loser-preferrers by 1 and promotes each of the w winner-preferrers by
l/(w+1). Here I look at the generic calibrated re-ranking rule in (79).

(79) Decrease the RV of each of the l loser-preferrers by 1.a.
Increase the RV of each of the w winner-preferrers by p=l/(w+d).b.

Appendix B: Convergence of a generic calibrated re-ranking rule

This re-ranking rule is calibrated as long as d>0. Indeed, the distance of
the promotion amount p from the calibration threshold l/w is controlled by
the constant d: the larger d, the smaller the promotion amount p is with
respect to the calibration threshold. In particular, the case d=1 corresponds
to re-ranking rule (51), and the case where d goes to infinity corresponds
to the demotion-only case p=0 considered in §3.

The reasoning for the case d=1 presented in §6 trivially extends to an
arbitrary d>0, yielding the following generalisation of Theorem 2 of §6.

Theorem 2 (extended to arbitrary calibrated promotion amounts)
An EDRA with the general calibrated re-ranking rule (79) run on a
consistent input ERC matrix corresponding to n constraints starting
from null initial RVs can perform at most the number of mistakes in
(80) before converging, where W is the largest number of winner-
preferrers over all input ERCs.

(80) W+d
d

1
2

n(n®1)
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Appendix C: Why EDRAs cannot loop
Consider the general re-ranking rule in (82).

Proof. With every update, the sum of the current RVs is decreased by l. It
is furthermore increased by wl/(w+d), as each of the w winner-preferrers
is promoted by l/(w+d). In the end, the sum of the current RVs is thus
decreased by l®(wl/(w+d))=dl/(w+d) . As the number l of undominated
loser-preferrers is at least 1 and the number w of winner-preferrers is at
most W, I conclude that the sum of the current RVs is decreased by at least
T(d/(W+d)) after T updates. On the other hand, the sum of the current
RVs starts at zero and can never become smaller than —n(n®1)/2, by the
generalised Fact 2 stated in §6.2. In conclusion, the number of updates T
in the case of the re-ranking rule (79) must satisfy the inequality
T(d/(W+d)){n(n®1)/2, which yields the error-bound in (80). º

The bound (81) for d=1 gives back the bound n2(n®1)/2 of the original
Theorem 2 in §6. As d increases and the promotion amount p=l/(w+d)
thus gets smaller relative to the calibration threshold l/w, the bound (81)
on the number of mistakes decreases, ensuring faster convergence. In the
limit of d going to infinity, the coe!cient (n®1+d)/d goes to 1, and the
bound (81) thus becomes the bound n(n®1)/2 already obtained in Theorem
1 of §3 for the case with null p=0 promotion amount.

Note that the cubic rather than quadratic growth in n of the bound (81)
comes from the fact that I have upper bounded the largest number W of
winner-preferrers in a generic input ERC, with n®1. But in most
applications, W is much smaller than n®1, as the winner and loser forms
that correspond to an ERC di‰er only in a few respects, and thus most of
the constraints are even. Furthermore, if the loser forms are properly chosen
so that the input ERCs have as few winner-preferrers as possible, then W
might be forced into a constant in certain applications. In that case, the
error-bound (80) for calibrated promotion grows only quadratically in the
number of constraints n, just like the bound n(n®1)/2 for the demotion-
only case.

As there is a total of n constraints, and each ERC must have at least a
loser-preferrer (ERCs that have no loser-preferrers cannot ever trigger any
update and can therefore be ignored), then the largest number W of winner-
preferrers is upper bound by n®1, and the bound (80) becomes (81).

6 Giorgio Magri

Fact 5
If the input ERC matrix is consistent, the EDRA (Fig. 5) with any
promotion/demotion re-ranking rule of the form (82) can never loop
back to a current ranking vector that it had previously made a mistake
on in that same run.

Let m be the total number of input ERCs. To simplify the presentation,
let me start by assuming that the input ERC matrix has a unique l per
ERC. The contribution of the ith ERC ai to the current ranking vector
according to this re-ranking rule can thus be summarised with the cor-
responding update vector ai, as in (83): the entry corresponding to the
loser-preferrer is equal to —1; the entries corresponding to winner-preferrers
are set equal to the corresponding promotion amount p>0; all other entries
are 0.

Throughout this section, I assume that the promotion amount p is never
null. I show that the EDRA with the re-ranking rule (82) cannot loop on
consistent input ERC matrices, as stated in Fact 5, repeated below. The
proof is based on a connection between OT-consistency and conic
independence.

Suppose that the initial RVs are all null. The current ranking vector _t

entertained at time t by the EDRA with the re-ranking rule (82) can be
described as in (84), i.e. as a combination of the update vectors, each
multiplied by the number of updates ai

t

 triggered by the corresponding ith
ERC in the run considered up to time t. Equation (43), obtained in the dis-
cussion of Pater’s counterexample in §5.3, is a special case of the general
equation (84). Of course, the coe!cients ai

t

 are by definition all non-negative.
Thus the identity (84) can be summarised by saying that the current ranking
vector is a conic combination of the m update vectors.

As the current ranking vector is a conic combination of the update vectors,
it is interesting to study the conic geometry of these vectors, i.e. the formal
properties of their conic combinations. Here is a particularly important

8Giorgio Magri

Suppose that a conic combination of these update vectors (88) with some
non-negative coe!cients yields the null vector, namely that conditions
(85a) and (b) hold. Let’s focus on the first component of this conic combi-
nation, as in (89). The first component of the update vectors in the 1st block
is always positive (recall that p>0 by hypothesis). Suppose there are k
vectors in the 1st block. The first component of the remaining m®k update
vectors is always null. In order for the first component of this conic
combination to be zero, the non-negative coe!cients that multiply the
update vectors in the 1st block must all be null, namely a1=…=ak=0.

The update vectors can now be read straightforwardly from (87): the ith
update vector is obtained by looking at the ith column. Recall that the
mapping (83) from ERCs into update vectors replaces a e with a 0 and a w
with the positive quantity p>0. The collection of update vectors can thus
be made a little more explicit, as in (88). (Each update vector can have a
di‰erent value for the promotion amount p. This fact does not play any
role in the reasoning, so I do not encode it explicitly in the notation, and
use the same p for all update vectors.)
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By moving everything to the right-hand side, (91a) can of course be restated
as in (92a), where I have introduced the coe!cients ai=ait¢®ait for all i=1,
…, m. The property (91b), that ait¢ is larger than or equal to ait because time
t¢ follows time t, can then be restated as (92b), that all coe!cients ai are
non-negative. The property (91c), that some coe!cient ait¢ is di‰erent from
the corresponding coe!cient ait because some update has happened between
times t and t¢, can be restated as the property (92c), that at least one of the
coe!cients ai is non-null.

The conditions in (92) say that the null vector can be synthesised as a conic
combination of the update vectors, without the coe!cients a1, …, am all
being null. This contradicts the hypothesis that the update vectors are
conically independent.º

Fact 7
If the update vectors are conically independent, then the EDRA cannot
loop back to a current ranking vector it had previously updated.

Proof. Suppose by contradiction that the EDRA can indeed loop back to
a ranking vector that it had dismissed at a previous time. This means that
it is possible for the algorithm to walk through a learning path with the
properties in (90).

Assumption (90a), that the ranking vectors _t and _t¢ entertained at times
t and t¢ coincide, can be expressed as the identity (91a), using the description
(84) of the current ranking vector in terms of update vectors. Here, ait and
ait¢ are the number of updates triggered by ERC 1 up to time t and t¢
respectively; an analogous interpretation holds for the other coe!cients.
As the number of updates grows with time, assumption (90b), that time t¢
follows time t, thus entails that the coe!cient ait¢ at time t¢ is larger than
or equal to the corresponding coe!cient ait at time t, as stated in (91b).
Furthermore, assumption (90c) entails that some update has happened at
some time between t and t¢, so that at least one of the coe!cients has
increased by at least 1 from time t to time t¢, as stated in (91c).
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Appendix D: On the number of updates for smallest non-calibrated
promotion
Recall from §7.5 that the aggravated Pater’s ERC matrix for n constraints
is obtained from the corresponding diagonal matrix by adding two w’s to
the right of each l. To illustrate, I give in (93) the matrix corresponding
to n=7 constraints. It has 6= n®1 ERCs; it has a w on every diagonal
entry, followed by an l followed in turn by two more w’s (except for the
last two rows, whose l’s are followed by one and zero w’s respectively).

To conclude the proof of Fact 5, I need to consider the case where the
input ERC matrix contains rows with multiple l’s. The additional di!culty
in this case is that the contribution of the ith ERC to the current ranking
vector depends on the number of currently undominated loser-preferrers,
i.e. it can be di‰erent at di‰erent times, and thus cannot be distilled into
a unique update vector ai, as in (83). But this di!culty can be straight-
forwardly overcome, at the expense of a slightly more cumbersome notation.
Let m be the total number of ERCs. Suppose that the ith ERC has li loser-
preferrers Ck1, …, Ckli. Let C
i

1, …, C
i

2li—1 be all 2
li®1 non-empty subsets
of the set {Ck1, …, Ckli} of loser-preferrers. For every such subset Cij, let
ai, j be the update vector defined as follows: the components corresponding
to the loser-preferrers in the subset Cij are equal to —1; the components
corresponding to winner-preferrers are equal to p; the remaining components
are equal to 0. Furthermore, let ati, j be the number of updates triggered by
this ith ERC up to time t, because all and only the loser-preferrers in the
set Cij were currently undominated. The current ranking vector can then
be expressed as a conic combination of these update vectors through these
non-negative coe!cients, namely _t=%
m

i=1 %j=12
li

—1 ati, j ai, j. Again, these
update vectors ai, j are conically independent. I can thus trivially extend
the preceding reasoning.
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Here is how these equations are obtained. The RV q1 of constraint C1 starts
out null. It is only modified when ERC 1 triggers an update, in which case,
it is increased by 1/3, as ERC 1 contains 3 winner-preferrers. In other
words, the final RV q1 of constraint C1 is 1/3 of the total number a1 of
updates triggered by ERC 1, as stated by the first equation in (95).
Analogously, the RV q2 of constraint C2 starts out null, is decreased by 1
every time ERC 1 triggers an update and is increased by 1/3 every time
ERC 2 triggers an update, whereby we get the second equation in (95). The
remaining equations in (95) are obtained analogously.
The input matrix (93) is only consistent with the ranking C1êC2 …êC7.
As the final ranking vector _=(q1, …, q7) entertained by the EDRA at
convergence is consistent with the input matrix of ERCs, it must therefore
satisfy the six strict inequalities q1>q2, …, q6>q7. Consider for instance
the first of these six inequalities, repeated in (96a). Using the first two
equations in (95), this inequality can be rewritten as in (96b), in terms of
the numbers of updates a1 and a2 triggered by ERC 1 and ERC 2 respectively.
If both sides of inequality (96b) are multiplied by the constant 3, we get
the equivalent inequality (96c). As the variables a1, a2, as well as the
coe!cients, are integers, the strict inequality (96c) is equivalent to the loose
inequality (96d), where I have added 1 to the right-hand side.

The convergence Theorem 3 ensures that after a finite number of errors
the EDRA will converge to a final ranking vector consistent with the input
ERC matrix, and learning will cease. Yet the theorem does not provide any
estimate of the number of errors made before convergence. This section
shows that this number grows exponentially with the number n of constraints,
as anticipated in §7.5.
For concreteness, suppose the input matrix is the aggravated Pater’s
matrix (93), corresponding to n=7 constraints. Let _=(q1, …, q7) be the
final ranking vector the EDRA has converged on. Let a1, …, a6 be the total
number of updates triggered by each of the six input ERCs in the run
considered. The final RVs q1, …, q7 can be expressed in terms of the
coe!cients a1, …, a6, as in (95).

(94)Decrease the RV of the loser-preferrer by 1. a.
Increase the RV of each of the w winner-preferrers by l/w.b.
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The reasoning just developed in the concrete case of the aggravated Pater’s
matrix in (93) corresponding to n=7 constraints extends to the case of an
arbitrary number n of constraints. I can always construct an optimisation
problem akin to (98) that provides a bound on the best-case number of
updates performed by the EDRA on that aggravated Pater’s matrix. The
solution of the optimisation problems thus obtained for the aggravated
Pater’s matrices corresponding to various choices of the number n of
constraints are reported in Table Ia. (These values were computed using
the Matlab file MinimumRunningTime.m. It takes as input the aggravated
Pater’s ERC matrix corresponding to n constraints, for any n. It constructs
the corresponding optimisation problem akin to (98), generalising the
reasoning just presented here in the special case of the aggravated Pater’s
comparative tableaux corresponding to n=7 constraints, and it solves this

The total number of updates performed by the EDRA in the run considered
coincides with the sum a1+…+a6 of the number a1 of updates triggered
by ERC 1 plus the number a2 of updates triggered by ERC 2 and so on
down to the number a6 of updates triggered by ERC 6. Furthermore, these
non-negative numbers a1, …, a6 must satisfy the inequalities in (97). Thus
the number of updates performed by the EDRA to reach convergence
cannot be smaller than the solution of the optimisation problem (98). In
other words, the solution of this optimisation problem provides a bound
on the best-case number of updates performed by the EDRA on the input
matrix (93). As (98) is a linear program, it can be easily solved with standard
linear programming techniques.

By reasoning this way, I conclude that the six strict inequalities q1>q2, …,
q6>q7 are equivalent to the six inequalities in (97) in terms of the number
of updates a1, …, a6 triggered by ERC 1 through ERC 6 respectively.
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optimisation problem using Matlab built-in subroutines for linear pro-
gramming. Aggravated Pater’s comparative matrices for n=5, 7, 9, 11, 13,
15 constraints are provided in the file AggravatedPaterMatrices.txt. Both
files are available here.)
Let me close by pointing out the close parallelism between the reasoning
presented in this section and the explanation for Pater’s (2008) counter-
example against the GLA’s convergence provided in §5.3. The equations
in (95) are analogous to those in (44) in §5.3, and both are a special case of
the vector equation (84) in Appendix C. The inequalities in (97) are analogous
to those in (45) in §5.3. Finally, showing that there are no coe!cient a’s
that solve the inequalities in (97) and add up to a small number corresponds
to the final step of the explanation of Pater’s counterexample, which showed
that there are no coe!cient a’s that solve the inequalities (45).

Appendix A: Extension to arbitrary initial ranking vectors
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Throughout the paper, I have investigated convergence in the case where
the initial RVs Ú1init, …, Úninit were all identical, say all equal to zero (the
actual value does not really matter). In this appendix, I show how to obtain
error bounds for demotion-only and calibrated re-ranking rules in the case
of an arbitrary initial ranking vector _init=(Ú1init, …, Úninit). It turns out that
the properties of the initial ranking vector that are relevant for the error-
bounds can be extracted through the quantity B(_init) defined in (71), namely
the sum of the di‰erence between each initial RV Úkinit and the smallest RV
minh=1Úhinit. Intuitively, this quantity measures how scattered the initial
RVs are. In fact, B(_init) is null for the case of identical initial RVs, small
for RVs close to each other and large if there are some RVs that are very
small and some other RVs that are very large.

1 The crucial invariant
Tesar & Smolensky’s (generalised) Fact 2 from §6.2 provides an invariant
for the current RVs entertained by the EDRA in the case of null initial
RVs. It says that the current RVs can never become much smaller than
zero, as long as the EDRA only demotes the loser-preferring constraints
that need to be demoted, i.e. the undominated ones. The reasoning trivially
extends to arbitrary initial ranking values, yielding the following further
generalisation of Fact 2: the current ranking values can never become much
smaller than the smallest initial ranking value.
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In §2.3, I defined OT-consistency between an ERC and a ranking vector
as in (14), repeated below in (99). This appendix qualifies this definition
with some remarks.

Appendix E: On the notion of OT-consistency for ranking vectors

(99)A ranking vector is (OT-)consistent with an ERC provided that each
of its refinements is consistent with that ERC, according to the original
notion of consistency (9).

T&S introduce a variant of the standard OT framework, replacing total
rankings with stratified hierarchies, which can assign multiple constraints
to a single stratum. Stratified hierarchies are thus equivalent to ranking
vectors, which can assign the same ranking values to multiple constraints.
Yet the notion of consistency assumed by T&S is very di‰erent from the
one in (99), as T&S allow for the tie among constraints assigned to the same
stratum to be resolved additively. Without getting into the details of this
alternative definition of OT-consistency, let me illustrate the di‰erence
with an example. Consider the ERC (100a) together with the ranking vector
(100b). Because of the two identical ranking values q1=q2=2, this ranking
vector would represent a stratified hierarchy that assigns both C 1 and C2

to the top stratum, with C 3 ranked underneath.

1Comparison with Tesar & Smolensky’s (1998) notion of OT-
consistency for stratified hierarchies

(100)C3C1C2

()122_=
b.a.C2

ERC

C1

wl[
C3

w]

as the l and the w of the two equally highest-ranked constraints C 1 and C2

‘cancel out’ because of the additive interaction between equally
rankedconstraints. But the ranking vector (100b) is not consistent with the
ERC (100a) according to the definition (99), since the ranking vector (100b)
admits the refinement C2êC1êC3, which is not consistent with the ERC
(100a). As the paper assumes the classical notion of OT-consistency (99),
it is framed squarely within standard OT. Contrary to what suggested by
T&S, there is no need to step outside of the standard OT framework for
algorithmic purposes.
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A reviewer worries that the notion of OT consistency (99), which requires
consistency to hold for all refinements, might not be e!ciently computable.
For instance, if all ranking values are identical, then don’t we have to check
consistency for all n! refinements, causing a complexity explosion? That is
not the case. Here is a way to see this. Let W(a) and L(a) be the sets of
winner- and loser-preferring constraints relative to an ERC a. It turns out
that a ranking vector _=(q1, …, qn) is consistent with an ERC a according
to condition (99) provided the following strict inequality (101) holds, which
says that the largest ranking value over winner-preferrers is larger than the
largest ranking value over loser-preferrers.

Computational e!ciency2

Furthermore, the inequality (101) can be checked in n steps (where n is the
number of constraints). In the end, the consistency condition (99) can thus
be e!ciently computed.
Let me explain why the consistency condition (99) is equivalent to the
strict inequality (101). Suppose that the latter inequality (101) holds. Every
refinement of this ranking vector will then rank the winner-preferrer that
attains the maximum max kÊW(a) Úk above the loser-preferrer that attains
the maximum maxhÊL(a) Úh. In other words, it will rank this winner-preferrer
above every loser-preferrer. Every refinement is thus consistent with the
ERC a, and condition (99) holds. Vice versa, suppose that inequality (101)
does not hold, i.e. the largest ranking value over winner-preferrers is at
most as large as the largest ranking value over loser-preferrers. Thus the
current ranking vector admits a refinement that ranks the loser-preferrer
that attains the maximum maxhÊL(a) Úh above the winner-preferrer that
attains the maximum maxkÊW(a) Úk. In other words, it admits a refinement
that ranks a loser-preferrer above every winner-preferrer. This refinement
is thus not consistent with the ERC a, and condition (99) fails.
Finally, let me explain why inequality (101) can be checked i n n steps
(where n is the number of constraints) . Posit W=—≥ and L=—≥. Scan
through the current ranking values, for k=1, 2, … n. If Úk is larger than

(101)
kÊW(a)
maxÚk
hÊL(a)
maxÚh>

a1®a3+a4>0

Consistency with Pater’s ERC matrix 3
In §5.2, I considered Pater’s (2008) ERC matrix (42). This ERC matrix
requires the ranking C1êC2êC3êC4êC5. Thus, a ranking vector  _=(q1,
q2, q3, q4, q5) is OT-consistent with this ERC matrix according to condition
(99), provided it admits only that ranking as a renement. This means in
turn that the ranking values must satisfy the four strict inequalities q1>q2,
q2>q3, q3>q4 and q4>q5. In §5.3, I showed that these four strict inequalities
can be rewritten as in (45) in terms of the number of updates a1, …, a4,
triggered by the four ERCs in Pater’s ERC matrix. Furthermore, I have
claimed that these inequalities (45) admit no solution. To see this, rewrite
these inequalities (45) as in (102), by moving everything on one side.

If we sum all four inequalities together, we obtain inequality (103a). If we
sum together only the second and third inequalities in (102), we obtain
inequality (103b).

(103)a.
—a1+a3®a4>0b.

As the two inequalities thus derived in (103) are inconsistent, the four
original inequalities (102) admit no solution.

additional reference

Bertsekas, Dimitri P., Angelia Nedic & Asuman E. Ozdaglar (2003). Convex analysis
and optimization. Nashua, NH: Athena Scientific.

According to the alternative definition of OT-consistency introduced by
T&S, the ranking vector (100b) is indeed consistent with the ERC (100a),

W (larger than L) and Ck is winner-preferring (loser-preferring), then set
W=Úk (set L=Úk). After having scanned all ranking values, condition (101)
holds i‰ W>L. This process only takes n steps.
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(75)

qk

Úkinit

h=1,…,n
Úhinit—(k®1)min

Theorem 1 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the demotion-only re-ranking rule (73) run
on a consistent input ERC matrix corresponding to n constraints
starting from an arbitrary initial ranking vector _init=(Ú1init, …, Úninit)
can perform at most B(_init)+n(n®1)/2 errors before converging.

(77) %
n

k=1 h=1,…,n
Úhinitmin ®(k®1)( =n%

n

k=1
qk} )

h=1,…,n
Úhinit®min
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We have thus proven the following extension of Theorem 1 from null to
arbitrary initial RVs. Recall that, if the initial RVs are all identical (say, all
null), then B(_init)=0. In this case, the bound B(_init)+n(n®1)/2 provided
by the following theorem thus reduces to the bound n(n®1)/2 already
obtained in §3.

The bound B(_init)+n(n®1)/2 on the worst-case number of errors is tight,
as shown by the same example in (26) in the paper with the ERCs fed in
the fixed order a1£a2£a3 and with the initial ranking vector _init=(4,3,
2,1).

3 Calibrated re-ranking rules
Consider next the calibrated demotion/promotion re-ranking rule (51) from
§6, repeated in (76).

The invariant (72) ensures that the sum of the current RVs can be lower
bounded, as in (77).

As seen in §6.3, the sum of the current RVs is decreased by at least 1/n with
every update. After T updates, it has thus decreased by at least T/n from
the sum of the initial RVs, as stated in (78).

1
2
n(n®1)

(76) Decrease the RV of each of the l undominated loser-preferrers by 1.a.
Increase the RV of each of the w winner-preferrers by p=l/(w+1).b.
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conic property. The update vectors are called conically independent
provided that there are no coe!cients a1, …, am that satisfy the three
conditions in (85); see Bertsekas et al. (2003). In other words, it is not
possible to synthesise the null vector as a conic combination of the update
vectors, unless of course the coe!cients are all set equal to zero.

Fact 6 below says that OT-consistency of the input ERC matrix (with a
unique l per row) entails conic independence of the corresponding update
vectors, and Fact 7 says that conic independence of the update vectors in
turn entails that the EDRA cannot loop. Fact 5 thus follows from the two
auxiliary Facts 6 and 7. The assumption that the input ERCs have a unique
l per row can be easily dropped, as discussed at the end of this section.

Fact 6
Consider an input ERC matrix that has a unique l per row. If it is
consistent, then the corresponding update vectors defined in (83) are
conically independent.

Proof. Recall from Fact 1 that any consistent ERC matrix has the shape in
(22) (repeated in (86)), modulo reordering of its rows and its columns and
relabelling of the constraints. (86) has a top block of rows whose first entry
is w, followed by a second block of rows whose first entry is e and whose
second entry is w, and so on.

2 Giorgio Magri

Fact 2 (further generalised)
Assume that the input ERC matrix is consistent with a ranking.
Without loss of generality, assume that this ranking is C1êC1ê…êCn.
Let q1, …, qn be the current RVs entertained by an EDRA in a generic
run on those input ERCs, up to a generic time, starting from arbitrary
initial RVs Ú1init, …, Úninit. Assume that the re-ranking rule used by the
EDRA demotes by 1 only the currently undominated loser-preferrers
(no assumptions are made on constraint promotion). The current RVs
thus satisfy condition (72) for every k=1, …, n. That is, the RV qk of
the constraint Ck assigned to the kth stratum (with the 1st stratum
being the top one) never drops by more than (k®1) below the smallest
initial RV minh=1,…,nÚhinit.

(72) qk}
h=1,…,n

Úhinit®(k®1)min

(73) Decrease the RV of each undominated loser-preferrer by 1.a.
Do nothing to the current RV of the other constraints.b.

2 Demotion-only re-ranking rules
Consider the demotion-only re-ranking rule (17) from §3, repeated in (73).

At least one constraint is demoted at each update. Hence, the total number
T of updates is at most the sum of the number of times C1 has been demoted,
and the number of times C2 has been demoted, etc, as stated in (74a). Each
time constraint Ck is demoted, it is demoted by 1, and it is never promoted.
Hence the number of times that constraint Ck has been demoted up to the
time considered is equal to the distance Úkinit®Úk between its initial RV Úkinit

and its current RV Úk, as stated in (74b). The inequality (72) says that Úk

sits between Úkinit and minh=1,…,nÚhinit®(k®1), as depicted in (75). Thus the
distance between the latter two points upper bounds the distance Úkinit®Úk,
as stated in (74c). Finally, step (e) follows from definition (71) of the constant
B(_init) and from the identity %

n

k=1(k®1)=n(n®1)/2.

Theorem 2 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the calibrated promotion/demotion re-
ranking rule (76) run on a consistent input ERC matrix corresponding
to n constraints starting from an arbitrary initial ranking vector
_init=(Ú1init, …, Úninit) can perform at most nB(_init)+n2(n®1)/2 errors
before converging.

4 Giorgio Magri

In the case of an arbitrary initial ranking vector as well, the error-bound
for the calibrated case is worse by a factor of n than the error-bound for
the demotion-only case.

Combining the two inequalities (77) and (78), I conclude that the number
T of updates must be smaller than nB(_init)+n2(n®1)/2. We have thus
proven the following extension of Theorem 2 from null to arbitrary initial
RVs.

In §6, I looked for concreteness at a specific calibrated re-ranking rule,
namely the one in (51) (= (76)), which demotes each of the l undominated
loser-preferrers by 1 and promotes each of the w winner-preferrers by
l/(w+1). Here I look at the generic calibrated re-ranking rule in (79).

Appendix B: Convergence of a generic calibrated re-ranking rule

This re-ranking rule is calibrated as long as d>0. Indeed, the distance of
the promotion amount p from the calibration threshold l/w is controlled by
the constant d: the larger d, the smaller the promotion amount p is with
respect to the calibration threshold. In particular, the case d=1 corresponds
to re-ranking rule (51), and the case where d goes to infinity corresponds
to the demotion-only case p=0 considered in §3.

The reasoning for the case d=1 presented in §6 trivially extends to an
arbitrary d>0, yielding the following generalisation of Theorem 2 of §6.

Theorem 2 (extended to arbitrary calibrated promotion amounts)
An EDRA with the general calibrated re-ranking rule (79) run on a
consistent input ERC matrix corresponding to n constraints starting
from null initial RVs can perform at most the number of mistakes in
(80) before converging, where W is the largest number of winner-
preferrers over all input ERCs.
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Appendix C: Why EDRAs cannot loop
Consider the general re-ranking rule in (82).

(82) Decrease the RV of the loser-preferrer by 1.a.
Increase the RV of each winner-preferrer by p>0.b.

Proof. With every update, the sum of the current RVs is decreased by l. It
is furthermore increased by wl/(w+d), as each of the w winner-preferrers
is promoted by l/(w+d). In the end, the sum of the current RVs is thus
decreased by l®(wl/(w+d))=dl/(w+d) . As the number l of undominated
loser-preferrers is at least 1 and the number w of winner-preferrers is at
most W, I conclude that the sum of the current RVs is decreased by at least
T(d/(W+d)) after T updates. On the other hand, the sum of the current
RVs starts at zero and can never become smaller than —n(n®1)/2, by the
generalised Fact 2 stated in §6.2. In conclusion, the number of updates T
in the case of the re-ranking rule (79) must satisfy the inequality
T(d/(W+d)){n(n®1)/2, which yields the error-bound in (80). º

The bound (81) for d=1 gives back the bound n2(n®1)/2 of the original
Theorem 2 in §6. As d increases and the promotion amount p=l/(w+d)
thus gets smaller relative to the calibration threshold l/w, the bound (81)
on the number of mistakes decreases, ensuring faster convergence. In the
limit of d going to infinity, the coe!cient (n®1+d)/d goes to 1, and the
bound (81) thus becomes the bound n(n®1)/2 already obtained in Theorem
1 of §3 for the case with null p=0 promotion amount.

Note that the cubic rather than quadratic growth in n of the bound (81)
comes from the fact that I have upper bounded the largest number W of
winner-preferrers in a generic input ERC, with n®1. But in most
applications, W is much smaller than n®1, as the winner and loser forms
that correspond to an ERC di‰er only in a few respects, and thus most of
the constraints are even. Furthermore, if the loser forms are properly chosen
so that the input ERCs have as few winner-preferrers as possible, then W
might be forced into a constant in certain applications. In that case, the
error-bound (80) for calibrated promotion grows only quadratically in the
number of constraints n, just like the bound n(n®1)/2 for the demotion-
only case.

(81) n®1+d
d

1
2

n(n®1)

As there is a total of n constraints, and each ERC must have at least a
loser-preferrer (ERCs that have no loser-preferrers cannot ever trigger any
update and can therefore be ignored), then the largest number W of winner-
preferrers is upper bound by n®1, and the bound (80) becomes (81).

6 Giorgio Magri

Fact 5
If the input ERC matrix is consistent, the EDRA (Fig. 5) with any
promotion/demotion re-ranking rule of the form (82) can never loop
back to a current ranking vector that it had previously made a mistake
on in that same run.

Let m be the total number of input ERCs. To simplify the presentation,
let me start by assuming that the input ERC matrix has a unique l per
ERC. The contribution of the ith ERC ai to the current ranking vector
according to this re-ranking rule can thus be summarised with the cor-
responding update vector ai, as in (83): the entry corresponding to the
loser-preferrer is equal to —1; the entries corresponding to winner-preferrers
are set equal to the corresponding promotion amount p>0; all other entries
are 0.

Throughout this section, I assume that the promotion amount p is never
null. I show that the EDRA with the re-ranking rule (82) cannot loop on
consistent input ERC matrices, as stated in Fact 5, repeated below. The
proof is based on a connection between OT-consistency and conic
independence.

Suppose that the initial RVs are all null. The current ranking vector _t

entertained at time t by the EDRA with the re-ranking rule (82) can be
described as in (84), i.e. as a combination of the update vectors, each
multiplied by the number of updates ai

t

 triggered by the corresponding ith
ERC in the run considered up to time t. Equation (43), obtained in the dis-
cussion of Pater’s counterexample in §5.3, is a special case of the general
equation (84). Of course, the coe!cients ai

t

 are by definition all non-negative.
Thus the identity (84) can be summarised by saying that the current ranking
vector is a conic combination of the m update vectors.

As the current ranking vector is a conic combination of the update vectors,
it is interesting to study the conic geometry of these vectors, i.e. the formal
properties of their conic combinations. Here is a particularly important

8 Giorgio Magri

Suppose that a conic combination of these update vectors (88) with some
non-negative coe!cients yields the null vector, namely that conditions
(85a) and (b) hold. Let’s focus on the first component of this conic combi-
nation, as in (89). The first component of the update vectors in the 1st block
is always positive (recall that p>0 by hypothesis). Suppose there are k
vectors in the 1st block. The first component of the remaining m®k update
vectors is always null. In order for the first component of this conic
combination to be zero, the non-negative coe!cients that multiply the
update vectors in the 1st block must all be null, namely a1=…=ak=0.

The update vectors can now be read straightforwardly from (87): the ith
update vector is obtained by looking at the ith column. Recall that the
mapping (83) from ERCs into update vectors replaces a e with a 0 and a w
with the positive quantity p>0. The collection of update vectors can thus
be made a little more explicit, as in (88). (Each update vector can have a
di‰erent value for the promotion amount p. This fact does not play any
role in the reasoning, so I do not encode it explicitly in the notation, and
use the same p for all update vectors.)

Supplementary materials9

By moving everything to the right-hand side, (91a) can of course be restated
as in (92a), where I have introduced the coe!cients ai=ait¢®ait for all i=1,
…, m. The property (91b), that ait¢ is larger than or equal to ait because time
t¢ follows time t, can then be restated as (92b), that all coe!cients ai are
non-negative. The property (91c), that some coe!cient ait¢ is di‰erent from
the corresponding coe!cient ait because some update has happened between
times t and t¢, can be restated as the property (92c), that at least one of the
coe!cients ai is non-null.

The conditions in (92) say that the null vector can be synthesised as a conic
combination of the update vectors, without the coe!cients a1, …, am all
being null. This contradicts the hypothesis that the update vectors are
conically independent.º

Fact 7
If the update vectors are conically independent, then the EDRA cannot
loop back to a current ranking vector it had previously updated.

Proof. Suppose by contradiction that the EDRA can indeed loop back to
a ranking vector that it had dismissed at a previous time. This means that
it is possible for the algorithm to walk through a learning path with the
properties in (90).

Assumption (90a), that the ranking vectors _t and _t¢ entertained at times
t and t¢ coincide, can be expressed as the identity (91a), using the description
(84) of the current ranking vector in terms of update vectors. Here, ait and
ait¢ are the number of updates triggered by ERC 1 up to time t and t¢
respectively; an analogous interpretation holds for the other coe!cients.
As the number of updates grows with time, assumption (90b), that time t¢
follows time t, thus entails that the coe!cient ait¢ at time t¢ is larger than
or equal to the corresponding coe!cient ait at time t, as stated in (91b).
Furthermore, assumption (90c) entails that some update has happened at
some time between t and t¢, so that at least one of the coe!cients has
increased by at least 1 from time t to time t¢, as stated in (91c).
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Appendix D: On the number of updates for smallest non-calibrated
promotion
Recall from §7.5 that the aggravated Pater’s ERC matrix for n constraints
is obtained from the corresponding diagonal matrix by adding two w’s to
the right of each l. To illustrate, I give in (93) the matrix corresponding
to n=7 constraints. It has 6= n®1 ERCs; it has a w on every diagonal
entry, followed by an l followed in turn by two more w’s (except for the
last two rows, whose l’s are followed by one and zero w’s respectively).

To conclude the proof of Fact 5, I need to consider the case where the
input ERC matrix contains rows with multiple l’s. The additional di!culty
in this case is that the contribution of the ith ERC to the current ranking
vector depends on the number of currently undominated loser-preferrers,
i.e. it can be di‰erent at di‰erent times, and thus cannot be distilled into
a unique update vector ai, as in (83). But this di!culty can be straight-
forwardly overcome, at the expense of a slightly more cumbersome notation.
Let m be the total number of ERCs. Suppose that the ith ERC has li loser-
preferrers Ck1, …, Ckli. Let C
i

1, …, C
i

2li—1 be all 2
li®1 non-empty subsets
of the set {Ck1, …, Ckli} of loser-preferrers. For every such subset Cij, let
ai, j be the update vector defined as follows: the components corresponding
to the loser-preferrers in the subset Cij are equal to —1; the components
corresponding to winner-preferrers are equal to p; the remaining components
are equal to 0. Furthermore, let ati, j be the number of updates triggered by
this ith ERC up to time t, because all and only the loser-preferrers in the
set Cij were currently undominated. The current ranking vector can then
be expressed as a conic combination of these update vectors through these
non-negative coe!cients, namely _t=%
m

i=1 %j=12
li

—1 ati, j ai, j. Again, these
update vectors ai, j are conically independent. I can thus trivially extend
the preceding reasoning.
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Here is how these equations are obtained. The RV q1 of constraint C1 starts
out null. It is only modified when ERC 1 triggers an update, in which case,
it is increased by 1/3, as ERC 1 contains 3 winner-preferrers. In other
words, the final RV q1 of constraint C1 is 1/3 of the total number a1 of
updates triggered by ERC 1, as stated by the first equation in (95).
Analogously, the RV q2 of constraint C2 starts out null, is decreased by 1
every time ERC 1 triggers an update and is increased by 1/3 every time
ERC 2 triggers an update, whereby we get the second equation in (95). The
remaining equations in (95) are obtained analogously.
The input matrix (93) is only consistent with the ranking C1êC2 …êC7.
As the final ranking vector _=(q1, …, q7) entertained by the EDRA at
convergence is consistent with the input matrix of ERCs, it must therefore
satisfy the six strict inequalities q1>q2, …, q6>q7. Consider for instance
the first of these six inequalities, repeated in (96a). Using the first two
equations in (95), this inequality can be rewritten as in (96b), in terms of
the numbers of updates a1 and a2 triggered by ERC 1 and ERC 2 respectively.
If both sides of inequality (96b) are multiplied by the constant 3, we get
the equivalent inequality (96c). As the variables a1, a2, as well as the
coe!cients, are integers, the strict inequality (96c) is equivalent to the loose
inequality (96d), where I have added 1 to the right-hand side.

The convergence Theorem 3 ensures that after a finite number of errors
the EDRA will converge to a final ranking vector consistent with the input
ERC matrix, and learning will cease. Yet the theorem does not provide any
estimate of the number of errors made before convergence. This section
shows that this number grows exponentially with the number n of constraints,
as anticipated in §7.5.
For concreteness, suppose the input matrix is the aggravated Pater’s
matrix (93), corresponding to n=7 constraints. Let _=(q1, …, q7) be the
final ranking vector the EDRA has converged on. Let a1, …, a6 be the total
number of updates triggered by each of the six input ERCs in the run
considered. The final RVs q1, …, q7 can be expressed in terms of the
coe!cients a1, …, a6, as in (95).

(94)Decrease the RV of the loser-preferrer by 1. a.
Increase the RV of each of the w winner-preferrers by l/w.b.
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The reasoning just developed in the concrete case of the aggravated Pater’s
matrix in (93) corresponding to n=7 constraints extends to the case of an
arbitrary number n of constraints. I can always construct an optimisation
problem akin to (98) that provides a bound on the best-case number of
updates performed by the EDRA on that aggravated Pater’s matrix. The
solution of the optimisation problems thus obtained for the aggravated
Pater’s matrices corresponding to various choices of the number n of
constraints are reported in Table Ia. (These values were computed using
the Matlab file MinimumRunningTime.m. It takes as input the aggravated
Pater’s ERC matrix corresponding to n constraints, for any n. It constructs
the corresponding optimisation problem akin to (98), generalising the
reasoning just presented here in the special case of the aggravated Pater’s
comparative tableaux corresponding to n=7 constraints, and it solves this

The total number of updates performed by the EDRA in the run considered
coincides with the sum a1+…+a6 of the number a1 of updates triggered
by ERC 1 plus the number a2 of updates triggered by ERC 2 and so on
down to the number a6 of updates triggered by ERC 6. Furthermore, these
non-negative numbers a1, …, a6 must satisfy the inequalities in (97). Thus
the number of updates performed by the EDRA to reach convergence
cannot be smaller than the solution of the optimisation problem (98). In
other words, the solution of this optimisation problem provides a bound
on the best-case number of updates performed by the EDRA on the input
matrix (93). As (98) is a linear program, it can be easily solved with standard
linear programming techniques.

By reasoning this way, I conclude that the six strict inequalities q1>q2, …,
q6>q7 are equivalent to the six inequalities in (97) in terms of the number
of updates a1, …, a6 triggered by ERC 1 through ERC 6 respectively.
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optimisation problem using Matlab built-in subroutines for linear pro-
gramming. Aggravated Pater’s comparative matrices for n=5, 7, 9, 11, 13,
15 constraints are provided in the file AggravatedPaterMatrices.txt. Both
files are available here.)
Let me close by pointing out the close parallelism between the reasoning
presented in this section and the explanation for Pater’s (2008) counter-
example against the GLA’s convergence provided in §5.3. The equations
in (95) are analogous to those in (44) in §5.3, and both are a special case of
the vector equation (84) in Appendix C. The inequalities in (97) are analogous
to those in (45) in §5.3. Finally, showing that there are no coe!cient a’s
that solve the inequalities in (97) and add up to a small number corresponds
to the final step of the explanation of Pater’s counterexample, which showed
that there are no coe!cient a’s that solve the inequalities (45).

Appendix A: Extension to arbitrary initial ranking vectors
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Throughout the paper, I have investigated convergence in the case where
the initial RVs Ú1init, …, Úninit were all identical, say all equal to zero (the
actual value does not really matter). In this appendix, I show how to obtain
error bounds for demotion-only and calibrated re-ranking rules in the case
of an arbitrary initial ranking vector _init=(Ú1init, …, Úninit). It turns out that
the properties of the initial ranking vector that are relevant for the error-
bounds can be extracted through the quantity B(_init) defined in (71), namely
the sum of the di‰erence between each initial RV Úkinit and the smallest RV
minh=1Úhinit. Intuitively, this quantity measures how scattered the initial
RVs are. In fact, B(_init) is null for the case of identical initial RVs, small
for RVs close to each other and large if there are some RVs that are very
small and some other RVs that are very large.

1The crucial invariant
Tesar & Smolensky’s (generalised) Fact 2 from §6.2 provides an invariant
for the current RVs entertained by the EDRA in the case of null initial
RVs. It says that the current RVs can never become much smaller than
zero, as long as the EDRA only demotes the loser-preferring constraints
that need to be demoted, i.e. the undominated ones. The reasoning trivially
extends to arbitrary initial ranking values, yielding the following further
generalisation of Fact 2: the current ranking values can never become much
smaller than the smallest initial ranking value.
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In §2.3, I defined OT-consistency between an ERC and a ranking vector
as in (14), repeated below in (99). This appendix qualifies this definition
with some remarks.

Appendix E: On the notion of OT-consistency for ranking vectors

(99)A ranking vector is (OT-)consistent with an ERC provided that each
of its refinements is consistent with that ERC, according to the original
notion of consistency (9).

T&S introduce a variant of the standard OT framework, replacing total
rankings with stratified hierarchies, which can assign multiple constraints
to a single stratum. Stratified hierarchies are thus equivalent to ranking
vectors, which can assign the same ranking values to multiple constraints.
Yet the notion of consistency assumed by T&S is very di‰erent from the
one in (99), as T&S allow for the tie among constraints assigned to the same
stratum to be resolved additively. Without getting into the details of this
alternative definition of OT-consistency, let me illustrate the di‰erence
with an example. Consider the ERC (100a) together with the ranking vector
(100b). Because of the two identical ranking values q1=q2=2, this ranking
vector would represent a stratified hierarchy that assigns both C 1 and C2

to the top stratum, with C 3 ranked underneath.

1Comparison with Tesar & Smolensky’s (1998) notion of OT-
consistency for stratified hierarchies

(100)C3C1C2

()122_=
b.a.C2

ERC

C1

wl[
C3

w]

as the l and the w of the two equally highest-ranked constraints C 1 and C2

‘cancel out’ because of the additive interaction between equally
rankedconstraints. But the ranking vector (100b) is not consistent with the
ERC (100a) according to the definition (99), since the ranking vector (100b)
admits the refinement C2êC1êC3, which is not consistent with the ERC
(100a). As the paper assumes the classical notion of OT-consistency (99),
it is framed squarely within standard OT. Contrary to what suggested by
T&S, there is no need to step outside of the standard OT framework for
algorithmic purposes.
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A reviewer worries that the notion of OT consistency (99), which requires
consistency to hold for all refinements, might not be e!ciently computable.
For instance, if all ranking values are identical, then don’t we have to check
consistency for all n! refinements, causing a complexity explosion? That is
not the case. Here is a way to see this. Let W(a) and L(a) be the sets of
winner- and loser-preferring constraints relative to an ERC a. It turns out
that a ranking vector _=(q1, …, qn) is consistent with an ERC a according
to condition (99) provided the following strict inequality (101) holds, which
says that the largest ranking value over winner-preferrers is larger than the
largest ranking value over loser-preferrers.

Computational e!ciency2

Furthermore, the inequality (101) can be checked in n steps (where n is the
number of constraints). In the end, the consistency condition (99) can thus
be e!ciently computed.
Let me explain why the consistency condition (99) is equivalent to the
strict inequality (101). Suppose that the latter inequality (101) holds. Every
refinement of this ranking vector will then rank the winner-preferrer that
attains the maximum max kÊW(a) Úk above the loser-preferrer that attains
the maximum maxhÊL(a) Úh. In other words, it will rank this winner-preferrer
above every loser-preferrer. Every refinement is thus consistent with the
ERC a, and condition (99) holds. Vice versa, suppose that inequality (101)
does not hold, i.e. the largest ranking value over winner-preferrers is at
most as large as the largest ranking value over loser-preferrers. Thus the
current ranking vector admits a refinement that ranks the loser-preferrer
that attains the maximum maxhÊL(a) Úh above the winner-preferrer that
attains the maximum maxkÊW(a) Úk. In other words, it admits a refinement
that ranks a loser-preferrer above every winner-preferrer. This refinement
is thus not consistent with the ERC a, and condition (99) fails.
Finally, let me explain why inequality (101) can be checked i n n steps
(where n is the number of constraints) . Posit W=—≥ and L=—≥. Scan
through the current ranking values, for k=1, 2, … n. If Úk is larger than

(101)
kÊW(a)
maxÚk
hÊL(a)
maxÚh>

a1®a3+a4>0

Consistency with Pater’s ERC matrix 3
In §5.2, I considered Pater’s (2008) ERC matrix (42). This ERC matrix
requires the ranking C1êC2êC3êC4êC5. Thus, a ranking vector  _=(q1,
q2, q3, q4, q5) is OT-consistent with this ERC matrix according to condition
(99), provided it admits only that ranking as a renement. This means in
turn that the ranking values must satisfy the four strict inequalities q1>q2,
q2>q3, q3>q4 and q4>q5. In §5.3, I showed that these four strict inequalities
can be rewritten as in (45) in terms of the number of updates a1, …, a4,
triggered by the four ERCs in Pater’s ERC matrix. Furthermore, I have
claimed that these inequalities (45) admit no solution. To see this, rewrite
these inequalities (45) as in (102), by moving everything on one side.

If we sum all four inequalities together, we obtain inequality (103a). If we
sum together only the second and third inequalities in (102), we obtain
inequality (103b).

(103)a.
—a1+a3®a4>0b.

As the two inequalities thus derived in (103) are inconsistent, the four
original inequalities (102) admit no solution.

additional reference

Bertsekas, Dimitri P., Angelia Nedic & Asuman E. Ozdaglar (2003). Convex analysis
and optimization. Nashua, NH: Athena Scientific.

According to the alternative definition of OT-consistency introduced by
T&S, the ranking vector (100b) is indeed consistent with the ERC (100a),

W (larger than L) and Ck is winner-preferring (loser-preferring), then set
W=Úk (set L=Úk). After having scanned all ranking values, condition (101)
holds i‰ W>L. This process only takes n steps.
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(75)

qk

Úkinit

h=1,…,n
Úhinit—(k®1)min

Theorem 1 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the demotion-only re-ranking rule (73) run
on a consistent input ERC matrix corresponding to n constraints
starting from an arbitrary initial ranking vector _init=(Ú1init, …, Úninit)
can perform at most B(_init)+n(n®1)/2 errors before converging.

(77) %
n

k=1 h=1,…,n
Úhinitmin ®(k®1)( =n%

n

k=1
qk} )

h=1,…,n
Úhinit®min
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We have thus proven the following extension of Theorem 1 from null to
arbitrary initial RVs. Recall that, if the initial RVs are all identical (say, all
null), then B(_init)=0. In this case, the bound B(_init)+n(n®1)/2 provided
by the following theorem thus reduces to the bound n(n®1)/2 already
obtained in §3.

The bound B(_init)+n(n®1)/2 on the worst-case number of errors is tight,
as shown by the same example in (26) in the paper with the ERCs fed in
the fixed order a1£a2£a3 and with the initial ranking vector _init=(4,3,
2,1).

3 Calibrated re-ranking rules
Consider next the calibrated demotion/promotion re-ranking rule (51) from
§6, repeated in (76).

The invariant (72) ensures that the sum of the current RVs can be lower
bounded, as in (77).

As seen in §6.3, the sum of the current RVs is decreased by at least 1/n with
every update. After T updates, it has thus decreased by at least T/n from
the sum of the initial RVs, as stated in (78).

1
2
n(n®1)

(76) Decrease the RV of each of the l undominated loser-preferrers by 1.a.
Increase the RV of each of the w winner-preferrers by p=l/(w+1).b.
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conic property. The update vectors are called conically independent
provided that there are no coe!cients a1, …, am that satisfy the three
conditions in (85); see Bertsekas et al. (2003). In other words, it is not
possible to synthesise the null vector as a conic combination of the update
vectors, unless of course the coe!cients are all set equal to zero.

Fact 6 below says that OT-consistency of the input ERC matrix (with a
unique l per row) entails conic independence of the corresponding update
vectors, and Fact 7 says that conic independence of the update vectors in
turn entails that the EDRA cannot loop. Fact 5 thus follows from the two
auxiliary Facts 6 and 7. The assumption that the input ERCs have a unique
l per row can be easily dropped, as discussed at the end of this section.

Fact 6
Consider an input ERC matrix that has a unique l per row. If it is
consistent, then the corresponding update vectors defined in (83) are
conically independent.

Proof. Recall from Fact 1 that any consistent ERC matrix has the shape in
(22) (repeated in (86)), modulo reordering of its rows and its columns and
relabelling of the constraints. (86) has a top block of rows whose first entry
is w, followed by a second block of rows whose first entry is e and whose
second entry is w, and so on.

2Giorgio Magri

Fact 2 (further generalised)
Assume that the input ERC matrix is consistent with a ranking.
Without loss of generality, assume that this ranking is C1êC1ê…êCn.
Let q1, …, qn be the current RVs entertained by an EDRA in a generic
run on those input ERCs, up to a generic time, starting from arbitrary
initial RVs Ú1init, …, Úninit. Assume that the re-ranking rule used by the
EDRA demotes by 1 only the currently undominated loser-preferrers
(no assumptions are made on constraint promotion). The current RVs
thus satisfy condition (72) for every k=1, …, n. That is, the RV qk of
the constraint Ck assigned to the kth stratum (with the 1st stratum
being the top one) never drops by more than (k®1) below the smallest
initial RV minh=1,…,nÚhinit.

(72)qk}
h=1,…,n
Úhinit®(k®1)min

(73)Decrease the RV of each undominated loser-preferrer by 1.a.
Do nothing to the current RV of the other constraints.b.

2Demotion-only re-ranking rules
Consider the demotion-only re-ranking rule (17) from §3, repeated in (73).

At least one constraint is demoted at each update. Hence, the total number
T of updates is at most the sum of the number of times C1 has been demoted,
and the number of times C2 has been demoted, etc, as stated in (74a). Each
time constraint Ck is demoted, it is demoted by 1, and it is never promoted.
Hence the number of times that constraint Ck has been demoted up to the
time considered is equal to the distance Úkinit®Úk between its initial RV Úkinit
and its current RV Úk, as stated in (74b). The inequality (72) says that Úk
sits between Úkinit and minh=1,…,nÚhinit®(k®1), as depicted in (75). Thus the
distance between the latter two points upper bounds the distance Úkinit®Úk,
as stated in (74c). Finally, step (e) follows from definition (71) of the constant
B(_init) and from the identity %
n

k=1(k®1)=n(n®1)/2.

Theorem 2 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the calibrated promotion/demotion re-
ranking rule (76) run on a consistent input ERC matrix corresponding
to n constraints starting from an arbitrary initial ranking vector
_init=(Ú1init, …, Úninit) can perform at most nB(_init)+n2(n®1)/2 errors
before converging.

4 Giorgio Magri

In the case of an arbitrary initial ranking vector as well, the error-bound
for the calibrated case is worse by a factor of n than the error-bound for
the demotion-only case.

Combining the two inequalities (77) and (78), I conclude that the number
T of updates must be smaller than nB(_init)+n2(n®1)/2. We have thus
proven the following extension of Theorem 2 from null to arbitrary initial
RVs.

In §6, I looked for concreteness at a specific calibrated re-ranking rule,
namely the one in (51) (= (76)), which demotes each of the l undominated
loser-preferrers by 1 and promotes each of the w winner-preferrers by
l/(w+1). Here I look at the generic calibrated re-ranking rule in (79).

Appendix B: Convergence of a generic calibrated re-ranking rule

This re-ranking rule is calibrated as long as d>0. Indeed, the distance of
the promotion amount p from the calibration threshold l/w is controlled by
the constant d: the larger d, the smaller the promotion amount p is with
respect to the calibration threshold. In particular, the case d=1 corresponds
to re-ranking rule (51), and the case where d goes to infinity corresponds
to the demotion-only case p=0 considered in §3.

The reasoning for the case d=1 presented in §6 trivially extends to an
arbitrary d>0, yielding the following generalisation of Theorem 2 of §6.

Theorem 2 (extended to arbitrary calibrated promotion amounts)
An EDRA with the general calibrated re-ranking rule (79) run on a
consistent input ERC matrix corresponding to n constraints starting
from null initial RVs can perform at most the number of mistakes in
(80) before converging, where W is the largest number of winner-
preferrers over all input ERCs.

Supplementary materials 5

Appendix C: Why EDRAs cannot loop
Consider the general re-ranking rule in (82).

Proof. With every update, the sum of the current RVs is decreased by l. It
is furthermore increased by wl/(w+d), as each of the w winner-preferrers
is promoted by l/(w+d). In the end, the sum of the current RVs is thus
decreased by l®(wl/(w+d))=dl/(w+d) . As the number l of undominated
loser-preferrers is at least 1 and the number w of winner-preferrers is at
most W, I conclude that the sum of the current RVs is decreased by at least
T(d/(W+d)) after T updates. On the other hand, the sum of the current
RVs starts at zero and can never become smaller than —n(n®1)/2, by the
generalised Fact 2 stated in §6.2. In conclusion, the number of updates T
in the case of the re-ranking rule (79) must satisfy the inequality
T(d/(W+d)){n(n®1)/2, which yields the error-bound in (80). º

The bound (81) for d=1 gives back the bound n2(n®1)/2 of the original
Theorem 2 in §6. As d increases and the promotion amount p=l/(w+d)
thus gets smaller relative to the calibration threshold l/w, the bound (81)
on the number of mistakes decreases, ensuring faster convergence. In the
limit of d going to infinity, the coe!cient (n®1+d)/d goes to 1, and the
bound (81) thus becomes the bound n(n®1)/2 already obtained in Theorem
1 of §3 for the case with null p=0 promotion amount.

Note that the cubic rather than quadratic growth in n of the bound (81)
comes from the fact that I have upper bounded the largest number W of
winner-preferrers in a generic input ERC, with n®1. But in most
applications, W is much smaller than n®1, as the winner and loser forms
that correspond to an ERC di‰er only in a few respects, and thus most of
the constraints are even. Furthermore, if the loser forms are properly chosen
so that the input ERCs have as few winner-preferrers as possible, then W
might be forced into a constant in certain applications. In that case, the
error-bound (80) for calibrated promotion grows only quadratically in the
number of constraints n, just like the bound n(n®1)/2 for the demotion-
only case.

As there is a total of n constraints, and each ERC must have at least a
loser-preferrer (ERCs that have no loser-preferrers cannot ever trigger any
update and can therefore be ignored), then the largest number W of winner-
preferrers is upper bound by n®1, and the bound (80) becomes (81).

6 Giorgio Magri

Fact 5
If the input ERC matrix is consistent, the EDRA (Fig. 5) with any
promotion/demotion re-ranking rule of the form (82) can never loop
back to a current ranking vector that it had previously made a mistake
on in that same run.

Let m be the total number of input ERCs. To simplify the presentation,
let me start by assuming that the input ERC matrix has a unique l per
ERC. The contribution of the ith ERC ai to the current ranking vector
according to this re-ranking rule can thus be summarised with the cor-
responding update vector ai, as in (83): the entry corresponding to the
loser-preferrer is equal to —1; the entries corresponding to winner-preferrers
are set equal to the corresponding promotion amount p>0; all other entries
are 0.

Throughout this section, I assume that the promotion amount p is never
null. I show that the EDRA with the re-ranking rule (82) cannot loop on
consistent input ERC matrices, as stated in Fact 5, repeated below. The
proof is based on a connection between OT-consistency and conic
independence.

(83) p
—1

0
where ak=ai=[a1, …, an]£ai=

a1

an

if ak=w
if ak=l
otherwise

(84)

_t

=ai

ta1+…+ai

tai+…+at

mam

update vector
corresponding to

the ith ERC

number of updates
triggered by the ith
ERC up to time t

Suppose that the initial RVs are all null. The current ranking vector _t

entertained at time t by the EDRA with the re-ranking rule (82) can be
described as in (84), i.e. as a combination of the update vectors, each
multiplied by the number of updates ai

t

 triggered by the corresponding ith
ERC in the run considered up to time t. Equation (43), obtained in the dis-
cussion of Pater’s counterexample in §5.3, is a special case of the general
equation (84). Of course, the coe!cients ai

t

 are by definition all non-negative.
Thus the identity (84) can be summarised by saying that the current ranking
vector is a conic combination of the m update vectors.

As the current ranking vector is a conic combination of the update vectors,
it is interesting to study the conic geometry of these vectors, i.e. the formal
properties of their conic combinations. Here is a particularly important

8 Giorgio Magri

Suppose that a conic combination of these update vectors (88) with some
non-negative coe!cients yields the null vector, namely that conditions
(85a) and (b) hold. Let’s focus on the first component of this conic combi-
nation, as in (89). The first component of the update vectors in the 1st block
is always positive (recall that p>0 by hypothesis). Suppose there are k
vectors in the 1st block. The first component of the remaining m®k update
vectors is always null. In order for the first component of this conic
combination to be zero, the non-negative coe!cients that multiply the
update vectors in the 1st block must all be null, namely a1=…=ak=0.

The update vectors can now be read straightforwardly from (87): the ith
update vector is obtained by looking at the ith column. Recall that the
mapping (83) from ERCs into update vectors replaces a e with a 0 and a w
with the positive quantity p>0. The collection of update vectors can thus
be made a little more explicit, as in (88). (Each update vector can have a
di‰erent value for the promotion amount p. This fact does not play any
role in the reasoning, so I do not encode it explicitly in the notation, and
use the same p for all update vectors.)
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By moving everything to the right-hand side, (91a) can of course be restated
as in (92a), where I have introduced the coe!cients ai=ait¢®ait for all i=1,
…, m. The property (91b), that ait¢ is larger than or equal to ait because time
t¢ follows time t, can then be restated as (92b), that all coe!cients ai are
non-negative. The property (91c), that some coe!cient ait¢ is di‰erent from
the corresponding coe!cient ait because some update has happened between
times t and t¢, can be restated as the property (92c), that at least one of the
coe!cients ai is non-null.

The conditions in (92) say that the null vector can be synthesised as a conic
combination of the update vectors, without the coe!cients a1, …, am all
being null. This contradicts the hypothesis that the update vectors are
conically independent.º

Fact 7
If the update vectors are conically independent, then the EDRA cannot
loop back to a current ranking vector it had previously updated.

Proof. Suppose by contradiction that the EDRA can indeed loop back to
a ranking vector that it had dismissed at a previous time. This means that
it is possible for the algorithm to walk through a learning path with the
properties in (90).

Assumption (90a), that the ranking vectors _t and _t¢ entertained at times
t and t¢ coincide, can be expressed as the identity (91a), using the description
(84) of the current ranking vector in terms of update vectors. Here, ait and
ai

t¢ are the number of updates triggered by ERC 1 up to time t and t¢
respectively; an analogous interpretation holds for the other coe!cients.
As the number of updates grows with time, assumption (90b), that time t¢
follows time t, thus entails that the coe!cient ait¢ at time t¢ is larger than
or equal to the corresponding coe!cient ait at time t, as stated in (91b).
Furthermore, assumption (90c) entails that some update has happened at
some time between t and t¢, so that at least one of the coe!cients has
increased by at least 1 from time t to time t¢, as stated in (91c).
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Appendix D: On the number of updates for smallest non-calibrated
promotion
Recall from §7.5 that the aggravated Pater’s ERC matrix for n constraints
is obtained from the corresponding diagonal matrix by adding two w’s to
the right of each l. To illustrate, I give in (93) the matrix corresponding
to n=7 constraints. It has 6= n®1 ERCs; it has a w on every diagonal
entry, followed by an l followed in turn by two more w’s (except for the
last two rows, whose l’s are followed by one and zero w’s respectively).

To conclude the proof of Fact 5, I need to consider the case where the
input ERC matrix contains rows with multiple l’s. The additional di!culty
in this case is that the contribution of the ith ERC to the current ranking
vector depends on the number of currently undominated loser-preferrers,
i.e. it can be di‰erent at di‰erent times, and thus cannot be distilled into
a unique update vector ai, as in (83). But this di!culty can be straight-
forwardly overcome, at the expense of a slightly more cumbersome notation.
Let m be the total number of ERCs. Suppose that the ith ERC has li loser-
preferrers Ck1, …, Ckli. Let C
i

1, …, C
i

2li—1 be all 2
li®1 non-empty subsets
of the set {Ck1, …, Ckli} of loser-preferrers. For every such subset Cij, let
ai, j be the update vector defined as follows: the components corresponding
to the loser-preferrers in the subset Cij are equal to —1; the components
corresponding to winner-preferrers are equal to p; the remaining components
are equal to 0. Furthermore, let ati, j be the number of updates triggered by
this ith ERC up to time t, because all and only the loser-preferrers in the
set Cij were currently undominated. The current ranking vector can then
be expressed as a conic combination of these update vectors through these
non-negative coe!cients, namely _t=%
m

i=1 %j=12
li

—1 ati, j ai, j. Again, these
update vectors ai, j are conically independent. I can thus trivially extend
the preceding reasoning.
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Here is how these equations are obtained. The RV q1 of constraint C1 starts
out null. It is only modified when ERC 1 triggers an update, in which case,
it is increased by 1/3, as ERC 1 contains 3 winner-preferrers. In other
words, the final RV q1 of constraint C1 is 1/3 of the total number a1 of
updates triggered by ERC 1, as stated by the first equation in (95).
Analogously, the RV q2 of constraint C2 starts out null, is decreased by 1
every time ERC 1 triggers an update and is increased by 1/3 every time
ERC 2 triggers an update, whereby we get the second equation in (95). The
remaining equations in (95) are obtained analogously.
The input matrix (93) is only consistent with the ranking C1êC2 …êC7.
As the final ranking vector _=(q1, …, q7) entertained by the EDRA at
convergence is consistent with the input matrix of ERCs, it must therefore
satisfy the six strict inequalities q1>q2, …, q6>q7. Consider for instance
the first of these six inequalities, repeated in (96a). Using the first two
equations in (95), this inequality can be rewritten as in (96b), in terms of
the numbers of updates a1 and a2 triggered by ERC 1 and ERC 2 respectively.
If both sides of inequality (96b) are multiplied by the constant 3, we get
the equivalent inequality (96c). As the variables a1, a2, as well as the
coe!cients, are integers, the strict inequality (96c) is equivalent to the loose
inequality (96d), where I have added 1 to the right-hand side.

The convergence Theorem 3 ensures that after a finite number of errors
the EDRA will converge to a final ranking vector consistent with the input
ERC matrix, and learning will cease. Yet the theorem does not provide any
estimate of the number of errors made before convergence. This section
shows that this number grows exponentially with the number n of constraints,
as anticipated in §7.5.
For concreteness, suppose the input matrix is the aggravated Pater’s
matrix (93), corresponding to n=7 constraints. Let _=(q1, …, q7) be the
final ranking vector the EDRA has converged on. Let a1, …, a6 be the total
number of updates triggered by each of the six input ERCs in the run
considered. The final RVs q1, …, q7 can be expressed in terms of the
coe!cients a1, …, a6, as in (95).

(94)Decrease the RV of the loser-preferrer by 1. a.
Increase the RV of each of the w winner-preferrers by l/w.b.
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The reasoning just developed in the concrete case of the aggravated Pater’s
matrix in (93) corresponding to n=7 constraints extends to the case of an
arbitrary number n of constraints. I can always construct an optimisation
problem akin to (98) that provides a bound on the best-case number of
updates performed by the EDRA on that aggravated Pater’s matrix. The
solution of the optimisation problems thus obtained for the aggravated
Pater’s matrices corresponding to various choices of the number n of
constraints are reported in Table Ia. (These values were computed using
the Matlab file MinimumRunningTime.m. It takes as input the aggravated
Pater’s ERC matrix corresponding to n constraints, for any n. It constructs
the corresponding optimisation problem akin to (98), generalising the
reasoning just presented here in the special case of the aggravated Pater’s
comparative tableaux corresponding to n=7 constraints, and it solves this

The total number of updates performed by the EDRA in the run considered
coincides with the sum a1+…+a6 of the number a1 of updates triggered
by ERC 1 plus the number a2 of updates triggered by ERC 2 and so on
down to the number a6 of updates triggered by ERC 6. Furthermore, these
non-negative numbers a1, …, a6 must satisfy the inequalities in (97). Thus
the number of updates performed by the EDRA to reach convergence
cannot be smaller than the solution of the optimisation problem (98). In
other words, the solution of this optimisation problem provides a bound
on the best-case number of updates performed by the EDRA on the input
matrix (93). As (98) is a linear program, it can be easily solved with standard
linear programming techniques.

By reasoning this way, I conclude that the six strict inequalities q1>q2, …,
q6>q7 are equivalent to the six inequalities in (97) in terms of the number
of updates a1, …, a6 triggered by ERC 1 through ERC 6 respectively.
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optimisation problem using Matlab built-in subroutines for linear pro-
gramming. Aggravated Pater’s comparative matrices for n=5, 7, 9, 11, 13,
15 constraints are provided in the file AggravatedPaterMatrices.txt. Both
files are available here.)
Let me close by pointing out the close parallelism between the reasoning
presented in this section and the explanation for Pater’s (2008) counter-
example against the GLA’s convergence provided in §5.3. The equations
in (95) are analogous to those in (44) in §5.3, and both are a special case of
the vector equation (84) in Appendix C. The inequalities in (97) are analogous
to those in (45) in §5.3. Finally, showing that there are no coe!cient a’s
that solve the inequalities in (97) and add up to a small number corresponds
to the final step of the explanation of Pater’s counterexample, which showed
that there are no coe!cient a’s that solve the inequalities (45).

Appendix A: Extension to arbitrary initial ranking vectors
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Throughout the paper, I have investigated convergence in the case where
the initial RVs Ú1init, …, Úninit were all identical, say all equal to zero (the
actual value does not really matter). In this appendix, I show how to obtain
error bounds for demotion-only and calibrated re-ranking rules in the case
of an arbitrary initial ranking vector _init=(Ú1init, …, Úninit). It turns out that
the properties of the initial ranking vector that are relevant for the error-
bounds can be extracted through the quantity B(_init) defined in (71), namely
the sum of the di‰erence between each initial RV Úkinit and the smallest RV
minh=1Úhinit. Intuitively, this quantity measures how scattered the initial
RVs are. In fact, B(_init) is null for the case of identical initial RVs, small
for RVs close to each other and large if there are some RVs that are very
small and some other RVs that are very large.

1The crucial invariant
Tesar & Smolensky’s (generalised) Fact 2 from §6.2 provides an invariant
for the current RVs entertained by the EDRA in the case of null initial
RVs. It says that the current RVs can never become much smaller than
zero, as long as the EDRA only demotes the loser-preferring constraints
that need to be demoted, i.e. the undominated ones. The reasoning trivially
extends to arbitrary initial ranking values, yielding the following further
generalisation of Fact 2: the current ranking values can never become much
smaller than the smallest initial ranking value.
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In §2.3, I defined OT-consistency between an ERC and a ranking vector
as in (14), repeated below in (99). This appendix qualifies this definition
with some remarks.

Appendix E: On the notion of OT-consistency for ranking vectors

(99)A ranking vector is (OT-)consistent with an ERC provided that each
of its refinements is consistent with that ERC, according to the original
notion of consistency (9).

T&S introduce a variant of the standard OT framework, replacing total
rankings with stratified hierarchies, which can assign multiple constraints
to a single stratum. Stratified hierarchies are thus equivalent to ranking
vectors, which can assign the same ranking values to multiple constraints.
Yet the notion of consistency assumed by T&S is very di‰erent from the
one in (99), as T&S allow for the tie among constraints assigned to the same
stratum to be resolved additively. Without getting into the details of this
alternative definition of OT-consistency, let me illustrate the di‰erence
with an example. Consider the ERC (100a) together with the ranking vector
(100b). Because of the two identical ranking values q1=q2=2, this ranking
vector would represent a stratified hierarchy that assigns both C 1 and C2

to the top stratum, with C 3 ranked underneath.

1Comparison with Tesar & Smolensky’s (1998) notion of OT-
consistency for stratified hierarchies

(100)C3C1C2

()122_=
b.a.C2

ERC

C1

wl[
C3

w]

as the l and the w of the two equally highest-ranked constraints C 1 and C2

‘cancel out’ because of the additive interaction between equally
rankedconstraints. But the ranking vector (100b) is not consistent with the
ERC (100a) according to the definition (99), since the ranking vector (100b)
admits the refinement C2êC1êC3, which is not consistent with the ERC
(100a). As the paper assumes the classical notion of OT-consistency (99),
it is framed squarely within standard OT. Contrary to what suggested by
T&S, there is no need to step outside of the standard OT framework for
algorithmic purposes.
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A reviewer worries that the notion of OT consistency (99), which requires
consistency to hold for all refinements, might not be e!ciently computable.
For instance, if all ranking values are identical, then don’t we have to check
consistency for all n! refinements, causing a complexity explosion? That is
not the case. Here is a way to see this. Let W(a) and L(a) be the sets of
winner- and loser-preferring constraints relative to an ERC a. It turns out
that a ranking vector _=(q1, …, qn) is consistent with an ERC a according
to condition (99) provided the following strict inequality (101) holds, which
says that the largest ranking value over winner-preferrers is larger than the
largest ranking value over loser-preferrers.

Computational e!ciency2

Furthermore, the inequality (101) can be checked in n steps (where n is the
number of constraints). In the end, the consistency condition (99) can thus
be e!ciently computed.
Let me explain why the consistency condition (99) is equivalent to the
strict inequality (101). Suppose that the latter inequality (101) holds. Every
refinement of this ranking vector will then rank the winner-preferrer that
attains the maximum max kÊW(a) Úk above the loser-preferrer that attains
the maximum maxhÊL(a) Úh. In other words, it will rank this winner-preferrer
above every loser-preferrer. Every refinement is thus consistent with the
ERC a, and condition (99) holds. Vice versa, suppose that inequality (101)
does not hold, i.e. the largest ranking value over winner-preferrers is at
most as large as the largest ranking value over loser-preferrers. Thus the
current ranking vector admits a refinement that ranks the loser-preferrer
that attains the maximum maxhÊL(a) Úh above the winner-preferrer that
attains the maximum maxkÊW(a) Úk. In other words, it admits a refinement
that ranks a loser-preferrer above every winner-preferrer. This refinement
is thus not consistent with the ERC a, and condition (99) fails.
Finally, let me explain why inequality (101) can be checked i n n steps
(where n is the number of constraints) . Posit W=—≥ and L=—≥. Scan
through the current ranking values, for k=1, 2, … n. If Úk is larger than

(101)
kÊW(a)
maxÚk
hÊL(a)
maxÚh>

a1®a3+a4>0

Consistency with Pater’s ERC matrix 3
In §5.2, I considered Pater’s (2008) ERC matrix (42). This ERC matrix
requires the ranking C1êC2êC3êC4êC5. Thus, a ranking vector  _=(q1,
q2, q3, q4, q5) is OT-consistent with this ERC matrix according to condition
(99), provided it admits only that ranking as a renement. This means in
turn that the ranking values must satisfy the four strict inequalities q1>q2,
q2>q3, q3>q4 and q4>q5. In §5.3, I showed that these four strict inequalities
can be rewritten as in (45) in terms of the number of updates a1, …, a4,
triggered by the four ERCs in Pater’s ERC matrix. Furthermore, I have
claimed that these inequalities (45) admit no solution. To see this, rewrite
these inequalities (45) as in (102), by moving everything on one side.

If we sum all four inequalities together, we obtain inequality (103a). If we
sum together only the second and third inequalities in (102), we obtain
inequality (103b).

(103)a.
—a1+a3®a4>0b.

As the two inequalities thus derived in (103) are inconsistent, the four
original inequalities (102) admit no solution.

additional reference

Bertsekas, Dimitri P., Angelia Nedic & Asuman E. Ozdaglar (2003). Convex analysis
and optimization. Nashua, NH: Athena Scientific.

According to the alternative definition of OT-consistency introduced by
T&S, the ranking vector (100b) is indeed consistent with the ERC (100a),

W (larger than L) and Ck is winner-preferring (loser-preferring), then set
W=Úk (set L=Úk). After having scanned all ranking values, condition (101)
holds i‰ W>L. This process only takes n steps.
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(75)

qk

Úkinit

h=1,…,n
Úhinit—(k®1)min

Theorem 1 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the demotion-only re-ranking rule (73) run
on a consistent input ERC matrix corresponding to n constraints
starting from an arbitrary initial ranking vector _init=(Ú1init, …, Úninit)
can perform at most B(_init)+n(n®1)/2 errors before converging.

(77)%
n

k=1h=1,…,n
Úhinitmin®(k®1)(=n%
n

k=1
qk})
h=1,…,n
Úhinit®min
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We have thus proven the following extension of Theorem 1 from null to
arbitrary initial RVs. Recall that, if the initial RVs are all identical (say, all
null), then B(_init)=0. In this case, the bound B(_init)+n(n®1)/2 provided
by the following theorem thus reduces to the bound n(n®1)/2 already
obtained in §3.

The bound B(_init)+n(n®1)/2 on the worst-case number of errors is tight,
as shown by the same example in (26) in the paper with the ERCs fed in
the fixed order a1£a2£a3 and with the initial ranking vector _init=(4,3,
2,1).

3Calibrated re-ranking rules
Consider next the calibrated demotion/promotion re-ranking rule (51) from
§6, repeated in (76).

The invariant (72) ensures that the sum of the current RVs can be lower
bounded, as in (77).

As seen in §6.3, the sum of the current RVs is decreased by at least 1/n with
every update. After T updates, it has thus decreased by at least T/n from
the sum of the initial RVs, as stated in (78).

1
2
n(n®1)

(76)Decrease the RV of each of the l undominated loser-preferrers by 1.a.
Increase the RV of each of the w winner-preferrers by p=l/(w+1).b.
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(85) a1a1+…+amam=0a.
ai}0 for all i=1, …, mb.
ai≠0 for some i=1, …, mc.

conic property. The update vectors are called conically independent
provided that there are no coe!cients a1, …, am that satisfy the three
conditions in (85); see Bertsekas et al. (2003). In other words, it is not
possible to synthesise the null vector as a conic combination of the update
vectors, unless of course the coe!cients are all set equal to zero.

Fact 6 below says that OT-consistency of the input ERC matrix (with a
unique l per row) entails conic independence of the corresponding update
vectors, and Fact 7 says that conic independence of the update vectors in
turn entails that the EDRA cannot loop. Fact 5 thus follows from the two
auxiliary Facts 6 and 7. The assumption that the input ERCs have a unique
l per row can be easily dropped, as discussed at the end of this section.

Fact 6
Consider an input ERC matrix that has a unique l per row. If it is
consistent, then the corresponding update vectors defined in (83) are
conically independent.

Proof. Recall from Fact 1 that any consistent ERC matrix has the shape in
(22) (repeated in (86)), modulo reordering of its rows and its columns and
relabelling of the constraints. (86) has a top block of rows whose first entry
is w, followed by a second block of rows whose first entry is e and whose
second entry is w, and so on.

For consistency with standard notation from Linear Algebra, in (83) I
paired up a row of the input ERC matrix with a corresponding column
update vector. To get around this rows/columns mismatch, let me turn
(86) upside down (i.e. transpose), so that rows become columns, as in (87).

(86) C2

w

w

e

e

w

w

e

e

e

e

e

e

–

–

w

w

C1 Cn

1st block

2nd block

final block

… … … …
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Fact 2 (further generalised)
Assume that the input ERC matrix is consistent with a ranking.
Without loss of generality, assume that this ranking is C1êC1ê…êCn.
Let q1, …, qn be the current RVs entertained by an EDRA in a generic
run on those input ERCs, up to a generic time, starting from arbitrary
initial RVs Ú1init, …, Úninit. Assume that the re-ranking rule used by the
EDRA demotes by 1 only the currently undominated loser-preferrers
(no assumptions are made on constraint promotion). The current RVs
thus satisfy condition (72) for every k=1, …, n. That is, the RV qk of
the constraint Ck assigned to the kth stratum (with the 1st stratum
being the top one) never drops by more than (k®1) below the smallest
initial RV minh=1,…,nÚhinit.

(72)qk}
h=1,…,n
Úhinit®(k®1)min

(73)Decrease the RV of each undominated loser-preferrer by 1.a.
Do nothing to the current RV of the other constraints.b.

2Demotion-only re-ranking rules
Consider the demotion-only re-ranking rule (17) from §3, repeated in (73).

At least one constraint is demoted at each update. Hence, the total number
T of updates is at most the sum of the number of times C1 has been demoted,
and the number of times C2 has been demoted, etc, as stated in (74a). Each
time constraint Ck is demoted, it is demoted by 1, and it is never promoted.
Hence the number of times that constraint Ck has been demoted up to the
time considered is equal to the distance Úkinit®Úk between its initial RV Úkinit
and its current RV Úk, as stated in (74b). The inequality (72) says that Úk
sits between Úkinit and minh=1,…,nÚhinit®(k®1), as depicted in (75). Thus the
distance between the latter two points upper bounds the distance Úkinit®Úk,
as stated in (74c). Finally, step (e) follows from definition (71) of the constant
B(_init) and from the identity %
n

k=1(k®1)=n(n®1)/2.

Theorem 2 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the calibrated promotion/demotion re-
ranking rule (76) run on a consistent input ERC matrix corresponding
to n constraints starting from an arbitrary initial ranking vector
_init=(Ú1init, …, Úninit) can perform at most nB(_init)+n2(n®1)/2 errors
before converging.

4 Giorgio Magri

In the case of an arbitrary initial ranking vector as well, the error-bound
for the calibrated case is worse by a factor of n than the error-bound for
the demotion-only case.

Combining the two inequalities (77) and (78), I conclude that the number
T of updates must be smaller than nB(_init)+n2(n®1)/2. We have thus
proven the following extension of Theorem 2 from null to arbitrary initial
RVs.

In §6, I looked for concreteness at a specific calibrated re-ranking rule,
namely the one in (51) (= (76)), which demotes each of the l undominated
loser-preferrers by 1 and promotes each of the w winner-preferrers by
l/(w+1). Here I look at the generic calibrated re-ranking rule in (79).

Appendix B: Convergence of a generic calibrated re-ranking rule

This re-ranking rule is calibrated as long as d>0. Indeed, the distance of
the promotion amount p from the calibration threshold l/w is controlled by
the constant d: the larger d, the smaller the promotion amount p is with
respect to the calibration threshold. In particular, the case d=1 corresponds
to re-ranking rule (51), and the case where d goes to infinity corresponds
to the demotion-only case p=0 considered in §3.

The reasoning for the case d=1 presented in §6 trivially extends to an
arbitrary d>0, yielding the following generalisation of Theorem 2 of §6.

Theorem 2 (extended to arbitrary calibrated promotion amounts)
An EDRA with the general calibrated re-ranking rule (79) run on a
consistent input ERC matrix corresponding to n constraints starting
from null initial RVs can perform at most the number of mistakes in
(80) before converging, where W is the largest number of winner-
preferrers over all input ERCs.
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Appendix C: Why EDRAs cannot loop
Consider the general re-ranking rule in (82).

Proof. With every update, the sum of the current RVs is decreased by l. It
is furthermore increased by wl/(w+d), as each of the w winner-preferrers
is promoted by l/(w+d). In the end, the sum of the current RVs is thus
decreased by l®(wl/(w+d))=dl/(w+d) . As the number l of undominated
loser-preferrers is at least 1 and the number w of winner-preferrers is at
most W, I conclude that the sum of the current RVs is decreased by at least
T(d/(W+d)) after T updates. On the other hand, the sum of the current
RVs starts at zero and can never become smaller than —n(n®1)/2, by the
generalised Fact 2 stated in §6.2. In conclusion, the number of updates T
in the case of the re-ranking rule (79) must satisfy the inequality
T(d/(W+d)){n(n®1)/2, which yields the error-bound in (80). º

The bound (81) for d=1 gives back the bound n2(n®1)/2 of the original
Theorem 2 in §6. As d increases and the promotion amount p=l/(w+d)
thus gets smaller relative to the calibration threshold l/w, the bound (81)
on the number of mistakes decreases, ensuring faster convergence. In the
limit of d going to infinity, the coe!cient (n®1+d)/d goes to 1, and the
bound (81) thus becomes the bound n(n®1)/2 already obtained in Theorem
1 of §3 for the case with null p=0 promotion amount.

Note that the cubic rather than quadratic growth in n of the bound (81)
comes from the fact that I have upper bounded the largest number W of
winner-preferrers in a generic input ERC, with n®1. But in most
applications, W is much smaller than n®1, as the winner and loser forms
that correspond to an ERC di‰er only in a few respects, and thus most of
the constraints are even. Furthermore, if the loser forms are properly chosen
so that the input ERCs have as few winner-preferrers as possible, then W
might be forced into a constant in certain applications. In that case, the
error-bound (80) for calibrated promotion grows only quadratically in the
number of constraints n, just like the bound n(n®1)/2 for the demotion-
only case.

As there is a total of n constraints, and each ERC must have at least a
loser-preferrer (ERCs that have no loser-preferrers cannot ever trigger any
update and can therefore be ignored), then the largest number W of winner-
preferrers is upper bound by n®1, and the bound (80) becomes (81).

6 Giorgio Magri

Fact 5
If the input ERC matrix is consistent, the EDRA (Fig. 5) with any
promotion/demotion re-ranking rule of the form (82) can never loop
back to a current ranking vector that it had previously made a mistake
on in that same run.

Let m be the total number of input ERCs. To simplify the presentation,
let me start by assuming that the input ERC matrix has a unique l per
ERC. The contribution of the ith ERC ai to the current ranking vector
according to this re-ranking rule can thus be summarised with the cor-
responding update vector ai, as in (83): the entry corresponding to the
loser-preferrer is equal to —1; the entries corresponding to winner-preferrers
are set equal to the corresponding promotion amount p>0; all other entries
are 0.

Throughout this section, I assume that the promotion amount p is never
null. I show that the EDRA with the re-ranking rule (82) cannot loop on
consistent input ERC matrices, as stated in Fact 5, repeated below. The
proof is based on a connection between OT-consistency and conic
independence.

Suppose that the initial RVs are all null. The current ranking vector _t

entertained at time t by the EDRA with the re-ranking rule (82) can be
described as in (84), i.e. as a combination of the update vectors, each
multiplied by the number of updates ai

t

 triggered by the corresponding ith
ERC in the run considered up to time t. Equation (43), obtained in the dis-
cussion of Pater’s counterexample in §5.3, is a special case of the general
equation (84). Of course, the coe!cients ai

t

 are by definition all non-negative.
Thus the identity (84) can be summarised by saying that the current ranking
vector is a conic combination of the m update vectors.

As the current ranking vector is a conic combination of the update vectors,
it is interesting to study the conic geometry of these vectors, i.e. the formal
properties of their conic combinations. Here is a particularly important

8 Giorgio Magri

Suppose that a conic combination of these update vectors (88) with some
non-negative coe!cients yields the null vector, namely that conditions
(85a) and (b) hold. Let’s focus on the first component of this conic combi-
nation, as in (89). The first component of the update vectors in the 1st block
is always positive (recall that p>0 by hypothesis). Suppose there are k
vectors in the 1st block. The first component of the remaining m®k update
vectors is always null. In order for the first component of this conic
combination to be zero, the non-negative coe!cients that multiply the
update vectors in the 1st block must all be null, namely a1=…=ak=0.

The update vectors can now be read straightforwardly from (87): the ith
update vector is obtained by looking at the ith column. Recall that the
mapping (83) from ERCs into update vectors replaces a e with a 0 and a w
with the positive quantity p>0. The collection of update vectors can thus
be made a little more explicit, as in (88). (Each update vector can have a
di‰erent value for the promotion amount p. This fact does not play any
role in the reasoning, so I do not encode it explicitly in the notation, and
use the same p for all update vectors.)
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By moving everything to the right-hand side, (91a) can of course be restated
as in (92a), where I have introduced the coe!cients ai=ai

t¢®ai

t

 for all i=1,
…, m. The property (91b), that ai

t¢ is larger than or equal to ai

t

 because time
t¢ follows time t, can then be restated as (92b), that all coe!cients ai are
non-negative. The property (91c), that some coe!cient ai

t¢ is di‰erent from
the corresponding coe!cient ai

t

 because some update has happened between
times t and t¢, can be restated as the property (92c), that at least one of the
coe!cients ai is non-null.

The conditions in (92) say that the null vector can be synthesised as a conic
combination of the update vectors, without the coe!cients a1, …, am all
being null. This contradicts the hypothesis that the update vectors are
conically independent. º

Fact 7
If the update vectors are conically independent, then the EDRA cannot
loop back to a current ranking vector it had previously updated.

Proof. Suppose by contradiction that the EDRA can indeed loop back to
a ranking vector that it had dismissed at a previous time. This means that
it is possible for the algorithm to walk through a learning path with the
properties in (90).

Assumption (90a), that the ranking vectors _t and _t¢ entertained at times
t and t¢ coincide, can be expressed as the identity (91a), using the description
(84) of the current ranking vector in terms of update vectors. Here, ai

t

 and
ai

t¢ are the number of updates triggered by ERC 1 up to time t and t¢
respectively; an analogous interpretation holds for the other coe!cients.
As the number of updates grows with time, assumption (90b), that time t¢
follows time t, thus entails that the coe!cient ai

t¢ at time t¢ is larger than
or equal to the corresponding coe!cient ai

t

 at time t, as stated in (91b).
Furthermore, assumption (90c) entails that some update has happened at
some time between t and t¢, so that at least one of the coe!cients has
increased by at least 1 from time t to time t¢, as stated in (91c).
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Appendix D: On the number of updates for smallest non-calibrated
promotion

Recall from §7.5 that the aggravated Pater’s ERC matrix for n constraints
is obtained from the corresponding diagonal matrix by adding two w’s to
the right of each l. To illustrate, I give in (93) the matrix corresponding
to n=7 constraints. It has 6= n®1 ERCs; it has a w on every diagonal
entry, followed by an l followed in turn by two more w’s (except for the
last two rows, whose l’s are followed by one and zero w’s respectively).

To conclude the proof of Fact 5, I need to consider the case where the
input ERC matrix contains rows with multiple l’s. The additional di!culty
in this case is that the contribution of the ith ERC to the current ranking
vector depends on the number of currently undominated loser-preferrers,
i.e. it can be di‰erent at di‰erent times, and thus cannot be distilled into
a unique update vector ai, as in (83). But this di!culty can be straight-
forwardly overcome, at the expense of a slightly more cumbersome notation.
Let m be the total number of ERCs. Suppose that the ith ERC has li loser-
preferrers Ck1, …, Ckli. Let C

i

1, …, C
i

2li—1 be all 2
li®1 non-empty subsets

of the set {Ck1, …, Ckli} of loser-preferrers. For every such subset Cij, let
ai, j be the update vector defined as follows: the components corresponding
to the loser-preferrers in the subset Cij are equal to —1; the components
corresponding to winner-preferrers are equal to p; the remaining components
are equal to 0. Furthermore, let ati, j be the number of updates triggered by
this ith ERC up to time t, because all and only the loser-preferrers in the
set Cij were currently undominated. The current ranking vector can then
be expressed as a conic combination of these update vectors through these
non-negative coe!cients, namely _t=%

m

i=1 %j=12
li

—1 ati, j ai, j. Again, these
update vectors ai, j are conically independent. I can thus trivially extend
the preceding reasoning.
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Here is how these equations are obtained. The RV q1 of constraint C1 starts
out null. It is only modified when ERC 1 triggers an update, in which case,
it is increased by 1/3, as ERC 1 contains 3 winner-preferrers. In other
words, the final RV q1 of constraint C1 is 1/3 of the total number a1 of
updates triggered by ERC 1, as stated by the first equation in (95).
Analogously, the RV q2 of constraint C2 starts out null, is decreased by 1
every time ERC 1 triggers an update and is increased by 1/3 every time
ERC 2 triggers an update, whereby we get the second equation in (95). The
remaining equations in (95) are obtained analogously.
The input matrix (93) is only consistent with the ranking C1êC2 …êC7.
As the final ranking vector _=(q1, …, q7) entertained by the EDRA at
convergence is consistent with the input matrix of ERCs, it must therefore
satisfy the six strict inequalities q1>q2, …, q6>q7. Consider for instance
the first of these six inequalities, repeated in (96a). Using the first two
equations in (95), this inequality can be rewritten as in (96b), in terms of
the numbers of updates a1 and a2 triggered by ERC 1 and ERC 2 respectively.
If both sides of inequality (96b) are multiplied by the constant 3, we get
the equivalent inequality (96c). As the variables a1, a2, as well as the
coe!cients, are integers, the strict inequality (96c) is equivalent to the loose
inequality (96d), where I have added 1 to the right-hand side.

The convergence Theorem 3 ensures that after a finite number of errors
the EDRA will converge to a final ranking vector consistent with the input
ERC matrix, and learning will cease. Yet the theorem does not provide any
estimate of the number of errors made before convergence. This section
shows that this number grows exponentially with the number n of constraints,
as anticipated in §7.5.
For concreteness, suppose the input matrix is the aggravated Pater’s
matrix (93), corresponding to n=7 constraints. Let _=(q1, …, q7) be the
final ranking vector the EDRA has converged on. Let a1, …, a6 be the total
number of updates triggered by each of the six input ERCs in the run
considered. The final RVs q1, …, q7 can be expressed in terms of the
coe!cients a1, …, a6, as in (95).

(94)Decrease the RV of the loser-preferrer by 1. a.
Increase the RV of each of the w winner-preferrers by l/w.b.
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The reasoning just developed in the concrete case of the aggravated Pater’s
matrix in (93) corresponding to n=7 constraints extends to the case of an
arbitrary number n of constraints. I can always construct an optimisation
problem akin to (98) that provides a bound on the best-case number of
updates performed by the EDRA on that aggravated Pater’s matrix. The
solution of the optimisation problems thus obtained for the aggravated
Pater’s matrices corresponding to various choices of the number n of
constraints are reported in Table Ia. (These values were computed using
the Matlab file MinimumRunningTime.m. It takes as input the aggravated
Pater’s ERC matrix corresponding to n constraints, for any n. It constructs
the corresponding optimisation problem akin to (98), generalising the
reasoning just presented here in the special case of the aggravated Pater’s
comparative tableaux corresponding to n=7 constraints, and it solves this

The total number of updates performed by the EDRA in the run considered
coincides with the sum a1+…+a6 of the number a1 of updates triggered
by ERC 1 plus the number a2 of updates triggered by ERC 2 and so on
down to the number a6 of updates triggered by ERC 6. Furthermore, these
non-negative numbers a1, …, a6 must satisfy the inequalities in (97). Thus
the number of updates performed by the EDRA to reach convergence
cannot be smaller than the solution of the optimisation problem (98). In
other words, the solution of this optimisation problem provides a bound
on the best-case number of updates performed by the EDRA on the input
matrix (93). As (98) is a linear program, it can be easily solved with standard
linear programming techniques.

By reasoning this way, I conclude that the six strict inequalities q1>q2, …,
q6>q7 are equivalent to the six inequalities in (97) in terms of the number
of updates a1, …, a6 triggered by ERC 1 through ERC 6 respectively.

Supplementary materials13
optimisation problem using Matlab built-in subroutines for linear pro-
gramming. Aggravated Pater’s comparative matrices for n=5, 7, 9, 11, 13,
15 constraints are provided in the file AggravatedPaterMatrices.txt. Both
files are available here.)
Let me close by pointing out the close parallelism between the reasoning
presented in this section and the explanation for Pater’s (2008) counter-
example against the GLA’s convergence provided in §5.3. The equations
in (95) are analogous to those in (44) in §5.3, and both are a special case of
the vector equation (84) in Appendix C. The inequalities in (97) are analogous
to those in (45) in §5.3. Finally, showing that there are no coe!cient a’s
that solve the inequalities in (97) and add up to a small number corresponds
to the final step of the explanation of Pater’s counterexample, which showed
that there are no coe!cient a’s that solve the inequalities (45).

Appendix A: Extension to arbitrary initial ranking vectors
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Throughout the paper, I have investigated convergence in the case where
the initial RVs Ú1init, …, Úninit were all identical, say all equal to zero (the
actual value does not really matter). In this appendix, I show how to obtain
error bounds for demotion-only and calibrated re-ranking rules in the case
of an arbitrary initial ranking vector _init=(Ú1init, …, Úninit). It turns out that
the properties of the initial ranking vector that are relevant for the error-
bounds can be extracted through the quantity B(_init) defined in (71), namely
the sum of the di‰erence between each initial RV Úkinit and the smallest RV
minh=1Úhinit. Intuitively, this quantity measures how scattered the initial
RVs are. In fact, B(_init) is null for the case of identical initial RVs, small
for RVs close to each other and large if there are some RVs that are very
small and some other RVs that are very large.

1The crucial invariant
Tesar & Smolensky’s (generalised) Fact 2 from §6.2 provides an invariant
for the current RVs entertained by the EDRA in the case of null initial
RVs. It says that the current RVs can never become much smaller than
zero, as long as the EDRA only demotes the loser-preferring constraints
that need to be demoted, i.e. the undominated ones. The reasoning trivially
extends to arbitrary initial ranking values, yielding the following further
generalisation of Fact 2: the current ranking values can never become much
smaller than the smallest initial ranking value.
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In §2.3, I defined OT-consistency between an ERC and a ranking vector
as in (14), repeated below in (99). This appendix qualifies this definition
with some remarks.

Appendix E: On the notion of OT-consistency for ranking vectors

(99)A ranking vector is (OT-)consistent with an ERC provided that each
of its refinements is consistent with that ERC, according to the original
notion of consistency (9).

T&S introduce a variant of the standard OT framework, replacing total
rankings with stratified hierarchies, which can assign multiple constraints
to a single stratum. Stratified hierarchies are thus equivalent to ranking
vectors, which can assign the same ranking values to multiple constraints.
Yet the notion of consistency assumed by T&S is very di‰erent from the
one in (99), as T&S allow for the tie among constraints assigned to the same
stratum to be resolved additively. Without getting into the details of this
alternative definition of OT-consistency, let me illustrate the di‰erence
with an example. Consider the ERC (100a) together with the ranking vector
(100b). Because of the two identical ranking values q1=q2=2, this ranking
vector would represent a stratified hierarchy that assigns both C 1 and C2

to the top stratum, with C 3 ranked underneath.

1Comparison with Tesar & Smolensky’s (1998) notion of OT-
consistency for stratified hierarchies

(100)C3C1C2

()122_=
b.a.C2

ERC

C1

wl[
C3

w]

as the l and the w of the two equally highest-ranked constraints C 1 and C2

‘cancel out’ because of the additive interaction between equally
rankedconstraints. But the ranking vector (100b) is not consistent with the
ERC (100a) according to the definition (99), since the ranking vector (100b)
admits the refinement C2êC1êC3, which is not consistent with the ERC
(100a). As the paper assumes the classical notion of OT-consistency (99),
it is framed squarely within standard OT. Contrary to what suggested by
T&S, there is no need to step outside of the standard OT framework for
algorithmic purposes.
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A reviewer worries that the notion of OT consistency (99), which requires
consistency to hold for all refinements, might not be e!ciently computable.
For instance, if all ranking values are identical, then don’t we have to check
consistency for all n! refinements, causing a complexity explosion? That is
not the case. Here is a way to see this. Let W(a) and L(a) be the sets of
winner- and loser-preferring constraints relative to an ERC a. It turns out
that a ranking vector _=(q1, …, qn) is consistent with an ERC a according
to condition (99) provided the following strict inequality (101) holds, which
says that the largest ranking value over winner-preferrers is larger than the
largest ranking value over loser-preferrers.

Computational e!ciency2

Furthermore, the inequality (101) can be checked in n steps (where n is the
number of constraints). In the end, the consistency condition (99) can thus
be e!ciently computed.
Let me explain why the consistency condition (99) is equivalent to the
strict inequality (101). Suppose that the latter inequality (101) holds. Every
refinement of this ranking vector will then rank the winner-preferrer that
attains the maximum max kÊW(a) Úk above the loser-preferrer that attains
the maximum maxhÊL(a) Úh. In other words, it will rank this winner-preferrer
above every loser-preferrer. Every refinement is thus consistent with the
ERC a, and condition (99) holds. Vice versa, suppose that inequality (101)
does not hold, i.e. the largest ranking value over winner-preferrers is at
most as large as the largest ranking value over loser-preferrers. Thus the
current ranking vector admits a refinement that ranks the loser-preferrer
that attains the maximum maxhÊL(a) Úh above the winner-preferrer that
attains the maximum maxkÊW(a) Úk. In other words, it admits a refinement
that ranks a loser-preferrer above every winner-preferrer. This refinement
is thus not consistent with the ERC a, and condition (99) fails.
Finally, let me explain why inequality (101) can be checked i n n steps
(where n is the number of constraints) . Posit W=—≥ and L=—≥. Scan
through the current ranking values, for k=1, 2, … n. If Úk is larger than

(101)
kÊW(a)
maxÚk
hÊL(a)
maxÚh>

a1®a3+a4>0

Consistency with Pater’s ERC matrix 3
In §5.2, I considered Pater’s (2008) ERC matrix (42). This ERC matrix
requires the ranking C1êC2êC3êC4êC5. Thus, a ranking vector  _=(q1,
q2, q3, q4, q5) is OT-consistent with this ERC matrix according to condition
(99), provided it admits only that ranking as a renement. This means in
turn that the ranking values must satisfy the four strict inequalities q1>q2,
q2>q3, q3>q4 and q4>q5. In §5.3, I showed that these four strict inequalities
can be rewritten as in (45) in terms of the number of updates a1, …, a4,
triggered by the four ERCs in Pater’s ERC matrix. Furthermore, I have
claimed that these inequalities (45) admit no solution. To see this, rewrite
these inequalities (45) as in (102), by moving everything on one side.

If we sum all four inequalities together, we obtain inequality (103a). If we
sum together only the second and third inequalities in (102), we obtain
inequality (103b).

(103)a.
—a1+a3®a4>0b.

As the two inequalities thus derived in (103) are inconsistent, the four
original inequalities (102) admit no solution.

additional reference

Bertsekas, Dimitri P., Angelia Nedic & Asuman E. Ozdaglar (2003). Convex analysis
and optimization. Nashua, NH: Athena Scientific.

According to the alternative definition of OT-consistency introduced by
T&S, the ranking vector (100b) is indeed consistent with the ERC (100a),

W (larger than L) and Ck is winner-preferring (loser-preferring), then set
W=Úk (set L=Úk). After having scanned all ranking values, condition (101)
holds i‰ W>L. This process only takes n steps.
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(75)

qk

Úkinit

h=1,…,n
Úhinit—(k®1)min

Theorem 1 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the demotion-only re-ranking rule (73) run
on a consistent input ERC matrix corresponding to n constraints
starting from an arbitrary initial ranking vector _init=(Ú1init, …, Úninit)
can perform at most B(_init)+n(n®1)/2 errors before converging.

(77)%
n

k=1h=1,…,n
Úhinitmin®(k®1)(=n%
n

k=1
qk})
h=1,…,n
Úhinit®min
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We have thus proven the following extension of Theorem 1 from null to
arbitrary initial RVs. Recall that, if the initial RVs are all identical (say, all
null), then B(_init)=0. In this case, the bound B(_init)+n(n®1)/2 provided
by the following theorem thus reduces to the bound n(n®1)/2 already
obtained in §3.

The bound B(_init)+n(n®1)/2 on the worst-case number of errors is tight,
as shown by the same example in (26) in the paper with the ERCs fed in
the fixed order a1£a2£a3 and with the initial ranking vector _init=(4,3,
2,1).

3Calibrated re-ranking rules
Consider next the calibrated demotion/promotion re-ranking rule (51) from
§6, repeated in (76).

The invariant (72) ensures that the sum of the current RVs can be lower
bounded, as in (77).

As seen in §6.3, the sum of the current RVs is decreased by at least 1/n with
every update. After T updates, it has thus decreased by at least T/n from
the sum of the initial RVs, as stated in (78).

1
2
n(n®1)

(76)Decrease the RV of each of the l undominated loser-preferrers by 1.a.
Increase the RV of each of the w winner-preferrers by p=l/(w+1).b.
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conic property. The update vectors are called conically independent
provided that there are no coe!cients a1, …, am that satisfy the three
conditions in (85); see Bertsekas et al. (2003). In other words, it is not
possible to synthesise the null vector as a conic combination of the update
vectors, unless of course the coe!cients are all set equal to zero.

Fact 6 below says that OT-consistency of the input ERC matrix (with a
unique l per row) entails conic independence of the corresponding update
vectors, and Fact 7 says that conic independence of the update vectors in
turn entails that the EDRA cannot loop. Fact 5 thus follows from the two
auxiliary Facts 6 and 7. The assumption that the input ERCs have a unique
l per row can be easily dropped, as discussed at the end of this section.

Fact 6
Consider an input ERC matrix that has a unique l per row. If it is
consistent, then the corresponding update vectors defined in (83) are
conically independent.

Proof. Recall from Fact 1 that any consistent ERC matrix has the shape in
(22) (repeated in (86)), modulo reordering of its rows and its columns and
relabelling of the constraints. (86) has a top block of rows whose first entry
is w, followed by a second block of rows whose first entry is e and whose
second entry is w, and so on.

2Giorgio Magri

Fact 2 (further generalised)
Assume that the input ERC matrix is consistent with a ranking.
Without loss of generality, assume that this ranking is C1êC1ê…êCn.
Let q1, …, qn be the current RVs entertained by an EDRA in a generic
run on those input ERCs, up to a generic time, starting from arbitrary
initial RVs Ú1init, …, Úninit. Assume that the re-ranking rule used by the
EDRA demotes by 1 only the currently undominated loser-preferrers
(no assumptions are made on constraint promotion). The current RVs
thus satisfy condition (72) for every k=1, …, n. That is, the RV qk of
the constraint Ck assigned to the kth stratum (with the 1st stratum
being the top one) never drops by more than (k®1) below the smallest
initial RV minh=1,…,nÚhinit.

(72)qk}
h=1,…,n
Úhinit®(k®1)min

(73)Decrease the RV of each undominated loser-preferrer by 1.a.
Do nothing to the current RV of the other constraints.b.

2Demotion-only re-ranking rules
Consider the demotion-only re-ranking rule (17) from §3, repeated in (73).

At least one constraint is demoted at each update. Hence, the total number
T of updates is at most the sum of the number of times C1 has been demoted,
and the number of times C2 has been demoted, etc, as stated in (74a). Each
time constraint Ck is demoted, it is demoted by 1, and it is never promoted.
Hence the number of times that constraint Ck has been demoted up to the
time considered is equal to the distance Úkinit®Úk between its initial RV Úkinit
and its current RV Úk, as stated in (74b). The inequality (72) says that Úk
sits between Úkinit and minh=1,…,nÚhinit®(k®1), as depicted in (75). Thus the
distance between the latter two points upper bounds the distance Úkinit®Úk,
as stated in (74c). Finally, step (e) follows from definition (71) of the constant
B(_init) and from the identity %
n

k=1(k®1)=n(n®1)/2.

Theorem 2 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the calibrated promotion/demotion re-
ranking rule (76) run on a consistent input ERC matrix corresponding
to n constraints starting from an arbitrary initial ranking vector
_init=(Ú1init, …, Úninit) can perform at most nB(_init)+n2(n®1)/2 errors
before converging.

4Giorgio Magri

In the case of an arbitrary initial ranking vector as well, the error-bound
for the calibrated case is worse by a factor of n than the error-bound for
the demotion-only case.

Combining the two inequalities (77) and (78), I conclude that the number
T of updates must be smaller than nB(_init)+n2(n®1)/2. We have thus
proven the following extension of Theorem 2 from null to arbitrary initial
RVs.

In §6, I looked for concreteness at a specific calibrated re-ranking rule,
namely the one in (51) (= (76)), which demotes each of the l undominated
loser-preferrers by 1 and promotes each of the w winner-preferrers by
l/(w+1). Here I look at the generic calibrated re-ranking rule in (79).

Appendix B: Convergence of a generic calibrated re-ranking rule

This re-ranking rule is calibrated as long as d>0. Indeed, the distance of
the promotion amount p from the calibration threshold l/w is controlled by
the constant d: the larger d, the smaller the promotion amount p is with
respect to the calibration threshold. In particular, the case d=1 corresponds
to re-ranking rule (51), and the case where d goes to infinity corresponds
to the demotion-only case p=0 considered in §3.
The reasoning for the case d=1 presented in §6 trivially extends to an
arbitrary d>0, yielding the following generalisation of Theorem 2 of §6.

Theorem 2 (extended to arbitrary calibrated promotion amounts)
An EDRA with the general calibrated re-ranking rule (79) run on a
consistent input ERC matrix corresponding to n constraints starting
from null initial RVs can perform at most the number of mistakes in
(80) before converging, where W is the largest number of winner-
preferrers over all input ERCs.
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Appendix C: Why EDRAs cannot loop
Consider the general re-ranking rule in (82).

Proof. With every update, the sum of the current RVs is decreased by l. It
is furthermore increased by wl/(w+d), as each of the w winner-preferrers
is promoted by l/(w+d). In the end, the sum of the current RVs is thus
decreased by l®(wl/(w+d))=dl/(w+d) . As the number l of undominated
loser-preferrers is at least 1 and the number w of winner-preferrers is at
most W, I conclude that the sum of the current RVs is decreased by at least
T(d/(W+d)) after T updates. On the other hand, the sum of the current
RVs starts at zero and can never become smaller than —n(n®1)/2, by the
generalised Fact 2 stated in §6.2. In conclusion, the number of updates T
in the case of the re-ranking rule (79) must satisfy the inequality
T(d/(W+d)){n(n®1)/2, which yields the error-bound in (80). º

The bound (81) for d=1 gives back the bound n2(n®1)/2 of the original
Theorem 2 in §6. As d increases and the promotion amount p=l/(w+d)
thus gets smaller relative to the calibration threshold l/w, the bound (81)
on the number of mistakes decreases, ensuring faster convergence. In the
limit of d going to infinity, the coe!cient (n®1+d)/d goes to 1, and the
bound (81) thus becomes the bound n(n®1)/2 already obtained in Theorem
1 of §3 for the case with null p=0 promotion amount.

Note that the cubic rather than quadratic growth in n of the bound (81)
comes from the fact that I have upper bounded the largest number W of
winner-preferrers in a generic input ERC, with n®1. But in most
applications, W is much smaller than n®1, as the winner and loser forms
that correspond to an ERC di‰er only in a few respects, and thus most of
the constraints are even. Furthermore, if the loser forms are properly chosen
so that the input ERCs have as few winner-preferrers as possible, then W
might be forced into a constant in certain applications. In that case, the
error-bound (80) for calibrated promotion grows only quadratically in the
number of constraints n, just like the bound n(n®1)/2 for the demotion-
only case.

As there is a total of n constraints, and each ERC must have at least a
loser-preferrer (ERCs that have no loser-preferrers cannot ever trigger any
update and can therefore be ignored), then the largest number W of winner-
preferrers is upper bound by n®1, and the bound (80) becomes (81).

6 Giorgio Magri

Fact 5
If the input ERC matrix is consistent, the EDRA (Fig. 5) with any
promotion/demotion re-ranking rule of the form (82) can never loop
back to a current ranking vector that it had previously made a mistake
on in that same run.

Let m be the total number of input ERCs. To simplify the presentation,
let me start by assuming that the input ERC matrix has a unique l per
ERC. The contribution of the ith ERC ai to the current ranking vector
according to this re-ranking rule can thus be summarised with the cor-
responding update vector ai, as in (83): the entry corresponding to the
loser-preferrer is equal to —1; the entries corresponding to winner-preferrers
are set equal to the corresponding promotion amount p>0; all other entries
are 0.

Throughout this section, I assume that the promotion amount p is never
null. I show that the EDRA with the re-ranking rule (82) cannot loop on
consistent input ERC matrices, as stated in Fact 5, repeated below. The
proof is based on a connection between OT-consistency and conic
independence.

Suppose that the initial RVs are all null. The current ranking vector _t

entertained at time t by the EDRA with the re-ranking rule (82) can be
described as in (84), i.e. as a combination of the update vectors, each
multiplied by the number of updates ai

t

 triggered by the corresponding ith
ERC in the run considered up to time t. Equation (43), obtained in the dis-
cussion of Pater’s counterexample in §5.3, is a special case of the general
equation (84). Of course, the coe!cients ai

t

 are by definition all non-negative.
Thus the identity (84) can be summarised by saying that the current ranking
vector is a conic combination of the m update vectors.

As the current ranking vector is a conic combination of the update vectors,
it is interesting to study the conic geometry of these vectors, i.e. the formal
properties of their conic combinations. Here is a particularly important
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(89)

1st block

p

remaining blocks

+…+ak +ak+1a1
p 0

+…+am =
00

Suppose that a conic combination of these update vectors (88) with some
non-negative coe!cients yields the null vector, namely that conditions
(85a) and (b) hold. Let’s focus on the first component of this conic combi-
nation, as in (89). The first component of the update vectors in the 1st block
is always positive (recall that p>0 by hypothesis). Suppose there are k
vectors in the 1st block. The first component of the remaining m®k update
vectors is always null. In order for the first component of this conic
combination to be zero, the non-negative coe!cients that multiply the
update vectors in the 1st block must all be null, namely a1=…=ak=0.

As their coe!cients are null, the update vectors in the 1st block can be
ignored in the conic combination. By looking at the second component and
reasoning analogously, I conclude that also the coe!cients that multiply
the update vectors in the 2nd block are null. By repeating the reasoning,
I conclude that these multiplicative coe!cients are all null, contradicting
condition (85c) in the definition of conic independence. º

(87) 1st block

–

w – w

2nd block

w – w
e – e

final block

w – w

e – e
e – e

The update vectors can now be read straightforwardly from (87): the ith
update vector is obtained by looking at the ith column. Recall that the
mapping (83) from ERCs into update vectors replaces a e with a 0 and a w
with the positive quantity p>0. The collection of update vectors can thus
be made a little more explicit, as in (88). (Each update vector can have a
di‰erent value for the promotion amount p. This fact does not play any
role in the reasoning, so I do not encode it explicitly in the notation, and
use the same p for all update vectors.)

(88)

1st block 2nd block

p

final block

, …,

p

,

0
p

, …,

0
p

, …,

0
|
0
p

, …,

0
|
0
p
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By moving everything to the right-hand side, (91a) can of course be restated
as in (92a), where I have introduced the coe!cients ai=ai

t¢®ai

t

 for all i=1,
…, m. The property (91b), that ai

t¢ is larger than or equal to ai

t

 because time
t¢ follows time t, can then be restated as (92b), that all coe!cients ai are
non-negative. The property (91c), that some coe!cient ai

t¢ is di‰erent from
the corresponding coe!cient ai

t

 because some update has happened between
times t and t¢, can be restated as the property (92c), that at least one of the
coe!cients ai is non-null.

The conditions in (92) say that the null vector can be synthesised as a conic
combination of the update vectors, without the coe!cients a1, …, am all
being null. This contradicts the hypothesis that the update vectors are
conically independent. º

Fact 7
If the update vectors are conically independent, then the EDRA cannot
loop back to a current ranking vector it had previously updated.

Proof. Suppose by contradiction that the EDRA can indeed loop back to
a ranking vector that it had dismissed at a previous time. This means that
it is possible for the algorithm to walk through a learning path with the
properties in (90).

Assumption (90a), that the ranking vectors _t and _t¢ entertained at times
t and t¢ coincide, can be expressed as the identity (91a), using the description
(84) of the current ranking vector in terms of update vectors. Here, ai

t

 and
ai

t¢ are the number of updates triggered by ERC 1 up to time t and t¢
respectively; an analogous interpretation holds for the other coe!cients.
As the number of updates grows with time, assumption (90b), that time t¢
follows time t, thus entails that the coe!cient ai

t¢ at time t¢ is larger than
or equal to the corresponding coe!cient ai

t

 at time t, as stated in (91b).
Furthermore, assumption (90c) entails that some update has happened at
some time between t and t¢, so that at least one of the coe!cients has
increased by at least 1 from time t to time t¢, as stated in (91c).
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Appendix D: On the number of updates for smallest non-calibrated
promotion

Recall from §7.5 that the aggravated Pater’s ERC matrix for n constraints
is obtained from the corresponding diagonal matrix by adding two w’s to
the right of each l. To illustrate, I give in (93) the matrix corresponding
to n=7 constraints. It has 6=n®1 ERCs; it has a w on every diagonal
entry, followed by an l followed in turn by two more w’s (except for the
last two rows, whose l’s are followed by one and zero w’s respectively).

To conclude the proof of Fact 5, I need to consider the case where the
input ERC matrix contains rows with multiple l’s. The additional di!culty
in this case is that the contribution of the ith ERC to the current ranking
vector depends on the number of currently undominated loser-preferrers,
i.e. it can be di‰erent at di‰erent times, and thus cannot be distilled into
a unique update vector ai, as in (83). But this di!culty can be straight-
forwardly overcome, at the expense of a slightly more cumbersome notation.
Let m be the total number of ERCs. Suppose that the ith ERC has li loser-
preferrers Ck1, …, Ckli. Let C

i

1, …, C
i

2li—1 be all 2
li®1 non-empty subsets

of the set {Ck1, …, Ckli} of loser-preferrers. For every such subset Ci

j, let
ai, j be the update vector defined as follows: the components corresponding
to the loser-preferrers in the subset Ci

j are equal to —1; the components
corresponding to winner-preferrers are equal to p; the remaining components
are equal to 0. Furthermore, let at

i, j be the number of updates triggered by
this ith ERC up to time t, because all and only the loser-preferrers in the
set Ci

j were currently undominated. The current ranking vector can then
be expressed as a conic combination of these update vectors through these
non-negative coe!cients, namely _t=%

m

i=1 %j=12
li

—1 at

i, j ai, j. Again, these
update vectors ai, j are conically independent. I can thus trivially extend
the preceding reasoning.
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Here is how these equations are obtained. The RV q1 of constraint C1 starts
out null. It is only modified when ERC 1 triggers an update, in which case,
it is increased by 1/3, as ERC 1 contains 3 winner-preferrers. In other
words, the final RV q1 of constraint C1 is 1/3 of the total number a1 of
updates triggered by ERC 1, as stated by the first equation in (95).
Analogously, the RV q2 of constraint C2 starts out null, is decreased by 1
every time ERC 1 triggers an update and is increased by 1/3 every time
ERC 2 triggers an update, whereby we get the second equation in (95). The
remaining equations in (95) are obtained analogously.

The input matrix (93) is only consistent with the ranking C1êC2 …êC7.
As the final ranking vector _=(q1, …, q7) entertained by the EDRA at
convergence is consistent with the input matrix of ERCs, it must therefore
satisfy the six strict inequalities q1>q2, …, q6>q7. Consider for instance
the first of these six inequalities, repeated in (96a). Using the first two
equations in (95), this inequality can be rewritten as in (96b), in terms of
the numbers of updates a1 and a2 triggered by ERC 1 and ERC 2 respectively.
If both sides of inequality (96b) are multiplied by the constant 3, we get
the equivalent inequality (96c). As the variables a1, a2, as well as the
coe!cients, are integers, the strict inequality (96c) is equivalent to the loose
inequality (96d), where I have added 1 to the right-hand side.

The convergence Theorem 3 ensures that after a finite number of errors
the EDRA will converge to a final ranking vector consistent with the input
ERC matrix, and learning will cease. Yet the theorem does not provide any
estimate of the number of errors made before convergence. This section
shows that this number grows exponentially with the number n of constraints,
as anticipated in §7.5.

For concreteness, suppose the input matrix is the aggravated Pater’s
matrix (93), corresponding to n=7 constraints. Let _=(q1, …, q7) be the
final ranking vector the EDRA has converged on. Let a1, …, a6 be the total
number of updates triggered by each of the six input ERCs in the run
considered. The final RVs q1, …, q7 can be expressed in terms of the
coe!cients a1, …, a6, as in (95).

(94)Decrease the RV of the loser-preferrer by 1. a.
Increase the RV of each of the w winner-preferrers by l/w.b.
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The reasoning just developed in the concrete case of the aggravated Pater’s
matrix in (93) corresponding to n=7 constraints extends to the case of an
arbitrary number n of constraints. I can always construct an optimisation
problem akin to (98) that provides a bound on the best-case number of
updates performed by the EDRA on that aggravated Pater’s matrix. The
solution of the optimisation problems thus obtained for the aggravated
Pater’s matrices corresponding to various choices of the number n of
constraints are reported in Table Ia. (These values were computed using
the Matlab file MinimumRunningTime.m. It takes as input the aggravated
Pater’s ERC matrix corresponding to n constraints, for any n. It constructs
the corresponding optimisation problem akin to (98), generalising the
reasoning just presented here in the special case of the aggravated Pater’s
comparative tableaux corresponding to n=7 constraints, and it solves this

The total number of updates performed by the EDRA in the run considered
coincides with the sum a1+…+a6 of the number a1 of updates triggered
by ERC 1 plus the number a2 of updates triggered by ERC 2 and so on
down to the number a6 of updates triggered by ERC 6. Furthermore, these
non-negative numbers a1, …, a6 must satisfy the inequalities in (97). Thus
the number of updates performed by the EDRA to reach convergence
cannot be smaller than the solution of the optimisation problem (98). In
other words, the solution of this optimisation problem provides a bound
on the best-case number of updates performed by the EDRA on the input
matrix (93). As (98) is a linear program, it can be easily solved with standard
linear programming techniques.

By reasoning this way, I conclude that the six strict inequalities q1>q2, …,
q6>q7 are equivalent to the six inequalities in (97) in terms of the number
of updates a1, …, a6 triggered by ERC 1 through ERC 6 respectively.
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optimisation problem using Matlab built-in subroutines for linear pro-
gramming. Aggravated Pater’s comparative matrices for n=5, 7, 9, 11, 13,
15 constraints are provided in the file AggravatedPaterMatrices.txt. Both
files are available here.)
Let me close by pointing out the close parallelism between the reasoning
presented in this section and the explanation for Pater’s (2008) counter-
example against the GLA’s convergence provided in §5.3. The equations
in (95) are analogous to those in (44) in §5.3, and both are a special case of
the vector equation (84) in Appendix C. The inequalities in (97) are analogous
to those in (45) in §5.3. Finally, showing that there are no coe!cient a’s
that solve the inequalities in (97) and add up to a small number corresponds
to the final step of the explanation of Pater’s counterexample, which showed
that there are no coe!cient a’s that solve the inequalities (45).

Appendix A: Extension to arbitrary initial ranking vectors
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Throughout the paper, I have investigated convergence in the case where
the initial RVs Ú1init, …, Úninit were all identical, say all equal to zero (the
actual value does not really matter). In this appendix, I show how to obtain
error bounds for demotion-only and calibrated re-ranking rules in the case
of an arbitrary initial ranking vector _init=(Ú1init, …, Úninit). It turns out that
the properties of the initial ranking vector that are relevant for the error-
bounds can be extracted through the quantity B(_init) defined in (71), namely
the sum of the di‰erence between each initial RV Úkinit and the smallest RV
minh=1Úhinit. Intuitively, this quantity measures how scattered the initial
RVs are. In fact, B(_init) is null for the case of identical initial RVs, small
for RVs close to each other and large if there are some RVs that are very
small and some other RVs that are very large.

1The crucial invariant
Tesar & Smolensky’s (generalised) Fact 2 from §6.2 provides an invariant
for the current RVs entertained by the EDRA in the case of null initial
RVs. It says that the current RVs can never become much smaller than
zero, as long as the EDRA only demotes the loser-preferring constraints
that need to be demoted, i.e. the undominated ones. The reasoning trivially
extends to arbitrary initial ranking values, yielding the following further
generalisation of Fact 2: the current ranking values can never become much
smaller than the smallest initial ranking value.
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In §2.3, I defined OT-consistency between an ERC and a ranking vector
as in (14), repeated below in (99). This appendix qualifies this definition
with some remarks.

Appendix E: On the notion of OT-consistency for ranking vectors

(99)A ranking vector is (OT-)consistent with an ERC provided that each
of its refinements is consistent with that ERC, according to the original
notion of consistency (9).

T&S introduce a variant of the standard OT framework, replacing total
rankings with stratified hierarchies, which can assign multiple constraints
to a single stratum. Stratified hierarchies are thus equivalent to ranking
vectors, which can assign the same ranking values to multiple constraints.
Yet the notion of consistency assumed by T&S is very di‰erent from the
one in (99), as T&S allow for the tie among constraints assigned to the same
stratum to be resolved additively. Without getting into the details of this
alternative definition of OT-consistency, let me illustrate the di‰erence
with an example. Consider the ERC (100a) together with the ranking vector
(100b). Because of the two identical ranking values q1=q2=2, this ranking
vector would represent a stratified hierarchy that assigns both C 1 and C2

to the top stratum, with C 3 ranked underneath.

1Comparison with Tesar & Smolensky’s (1998) notion of OT-
consistency for stratified hierarchies

(100)C3C1C2

()122_=
b.a.C2

ERC

C1

wl[
C3

w]

as the l and the w of the two equally highest-ranked constraints C 1 and C2

‘cancel out’ because of the additive interaction between equally
rankedconstraints. But the ranking vector (100b) is not consistent with the
ERC (100a) according to the definition (99), since the ranking vector (100b)
admits the refinement C2êC1êC3, which is not consistent with the ERC
(100a). As the paper assumes the classical notion of OT-consistency (99),
it is framed squarely within standard OT. Contrary to what suggested by
T&S, there is no need to step outside of the standard OT framework for
algorithmic purposes.
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A reviewer worries that the notion of OT consistency (99), which requires
consistency to hold for all refinements, might not be e!ciently computable.
For instance, if all ranking values are identical, then don’t we have to check
consistency for all n! refinements, causing a complexity explosion? That is
not the case. Here is a way to see this. Let W(a) and L(a) be the sets of
winner- and loser-preferring constraints relative to an ERC a. It turns out
that a ranking vector _=(q1, …, qn) is consistent with an ERC a according
to condition (99) provided the following strict inequality (101) holds, which
says that the largest ranking value over winner-preferrers is larger than the
largest ranking value over loser-preferrers.

Computational e!ciency2

Furthermore, the inequality (101) can be checked in n steps (where n is the
number of constraints). In the end, the consistency condition (99) can thus
be e!ciently computed.
Let me explain why the consistency condition (99) is equivalent to the
strict inequality (101). Suppose that the latter inequality (101) holds. Every
refinement of this ranking vector will then rank the winner-preferrer that
attains the maximum max kÊW(a) Úk above the loser-preferrer that attains
the maximum maxhÊL(a) Úh. In other words, it will rank this winner-preferrer
above every loser-preferrer. Every refinement is thus consistent with the
ERC a, and condition (99) holds. Vice versa, suppose that inequality (101)
does not hold, i.e. the largest ranking value over winner-preferrers is at
most as large as the largest ranking value over loser-preferrers. Thus the
current ranking vector admits a refinement that ranks the loser-preferrer
that attains the maximum maxhÊL(a) Úh above the winner-preferrer that
attains the maximum maxkÊW(a) Úk. In other words, it admits a refinement
that ranks a loser-preferrer above every winner-preferrer. This refinement
is thus not consistent with the ERC a, and condition (99) fails.
Finally, let me explain why inequality (101) can be checked i n n steps
(where n is the number of constraints) . Posit W=—≥ and L=—≥. Scan
through the current ranking values, for k=1, 2, … n. If Úk is larger than

(101)
kÊW(a)
maxÚk
hÊL(a)
maxÚh>

a1®a3+a4>0

Consistency with Pater’s ERC matrix 3
In §5.2, I considered Pater’s (2008) ERC matrix (42). This ERC matrix
requires the ranking C1êC2êC3êC4êC5. Thus, a ranking vector  _=(q1,
q2, q3, q4, q5) is OT-consistent with this ERC matrix according to condition
(99), provided it admits only that ranking as a renement. This means in
turn that the ranking values must satisfy the four strict inequalities q1>q2,
q2>q3, q3>q4 and q4>q5. In §5.3, I showed that these four strict inequalities
can be rewritten as in (45) in terms of the number of updates a1, …, a4,
triggered by the four ERCs in Pater’s ERC matrix. Furthermore, I have
claimed that these inequalities (45) admit no solution. To see this, rewrite
these inequalities (45) as in (102), by moving everything on one side.

If we sum all four inequalities together, we obtain inequality (103a). If we
sum together only the second and third inequalities in (102), we obtain
inequality (103b).

(103)a.
—a1+a3®a4>0b.

As the two inequalities thus derived in (103) are inconsistent, the four
original inequalities (102) admit no solution.

additional reference

Bertsekas, Dimitri P., Angelia Nedic & Asuman E. Ozdaglar (2003). Convex analysis
and optimization. Nashua, NH: Athena Scientific.

According to the alternative definition of OT-consistency introduced by
T&S, the ranking vector (100b) is indeed consistent with the ERC (100a),

W (larger than L) and Ck is winner-preferring (loser-preferring), then set
W=Úk (set L=Úk). After having scanned all ranking values, condition (101)
holds i‰ W>L. This process only takes n steps.
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(75)

qk

Úkinit

h=1,…,n
Úhinit—(k®1)min

Theorem 1 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the demotion-only re-ranking rule (73) run
on a consistent input ERC matrix corresponding to n constraints
starting from an arbitrary initial ranking vector _init=(Ú1init, …, Úninit)
can perform at most B(_init)+n(n®1)/2 errors before converging.

(77)%
n

k=1h=1,…,n
Úhinitmin®(k®1)(=n%
n

k=1
qk})
h=1,…,n
Úhinit®min
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We have thus proven the following extension of Theorem 1 from null to
arbitrary initial RVs. Recall that, if the initial RVs are all identical (say, all
null), then B(_init)=0. In this case, the bound B(_init)+n(n®1)/2 provided
by the following theorem thus reduces to the bound n(n®1)/2 already
obtained in §3.

The bound B(_init)+n(n®1)/2 on the worst-case number of errors is tight,
as shown by the same example in (26) in the paper with the ERCs fed in
the fixed order a1£a2£a3 and with the initial ranking vector _init=(4,3,
2,1).

3Calibrated re-ranking rules
Consider next the calibrated demotion/promotion re-ranking rule (51) from
§6, repeated in (76).

The invariant (72) ensures that the sum of the current RVs can be lower
bounded, as in (77).

As seen in §6.3, the sum of the current RVs is decreased by at least 1/n with
every update. After T updates, it has thus decreased by at least T/n from
the sum of the initial RVs, as stated in (78).

1
2
n(n®1)

(76)Decrease the RV of each of the l undominated loser-preferrers by 1.a.
Increase the RV of each of the w winner-preferrers by p=l/(w+1).b.
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conic property. The update vectors are called conically independent
provided that there are no coe!cients a1, …, am that satisfy the three
conditions in (85); see Bertsekas et al. (2003). In other words, it is not
possible to synthesise the null vector as a conic combination of the update
vectors, unless of course the coe!cients are all set equal to zero.

Fact 6 below says that OT-consistency of the input ERC matrix (with a
unique l per row) entails conic independence of the corresponding update
vectors, and Fact 7 says that conic independence of the update vectors in
turn entails that the EDRA cannot loop. Fact 5 thus follows from the two
auxiliary Facts 6 and 7. The assumption that the input ERCs have a unique
l per row can be easily dropped, as discussed at the end of this section.

Fact 6
Consider an input ERC matrix that has a unique l per row. If it is
consistent, then the corresponding update vectors defined in (83) are
conically independent.

Proof. Recall from Fact 1 that any consistent ERC matrix has the shape in
(22) (repeated in (86)), modulo reordering of its rows and its columns and
relabelling of the constraints. (86) has a top block of rows whose first entry
is w, followed by a second block of rows whose first entry is e and whose
second entry is w, and so on.

2Giorgio Magri

Fact 2 (further generalised)
Assume that the input ERC matrix is consistent with a ranking.
Without loss of generality, assume that this ranking is C1êC1ê…êCn.
Let q1, …, qn be the current RVs entertained by an EDRA in a generic
run on those input ERCs, up to a generic time, starting from arbitrary
initial RVs Ú1init, …, Úninit. Assume that the re-ranking rule used by the
EDRA demotes by 1 only the currently undominated loser-preferrers
(no assumptions are made on constraint promotion). The current RVs
thus satisfy condition (72) for every k=1, …, n. That is, the RV qk of
the constraint Ck assigned to the kth stratum (with the 1st stratum
being the top one) never drops by more than (k®1) below the smallest
initial RV minh=1,…,nÚhinit.

(72)qk}
h=1,…,n
Úhinit®(k®1)min

(73)Decrease the RV of each undominated loser-preferrer by 1.a.
Do nothing to the current RV of the other constraints.b.

2Demotion-only re-ranking rules
Consider the demotion-only re-ranking rule (17) from §3, repeated in (73).

At least one constraint is demoted at each update. Hence, the total number
T of updates is at most the sum of the number of times C1 has been demoted,
and the number of times C2 has been demoted, etc, as stated in (74a). Each
time constraint Ck is demoted, it is demoted by 1, and it is never promoted.
Hence the number of times that constraint Ck has been demoted up to the
time considered is equal to the distance Úkinit®Úk between its initial RV Úkinit
and its current RV Úk, as stated in (74b). The inequality (72) says that Úk
sits between Úkinit and minh=1,…,nÚhinit®(k®1), as depicted in (75). Thus the
distance between the latter two points upper bounds the distance Úkinit®Úk,
as stated in (74c). Finally, step (e) follows from definition (71) of the constant
B(_init) and from the identity %
n

k=1(k®1)=n(n®1)/2.

Theorem 2 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the calibrated promotion/demotion re-
ranking rule (76) run on a consistent input ERC matrix corresponding
to n constraints starting from an arbitrary initial ranking vector
_init=(Ú1init, …, Úninit) can perform at most nB(_init)+n2(n®1)/2 errors
before converging.
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In the case of an arbitrary initial ranking vector as well, the error-bound
for the calibrated case is worse by a factor of n than the error-bound for
the demotion-only case.

Combining the two inequalities (77) and (78), I conclude that the number
T of updates must be smaller than nB(_init)+n2(n®1)/2. We have thus
proven the following extension of Theorem 2 from null to arbitrary initial
RVs.

In §6, I looked for concreteness at a specific calibrated re-ranking rule,
namely the one in (51) (= (76)), which demotes each of the l undominated
loser-preferrers by 1 and promotes each of the w winner-preferrers by
l/(w+1). Here I look at the generic calibrated re-ranking rule in (79).

Appendix B: Convergence of a generic calibrated re-ranking rule

This re-ranking rule is calibrated as long as d>0. Indeed, the distance of
the promotion amount p from the calibration threshold l/w is controlled by
the constant d: the larger d, the smaller the promotion amount p is with
respect to the calibration threshold. In particular, the case d=1 corresponds
to re-ranking rule (51), and the case where d goes to infinity corresponds
to the demotion-only case p=0 considered in §3.
The reasoning for the case d=1 presented in §6 trivially extends to an
arbitrary d>0, yielding the following generalisation of Theorem 2 of §6.

Theorem 2 (extended to arbitrary calibrated promotion amounts)
An EDRA with the general calibrated re-ranking rule (79) run on a
consistent input ERC matrix corresponding to n constraints starting
from null initial RVs can perform at most the number of mistakes in
(80) before converging, where W is the largest number of winner-
preferrers over all input ERCs.
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Appendix C: Why EDRAs cannot loop
Consider the general re-ranking rule in (82).

Proof. With every update, the sum of the current RVs is decreased by l. It
is furthermore increased by wl/(w+d), as each of the w winner-preferrers
is promoted by l/(w+d). In the end, the sum of the current RVs is thus
decreased by l®(wl/(w+d))=dl/(w+d) . As the number l of undominated
loser-preferrers is at least 1 and the number w of winner-preferrers is at
most W, I conclude that the sum of the current RVs is decreased by at least
T(d/(W+d)) after T updates. On the other hand, the sum of the current
RVs starts at zero and can never become smaller than —n(n®1)/2, by the
generalised Fact 2 stated in §6.2. In conclusion, the number of updates T
in the case of the re-ranking rule (79) must satisfy the inequality
T(d/(W+d)){n(n®1)/2, which yields the error-bound in (80).º

The bound (81) for d=1 gives back the bound n2(n®1)/2 of the original
Theorem 2 in §6. As d increases and the promotion amount p=l/(w+d)
thus gets smaller relative to the calibration threshold l/w, the bound (81)
on the number of mistakes decreases, ensuring faster convergence. In the
limit of d going to infinity, the coe!cient (n®1+d)/d goes to 1, and the
bound (81) thus becomes the bound n(n®1)/2 already obtained in Theorem
1 of §3 for the case with null p=0 promotion amount.
Note that the cubic rather than quadratic growth in n of the bound (81)
comes from the fact that I have upper bounded the largest number W of
winner-preferrers in a generic input ERC, with n®1. But in most
applications, W is much smaller than n®1, as the winner and loser forms
that correspond to an ERC di‰er only in a few respects, and thus most of
the constraints are even. Furthermore, if the loser forms are properly chosen
so that the input ERCs have as few winner-preferrers as possible, then W
might be forced into a constant in certain applications. In that case, the
error-bound (80) for calibrated promotion grows only quadratically in the
number of constraints n, just like the bound n(n®1)/2 for the demotion-
only case.

As there is a total of n constraints, and each ERC must have at least a
loser-preferrer (ERCs that have no loser-preferrers cannot ever trigger any
update and can therefore be ignored), then the largest number W of winner-
preferrers is upper bound by n®1, and the bound (80) becomes (81).

6 Giorgio Magri

Fact 5
If the input ERC matrix is consistent, the EDRA (Fig. 5) with any
promotion/demotion re-ranking rule of the form (82) can never loop
back to a current ranking vector that it had previously made a mistake
on in that same run.

Let m be the total number of input ERCs. To simplify the presentation,
let me start by assuming that the input ERC matrix has a unique l per
ERC. The contribution of the ith ERC ai to the current ranking vector
according to this re-ranking rule can thus be summarised with the cor-
responding update vector ai, as in (83): the entry corresponding to the
loser-preferrer is equal to —1; the entries corresponding to winner-preferrers
are set equal to the corresponding promotion amount p>0; all other entries
are 0.

Throughout this section, I assume that the promotion amount p is never
null. I show that the EDRA with the re-ranking rule (82) cannot loop on
consistent input ERC matrices, as stated in Fact 5, repeated below. The
proof is based on a connection between OT-consistency and conic
independence.

Suppose that the initial RVs are all null. The current ranking vector _t

entertained at time t by the EDRA with the re-ranking rule (82) can be
described as in (84), i.e. as a combination of the update vectors, each
multiplied by the number of updates ai

t

 triggered by the corresponding ith
ERC in the run considered up to time t. Equation (43), obtained in the dis-
cussion of Pater’s counterexample in §5.3, is a special case of the general
equation (84). Of course, the coe!cients ai

t

 are by definition all non-negative.
Thus the identity (84) can be summarised by saying that the current ranking
vector is a conic combination of the m update vectors.

As the current ranking vector is a conic combination of the update vectors,
it is interesting to study the conic geometry of these vectors, i.e. the formal
properties of their conic combinations. Here is a particularly important
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Suppose that a conic combination of these update vectors (88) with some
non-negative coe!cients yields the null vector, namely that conditions
(85a) and (b) hold. Let’s focus on the first component of this conic combi-
nation, as in (89). The first component of the update vectors in the 1st block
is always positive (recall that p>0 by hypothesis). Suppose there are k
vectors in the 1st block. The first component of the remaining m®k update
vectors is always null. In order for the first component of this conic
combination to be zero, the non-negative coe!cients that multiply the
update vectors in the 1st block must all be null, namely a1=…=ak=0.

The update vectors can now be read straightforwardly from (87): the ith
update vector is obtained by looking at the ith column. Recall that the
mapping (83) from ERCs into update vectors replaces a e with a 0 and a w
with the positive quantity p>0. The collection of update vectors can thus
be made a little more explicit, as in (88). (Each update vector can have a
di‰erent value for the promotion amount p. This fact does not play any
role in the reasoning, so I do not encode it explicitly in the notation, and
use the same p for all update vectors.)
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(92) a1a1+…+amam=0a.
ai}0 for all i=1, …, mb.
ai≠0 for some i=1, …, mc.

By moving everything to the right-hand side, (91a) can of course be restated
as in (92a), where I have introduced the coe!cients ai=ai

t¢®ai

t

 for all i=1,
…, m. The property (91b), that ai

t¢ is larger than or equal to ai

t

 because time
t¢ follows time t, can then be restated as (92b), that all coe!cients ai are
non-negative. The property (91c), that some coe!cient ai

t¢ is di‰erent from
the corresponding coe!cient ai

t

 because some update has happened between
times t and t¢, can be restated as the property (92c), that at least one of the
coe!cients ai is non-null.

The conditions in (92) say that the null vector can be synthesised as a conic
combination of the update vectors, without the coe!cients a1, …, am all
being null. This contradicts the hypothesis that the update vectors are
conically independent. º

a1ta1+…+at

mam=(91) a.
ai

t¢}ai

t

 for all i=1, …, mb.
ai

t¢≠ai

t

 for some i=1, …, mc.

at¢
mama1t¢a1+…+

(90) The EDRA entertains the same ranking vector at two times, t and t¢.a.
Assume for concreteness that time t precedes time t¢.b.
The EDRA entertains a di‰erent ranking vector at a time between
t and t¢.

c.

Fact 7
If the update vectors are conically independent, then the EDRA cannot
loop back to a current ranking vector it had previously updated.

Proof. Suppose by contradiction that the EDRA can indeed loop back to
a ranking vector that it had dismissed at a previous time. This means that
it is possible for the algorithm to walk through a learning path with the
properties in (90).

Assumption (90a), that the ranking vectors _t and _t¢ entertained at times
t and t¢ coincide, can be expressed as the identity (91a), using the description
(84) of the current ranking vector in terms of update vectors. Here, ai

t

 and
ai

t¢ are the number of updates triggered by ERC 1 up to time t and t¢
respectively; an analogous interpretation holds for the other coe!cients.
As the number of updates grows with time, assumption (90b), that time t¢
follows time t, thus entails that the coe!cient ai

t¢ at time t¢ is larger than
or equal to the corresponding coe!cient ai

t

 at time t, as stated in (91b).
Furthermore, assumption (90c) entails that some update has happened at
some time between t and t¢, so that at least one of the coe!cients has
increased by at least 1 from time t to time t¢, as stated in (91c).
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Appendix D: On the number of updates for smallest non-calibrated
promotion

Recall from §7.5 that the aggravated Pater’s ERC matrix for n constraints
is obtained from the corresponding diagonal matrix by adding two w’s to
the right of each l. To illustrate, I give in (93) the matrix corresponding
to n=7 constraints. It has 6=n®1 ERCs; it has a w on every diagonal
entry, followed by an l followed in turn by two more w’s (except for the
last two rows, whose l’s are followed by one and zero w’s respectively).

To conclude the proof of Fact 5, I need to consider the case where the
input ERC matrix contains rows with multiple l’s. The additional di!culty
in this case is that the contribution of the ith ERC to the current ranking
vector depends on the number of currently undominated loser-preferrers,
i.e. it can be di‰erent at di‰erent times, and thus cannot be distilled into
a unique update vector ai, as in (83). But this di!culty can be straight-
forwardly overcome, at the expense of a slightly more cumbersome notation.
Let m be the total number of ERCs. Suppose that the ith ERC has li loser-
preferrers Ck1, …, Ckli. Let C

i

1, …, C
i

2li—1 be all 2
li®1 non-empty subsets

of the set {Ck1, …, Ckli} of loser-preferrers. For every such subset Ci

j, let
ai, j be the update vector defined as follows: the components corresponding
to the loser-preferrers in the subset Ci

j are equal to —1; the components
corresponding to winner-preferrers are equal to p; the remaining components
are equal to 0. Furthermore, let at

i, j be the number of updates triggered by
this ith ERC up to time t, because all and only the loser-preferrers in the
set Ci

j were currently undominated. The current ranking vector can then
be expressed as a conic combination of these update vectors through these
non-negative coe!cients, namely _t=%

m

i=1 %j=12
li

—1 at

i, j ai, j. Again, these
update vectors ai, j are conically independent. I can thus trivially extend
the preceding reasoning.
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Here is how these equations are obtained. The RV q1 of constraint C1 starts
out null. It is only modified when ERC 1 triggers an update, in which case,
it is increased by 1/3, as ERC 1 contains 3 winner-preferrers. In other
words, the final RV q1 of constraint C1 is 1/3 of the total number a1 of
updates triggered by ERC 1, as stated by the first equation in (95).
Analogously, the RV q2 of constraint C2 starts out null, is decreased by 1
every time ERC 1 triggers an update and is increased by 1/3 every time
ERC 2 triggers an update, whereby we get the second equation in (95). The
remaining equations in (95) are obtained analogously.

The input matrix (93) is only consistent with the ranking C1êC2 …êC7.
As the final ranking vector _=(q1, …, q7) entertained by the EDRA at
convergence is consistent with the input matrix of ERCs, it must therefore
satisfy the six strict inequalities q1>q2, …, q6>q7. Consider for instance
the first of these six inequalities, repeated in (96a). Using the first two
equations in (95), this inequality can be rewritten as in (96b), in terms of
the numbers of updates a1 and a2 triggered by ERC 1 and ERC 2 respectively.
If both sides of inequality (96b) are multiplied by the constant 3, we get
the equivalent inequality (96c). As the variables a1, a2, as well as the
coe!cients, are integers, the strict inequality (96c) is equivalent to the loose
inequality (96d), where I have added 1 to the right-hand side.

The convergence Theorem 3 ensures that after a finite number of errors
the EDRA will converge to a final ranking vector consistent with the input
ERC matrix, and learning will cease. Yet the theorem does not provide any
estimate of the number of errors made before convergence. This section
shows that this number grows exponentially with the number n of constraints,
as anticipated in §7.5.

For concreteness, suppose the input matrix is the aggravated Pater’s
matrix (93), corresponding to n=7 constraints. Let _=(q1, …, q7) be the
final ranking vector the EDRA has converged on. Let a1, …, a6 be the total
number of updates triggered by each of the six input ERCs in the run
considered. The final RVs q1, …, q7 can be expressed in terms of the
coe!cients a1, …, a6, as in (95).

(94) Decrease the RV of the loser-preferrer by 1.a.
Increase the RV of each of the w winner-preferrers by l/w.b.
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The reasoning just developed in the concrete case of the aggravated Pater’s
matrix in (93) corresponding to n=7 constraints extends to the case of an
arbitrary number n of constraints. I can always construct an optimisation
problem akin to (98) that provides a bound on the best-case number of
updates performed by the EDRA on that aggravated Pater’s matrix. The
solution of the optimisation problems thus obtained for the aggravated
Pater’s matrices corresponding to various choices of the number n of
constraints are reported in Table Ia. (These values were computed using
the Matlab file MinimumRunningTime.m. It takes as input the aggravated
Pater’s ERC matrix corresponding to n constraints, for any n. It constructs
the corresponding optimisation problem akin to (98), generalising the
reasoning just presented here in the special case of the aggravated Pater’s
comparative tableaux corresponding to n=7 constraints, and it solves this

The total number of updates performed by the EDRA in the run considered
coincides with the sum a1+…+a6 of the number a1 of updates triggered
by ERC 1 plus the number a2 of updates triggered by ERC 2 and so on
down to the number a6 of updates triggered by ERC 6. Furthermore, these
non-negative numbers a1, …, a6 must satisfy the inequalities in (97). Thus
the number of updates performed by the EDRA to reach convergence
cannot be smaller than the solution of the optimisation problem (98). In
other words, the solution of this optimisation problem provides a bound
on the best-case number of updates performed by the EDRA on the input
matrix (93). As (98) is a linear program, it can be easily solved with standard
linear programming techniques.

By reasoning this way, I conclude that the six strict inequalities q1>q2, …,
q6>q7 are equivalent to the six inequalities in (97) in terms of the number
of updates a1, …, a6 triggered by ERC 1 through ERC 6 respectively.
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optimisation problem using Matlab built-in subroutines for linear pro-
gramming. Aggravated Pater’s comparative matrices for n=5, 7, 9, 11, 13,
15 constraints are provided in the file AggravatedPaterMatrices.txt. Both
files are available here.)
Let me close by pointing out the close parallelism between the reasoning
presented in this section and the explanation for Pater’s (2008) counter-
example against the GLA’s convergence provided in §5.3. The equations
in (95) are analogous to those in (44) in §5.3, and both are a special case of
the vector equation (84) in Appendix C. The inequalities in (97) are analogous
to those in (45) in §5.3. Finally, showing that there are no coe!cient a’s
that solve the inequalities in (97) and add up to a small number corresponds
to the final step of the explanation of Pater’s counterexample, which showed
that there are no coe!cient a’s that solve the inequalities (45).

Appendix A: Extension to arbitrary initial ranking vectors
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Throughout the paper, I have investigated convergence in the case where
the initial RVs Ú1init, …, Úninit were all identical, say all equal to zero (the
actual value does not really matter). In this appendix, I show how to obtain
error bounds for demotion-only and calibrated re-ranking rules in the case
of an arbitrary initial ranking vector _init=(Ú1init, …, Úninit). It turns out that
the properties of the initial ranking vector that are relevant for the error-
bounds can be extracted through the quantity B(_init) defined in (71), namely
the sum of the di‰erence between each initial RV Úkinit and the smallest RV
minh=1Úhinit. Intuitively, this quantity measures how scattered the initial
RVs are. In fact, B(_init) is null for the case of identical initial RVs, small
for RVs close to each other and large if there are some RVs that are very
small and some other RVs that are very large.

1The crucial invariant
Tesar & Smolensky’s (generalised) Fact 2 from §6.2 provides an invariant
for the current RVs entertained by the EDRA in the case of null initial
RVs. It says that the current RVs can never become much smaller than
zero, as long as the EDRA only demotes the loser-preferring constraints
that need to be demoted, i.e. the undominated ones. The reasoning trivially
extends to arbitrary initial ranking values, yielding the following further
generalisation of Fact 2: the current ranking values can never become much
smaller than the smallest initial ranking value.
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In §2.3, I defined OT-consistency between an ERC and a ranking vector
as in (14), repeated below in (99). This appendix qualifies this definition
with some remarks.

Appendix E: On the notion of OT-consistency for ranking vectors

(99)A ranking vector is (OT-)consistent with an ERC provided that each
of its refinements is consistent with that ERC, according to the original
notion of consistency (9).

T&S introduce a variant of the standard OT framework, replacing total
rankings with stratified hierarchies, which can assign multiple constraints
to a single stratum. Stratified hierarchies are thus equivalent to ranking
vectors, which can assign the same ranking values to multiple constraints.
Yet the notion of consistency assumed by T&S is very di‰erent from the
one in (99), as T&S allow for the tie among constraints assigned to the same
stratum to be resolved additively. Without getting into the details of this
alternative definition of OT-consistency, let me illustrate the di‰erence
with an example. Consider the ERC (100a) together with the ranking vector
(100b). Because of the two identical ranking values q1=q2=2, this ranking
vector would represent a stratified hierarchy that assigns both C 1 and C2

to the top stratum, with C 3 ranked underneath.

1Comparison with Tesar & Smolensky’s (1998) notion of OT-
consistency for stratified hierarchies

(100)C3C1C2

()122_=
b.a.C2

ERC

C1

wl[
C3

w]

as the l and the w of the two equally highest-ranked constraints C 1 and C2

‘cancel out’ because of the additive interaction between equally
rankedconstraints. But the ranking vector (100b) is not consistent with the
ERC (100a) according to the definition (99), since the ranking vector (100b)
admits the refinement C2êC1êC3, which is not consistent with the ERC
(100a). As the paper assumes the classical notion of OT-consistency (99),
it is framed squarely within standard OT. Contrary to what suggested by
T&S, there is no need to step outside of the standard OT framework for
algorithmic purposes.
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A reviewer worries that the notion of OT consistency (99), which requires
consistency to hold for all refinements, might not be e!ciently computable.
For instance, if all ranking values are identical, then don’t we have to check
consistency for all n! refinements, causing a complexity explosion? That is
not the case. Here is a way to see this. Let W(a) and L(a) be the sets of
winner- and loser-preferring constraints relative to an ERC a. It turns out
that a ranking vector _=(q1, …, qn) is consistent with an ERC a according
to condition (99) provided the following strict inequality (101) holds, which
says that the largest ranking value over winner-preferrers is larger than the
largest ranking value over loser-preferrers.

Computational e!ciency2

Furthermore, the inequality (101) can be checked in n steps (where n is the
number of constraints). In the end, the consistency condition (99) can thus
be e!ciently computed.
Let me explain why the consistency condition (99) is equivalent to the
strict inequality (101). Suppose that the latter inequality (101) holds. Every
refinement of this ranking vector will then rank the winner-preferrer that
attains the maximum max kÊW(a) Úk above the loser-preferrer that attains
the maximum maxhÊL(a) Úh. In other words, it will rank this winner-preferrer
above every loser-preferrer. Every refinement is thus consistent with the
ERC a, and condition (99) holds. Vice versa, suppose that inequality (101)
does not hold, i.e. the largest ranking value over winner-preferrers is at
most as large as the largest ranking value over loser-preferrers. Thus the
current ranking vector admits a refinement that ranks the loser-preferrer
that attains the maximum maxhÊL(a) Úh above the winner-preferrer that
attains the maximum maxkÊW(a) Úk. In other words, it admits a refinement
that ranks a loser-preferrer above every winner-preferrer. This refinement
is thus not consistent with the ERC a, and condition (99) fails.
Finally, let me explain why inequality (101) can be checked i n n steps
(where n is the number of constraints) . Posit W=—≥ and L=—≥. Scan
through the current ranking values, for k=1, 2, … n. If Úk is larger than

(101)
kÊW(a)
maxÚk
hÊL(a)
maxÚh>

a1®a3+a4>0

Consistency with Pater’s ERC matrix 3
In §5.2, I considered Pater’s (2008) ERC matrix (42). This ERC matrix
requires the ranking C1êC2êC3êC4êC5. Thus, a ranking vector  _=(q1,
q2, q3, q4, q5) is OT-consistent with this ERC matrix according to condition
(99), provided it admits only that ranking as a renement. This means in
turn that the ranking values must satisfy the four strict inequalities q1>q2,
q2>q3, q3>q4 and q4>q5. In §5.3, I showed that these four strict inequalities
can be rewritten as in (45) in terms of the number of updates a1, …, a4,
triggered by the four ERCs in Pater’s ERC matrix. Furthermore, I have
claimed that these inequalities (45) admit no solution. To see this, rewrite
these inequalities (45) as in (102), by moving everything on one side.

If we sum all four inequalities together, we obtain inequality (103a). If we
sum together only the second and third inequalities in (102), we obtain
inequality (103b).

(103)a.
—a1+a3®a4>0b.

As the two inequalities thus derived in (103) are inconsistent, the four
original inequalities (102) admit no solution.

additional reference

Bertsekas, Dimitri P., Angelia Nedic & Asuman E. Ozdaglar (2003). Convex analysis
and optimization. Nashua, NH: Athena Scientific.

According to the alternative definition of OT-consistency introduced by
T&S, the ranking vector (100b) is indeed consistent with the ERC (100a),

W (larger than L) and Ck is winner-preferring (loser-preferring), then set
W=Úk (set L=Úk). After having scanned all ranking values, condition (101)
holds i‰ W>L. This process only takes n steps.
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(75)

qk

Úkinit

h=1,…,n
Úhinit—(k®1)min

Theorem 1 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the demotion-only re-ranking rule (73) run
on a consistent input ERC matrix corresponding to n constraints
starting from an arbitrary initial ranking vector _init=(Ú1init, …, Úninit)
can perform at most B(_init)+n(n®1)/2 errors before converging.

(77)%
n

k=1h=1,…,n
Úhinitmin®(k®1)(=n%
n

k=1
qk})
h=1,…,n
Úhinit®min
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We have thus proven the following extension of Theorem 1 from null to
arbitrary initial RVs. Recall that, if the initial RVs are all identical (say, all
null), then B(_init)=0. In this case, the bound B(_init)+n(n®1)/2 provided
by the following theorem thus reduces to the bound n(n®1)/2 already
obtained in §3.

The bound B(_init)+n(n®1)/2 on the worst-case number of errors is tight,
as shown by the same example in (26) in the paper with the ERCs fed in
the fixed order a1£a2£a3 and with the initial ranking vector _init=(4,3,
2,1).

3Calibrated re-ranking rules
Consider next the calibrated demotion/promotion re-ranking rule (51) from
§6, repeated in (76).

The invariant (72) ensures that the sum of the current RVs can be lower
bounded, as in (77).

As seen in §6.3, the sum of the current RVs is decreased by at least 1/n with
every update. After T updates, it has thus decreased by at least T/n from
the sum of the initial RVs, as stated in (78).

1
2
n(n®1)

(76)Decrease the RV of each of the l undominated loser-preferrers by 1.a.
Increase the RV of each of the w winner-preferrers by p=l/(w+1).b.
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conic property. The update vectors are called conically independent
provided that there are no coe!cients a1, …, am that satisfy the three
conditions in (85); see Bertsekas et al. (2003). In other words, it is not
possible to synthesise the null vector as a conic combination of the update
vectors, unless of course the coe!cients are all set equal to zero.

Fact 6 below says that OT-consistency of the input ERC matrix (with a
unique l per row) entails conic independence of the corresponding update
vectors, and Fact 7 says that conic independence of the update vectors in
turn entails that the EDRA cannot loop. Fact 5 thus follows from the two
auxiliary Facts 6 and 7. The assumption that the input ERCs have a unique
l per row can be easily dropped, as discussed at the end of this section.

Fact 6
Consider an input ERC matrix that has a unique l per row. If it is
consistent, then the corresponding update vectors defined in (83) are
conically independent.

Proof. Recall from Fact 1 that any consistent ERC matrix has the shape in
(22) (repeated in (86)), modulo reordering of its rows and its columns and
relabelling of the constraints. (86) has a top block of rows whose first entry
is w, followed by a second block of rows whose first entry is e and whose
second entry is w, and so on.

2Giorgio Magri

Fact 2 (further generalised)
Assume that the input ERC matrix is consistent with a ranking.
Without loss of generality, assume that this ranking is C1êC1ê…êCn.
Let q1, …, qn be the current RVs entertained by an EDRA in a generic
run on those input ERCs, up to a generic time, starting from arbitrary
initial RVs Ú1init, …, Úninit. Assume that the re-ranking rule used by the
EDRA demotes by 1 only the currently undominated loser-preferrers
(no assumptions are made on constraint promotion). The current RVs
thus satisfy condition (72) for every k=1, …, n. That is, the RV qk of
the constraint Ck assigned to the kth stratum (with the 1st stratum
being the top one) never drops by more than (k®1) below the smallest
initial RV minh=1,…,nÚhinit.

(72)qk}
h=1,…,n
Úhinit®(k®1)min

(73)Decrease the RV of each undominated loser-preferrer by 1.a.
Do nothing to the current RV of the other constraints.b.

2Demotion-only re-ranking rules
Consider the demotion-only re-ranking rule (17) from §3, repeated in (73).

At least one constraint is demoted at each update. Hence, the total number
T of updates is at most the sum of the number of times C1 has been demoted,
and the number of times C2 has been demoted, etc, as stated in (74a). Each
time constraint Ck is demoted, it is demoted by 1, and it is never promoted.
Hence the number of times that constraint Ck has been demoted up to the
time considered is equal to the distance Úkinit®Úk between its initial RV Úkinit
and its current RV Úk, as stated in (74b). The inequality (72) says that Úk
sits between Úkinit and minh=1,…,nÚhinit®(k®1), as depicted in (75). Thus the
distance between the latter two points upper bounds the distance Úkinit®Úk,
as stated in (74c). Finally, step (e) follows from definition (71) of the constant
B(_init) and from the identity %
n

k=1(k®1)=n(n®1)/2.

Theorem 2 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the calibrated promotion/demotion re-
ranking rule (76) run on a consistent input ERC matrix corresponding
to n constraints starting from an arbitrary initial ranking vector
_init=(Ú1init, …, Úninit) can perform at most nB(_init)+n2(n®1)/2 errors
before converging.

4Giorgio Magri

In the case of an arbitrary initial ranking vector as well, the error-bound
for the calibrated case is worse by a factor of n than the error-bound for
the demotion-only case.

Combining the two inequalities (77) and (78), I conclude that the number
T of updates must be smaller than nB(_init)+n2(n®1)/2. We have thus
proven the following extension of Theorem 2 from null to arbitrary initial
RVs.

In §6, I looked for concreteness at a specific calibrated re-ranking rule,
namely the one in (51) (= (76)), which demotes each of the l undominated
loser-preferrers by 1 and promotes each of the w winner-preferrers by
l/(w+1). Here I look at the generic calibrated re-ranking rule in (79).

Appendix B: Convergence of a generic calibrated re-ranking rule

This re-ranking rule is calibrated as long as d>0. Indeed, the distance of
the promotion amount p from the calibration threshold l/w is controlled by
the constant d: the larger d, the smaller the promotion amount p is with
respect to the calibration threshold. In particular, the case d=1 corresponds
to re-ranking rule (51), and the case where d goes to infinity corresponds
to the demotion-only case p=0 considered in §3.
The reasoning for the case d=1 presented in §6 trivially extends to an
arbitrary d>0, yielding the following generalisation of Theorem 2 of §6.

Theorem 2 (extended to arbitrary calibrated promotion amounts)
An EDRA with the general calibrated re-ranking rule (79) run on a
consistent input ERC matrix corresponding to n constraints starting
from null initial RVs can perform at most the number of mistakes in
(80) before converging, where W is the largest number of winner-
preferrers over all input ERCs.
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Appendix C: Why EDRAs cannot loop
Consider the general re-ranking rule in (82).

Proof. With every update, the sum of the current RVs is decreased by l. It
is furthermore increased by wl/(w+d), as each of the w winner-preferrers
is promoted by l/(w+d). In the end, the sum of the current RVs is thus
decreased by l®(wl/(w+d))=dl/(w+d) . As the number l of undominated
loser-preferrers is at least 1 and the number w of winner-preferrers is at
most W, I conclude that the sum of the current RVs is decreased by at least
T(d/(W+d)) after T updates. On the other hand, the sum of the current
RVs starts at zero and can never become smaller than —n(n®1)/2, by the
generalised Fact 2 stated in §6.2. In conclusion, the number of updates T
in the case of the re-ranking rule (79) must satisfy the inequality
T(d/(W+d)){n(n®1)/2, which yields the error-bound in (80).º

The bound (81) for d=1 gives back the bound n2(n®1)/2 of the original
Theorem 2 in §6. As d increases and the promotion amount p=l/(w+d)
thus gets smaller relative to the calibration threshold l/w, the bound (81)
on the number of mistakes decreases, ensuring faster convergence. In the
limit of d going to infinity, the coe!cient (n®1+d)/d goes to 1, and the
bound (81) thus becomes the bound n(n®1)/2 already obtained in Theorem
1 of §3 for the case with null p=0 promotion amount.
Note that the cubic rather than quadratic growth in n of the bound (81)
comes from the fact that I have upper bounded the largest number W of
winner-preferrers in a generic input ERC, with n®1. But in most
applications, W is much smaller than n®1, as the winner and loser forms
that correspond to an ERC di‰er only in a few respects, and thus most of
the constraints are even. Furthermore, if the loser forms are properly chosen
so that the input ERCs have as few winner-preferrers as possible, then W
might be forced into a constant in certain applications. In that case, the
error-bound (80) for calibrated promotion grows only quadratically in the
number of constraints n, just like the bound n(n®1)/2 for the demotion-
only case.

As there is a total of n constraints, and each ERC must have at least a
loser-preferrer (ERCs that have no loser-preferrers cannot ever trigger any
update and can therefore be ignored), then the largest number W of winner-
preferrers is upper bound by n®1, and the bound (80) becomes (81).

6Giorgio Magri

Fact 5
If the input ERC matrix is consistent, the EDRA (Fig. 5) with any
promotion/demotion re-ranking rule of the form (82) can never loop
back to a current ranking vector that it had previously made a mistake
on in that same run.

Let m be the total number of input ERCs. To simplify the presentation,
let me start by assuming that the input ERC matrix has a unique l per
ERC. The contribution of the ith ERC ai to the current ranking vector
according to this re-ranking rule can thus be summarised with the cor-
responding update vector ai, as in (83): the entry corresponding to the
loser-preferrer is equal to —1; the entries corresponding to winner-preferrers
are set equal to the corresponding promotion amount p>0; all other entries
are 0.

Throughout this section, I assume that the promotion amount p is never
null. I show that the EDRA with the re-ranking rule (82) cannot loop on
consistent input ERC matrices, as stated in Fact 5, repeated below. The
proof is based on a connection between OT-consistency and conic
independence.

Suppose that the initial RVs are all null. The current ranking vector _t

entertained at time t by the EDRA with the re-ranking rule (82) can be
described as in (84), i.e. as a combination of the update vectors, each
multiplied by the number of updates ait triggered by the corresponding ith
ERC in the run considered up to time t. Equation (43), obtained in the dis-
cussion of Pater’s counterexample in §5.3, is a special case of the general
equation (84). Of course, the coe!cients ait are by definition all non-negative.
Thus the identity (84) can be summarised by saying that the current ranking
vector is a conic combination of the m update vectors.

As the current ranking vector is a conic combination of the update vectors,
it is interesting to study the conic geometry of these vectors, i.e. the formal
properties of their conic combinations. Here is a particularly important
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Suppose that a conic combination of these update vectors (88) with some
non-negative coe!cients yields the null vector, namely that conditions
(85a) and (b) hold. Let’s focus on the first component of this conic combi-
nation, as in (89). The first component of the update vectors in the 1st block
is always positive (recall that p>0 by hypothesis). Suppose there are k
vectors in the 1st block. The first component of the remaining m®k update
vectors is always null. In order for the first component of this conic
combination to be zero, the non-negative coe!cients that multiply the
update vectors in the 1st block must all be null, namely a1=…=ak=0.

The update vectors can now be read straightforwardly from (87): the ith
update vector is obtained by looking at the ith column. Recall that the
mapping (83) from ERCs into update vectors replaces a e with a 0 and a w
with the positive quantity p>0. The collection of update vectors can thus
be made a little more explicit, as in (88). (Each update vector can have a
di‰erent value for the promotion amount p. This fact does not play any
role in the reasoning, so I do not encode it explicitly in the notation, and
use the same p for all update vectors.)
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By moving everything to the right-hand side, (91a) can of course be restated
as in (92a), where I have introduced the coe!cients ai=ai

t¢®ai

t

 for all i=1,
…, m. The property (91b), that ai

t¢ is larger than or equal to ai

t

 because time
t¢ follows time t, can then be restated as (92b), that all coe!cients ai are
non-negative. The property (91c), that some coe!cient ai

t¢ is di‰erent from
the corresponding coe!cient ai

t

 because some update has happened between
times t and t¢, can be restated as the property (92c), that at least one of the
coe!cients ai is non-null.

The conditions in (92) say that the null vector can be synthesised as a conic
combination of the update vectors, without the coe!cients a1, …, am all
being null. This contradicts the hypothesis that the update vectors are
conically independent. º

Fact 7
If the update vectors are conically independent, then the EDRA cannot
loop back to a current ranking vector it had previously updated.

Proof. Suppose by contradiction that the EDRA can indeed loop back to
a ranking vector that it had dismissed at a previous time. This means that
it is possible for the algorithm to walk through a learning path with the
properties in (90).

Assumption (90a), that the ranking vectors _t and _t¢ entertained at times
t and t¢ coincide, can be expressed as the identity (91a), using the description
(84) of the current ranking vector in terms of update vectors. Here, ai

t

 and
ai

t¢ are the number of updates triggered by ERC 1 up to time t and t¢
respectively; an analogous interpretation holds for the other coe!cients.
As the number of updates grows with time, assumption (90b), that time t¢
follows time t, thus entails that the coe!cient ai

t¢ at time t¢ is larger than
or equal to the corresponding coe!cient ai

t

 at time t, as stated in (91b).
Furthermore, assumption (90c) entails that some update has happened at
some time between t and t¢, so that at least one of the coe!cients has
increased by at least 1 from time t to time t¢, as stated in (91c).
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Appendix D: On the number of updates for smallest non-calibrated
promotion

Recall from §7.5 that the aggravated Pater’s ERC matrix for n constraints
is obtained from the corresponding diagonal matrix by adding two w’s to
the right of each l. To illustrate, I give in (93) the matrix corresponding
to n=7 constraints. It has 6=n®1 ERCs; it has a w on every diagonal
entry, followed by an l followed in turn by two more w’s (except for the
last two rows, whose l’s are followed by one and zero w’s respectively).

Consider a run of the EDRA on the aggravated Pater’s input ERC matrix
for n constraints. Suppose the algorithm starts from null initial RVs, and
that it uses the re-ranking rule (59) with the smallest non-calibrated
promotion amount, repeated in (94) for the case of input ERCs with a single
loser-preferrer, as in the case of aggravated Pater’s ERC matrix.

w l
w

w
l
w

w
w
l
w

w
w
l
w

w
w
l
w

w
w
l

(93)
ERC 1
ERC 2
ERC 3
ERC 4
ERC 5
ERC 6

C2 C3C1 C4 C5 C6 C7

To conclude the proof of Fact 5, I need to consider the case where the
input ERC matrix contains rows with multiple l’s. The additional di!culty
in this case is that the contribution of the ith ERC to the current ranking
vector depends on the number of currently undominated loser-preferrers,
i.e. it can be di‰erent at di‰erent times, and thus cannot be distilled into
a unique update vector ai, as in (83). But this di!culty can be straight-
forwardly overcome, at the expense of a slightly more cumbersome notation.
Let m be the total number of ERCs. Suppose that the ith ERC has li loser-
preferrers Ck1, …, Ckli. Let C

i

1, …, C
i

2li—1 be all 2
li®1 non-empty subsets

of the set {Ck1, …, Ckli} of loser-preferrers. For every such subset Ci

j, let
ai, j be the update vector defined as follows: the components corresponding
to the loser-preferrers in the subset Ci

j are equal to —1; the components
corresponding to winner-preferrers are equal to p; the remaining components
are equal to 0. Furthermore, let at

i, j be the number of updates triggered by
this ith ERC up to time t, because all and only the loser-preferrers in the
set Ci

j were currently undominated. The current ranking vector can then
be expressed as a conic combination of these update vectors through these
non-negative coe!cients, namely _t=%

m

i=1 %j=12
li

—1 at

i, j ai, j. Again, these
update vectors ai, j are conically independent. I can thus trivially extend
the preceding reasoning.
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Here is how these equations are obtained. The RV q1 of constraint C1 starts
out null. It is only modified when ERC 1 triggers an update, in which case,
it is increased by 1/3, as ERC 1 contains 3 winner-preferrers. In other
words, the final RV q1 of constraint C1 is 1/3 of the total number a1 of
updates triggered by ERC 1, as stated by the first equation in (95).
Analogously, the RV q2 of constraint C2 starts out null, is decreased by 1
every time ERC 1 triggers an update and is increased by 1/3 every time
ERC 2 triggers an update, whereby we get the second equation in (95). The
remaining equations in (95) are obtained analogously.

The input matrix (93) is only consistent with the ranking C1êC2 …êC7.
As the final ranking vector _=(q1, …, q7) entertained by the EDRA at
convergence is consistent with the input matrix of ERCs, it must therefore
satisfy the six strict inequalities q1>q2, …, q6>q7. Consider for instance
the first of these six inequalities, repeated in (96a). Using the first two
equations in (95), this inequality can be rewritten as in (96b), in terms of
the numbers of updates a1 and a2 triggered by ERC 1 and ERC 2 respectively.
If both sides of inequality (96b) are multiplied by the constant 3, we get
the equivalent inequality (96c). As the variables a1, a2, as well as the
coe!cients, are integers, the strict inequality (96c) is equivalent to the loose
inequality (96d), where I have added 1 to the right-hand side.

The convergence Theorem 3 ensures that after a finite number of errors
the EDRA will converge to a final ranking vector consistent with the input
ERC matrix, and learning will cease. Yet the theorem does not provide any
estimate of the number of errors made before convergence. This section
shows that this number grows exponentially with the number n of constraints,
as anticipated in §7.5.

For concreteness, suppose the input matrix is the aggravated Pater’s
matrix (93), corresponding to n=7 constraints. Let _=(q1, …, q7) be the
final ranking vector the EDRA has converged on. Let a1, …, a6 be the total
number of updates triggered by each of the six input ERCs in the run
considered. The final RVs q1, …, q7 can be expressed in terms of the
coe!cients a1, …, a6, as in (95).

(94) Decrease the RV of the loser-preferrer by 1.a.
Increase the RV of each of the w winner-preferrers by l/w.b.

12 Giorgio Magri

The reasoning just developed in the concrete case of the aggravated Pater’s
matrix in (93) corresponding to n=7 constraints extends to the case of an
arbitrary number n of constraints. I can always construct an optimisation
problem akin to (98) that provides a bound on the best-case number of
updates performed by the EDRA on that aggravated Pater’s matrix. The
solution of the optimisation problems thus obtained for the aggravated
Pater’s matrices corresponding to various choices of the number n of
constraints are reported in Table Ia. (These values were computed using
the Matlab file MinimumRunningTime.m. It takes as input the aggravated
Pater’s ERC matrix corresponding to n constraints, for any n. It constructs
the corresponding optimisation problem akin to (98), generalising the
reasoning just presented here in the special case of the aggravated Pater’s
comparative tableaux corresponding to n=7 constraints, and it solves this

The total number of updates performed by the EDRA in the run considered
coincides with the sum a1+…+a6 of the number a1 of updates triggered
by ERC 1 plus the number a2 of updates triggered by ERC 2 and so on
down to the number a6 of updates triggered by ERC 6. Furthermore, these
non-negative numbers a1, …, a6 must satisfy the inequalities in (97). Thus
the number of updates performed by the EDRA to reach convergence
cannot be smaller than the solution of the optimisation problem (98). In
other words, the solution of this optimisation problem provides a bound
on the best-case number of updates performed by the EDRA on the input
matrix (93). As (98) is a linear program, it can be easily solved with standard
linear programming techniques.

By reasoning this way, I conclude that the six strict inequalities q1>q2, …,
q6>q7 are equivalent to the six inequalities in (97) in terms of the number
of updates a1, …, a6 triggered by ERC 1 through ERC 6 respectively.
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optimisation problem using Matlab built-in subroutines for linear pro-
gramming. Aggravated Pater’s comparative matrices for n=5, 7, 9, 11, 13,
15 constraints are provided in the file AggravatedPaterMatrices.txt. Both
files are available here.)

Let me close by pointing out the close parallelism between the reasoning
presented in this section and the explanation for Pater’s (2008) counter-
example against the GLA’s convergence provided in §5.3. The equations
in (95) are analogous to those in (44) in §5.3, and both are a special case of
the vector equation (84) in Appendix C. The inequalities in (97) are analogous
to those in (45) in §5.3. Finally, showing that there are no coe!cient a’s
that solve the inequalities in (97) and add up to a small number corresponds
to the final step of the explanation of Pater’s counterexample, which showed
that there are no coe!cient a’s that solve the inequalities (45).

Appendix A: Extension to arbitrary initial ranking vectors
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Throughout the paper, I have investigated convergence in the case where
the initial RVs Ú1init, …, Úninit were all identical, say all equal to zero (the
actual value does not really matter). In this appendix, I show how to obtain
error bounds for demotion-only and calibrated re-ranking rules in the case
of an arbitrary initial ranking vector _init=(Ú1init, …, Úninit). It turns out that
the properties of the initial ranking vector that are relevant for the error-
bounds can be extracted through the quantity B(_init) defined in (71), namely
the sum of the di‰erence between each initial RV Úkinit and the smallest RV
minh=1Úhinit. Intuitively, this quantity measures how scattered the initial
RVs are. In fact, B(_init) is null for the case of identical initial RVs, small
for RVs close to each other and large if there are some RVs that are very
small and some other RVs that are very large.

1The crucial invariant
Tesar & Smolensky’s (generalised) Fact 2 from §6.2 provides an invariant
for the current RVs entertained by the EDRA in the case of null initial
RVs. It says that the current RVs can never become much smaller than
zero, as long as the EDRA only demotes the loser-preferring constraints
that need to be demoted, i.e. the undominated ones. The reasoning trivially
extends to arbitrary initial ranking values, yielding the following further
generalisation of Fact 2: the current ranking values can never become much
smaller than the smallest initial ranking value.
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In §2.3, I defined OT-consistency between an ERC and a ranking vector
as in (14), repeated below in (99). This appendix qualifies this definition
with some remarks.

Appendix E: On the notion of OT-consistency for ranking vectors

(99)A ranking vector is (OT-)consistent with an ERC provided that each
of its refinements is consistent with that ERC, according to the original
notion of consistency (9).

T&S introduce a variant of the standard OT framework, replacing total
rankings with stratified hierarchies, which can assign multiple constraints
to a single stratum. Stratified hierarchies are thus equivalent to ranking
vectors, which can assign the same ranking values to multiple constraints.
Yet the notion of consistency assumed by T&S is very di‰erent from the
one in (99), as T&S allow for the tie among constraints assigned to the same
stratum to be resolved additively. Without getting into the details of this
alternative definition of OT-consistency, let me illustrate the di‰erence
with an example. Consider the ERC (100a) together with the ranking vector
(100b). Because of the two identical ranking values q1=q2=2, this ranking
vector would represent a stratified hierarchy that assigns both C 1 and C2

to the top stratum, with C3 ranked underneath.

1 Comparison with Tesar & Smolensky’s (1998) notion of OT-
consistency for stratified hierarchies

(100)C3C1C2
()122_=
b.a.C2

ERC

C1

wl[
C3

w]

as the l and the w of the two equally highest-ranked constraints C 1 and C2

‘cancel out’ because of the additive interaction between equally
rankedconstraints. But the ranking vector (100b) is not consistent with the
ERC (100a) according to the definition (99), since the ranking vector (100b)
admits the refinement C2êC1êC3, which is not consistent with the ERC
(100a). As the paper assumes the classical notion of OT-consistency (99),
it is framed squarely within standard OT. Contrary to what suggested by
T&S, there is no need to step outside of the standard OT framework for
algorithmic purposes.
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A reviewer worries that the notion of OT consistency (99), which requires
consistency to hold for all refinements, might not be e!ciently computable.
For instance, if all ranking values are identical, then don’t we have to check
consistency for all n! refinements, causing a complexity explosion? That is
not the case. Here is a way to see this. Let W(a) and L(a) be the sets of
winner- and loser-preferring constraints relative to an ERC a. It turns out
that a ranking vector _=(q1, …, qn) is consistent with an ERC a according
to condition (99) provided the following strict inequality (101) holds, which
says that the largest ranking value over winner-preferrers is larger than the
largest ranking value over loser-preferrers.

Computational e!ciency2

Furthermore, the inequality (101) can be checked in n steps (where n is the
number of constraints). In the end, the consistency condition (99) can thus
be e!ciently computed.
Let me explain why the consistency condition (99) is equivalent to the
strict inequality (101). Suppose that the latter inequality (101) holds. Every
refinement of this ranking vector will then rank the winner-preferrer that
attains the maximum max kÊW(a) Úk above the loser-preferrer that attains
the maximum maxhÊL(a) Úh. In other words, it will rank this winner-preferrer
above every loser-preferrer. Every refinement is thus consistent with the
ERC a, and condition (99) holds. Vice versa, suppose that inequality (101)
does not hold, i.e. the largest ranking value over winner-preferrers is at
most as large as the largest ranking value over loser-preferrers. Thus the
current ranking vector admits a refinement that ranks the loser-preferrer
that attains the maximum maxhÊL(a) Úh above the winner-preferrer that
attains the maximum maxkÊW(a) Úk. In other words, it admits a refinement
that ranks a loser-preferrer above every winner-preferrer. This refinement
is thus not consistent with the ERC a, and condition (99) fails.
Finally, let me explain why inequality (101) can be checked i n n steps
(where n is the number of constraints) . Posit W=—≥ and L=—≥. Scan
through the current ranking values, for k=1, 2, … n. If Úk is larger than

(101)
kÊW(a)
maxÚk
hÊL(a)
maxÚh>

a1®a3+a4>0

Consistency with Pater’s ERC matrix 3
In §5.2, I considered Pater’s (2008) ERC matrix (42). This ERC matrix
requires the ranking C1êC2êC3êC4êC5. Thus, a ranking vector  _=(q1,
q2, q3, q4, q5) is OT-consistent with this ERC matrix according to condition
(99), provided it admits only that ranking as a renement. This means in
turn that the ranking values must satisfy the four strict inequalities q1>q2,
q2>q3, q3>q4 and q4>q5. In §5.3, I showed that these four strict inequalities
can be rewritten as in (45) in terms of the number of updates a1, …, a4,
triggered by the four ERCs in Pater’s ERC matrix. Furthermore, I have
claimed that these inequalities (45) admit no solution. To see this, rewrite
these inequalities (45) as in (102), by moving everything on one side.

If we sum all four inequalities together, we obtain inequality (103a). If we
sum together only the second and third inequalities in (102), we obtain
inequality (103b).

(103)a.
—a1+a3®a4>0b.

As the two inequalities thus derived in (103) are inconsistent, the four
original inequalities (102) admit no solution.

additional reference

Bertsekas, Dimitri P., Angelia Nedic & Asuman E. Ozdaglar (2003). Convex analysis
and optimization. Nashua, NH: Athena Scientific.

According to the alternative definition of OT-consistency introduced by
T&S, the ranking vector (100b) is indeed consistent with the ERC (100a),

W (larger than L) and Ck is winner-preferring (loser-preferring), then set
W=Úk (set L=Úk). After having scanned all ranking values, condition (101)
holds i‰ W>L. This process only takes n steps.



Phonology 25.2: Artwork 1 of

Convergence of error-driven ranking
algorithms
CNRS, UniversitÈ Paris 7

(75)

qk

Úkinit

h=1,…,n
Úhinit—(k®1)min

Theorem 1 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the demotion-only re-ranking rule (73) run
on a consistent input ERC matrix corresponding to n constraints
starting from an arbitrary initial ranking vector _init=(Ú1init, …, Úninit)
can perform at most B(_init)+n(n®1)/2 errors before converging.

(77)%
n

k=1h=1,…,n
Úhinitmin®(k®1)(=n%
n

k=1
qk})
h=1,…,n
Úhinit®min
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We have thus proven the following extension of Theorem 1 from null to
arbitrary initial RVs. Recall that, if the initial RVs are all identical (say, all
null), then B(_init)=0. In this case, the bound B(_init)+n(n®1)/2 provided
by the following theorem thus reduces to the bound n(n®1)/2 already
obtained in §3.

The bound B(_init)+n(n®1)/2 on the worst-case number of errors is tight,
as shown by the same example in (26) in the paper with the ERCs fed in
the fixed order a1£a2£a3 and with the initial ranking vector _init=(4,3,
2,1).

3Calibrated re-ranking rules
Consider next the calibrated demotion/promotion re-ranking rule (51) from
§6, repeated in (76).

The invariant (72) ensures that the sum of the current RVs can be lower
bounded, as in (77).

As seen in §6.3, the sum of the current RVs is decreased by at least 1/n with
every update. After T updates, it has thus decreased by at least T/n from
the sum of the initial RVs, as stated in (78).

1
2
n(n®1)

(76)Decrease the RV of each of the l undominated loser-preferrers by 1.a.
Increase the RV of each of the w winner-preferrers by p=l/(w+1).b.
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conic property. The update vectors are called conically independent
provided that there are no coe!cients a1, …, am that satisfy the three
conditions in (85); see Bertsekas et al. (2003). In other words, it is not
possible to synthesise the null vector as a conic combination of the update
vectors, unless of course the coe!cients are all set equal to zero.

Fact 6 below says that OT-consistency of the input ERC matrix (with a
unique l per row) entails conic independence of the corresponding update
vectors, and Fact 7 says that conic independence of the update vectors in
turn entails that the EDRA cannot loop. Fact 5 thus follows from the two
auxiliary Facts 6 and 7. The assumption that the input ERCs have a unique
l per row can be easily dropped, as discussed at the end of this section.

Fact 6
Consider an input ERC matrix that has a unique l per row. If it is
consistent, then the corresponding update vectors defined in (83) are
conically independent.

Proof. Recall from Fact 1 that any consistent ERC matrix has the shape in
(22) (repeated in (86)), modulo reordering of its rows and its columns and
relabelling of the constraints. (86) has a top block of rows whose first entry
is w, followed by a second block of rows whose first entry is e and whose
second entry is w, and so on.

2Giorgio Magri

Fact 2 (further generalised)
Assume that the input ERC matrix is consistent with a ranking.
Without loss of generality, assume that this ranking is C1êC1ê…êCn.
Let q1, …, qn be the current RVs entertained by an EDRA in a generic
run on those input ERCs, up to a generic time, starting from arbitrary
initial RVs Ú1init, …, Úninit. Assume that the re-ranking rule used by the
EDRA demotes by 1 only the currently undominated loser-preferrers
(no assumptions are made on constraint promotion). The current RVs
thus satisfy condition (72) for every k=1, …, n. That is, the RV qk of
the constraint Ck assigned to the kth stratum (with the 1st stratum
being the top one) never drops by more than (k®1) below the smallest
initial RV minh=1,…,nÚhinit.

(72)qk}
h=1,…,n
Úhinit®(k®1)min

(73)Decrease the RV of each undominated loser-preferrer by 1.a.
Do nothing to the current RV of the other constraints.b.

2Demotion-only re-ranking rules
Consider the demotion-only re-ranking rule (17) from §3, repeated in (73).

At least one constraint is demoted at each update. Hence, the total number
T of updates is at most the sum of the number of times C1 has been demoted,
and the number of times C2 has been demoted, etc, as stated in (74a). Each
time constraint Ck is demoted, it is demoted by 1, and it is never promoted.
Hence the number of times that constraint Ck has been demoted up to the
time considered is equal to the distance Úkinit®Úk between its initial RV Úkinit
and its current RV Úk, as stated in (74b). The inequality (72) says that Úk
sits between Úkinit and minh=1,…,nÚhinit®(k®1), as depicted in (75). Thus the
distance between the latter two points upper bounds the distance Úkinit®Úk,
as stated in (74c). Finally, step (e) follows from definition (71) of the constant
B(_init) and from the identity %
n

k=1(k®1)=n(n®1)/2.

Theorem 2 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the calibrated promotion/demotion re-
ranking rule (76) run on a consistent input ERC matrix corresponding
to n constraints starting from an arbitrary initial ranking vector
_init=(Ú1init, …, Úninit) can perform at most nB(_init)+n2(n®1)/2 errors
before converging.
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In the case of an arbitrary initial ranking vector as well, the error-bound
for the calibrated case is worse by a factor of n than the error-bound for
the demotion-only case.

Combining the two inequalities (77) and (78), I conclude that the number
T of updates must be smaller than nB(_init)+n2(n®1)/2. We have thus
proven the following extension of Theorem 2 from null to arbitrary initial
RVs.

In §6, I looked for concreteness at a specific calibrated re-ranking rule,
namely the one in (51) (= (76)), which demotes each of the l undominated
loser-preferrers by 1 and promotes each of the w winner-preferrers by
l/(w+1). Here I look at the generic calibrated re-ranking rule in (79).

Appendix B: Convergence of a generic calibrated re-ranking rule

This re-ranking rule is calibrated as long as d>0. Indeed, the distance of
the promotion amount p from the calibration threshold l/w is controlled by
the constant d: the larger d, the smaller the promotion amount p is with
respect to the calibration threshold. In particular, the case d=1 corresponds
to re-ranking rule (51), and the case where d goes to infinity corresponds
to the demotion-only case p=0 considered in §3.
The reasoning for the case d=1 presented in §6 trivially extends to an
arbitrary d>0, yielding the following generalisation of Theorem 2 of §6.

Theorem 2 (extended to arbitrary calibrated promotion amounts)
An EDRA with the general calibrated re-ranking rule (79) run on a
consistent input ERC matrix corresponding to n constraints starting
from null initial RVs can perform at most the number of mistakes in
(80) before converging, where W is the largest number of winner-
preferrers over all input ERCs.
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Appendix C: Why EDRAs cannot loop
Consider the general re-ranking rule in (82).

Proof. With every update, the sum of the current RVs is decreased by l. It
is furthermore increased by wl/(w+d), as each of the w winner-preferrers
is promoted by l/(w+d). In the end, the sum of the current RVs is thus
decreased by l®(wl/(w+d))=dl/(w+d) . As the number l of undominated
loser-preferrers is at least 1 and the number w of winner-preferrers is at
most W, I conclude that the sum of the current RVs is decreased by at least
T(d/(W+d)) after T updates. On the other hand, the sum of the current
RVs starts at zero and can never become smaller than —n(n®1)/2, by the
generalised Fact 2 stated in §6.2. In conclusion, the number of updates T
in the case of the re-ranking rule (79) must satisfy the inequality
T(d/(W+d)){n(n®1)/2, which yields the error-bound in (80).º

The bound (81) for d=1 gives back the bound n2(n®1)/2 of the original
Theorem 2 in §6. As d increases and the promotion amount p=l/(w+d)
thus gets smaller relative to the calibration threshold l/w, the bound (81)
on the number of mistakes decreases, ensuring faster convergence. In the
limit of d going to infinity, the coe!cient (n®1+d)/d goes to 1, and the
bound (81) thus becomes the bound n(n®1)/2 already obtained in Theorem
1 of §3 for the case with null p=0 promotion amount.
Note that the cubic rather than quadratic growth in n of the bound (81)
comes from the fact that I have upper bounded the largest number W of
winner-preferrers in a generic input ERC, with n®1. But in most
applications, W is much smaller than n®1, as the winner and loser forms
that correspond to an ERC di‰er only in a few respects, and thus most of
the constraints are even. Furthermore, if the loser forms are properly chosen
so that the input ERCs have as few winner-preferrers as possible, then W
might be forced into a constant in certain applications. In that case, the
error-bound (80) for calibrated promotion grows only quadratically in the
number of constraints n, just like the bound n(n®1)/2 for the demotion-
only case.

As there is a total of n constraints, and each ERC must have at least a
loser-preferrer (ERCs that have no loser-preferrers cannot ever trigger any
update and can therefore be ignored), then the largest number W of winner-
preferrers is upper bound by n®1, and the bound (80) becomes (81).
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Fact 5
If the input ERC matrix is consistent, the EDRA (Fig. 5) with any
promotion/demotion re-ranking rule of the form (82) can never loop
back to a current ranking vector that it had previously made a mistake
on in that same run.

Let m be the total number of input ERCs. To simplify the presentation,
let me start by assuming that the input ERC matrix has a unique l per
ERC. The contribution of the ith ERC ai to the current ranking vector
according to this re-ranking rule can thus be summarised with the cor-
responding update vector ai, as in (83): the entry corresponding to the
loser-preferrer is equal to —1; the entries corresponding to winner-preferrers
are set equal to the corresponding promotion amount p>0; all other entries
are 0.

Throughout this section, I assume that the promotion amount p is never
null. I show that the EDRA with the re-ranking rule (82) cannot loop on
consistent input ERC matrices, as stated in Fact 5, repeated below. The
proof is based on a connection between OT-consistency and conic
independence.

Suppose that the initial RVs are all null. The current ranking vector _t

entertained at time t by the EDRA with the re-ranking rule (82) can be
described as in (84), i.e. as a combination of the update vectors, each
multiplied by the number of updates ait triggered by the corresponding ith
ERC in the run considered up to time t. Equation (43), obtained in the dis-
cussion of Pater’s counterexample in §5.3, is a special case of the general
equation (84). Of course, the coe!cients ait are by definition all non-negative.
Thus the identity (84) can be summarised by saying that the current ranking
vector is a conic combination of the m update vectors.

As the current ranking vector is a conic combination of the update vectors,
it is interesting to study the conic geometry of these vectors, i.e. the formal
properties of their conic combinations. Here is a particularly important

8 Giorgio Magri

Suppose that a conic combination of these update vectors (88) with some
non-negative coe!cients yields the null vector, namely that conditions
(85a) and (b) hold. Let’s focus on the first component of this conic combi-
nation, as in (89). The first component of the update vectors in the 1st block
is always positive (recall that p>0 by hypothesis). Suppose there are k
vectors in the 1st block. The first component of the remaining m®k update
vectors is always null. In order for the first component of this conic
combination to be zero, the non-negative coe!cients that multiply the
update vectors in the 1st block must all be null, namely a1=…=ak=0.

The update vectors can now be read straightforwardly from (87): the ith
update vector is obtained by looking at the ith column. Recall that the
mapping (83) from ERCs into update vectors replaces a e with a 0 and a w
with the positive quantity p>0. The collection of update vectors can thus
be made a little more explicit, as in (88). (Each update vector can have a
di‰erent value for the promotion amount p. This fact does not play any
role in the reasoning, so I do not encode it explicitly in the notation, and
use the same p for all update vectors.)
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By moving everything to the right-hand side, (91a) can of course be restated
as in (92a), where I have introduced the coe!cients ai=ai

t¢®ai

t

 for all i=1,
…, m. The property (91b), that ai

t¢ is larger than or equal to ai

t

 because time
t¢ follows time t, can then be restated as (92b), that all coe!cients ai are
non-negative. The property (91c), that some coe!cient ai

t¢ is di‰erent from
the corresponding coe!cient ai

t

 because some update has happened between
times t and t¢, can be restated as the property (92c), that at least one of the
coe!cients ai is non-null.

The conditions in (92) say that the null vector can be synthesised as a conic
combination of the update vectors, without the coe!cients a1, …, am all
being null. This contradicts the hypothesis that the update vectors are
conically independent. º

Fact 7
If the update vectors are conically independent, then the EDRA cannot
loop back to a current ranking vector it had previously updated.

Proof. Suppose by contradiction that the EDRA can indeed loop back to
a ranking vector that it had dismissed at a previous time. This means that
it is possible for the algorithm to walk through a learning path with the
properties in (90).

Assumption (90a), that the ranking vectors _t and _t¢ entertained at times
t and t¢ coincide, can be expressed as the identity (91a), using the description
(84) of the current ranking vector in terms of update vectors. Here, ai

t

 and
ai

t¢ are the number of updates triggered by ERC 1 up to time t and t¢
respectively; an analogous interpretation holds for the other coe!cients.
As the number of updates grows with time, assumption (90b), that time t¢
follows time t, thus entails that the coe!cient ai

t¢ at time t¢ is larger than
or equal to the corresponding coe!cient ai

t

 at time t, as stated in (91b).
Furthermore, assumption (90c) entails that some update has happened at
some time between t and t¢, so that at least one of the coe!cients has
increased by at least 1 from time t to time t¢, as stated in (91c).
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Appendix D: On the number of updates for smallest non-calibrated
promotion

Recall from §7.5 that the aggravated Pater’s ERC matrix for n constraints
is obtained from the corresponding diagonal matrix by adding two w’s to
the right of each l. To illustrate, I give in (93) the matrix corresponding
to n=7 constraints. It has 6=n®1 ERCs; it has a w on every diagonal
entry, followed by an l followed in turn by two more w’s (except for the
last two rows, whose l’s are followed by one and zero w’s respectively).

To conclude the proof of Fact 5, I need to consider the case where the
input ERC matrix contains rows with multiple l’s. The additional di!culty
in this case is that the contribution of the ith ERC to the current ranking
vector depends on the number of currently undominated loser-preferrers,
i.e. it can be di‰erent at di‰erent times, and thus cannot be distilled into
a unique update vector ai, as in (83). But this di!culty can be straight-
forwardly overcome, at the expense of a slightly more cumbersome notation.
Let m be the total number of ERCs. Suppose that the ith ERC has li loser-
preferrers Ck1, …, Ckli. Let C

i

1, …, C
i

2li—1 be all 2
li®1 non-empty subsets

of the set {Ck1, …, Ckli} of loser-preferrers. For every such subset Ci

j, let
ai, j be the update vector defined as follows: the components corresponding
to the loser-preferrers in the subset Ci

j are equal to —1; the components
corresponding to winner-preferrers are equal to p; the remaining components
are equal to 0. Furthermore, let at

i, j be the number of updates triggered by
this ith ERC up to time t, because all and only the loser-preferrers in the
set Ci

j were currently undominated. The current ranking vector can then
be expressed as a conic combination of these update vectors through these
non-negative coe!cients, namely _t=%

m

i=1 %j=12
li

—1 at

i, j ai, j. Again, these
update vectors ai, j are conically independent. I can thus trivially extend
the preceding reasoning.
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Here is how these equations are obtained. The RV q1 of constraint C1 starts
out null. It is only modified when ERC 1 triggers an update, in which case,
it is increased by 1/3, as ERC 1 contains 3 winner-preferrers. In other
words, the final RV q1 of constraint C1 is 1/3 of the total number a1 of
updates triggered by ERC 1, as stated by the first equation in (95).
Analogously, the RV q2 of constraint C2 starts out null, is decreased by 1
every time ERC 1 triggers an update and is increased by 1/3 every time
ERC 2 triggers an update, whereby we get the second equation in (95). The
remaining equations in (95) are obtained analogously.

The input matrix (93) is only consistent with the ranking C1êC2 …êC7.
As the final ranking vector _=(q1, …, q7) entertained by the EDRA at
convergence is consistent with the input matrix of ERCs, it must therefore
satisfy the six strict inequalities q1>q2, …, q6>q7. Consider for instance
the first of these six inequalities, repeated in (96a). Using the first two
equations in (95), this inequality can be rewritten as in (96b), in terms of
the numbers of updates a1 and a2 triggered by ERC 1 and ERC 2 respectively.
If both sides of inequality (96b) are multiplied by the constant 3, we get
the equivalent inequality (96c). As the variables a1, a2, as well as the
coe!cients, are integers, the strict inequality (96c) is equivalent to the loose
inequality (96d), where I have added 1 to the right-hand side.

(95) q1= a11
3

q2=
a11

3q3=
q4=
q5=
q6=
q7=

a1+1
3

a2+1
3

a3+1
3

a4+1
3

—a1+ a21
3

®a2+a31
3

a2®a3+1
3 a41

3

a3®a4+1
3 a51

2

a4®a5+a61
3

a5®a61
2

The convergence Theorem 3 ensures that after a finite number of errors
the EDRA will converge to a final ranking vector consistent with the input
ERC matrix, and learning will cease. Yet the theorem does not provide any
estimate of the number of errors made before convergence. This section
shows that this number grows exponentially with the number n of constraints,
as anticipated in §7.5.

For concreteness, suppose the input matrix is the aggravated Pater’s
matrix (93), corresponding to n=7 constraints. Let _=(q1, …, q7) be the
final ranking vector the EDRA has converged on. Let a1, …, a6 be the total
number of updates triggered by each of the six input ERCs in the run
considered. The final RVs q1, …, q7 can be expressed in terms of the
coe!cients a1, …, a6, as in (95).

(94) Decrease the RV of the loser-preferrer by 1.a.
Increase the RV of each of the w winner-preferrers by l/w.b.
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The reasoning just developed in the concrete case of the aggravated Pater’s
matrix in (93) corresponding to n=7 constraints extends to the case of an
arbitrary number n of constraints. I can always construct an optimisation
problem akin to (98) that provides a bound on the best-case number of
updates performed by the EDRA on that aggravated Pater’s matrix. The
solution of the optimisation problems thus obtained for the aggravated
Pater’s matrices corresponding to various choices of the number n of
constraints are reported in Table Ia. (These values were computed using
the Matlab file MinimumRunningTime.m. It takes as input the aggravated
Pater’s ERC matrix corresponding to n constraints, for any n. It constructs
the corresponding optimisation problem akin to (98), generalising the
reasoning just presented here in the special case of the aggravated Pater’s
comparative tableaux corresponding to n=7 constraints, and it solves this

The total number of updates performed by the EDRA in the run considered
coincides with the sum a1+…+a6 of the number a1 of updates triggered
by ERC 1 plus the number a2 of updates triggered by ERC 2 and so on
down to the number a6 of updates triggered by ERC 6. Furthermore, these
non-negative numbers a1, …, a6 must satisfy the inequalities in (97). Thus
the number of updates performed by the EDRA to reach convergence
cannot be smaller than the solution of the optimisation problem (98). In
other words, the solution of this optimisation problem provides a bound
on the best-case number of updates performed by the EDRA on the input
matrix (93). As (98) is a linear program, it can be easily solved with standard
linear programming techniques.

By reasoning this way, I conclude that the six strict inequalities q1>q2, …,
q6>q7 are equivalent to the six inequalities in (97) in terms of the number
of updates a1, …, a6 triggered by ERC 1 through ERC 6 respectively.
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optimisation problem using Matlab built-in subroutines for linear pro-
gramming. Aggravated Pater’s comparative matrices for n=5, 7, 9, 11, 13,
15 constraints are provided in the file AggravatedPaterMatrices.txt. Both
files are available here.)

Let me close by pointing out the close parallelism between the reasoning
presented in this section and the explanation for Pater’s (2008) counter-
example against the GLA’s convergence provided in §5.3. The equations
in (95) are analogous to those in (44) in §5.3, and both are a special case of
the vector equation (84) in Appendix C. The inequalities in (97) are analogous
to those in (45) in §5.3. Finally, showing that there are no coe!cient a’s
that solve the inequalities in (97) and add up to a small number corresponds
to the final step of the explanation of Pater’s counterexample, which showed
that there are no coe!cient a’s that solve the inequalities (45).

Appendix A: Extension to arbitrary initial ranking vectors
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Throughout the paper, I have investigated convergence in the case where
the initial RVs Ú1init, …, Úninit were all identical, say all equal to zero (the
actual value does not really matter). In this appendix, I show how to obtain
error bounds for demotion-only and calibrated re-ranking rules in the case
of an arbitrary initial ranking vector _init=(Ú1init, …, Úninit). It turns out that
the properties of the initial ranking vector that are relevant for the error-
bounds can be extracted through the quantity B(_init) defined in (71), namely
the sum of the di‰erence between each initial RV Úkinit and the smallest RV
minh=1Úhinit. Intuitively, this quantity measures how scattered the initial
RVs are. In fact, B(_init) is null for the case of identical initial RVs, small
for RVs close to each other and large if there are some RVs that are very
small and some other RVs that are very large.

1The crucial invariant
Tesar & Smolensky’s (generalised) Fact 2 from §6.2 provides an invariant
for the current RVs entertained by the EDRA in the case of null initial
RVs. It says that the current RVs can never become much smaller than
zero, as long as the EDRA only demotes the loser-preferring constraints
that need to be demoted, i.e. the undominated ones. The reasoning trivially
extends to arbitrary initial ranking values, yielding the following further
generalisation of Fact 2: the current ranking values can never become much
smaller than the smallest initial ranking value.
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In §2.3, I defined OT-consistency between an ERC and a ranking vector
as in (14), repeated below in (99). This appendix qualifies this definition
with some remarks.

Appendix E: On the notion of OT-consistency for ranking vectors

(99) A ranking vector is (OT-)consistent with an ERC provided that each
of its refinements is consistent with that ERC, according to the original
notion of consistency (9).

T&S introduce a variant of the standard OT framework, replacing total
rankings with stratified hierarchies, which can assign multiple constraints
to a single stratum. Stratified hierarchies are thus equivalent to ranking
vectors, which can assign the same ranking values to multiple constraints.
Yet the notion of consistency assumed by T&S is very di‰erent from the
one in (99), as T&S allow for the tie among constraints assigned to the same
stratum to be resolved additively. Without getting into the details of this
alternative definition of OT-consistency, let me illustrate the di‰erence
with an example. Consider the ERC (100a) together with the ranking vector
(100b). Because of the two identical ranking values q1=q2=2, this ranking
vector would represent a stratified hierarchy that assigns both C1 and C2

to the top stratum, with C3 ranked underneath.

1 Comparison with Tesar & Smolensky’s (1998) notion of OT-
consistency for stratified hierarchies

(100) C3C1 C2

( )12 2_=
b.a. C2

ERC

C1

w l[

C3

w ]

as the l and the w of the two equally highest-ranked constraints C 1 and C2

‘cancel out’ because of the additive interaction between equally
rankedconstraints. But the ranking vector (100b) is not consistent with the
ERC (100a) according to the definition (99), since the ranking vector (100b)
admits the refinement C2êC1êC3, which is not consistent with the ERC
(100a). As the paper assumes the classical notion of OT-consistency (99),
it is framed squarely within standard OT. Contrary to what suggested by
T&S, there is no need to step outside of the standard OT framework for
algorithmic purposes.
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A reviewer worries that the notion of OT consistency (99), which requires
consistency to hold for all refinements, might not be e!ciently computable.
For instance, if all ranking values are identical, then don’t we have to check
consistency for all n! refinements, causing a complexity explosion? That is
not the case. Here is a way to see this. Let W(a) and L(a) be the sets of
winner- and loser-preferring constraints relative to an ERC a. It turns out
that a ranking vector _=(q1, …, qn) is consistent with an ERC a according
to condition (99) provided the following strict inequality (101) holds, which
says that the largest ranking value over winner-preferrers is larger than the
largest ranking value over loser-preferrers.

Computational e!ciency2

Furthermore, the inequality (101) can be checked in n steps (where n is the
number of constraints). In the end, the consistency condition (99) can thus
be e!ciently computed.

Let me explain why the consistency condition (99) is equivalent to the
strict inequality (101). Suppose that the latter inequality (101) holds. Every
refinement of this ranking vector will then rank the winner-preferrer that
attains the maximum maxkÊW(a) Úk above the loser-preferrer that attains
the maximum maxhÊL(a) Úh. In other words, it will rank this winner-preferrer
above every loser-preferrer. Every refinement is thus consistent with the
ERC a, and condition (99) holds. Vice versa, suppose that inequality (101)
does not hold, i.e. the largest ranking value over winner-preferrers is at
most as large as the largest ranking value over loser-preferrers. Thus the
current ranking vector admits a refinement that ranks the loser-preferrer
that attains the maximum maxhÊL(a) Úh above the winner-preferrer that
attains the maximum maxkÊW(a) Úk. In other words, it admits a refinement
that ranks a loser-preferrer above every winner-preferrer. This refinement
is thus not consistent with the ERC a, and condition (99) fails.

Finally, let me explain why inequality (101) can be checked i n n steps
(where n is the number of constraints) . Posit W=—≥ and L=—≥. Scan
through the current ranking values, for k=1, 2, … n. If Úk is larger than

(101)
kÊW(a)
maxÚk
hÊL(a)
maxÚh>

a1®a3+a4>0

Consistency with Pater’s ERC matrix 3
In §5.2, I considered Pater’s (2008) ERC matrix (42). This ERC matrix
requires the ranking C1êC2êC3êC4êC5. Thus, a ranking vector  _=(q1,
q2, q3, q4, q5) is OT-consistent with this ERC matrix according to condition
(99), provided it admits only that ranking as a renement. This means in
turn that the ranking values must satisfy the four strict inequalities q1>q2,
q2>q3, q3>q4 and q4>q5. In §5.3, I showed that these four strict inequalities
can be rewritten as in (45) in terms of the number of updates a1, …, a4,
triggered by the four ERCs in Pater’s ERC matrix. Furthermore, I have
claimed that these inequalities (45) admit no solution. To see this, rewrite
these inequalities (45) as in (102), by moving everything on one side.

If we sum all four inequalities together, we obtain inequality (103a). If we
sum together only the second and third inequalities in (102), we obtain
inequality (103b).

(103)a.
—a1+a3®a4>0b.

As the two inequalities thus derived in (103) are inconsistent, the four
original inequalities (102) admit no solution.

additional reference

Bertsekas, Dimitri P., Angelia Nedic & Asuman E. Ozdaglar (2003). Convex analysis
and optimization. Nashua, NH: Athena Scientific.

According to the alternative definition of OT-consistency introduced by
T&S, the ranking vector (100b) is indeed consistent with the ERC (100a),

W (larger than L) and Ck is winner-preferring (loser-preferring), then set
W=Úk (set L=Úk). After having scanned all ranking values, condition (101)
holds i‰ W>L. This process only takes n steps.
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(75)

qk

Úkinit

h=1,…,n
Úhinit—(k®1)min

Theorem 1 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the demotion-only re-ranking rule (73) run
on a consistent input ERC matrix corresponding to n constraints
starting from an arbitrary initial ranking vector _init=(Ú1init, …, Úninit)
can perform at most B(_init)+n(n®1)/2 errors before converging.

(77)%
n

k=1h=1,…,n
Úhinitmin®(k®1)(=n%
n

k=1
qk})
h=1,…,n
Úhinit®min
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We have thus proven the following extension of Theorem 1 from null to
arbitrary initial RVs. Recall that, if the initial RVs are all identical (say, all
null), then B(_init)=0. In this case, the bound B(_init)+n(n®1)/2 provided
by the following theorem thus reduces to the bound n(n®1)/2 already
obtained in §3.

The bound B(_init)+n(n®1)/2 on the worst-case number of errors is tight,
as shown by the same example in (26) in the paper with the ERCs fed in
the fixed order a1£a2£a3 and with the initial ranking vector _init=(4,3,
2,1).

3Calibrated re-ranking rules
Consider next the calibrated demotion/promotion re-ranking rule (51) from
§6, repeated in (76).

The invariant (72) ensures that the sum of the current RVs can be lower
bounded, as in (77).

As seen in §6.3, the sum of the current RVs is decreased by at least 1/n with
every update. After T updates, it has thus decreased by at least T/n from
the sum of the initial RVs, as stated in (78).

1
2
n(n®1)

(76)Decrease the RV of each of the l undominated loser-preferrers by 1.a.
Increase the RV of each of the w winner-preferrers by p=l/(w+1).b.
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conic property. The update vectors are called conically independent
provided that there are no coe!cients a1, …, am that satisfy the three
conditions in (85); see Bertsekas et al. (2003). In other words, it is not
possible to synthesise the null vector as a conic combination of the update
vectors, unless of course the coe!cients are all set equal to zero.

Fact 6 below says that OT-consistency of the input ERC matrix (with a
unique l per row) entails conic independence of the corresponding update
vectors, and Fact 7 says that conic independence of the update vectors in
turn entails that the EDRA cannot loop. Fact 5 thus follows from the two
auxiliary Facts 6 and 7. The assumption that the input ERCs have a unique
l per row can be easily dropped, as discussed at the end of this section.

Fact 6
Consider an input ERC matrix that has a unique l per row. If it is
consistent, then the corresponding update vectors defined in (83) are
conically independent.

Proof. Recall from Fact 1 that any consistent ERC matrix has the shape in
(22) (repeated in (86)), modulo reordering of its rows and its columns and
relabelling of the constraints. (86) has a top block of rows whose first entry
is w, followed by a second block of rows whose first entry is e and whose
second entry is w, and so on.

2Giorgio Magri

Fact 2 (further generalised)
Assume that the input ERC matrix is consistent with a ranking.
Without loss of generality, assume that this ranking is C1êC1ê…êCn.
Let q1, …, qn be the current RVs entertained by an EDRA in a generic
run on those input ERCs, up to a generic time, starting from arbitrary
initial RVs Ú1init, …, Úninit. Assume that the re-ranking rule used by the
EDRA demotes by 1 only the currently undominated loser-preferrers
(no assumptions are made on constraint promotion). The current RVs
thus satisfy condition (72) for every k=1, …, n. That is, the RV qk of
the constraint Ck assigned to the kth stratum (with the 1st stratum
being the top one) never drops by more than (k®1) below the smallest
initial RV minh=1,…,nÚhinit.

(72)qk}
h=1,…,n
Úhinit®(k®1)min

(73)Decrease the RV of each undominated loser-preferrer by 1.a.
Do nothing to the current RV of the other constraints.b.

2Demotion-only re-ranking rules
Consider the demotion-only re-ranking rule (17) from §3, repeated in (73).

At least one constraint is demoted at each update. Hence, the total number
T of updates is at most the sum of the number of times C1 has been demoted,
and the number of times C2 has been demoted, etc, as stated in (74a). Each
time constraint Ck is demoted, it is demoted by 1, and it is never promoted.
Hence the number of times that constraint Ck has been demoted up to the
time considered is equal to the distance Úkinit®Úk between its initial RV Úkinit
and its current RV Úk, as stated in (74b). The inequality (72) says that Úk
sits between Úkinit and minh=1,…,nÚhinit®(k®1), as depicted in (75). Thus the
distance between the latter two points upper bounds the distance Úkinit®Úk,
as stated in (74c). Finally, step (e) follows from definition (71) of the constant
B(_init) and from the identity %
n

k=1(k®1)=n(n®1)/2.

Theorem 2 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the calibrated promotion/demotion re-
ranking rule (76) run on a consistent input ERC matrix corresponding
to n constraints starting from an arbitrary initial ranking vector
_init=(Ú1init, …, Úninit) can perform at most nB(_init)+n2(n®1)/2 errors
before converging.

4Giorgio Magri

In the case of an arbitrary initial ranking vector as well, the error-bound
for the calibrated case is worse by a factor of n than the error-bound for
the demotion-only case.

Combining the two inequalities (77) and (78), I conclude that the number
T of updates must be smaller than nB(_init)+n2(n®1)/2. We have thus
proven the following extension of Theorem 2 from null to arbitrary initial
RVs.

In §6, I looked for concreteness at a specific calibrated re-ranking rule,
namely the one in (51) (= (76)), which demotes each of the l undominated
loser-preferrers by 1 and promotes each of the w winner-preferrers by
l/(w+1). Here I look at the generic calibrated re-ranking rule in (79).

Appendix B: Convergence of a generic calibrated re-ranking rule

This re-ranking rule is calibrated as long as d>0. Indeed, the distance of
the promotion amount p from the calibration threshold l/w is controlled by
the constant d: the larger d, the smaller the promotion amount p is with
respect to the calibration threshold. In particular, the case d=1 corresponds
to re-ranking rule (51), and the case where d goes to infinity corresponds
to the demotion-only case p=0 considered in §3.
The reasoning for the case d=1 presented in §6 trivially extends to an
arbitrary d>0, yielding the following generalisation of Theorem 2 of §6.

Theorem 2 (extended to arbitrary calibrated promotion amounts)
An EDRA with the general calibrated re-ranking rule (79) run on a
consistent input ERC matrix corresponding to n constraints starting
from null initial RVs can perform at most the number of mistakes in
(80) before converging, where W is the largest number of winner-
preferrers over all input ERCs.
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Appendix C: Why EDRAs cannot loop
Consider the general re-ranking rule in (82).

Proof. With every update, the sum of the current RVs is decreased by l. It
is furthermore increased by wl/(w+d), as each of the w winner-preferrers
is promoted by l/(w+d). In the end, the sum of the current RVs is thus
decreased by l®(wl/(w+d))=dl/(w+d) . As the number l of undominated
loser-preferrers is at least 1 and the number w of winner-preferrers is at
most W, I conclude that the sum of the current RVs is decreased by at least
T(d/(W+d)) after T updates. On the other hand, the sum of the current
RVs starts at zero and can never become smaller than —n(n®1)/2, by the
generalised Fact 2 stated in §6.2. In conclusion, the number of updates T
in the case of the re-ranking rule (79) must satisfy the inequality
T(d/(W+d)){n(n®1)/2, which yields the error-bound in (80).º

The bound (81) for d=1 gives back the bound n2(n®1)/2 of the original
Theorem 2 in §6. As d increases and the promotion amount p=l/(w+d)
thus gets smaller relative to the calibration threshold l/w, the bound (81)
on the number of mistakes decreases, ensuring faster convergence. In the
limit of d going to infinity, the coe!cient (n®1+d)/d goes to 1, and the
bound (81) thus becomes the bound n(n®1)/2 already obtained in Theorem
1 of §3 for the case with null p=0 promotion amount.
Note that the cubic rather than quadratic growth in n of the bound (81)
comes from the fact that I have upper bounded the largest number W of
winner-preferrers in a generic input ERC, with n®1. But in most
applications, W is much smaller than n®1, as the winner and loser forms
that correspond to an ERC di‰er only in a few respects, and thus most of
the constraints are even. Furthermore, if the loser forms are properly chosen
so that the input ERCs have as few winner-preferrers as possible, then W
might be forced into a constant in certain applications. In that case, the
error-bound (80) for calibrated promotion grows only quadratically in the
number of constraints n, just like the bound n(n®1)/2 for the demotion-
only case.

As there is a total of n constraints, and each ERC must have at least a
loser-preferrer (ERCs that have no loser-preferrers cannot ever trigger any
update and can therefore be ignored), then the largest number W of winner-
preferrers is upper bound by n®1, and the bound (80) becomes (81).
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Fact 5
If the input ERC matrix is consistent, the EDRA (Fig. 5) with any
promotion/demotion re-ranking rule of the form (82) can never loop
back to a current ranking vector that it had previously made a mistake
on in that same run.

Let m be the total number of input ERCs. To simplify the presentation,
let me start by assuming that the input ERC matrix has a unique l per
ERC. The contribution of the ith ERC ai to the current ranking vector
according to this re-ranking rule can thus be summarised with the cor-
responding update vector ai, as in (83): the entry corresponding to the
loser-preferrer is equal to —1; the entries corresponding to winner-preferrers
are set equal to the corresponding promotion amount p>0; all other entries
are 0.

Throughout this section, I assume that the promotion amount p is never
null. I show that the EDRA with the re-ranking rule (82) cannot loop on
consistent input ERC matrices, as stated in Fact 5, repeated below. The
proof is based on a connection between OT-consistency and conic
independence.

Suppose that the initial RVs are all null. The current ranking vector _t

entertained at time t by the EDRA with the re-ranking rule (82) can be
described as in (84), i.e. as a combination of the update vectors, each
multiplied by the number of updates ait triggered by the corresponding ith
ERC in the run considered up to time t. Equation (43), obtained in the dis-
cussion of Pater’s counterexample in §5.3, is a special case of the general
equation (84). Of course, the coe!cients ait are by definition all non-negative.
Thus the identity (84) can be summarised by saying that the current ranking
vector is a conic combination of the m update vectors.

As the current ranking vector is a conic combination of the update vectors,
it is interesting to study the conic geometry of these vectors, i.e. the formal
properties of their conic combinations. Here is a particularly important
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Suppose that a conic combination of these update vectors (88) with some
non-negative coe!cients yields the null vector, namely that conditions
(85a) and (b) hold. Let’s focus on the first component of this conic combi-
nation, as in (89). The first component of the update vectors in the 1st block
is always positive (recall that p>0 by hypothesis). Suppose there are k
vectors in the 1st block. The first component of the remaining m®k update
vectors is always null. In order for the first component of this conic
combination to be zero, the non-negative coe!cients that multiply the
update vectors in the 1st block must all be null, namely a1=…=ak=0.

The update vectors can now be read straightforwardly from (87): the ith
update vector is obtained by looking at the ith column. Recall that the
mapping (83) from ERCs into update vectors replaces a e with a 0 and a w
with the positive quantity p>0. The collection of update vectors can thus
be made a little more explicit, as in (88). (Each update vector can have a
di‰erent value for the promotion amount p. This fact does not play any
role in the reasoning, so I do not encode it explicitly in the notation, and
use the same p for all update vectors.)
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By moving everything to the right-hand side, (91a) can of course be restated
as in (92a), where I have introduced the coe!cients ai=ai

t¢®ai

t

 for all i=1,
…, m. The property (91b), that ai

t¢ is larger than or equal to ai

t

 because time
t¢ follows time t, can then be restated as (92b), that all coe!cients ai are
non-negative. The property (91c), that some coe!cient ai

t¢ is di‰erent from
the corresponding coe!cient ai

t

 because some update has happened between
times t and t¢, can be restated as the property (92c), that at least one of the
coe!cients ai is non-null.

The conditions in (92) say that the null vector can be synthesised as a conic
combination of the update vectors, without the coe!cients a1, …, am all
being null. This contradicts the hypothesis that the update vectors are
conically independent. º

Fact 7
If the update vectors are conically independent, then the EDRA cannot
loop back to a current ranking vector it had previously updated.

Proof. Suppose by contradiction that the EDRA can indeed loop back to
a ranking vector that it had dismissed at a previous time. This means that
it is possible for the algorithm to walk through a learning path with the
properties in (90).

Assumption (90a), that the ranking vectors _t and _t¢ entertained at times
t and t¢ coincide, can be expressed as the identity (91a), using the description
(84) of the current ranking vector in terms of update vectors. Here, ai

t

 and
ai

t¢ are the number of updates triggered by ERC 1 up to time t and t¢
respectively; an analogous interpretation holds for the other coe!cients.
As the number of updates grows with time, assumption (90b), that time t¢
follows time t, thus entails that the coe!cient ai

t¢ at time t¢ is larger than
or equal to the corresponding coe!cient ai

t

 at time t, as stated in (91b).
Furthermore, assumption (90c) entails that some update has happened at
some time between t and t¢, so that at least one of the coe!cients has
increased by at least 1 from time t to time t¢, as stated in (91c).
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Appendix D: On the number of updates for smallest non-calibrated
promotion

Recall from §7.5 that the aggravated Pater’s ERC matrix for n constraints
is obtained from the corresponding diagonal matrix by adding two w’s to
the right of each l. To illustrate, I give in (93) the matrix corresponding
to n=7 constraints. It has 6=n®1 ERCs; it has a w on every diagonal
entry, followed by an l followed in turn by two more w’s (except for the
last two rows, whose l’s are followed by one and zero w’s respectively).

To conclude the proof of Fact 5, I need to consider the case where the
input ERC matrix contains rows with multiple l’s. The additional di!culty
in this case is that the contribution of the ith ERC to the current ranking
vector depends on the number of currently undominated loser-preferrers,
i.e. it can be di‰erent at di‰erent times, and thus cannot be distilled into
a unique update vector ai, as in (83). But this di!culty can be straight-
forwardly overcome, at the expense of a slightly more cumbersome notation.
Let m be the total number of ERCs. Suppose that the ith ERC has li loser-
preferrers Ck1, …, Ckli. Let C

i

1, …, C
i

2li—1 be all 2
li®1 non-empty subsets

of the set {Ck1, …, Ckli} of loser-preferrers. For every such subset Ci

j, let
ai, j be the update vector defined as follows: the components corresponding
to the loser-preferrers in the subset Ci

j are equal to —1; the components
corresponding to winner-preferrers are equal to p; the remaining components
are equal to 0. Furthermore, let at

i, j be the number of updates triggered by
this ith ERC up to time t, because all and only the loser-preferrers in the
set Ci

j were currently undominated. The current ranking vector can then
be expressed as a conic combination of these update vectors through these
non-negative coe!cients, namely _t=%

m

i=1 %j=12
li

—1 at

i, j ai, j. Again, these
update vectors ai, j are conically independent. I can thus trivially extend
the preceding reasoning.
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Here is how these equations are obtained. The RV q1 of constraint C1 starts
out null. It is only modified when ERC 1 triggers an update, in which case,
it is increased by 1/3, as ERC 1 contains 3 winner-preferrers. In other
words, the final RV q1 of constraint C1 is 1/3 of the total number a1 of
updates triggered by ERC 1, as stated by the first equation in (95).
Analogously, the RV q2 of constraint C2 starts out null, is decreased by 1
every time ERC 1 triggers an update and is increased by 1/3 every time
ERC 2 triggers an update, whereby we get the second equation in (95). The
remaining equations in (95) are obtained analogously.

The input matrix (93) is only consistent with the ranking C1êC2 …êC7.
As the final ranking vector _=(q1, …, q7) entertained by the EDRA at
convergence is consistent with the input matrix of ERCs, it must therefore
satisfy the six strict inequalities q1>q2, …, q6>q7. Consider for instance
the first of these six inequalities, repeated in (96a). Using the first two
equations in (95), this inequality can be rewritten as in (96b), in terms of
the numbers of updates a1 and a2 triggered by ERC 1 and ERC 2 respectively.
If both sides of inequality (96b) are multiplied by the constant 3, we get
the equivalent inequality (96c). As the variables a1, a2, as well as the
coe!cients, are integers, the strict inequality (96c) is equivalent to the loose
inequality (96d), where I have added 1 to the right-hand side.

The convergence Theorem 3 ensures that after a finite number of errors
the EDRA will converge to a final ranking vector consistent with the input
ERC matrix, and learning will cease. Yet the theorem does not provide any
estimate of the number of errors made before convergence. This section
shows that this number grows exponentially with the number n of constraints,
as anticipated in §7.5.

For concreteness, suppose the input matrix is the aggravated Pater’s
matrix (93), corresponding to n=7 constraints. Let _=(q1, …, q7) be the
final ranking vector the EDRA has converged on. Let a1, …, a6 be the total
number of updates triggered by each of the six input ERCs in the run
considered. The final RVs q1, …, q7 can be expressed in terms of the
coe!cients a1, …, a6, as in (95).

(94) Decrease the RV of the loser-preferrer by 1.a.
Increase the RV of each of the w winner-preferrers by l/w.b.
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(97) q1>q2
q2>q3
q3>q4
q4>q5
q5>q6
q6>q7

2a1+
2a2+
2a3+

»
»
»
»
»
»

a1®
2a2®
2a3®
2a4®

—3a1+
3a2+
6a3+
6a4+
6a5+

a1}
a2}
a3}

2a4}
3a5}
6a6}

1®
1+
1+
1+
1+
1+

3a1+
a1®
a1+

2a2+
2a3+
2a4+

a2
3a2
a2

2a3
2a4
3a5

+
®
®
®
®

a3
3a3
6a4
6a5
6a6

+
+
+

a4
3a5
6a6

The reasoning just developed in the concrete case of the aggravated Pater’s
matrix in (93) corresponding to n=7 constraints extends to the case of an
arbitrary number n of constraints. I can always construct an optimisation
problem akin to (98) that provides a bound on the best-case number of
updates performed by the EDRA on that aggravated Pater’s matrix. The
solution of the optimisation problems thus obtained for the aggravated
Pater’s matrices corresponding to various choices of the number n of
constraints are reported in Table Ia. (These values were computed using
the Matlab file MinimumRunningTime.m. It takes as input the aggravated
Pater’s ERC matrix corresponding to n constraints, for any n. It constructs
the corresponding optimisation problem akin to (98), generalising the
reasoning just presented here in the special case of the aggravated Pater’s
comparative tableaux corresponding to n=7 constraints, and it solves this

The total number of updates performed by the EDRA in the run considered
coincides with the sum a1+…+a6 of the number a1 of updates triggered
by ERC 1 plus the number a2 of updates triggered by ERC 2 and so on
down to the number a6 of updates triggered by ERC 6. Furthermore, these
non-negative numbers a1, …, a6 must satisfy the inequalities in (97). Thus
the number of updates performed by the EDRA to reach convergence
cannot be smaller than the solution of the optimisation problem (98). In
other words, the solution of this optimisation problem provides a bound
on the best-case number of updates performed by the EDRA on the input
matrix (93). As (98) is a linear program, it can be easily solved with standard
linear programming techniques.

(98) minimise:
subject to:

a1+…+a6
a1, …, a6 satisfy the inequalities in (97)
a1, …, a6}0

By reasoning this way, I conclude that the six strict inequalities q1>q2, …,
q6>q7 are equivalent to the six inequalities in (97) in terms of the number
of updates a1, …, a6 triggered by ERC 1 through ERC 6 respectively.

(96) q1>q2a.

>b.

a1>—3a1+a2c.

a1}—3a1+a2+1d.

a11
3 —a1+ a21

3

Supplementary materials 13
optimisation problem using Matlab built-in subroutines for linear pro-
gramming. Aggravated Pater’s comparative matrices for n=5, 7, 9, 11, 13,
15 constraints are provided in the file AggravatedPaterMatrices.txt. Both
files are available here.)

Let me close by pointing out the close parallelism between the reasoning
presented in this section and the explanation for Pater’s (2008) counter-
example against the GLA’s convergence provided in §5.3. The equations
in (95) are analogous to those in (44) in §5.3, and both are a special case of
the vector equation (84) in Appendix C. The inequalities in (97) are analogous
to those in (45) in §5.3. Finally, showing that there are no coe!cient a’s
that solve the inequalities in (97) and add up to a small number corresponds
to the final step of the explanation of Pater’s counterexample, which showed
that there are no coe!cient a’s that solve the inequalities (45).

Appendix A: Extension to arbitrary initial ranking vectors
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Throughout the paper, I have investigated convergence in the case where
the initial RVs Ú1init, …, Úninit were all identical, say all equal to zero (the
actual value does not really matter). In this appendix, I show how to obtain
error bounds for demotion-only and calibrated re-ranking rules in the case
of an arbitrary initial ranking vector _init=(Ú1init, …, Úninit). It turns out that
the properties of the initial ranking vector that are relevant for the error-
bounds can be extracted through the quantity B(_init) defined in (71), namely
the sum of the di‰erence between each initial RV Úkinit and the smallest RV
minh=1Úhinit. Intuitively, this quantity measures how scattered the initial
RVs are. In fact, B(_init) is null for the case of identical initial RVs, small
for RVs close to each other and large if there are some RVs that are very
small and some other RVs that are very large.

1The crucial invariant
Tesar & Smolensky’s (generalised) Fact 2 from §6.2 provides an invariant
for the current RVs entertained by the EDRA in the case of null initial
RVs. It says that the current RVs can never become much smaller than
zero, as long as the EDRA only demotes the loser-preferring constraints
that need to be demoted, i.e. the undominated ones. The reasoning trivially
extends to arbitrary initial ranking values, yielding the following further
generalisation of Fact 2: the current ranking values can never become much
smaller than the smallest initial ranking value.
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In §2.3, I defined OT-consistency between an ERC and a ranking vector
as in (14), repeated below in (99). This appendix qualifies this definition
with some remarks.

Appendix E: On the notion of OT-consistency for ranking vectors

(99) A ranking vector is (OT-)consistent with an ERC provided that each
of its refinements is consistent with that ERC, according to the original
notion of consistency (9).

T&S introduce a variant of the standard OT framework, replacing total
rankings with stratified hierarchies, which can assign multiple constraints
to a single stratum. Stratified hierarchies are thus equivalent to ranking
vectors, which can assign the same ranking values to multiple constraints.
Yet the notion of consistency assumed by T&S is very di‰erent from the
one in (99), as T&S allow for the tie among constraints assigned to the same
stratum to be resolved additively. Without getting into the details of this
alternative definition of OT-consistency, let me illustrate the di‰erence
with an example. Consider the ERC (100a) together with the ranking vector
(100b). Because of the two identical ranking values q1=q2=2, this ranking
vector would represent a stratified hierarchy that assigns both C1 and C2

to the top stratum, with C3 ranked underneath.

1 Comparison with Tesar & Smolensky’s (1998) notion of OT-
consistency for stratified hierarchies

(100) C3C1 C2

( )12 2_=
b.a. C2

ERC

C1

w l[

C3

w ]

as the l and the w of the two equally highest-ranked constraints C1 and C2

‘cancel out’ because of the additive interaction between equally
rankedconstraints. But the ranking vector (100b) is not consistent with the
ERC (100a) according to the definition (99), since the ranking vector (100b)
admits the refinement C2êC1êC3, which is not consistent with the ERC
(100a). As the paper assumes the classical notion of OT-consistency (99),
it is framed squarely within standard OT. Contrary to what suggested by
T&S, there is no need to step outside of the standard OT framework for
algorithmic purposes.
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A reviewer worries that the notion of OT consistency (99), which requires
consistency to hold for all refinements, might not be e!ciently computable.
For instance, if all ranking values are identical, then don’t we have to check
consistency for all n! refinements, causing a complexity explosion? That is
not the case. Here is a way to see this. Let W(a) and L(a) be the sets of
winner- and loser-preferring constraints relative to an ERC a. It turns out
that a ranking vector _=(q1, …, qn) is consistent with an ERC a according
to condition (99) provided the following strict inequality (101) holds, which
says that the largest ranking value over winner-preferrers is larger than the
largest ranking value over loser-preferrers.

Computational e!ciency2

Furthermore, the inequality (101) can be checked in n steps (where n is the
number of constraints). In the end, the consistency condition (99) can thus
be e!ciently computed.

Let me explain why the consistency condition (99) is equivalent to the
strict inequality (101). Suppose that the latter inequality (101) holds. Every
refinement of this ranking vector will then rank the winner-preferrer that
attains the maximum maxkÊW(a) Úk above the loser-preferrer that attains
the maximum maxhÊL(a) Úh. In other words, it will rank this winner-preferrer
above every loser-preferrer. Every refinement is thus consistent with the
ERC a, and condition (99) holds. Vice versa, suppose that inequality (101)
does not hold, i.e. the largest ranking value over winner-preferrers is at
most as large as the largest ranking value over loser-preferrers. Thus the
current ranking vector admits a refinement that ranks the loser-preferrer
that attains the maximum maxhÊL(a) Úh above the winner-preferrer that
attains the maximum maxkÊW(a) Úk. In other words, it admits a refinement
that ranks a loser-preferrer above every winner-preferrer. This refinement
is thus not consistent with the ERC a, and condition (99) fails.

Finally, let me explain why inequality (101) can be checked in n steps
(where n is the number of constraints). Posit W=—≥ and L=—≥. Scan
through the current ranking values, for k=1, 2, … n. If Úk is larger than

(101)
kÊW(a)
maxÚk

hÊL(a)
maxÚh>

a1®a3+a4>0

Consistency with Pater’s ERC matrix 3
In §5.2, I considered Pater’s (2008) ERC matrix (42). This ERC matrix
requires the ranking C1êC2êC3êC4êC5. Thus, a ranking vector  _=(q1,
q2, q3, q4, q5) is OT-consistent with this ERC matrix according to condition
(99), provided it admits only that ranking as a renement. This means in
turn that the ranking values must satisfy the four strict inequalities q1>q2,
q2>q3, q3>q4 and q4>q5. In §5.3, I showed that these four strict inequalities
can be rewritten as in (45) in terms of the number of updates a1, …, a4,
triggered by the four ERCs in Pater’s ERC matrix. Furthermore, I have
claimed that these inequalities (45) admit no solution. To see this, rewrite
these inequalities (45) as in (102), by moving everything on one side.

If we sum all four inequalities together, we obtain inequality (103a). If we
sum together only the second and third inequalities in (102), we obtain
inequality (103b).

(103)a.
—a1+a3®a4>0b.

As the two inequalities thus derived in (103) are inconsistent, the four
original inequalities (102) admit no solution.

additional reference

Bertsekas, Dimitri P., Angelia Nedic & Asuman E. Ozdaglar (2003). Convex analysis
and optimization. Nashua, NH: Athena Scientific.

According to the alternative definition of OT-consistency introduced by
T&S, the ranking vector (100b) is indeed consistent with the ERC (100a),

W (larger than L) and Ck is winner-preferring (loser-preferring), then set
W=Úk (set L=Úk). After having scanned all ranking values, condition (101)
holds i‰ W>L. This process only takes n steps.
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(75)

qk

Úkinit

h=1,…,n
Úhinit—(k®1)min

Theorem 1 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the demotion-only re-ranking rule (73) run
on a consistent input ERC matrix corresponding to n constraints
starting from an arbitrary initial ranking vector _init=(Ú1init, …, Úninit)
can perform at most B(_init)+n(n®1)/2 errors before converging.

(77)%
n

k=1h=1,…,n
Úhinitmin®(k®1)(=n%
n

k=1
qk})
h=1,…,n
Úhinit®min
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We have thus proven the following extension of Theorem 1 from null to
arbitrary initial RVs. Recall that, if the initial RVs are all identical (say, all
null), then B(_init)=0. In this case, the bound B(_init)+n(n®1)/2 provided
by the following theorem thus reduces to the bound n(n®1)/2 already
obtained in §3.

The bound B(_init)+n(n®1)/2 on the worst-case number of errors is tight,
as shown by the same example in (26) in the paper with the ERCs fed in
the fixed order a1£a2£a3 and with the initial ranking vector _init=(4,3,
2,1).

3Calibrated re-ranking rules
Consider next the calibrated demotion/promotion re-ranking rule (51) from
§6, repeated in (76).

The invariant (72) ensures that the sum of the current RVs can be lower
bounded, as in (77).

As seen in §6.3, the sum of the current RVs is decreased by at least 1/n with
every update. After T updates, it has thus decreased by at least T/n from
the sum of the initial RVs, as stated in (78).

1
2
n(n®1)

(76)Decrease the RV of each of the l undominated loser-preferrers by 1.a.
Increase the RV of each of the w winner-preferrers by p=l/(w+1).b.
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conic property. The update vectors are called conically independent
provided that there are no coe!cients a1, …, am that satisfy the three
conditions in (85); see Bertsekas et al. (2003). In other words, it is not
possible to synthesise the null vector as a conic combination of the update
vectors, unless of course the coe!cients are all set equal to zero.

Fact 6 below says that OT-consistency of the input ERC matrix (with a
unique l per row) entails conic independence of the corresponding update
vectors, and Fact 7 says that conic independence of the update vectors in
turn entails that the EDRA cannot loop. Fact 5 thus follows from the two
auxiliary Facts 6 and 7. The assumption that the input ERCs have a unique
l per row can be easily dropped, as discussed at the end of this section.

Fact 6
Consider an input ERC matrix that has a unique l per row. If it is
consistent, then the corresponding update vectors defined in (83) are
conically independent.

Proof. Recall from Fact 1 that any consistent ERC matrix has the shape in
(22) (repeated in (86)), modulo reordering of its rows and its columns and
relabelling of the constraints. (86) has a top block of rows whose first entry
is w, followed by a second block of rows whose first entry is e and whose
second entry is w, and so on.

2Giorgio Magri

Fact 2 (further generalised)
Assume that the input ERC matrix is consistent with a ranking.
Without loss of generality, assume that this ranking is C1êC1ê…êCn.
Let q1, …, qn be the current RVs entertained by an EDRA in a generic
run on those input ERCs, up to a generic time, starting from arbitrary
initial RVs Ú1init, …, Úninit. Assume that the re-ranking rule used by the
EDRA demotes by 1 only the currently undominated loser-preferrers
(no assumptions are made on constraint promotion). The current RVs
thus satisfy condition (72) for every k=1, …, n. That is, the RV qk of
the constraint Ck assigned to the kth stratum (with the 1st stratum
being the top one) never drops by more than (k®1) below the smallest
initial RV minh=1,…,nÚhinit.

(72)qk}
h=1,…,n
Úhinit®(k®1)min

(73)Decrease the RV of each undominated loser-preferrer by 1.a.
Do nothing to the current RV of the other constraints.b.

2Demotion-only re-ranking rules
Consider the demotion-only re-ranking rule (17) from §3, repeated in (73).

At least one constraint is demoted at each update. Hence, the total number
T of updates is at most the sum of the number of times C1 has been demoted,
and the number of times C2 has been demoted, etc, as stated in (74a). Each
time constraint Ck is demoted, it is demoted by 1, and it is never promoted.
Hence the number of times that constraint Ck has been demoted up to the
time considered is equal to the distance Úkinit®Úk between its initial RV Úkinit
and its current RV Úk, as stated in (74b). The inequality (72) says that Úk
sits between Úkinit and minh=1,…,nÚhinit®(k®1), as depicted in (75). Thus the
distance between the latter two points upper bounds the distance Úkinit®Úk,
as stated in (74c). Finally, step (e) follows from definition (71) of the constant
B(_init) and from the identity %
n

k=1(k®1)=n(n®1)/2.

Theorem 2 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the calibrated promotion/demotion re-
ranking rule (76) run on a consistent input ERC matrix corresponding
to n constraints starting from an arbitrary initial ranking vector
_init=(Ú1init, …, Úninit) can perform at most nB(_init)+n2(n®1)/2 errors
before converging.
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In the case of an arbitrary initial ranking vector as well, the error-bound
for the calibrated case is worse by a factor of n than the error-bound for
the demotion-only case.

Combining the two inequalities (77) and (78), I conclude that the number
T of updates must be smaller than nB(_init)+n2(n®1)/2. We have thus
proven the following extension of Theorem 2 from null to arbitrary initial
RVs.

In §6, I looked for concreteness at a specific calibrated re-ranking rule,
namely the one in (51) (= (76)), which demotes each of the l undominated
loser-preferrers by 1 and promotes each of the w winner-preferrers by
l/(w+1). Here I look at the generic calibrated re-ranking rule in (79).

Appendix B: Convergence of a generic calibrated re-ranking rule

This re-ranking rule is calibrated as long as d>0. Indeed, the distance of
the promotion amount p from the calibration threshold l/w is controlled by
the constant d: the larger d, the smaller the promotion amount p is with
respect to the calibration threshold. In particular, the case d=1 corresponds
to re-ranking rule (51), and the case where d goes to infinity corresponds
to the demotion-only case p=0 considered in §3.
The reasoning for the case d=1 presented in §6 trivially extends to an
arbitrary d>0, yielding the following generalisation of Theorem 2 of §6.

Theorem 2 (extended to arbitrary calibrated promotion amounts)
An EDRA with the general calibrated re-ranking rule (79) run on a
consistent input ERC matrix corresponding to n constraints starting
from null initial RVs can perform at most the number of mistakes in
(80) before converging, where W is the largest number of winner-
preferrers over all input ERCs.
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Appendix C: Why EDRAs cannot loop
Consider the general re-ranking rule in (82).

Proof. With every update, the sum of the current RVs is decreased by l. It
is furthermore increased by wl/(w+d), as each of the w winner-preferrers
is promoted by l/(w+d). In the end, the sum of the current RVs is thus
decreased by l®(wl/(w+d))=dl/(w+d) . As the number l of undominated
loser-preferrers is at least 1 and the number w of winner-preferrers is at
most W, I conclude that the sum of the current RVs is decreased by at least
T(d/(W+d)) after T updates. On the other hand, the sum of the current
RVs starts at zero and can never become smaller than —n(n®1)/2, by the
generalised Fact 2 stated in §6.2. In conclusion, the number of updates T
in the case of the re-ranking rule (79) must satisfy the inequality
T(d/(W+d)){n(n®1)/2, which yields the error-bound in (80).º

The bound (81) for d=1 gives back the bound n2(n®1)/2 of the original
Theorem 2 in §6. As d increases and the promotion amount p=l/(w+d)
thus gets smaller relative to the calibration threshold l/w, the bound (81)
on the number of mistakes decreases, ensuring faster convergence. In the
limit of d going to infinity, the coe!cient (n®1+d)/d goes to 1, and the
bound (81) thus becomes the bound n(n®1)/2 already obtained in Theorem
1 of §3 for the case with null p=0 promotion amount.
Note that the cubic rather than quadratic growth in n of the bound (81)
comes from the fact that I have upper bounded the largest number W of
winner-preferrers in a generic input ERC, with n®1. But in most
applications, W is much smaller than n®1, as the winner and loser forms
that correspond to an ERC di‰er only in a few respects, and thus most of
the constraints are even. Furthermore, if the loser forms are properly chosen
so that the input ERCs have as few winner-preferrers as possible, then W
might be forced into a constant in certain applications. In that case, the
error-bound (80) for calibrated promotion grows only quadratically in the
number of constraints n, just like the bound n(n®1)/2 for the demotion-
only case.

As there is a total of n constraints, and each ERC must have at least a
loser-preferrer (ERCs that have no loser-preferrers cannot ever trigger any
update and can therefore be ignored), then the largest number W of winner-
preferrers is upper bound by n®1, and the bound (80) becomes (81).
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Fact 5
If the input ERC matrix is consistent, the EDRA (Fig. 5) with any
promotion/demotion re-ranking rule of the form (82) can never loop
back to a current ranking vector that it had previously made a mistake
on in that same run.

Let m be the total number of input ERCs. To simplify the presentation,
let me start by assuming that the input ERC matrix has a unique l per
ERC. The contribution of the ith ERC ai to the current ranking vector
according to this re-ranking rule can thus be summarised with the cor-
responding update vector ai, as in (83): the entry corresponding to the
loser-preferrer is equal to —1; the entries corresponding to winner-preferrers
are set equal to the corresponding promotion amount p>0; all other entries
are 0.

Throughout this section, I assume that the promotion amount p is never
null. I show that the EDRA with the re-ranking rule (82) cannot loop on
consistent input ERC matrices, as stated in Fact 5, repeated below. The
proof is based on a connection between OT-consistency and conic
independence.

Suppose that the initial RVs are all null. The current ranking vector _t

entertained at time t by the EDRA with the re-ranking rule (82) can be
described as in (84), i.e. as a combination of the update vectors, each
multiplied by the number of updates ait triggered by the corresponding ith
ERC in the run considered up to time t. Equation (43), obtained in the dis-
cussion of Pater’s counterexample in §5.3, is a special case of the general
equation (84). Of course, the coe!cients ait are by definition all non-negative.
Thus the identity (84) can be summarised by saying that the current ranking
vector is a conic combination of the m update vectors.

As the current ranking vector is a conic combination of the update vectors,
it is interesting to study the conic geometry of these vectors, i.e. the formal
properties of their conic combinations. Here is a particularly important
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Suppose that a conic combination of these update vectors (88) with some
non-negative coe!cients yields the null vector, namely that conditions
(85a) and (b) hold. Let’s focus on the first component of this conic combi-
nation, as in (89). The first component of the update vectors in the 1st block
is always positive (recall that p>0 by hypothesis). Suppose there are k
vectors in the 1st block. The first component of the remaining m®k update
vectors is always null. In order for the first component of this conic
combination to be zero, the non-negative coe!cients that multiply the
update vectors in the 1st block must all be null, namely a1=…=ak=0.

The update vectors can now be read straightforwardly from (87): the ith
update vector is obtained by looking at the ith column. Recall that the
mapping (83) from ERCs into update vectors replaces a e with a 0 and a w
with the positive quantity p>0. The collection of update vectors can thus
be made a little more explicit, as in (88). (Each update vector can have a
di‰erent value for the promotion amount p. This fact does not play any
role in the reasoning, so I do not encode it explicitly in the notation, and
use the same p for all update vectors.)
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By moving everything to the right-hand side, (91a) can of course be restated
as in (92a), where I have introduced the coe!cients ai=ait¢®ait for all i=1,
…, m. The property (91b), that ait¢ is larger than or equal to ait because time
t¢ follows time t, can then be restated as (92b), that all coe!cients ai are
non-negative. The property (91c), that some coe!cient ait¢ is di‰erent from
the corresponding coe!cient ait because some update has happened between
times t and t¢, can be restated as the property (92c), that at least one of the
coe!cients ai is non-null.

The conditions in (92) say that the null vector can be synthesised as a conic
combination of the update vectors, without the coe!cients a1, …, am all
being null. This contradicts the hypothesis that the update vectors are
conically independent.º

Fact 7
If the update vectors are conically independent, then the EDRA cannot
loop back to a current ranking vector it had previously updated.

Proof. Suppose by contradiction that the EDRA can indeed loop back to
a ranking vector that it had dismissed at a previous time. This means that
it is possible for the algorithm to walk through a learning path with the
properties in (90).

Assumption (90a), that the ranking vectors _t and _t¢ entertained at times
t and t¢ coincide, can be expressed as the identity (91a), using the description
(84) of the current ranking vector in terms of update vectors. Here, ait and
ait¢ are the number of updates triggered by ERC 1 up to time t and t¢
respectively; an analogous interpretation holds for the other coe!cients.
As the number of updates grows with time, assumption (90b), that time t¢
follows time t, thus entails that the coe!cient ait¢ at time t¢ is larger than
or equal to the corresponding coe!cient ait at time t, as stated in (91b).
Furthermore, assumption (90c) entails that some update has happened at
some time between t and t¢, so that at least one of the coe!cients has
increased by at least 1 from time t to time t¢, as stated in (91c).

10 Giorgio Magri

Appendix D: On the number of updates for smallest non-calibrated
promotion

Recall from §7.5 that the aggravated Pater’s ERC matrix for n constraints
is obtained from the corresponding diagonal matrix by adding two w’s to
the right of each l. To illustrate, I give in (93) the matrix corresponding
to n=7 constraints. It has 6=n®1 ERCs; it has a w on every diagonal
entry, followed by an l followed in turn by two more w’s (except for the
last two rows, whose l’s are followed by one and zero w’s respectively).

To conclude the proof of Fact 5, I need to consider the case where the
input ERC matrix contains rows with multiple l’s. The additional di!culty
in this case is that the contribution of the ith ERC to the current ranking
vector depends on the number of currently undominated loser-preferrers,
i.e. it can be di‰erent at di‰erent times, and thus cannot be distilled into
a unique update vector ai, as in (83). But this di!culty can be straight-
forwardly overcome, at the expense of a slightly more cumbersome notation.
Let m be the total number of ERCs. Suppose that the ith ERC has li loser-
preferrers Ck1, …, Ckli. Let C

i

1, …, C
i

2li—1 be all 2
li®1 non-empty subsets

of the set {Ck1, …, Ckli} of loser-preferrers. For every such subset Ci

j, let
ai, j be the update vector defined as follows: the components corresponding
to the loser-preferrers in the subset Ci

j are equal to —1; the components
corresponding to winner-preferrers are equal to p; the remaining components
are equal to 0. Furthermore, let at

i, j be the number of updates triggered by
this ith ERC up to time t, because all and only the loser-preferrers in the
set Ci

j were currently undominated. The current ranking vector can then
be expressed as a conic combination of these update vectors through these
non-negative coe!cients, namely _t=%

m

i=1 %j=12
li

—1 at

i, j ai, j. Again, these
update vectors ai, j are conically independent. I can thus trivially extend
the preceding reasoning.
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Here is how these equations are obtained. The RV q1 of constraint C1 starts
out null. It is only modified when ERC 1 triggers an update, in which case,
it is increased by 1/3, as ERC 1 contains 3 winner-preferrers. In other
words, the final RV q1 of constraint C1 is 1/3 of the total number a1 of
updates triggered by ERC 1, as stated by the first equation in (95).
Analogously, the RV q2 of constraint C2 starts out null, is decreased by 1
every time ERC 1 triggers an update and is increased by 1/3 every time
ERC 2 triggers an update, whereby we get the second equation in (95). The
remaining equations in (95) are obtained analogously.

The input matrix (93) is only consistent with the ranking C1êC2 …êC7.
As the final ranking vector _=(q1, …, q7) entertained by the EDRA at
convergence is consistent with the input matrix of ERCs, it must therefore
satisfy the six strict inequalities q1>q2, …, q6>q7. Consider for instance
the first of these six inequalities, repeated in (96a). Using the first two
equations in (95), this inequality can be rewritten as in (96b), in terms of
the numbers of updates a1 and a2 triggered by ERC 1 and ERC 2 respectively.
If both sides of inequality (96b) are multiplied by the constant 3, we get
the equivalent inequality (96c). As the variables a1, a2, as well as the
coe!cients, are integers, the strict inequality (96c) is equivalent to the loose
inequality (96d), where I have added 1 to the right-hand side.

The convergence Theorem 3 ensures that after a finite number of errors
the EDRA will converge to a final ranking vector consistent with the input
ERC matrix, and learning will cease. Yet the theorem does not provide any
estimate of the number of errors made before convergence. This section
shows that this number grows exponentially with the number n of constraints,
as anticipated in §7.5.

For concreteness, suppose the input matrix is the aggravated Pater’s
matrix (93), corresponding to n=7 constraints. Let _=(q1, …, q7) be the
final ranking vector the EDRA has converged on. Let a1, …, a6 be the total
number of updates triggered by each of the six input ERCs in the run
considered. The final RVs q1, …, q7 can be expressed in terms of the
coe!cients a1, …, a6, as in (95).

(94) Decrease the RV of the loser-preferrer by 1.a.
Increase the RV of each of the w winner-preferrers by l/w.b.
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The reasoning just developed in the concrete case of the aggravated Pater’s
matrix in (93) corresponding to n=7 constraints extends to the case of an
arbitrary number n of constraints. I can always construct an optimisation
problem akin to (98) that provides a bound on the best-case number of
updates performed by the EDRA on that aggravated Pater’s matrix. The
solution of the optimisation problems thus obtained for the aggravated
Pater’s matrices corresponding to various choices of the number n of
constraints are reported in Table Ia. (These values were computed using
the Matlab file MinimumRunningTime.m. It takes as input the aggravated
Pater’s ERC matrix corresponding to n constraints, for any n. It constructs
the corresponding optimisation problem akin to (98), generalising the
reasoning just presented here in the special case of the aggravated Pater’s
comparative tableaux corresponding to n=7 constraints, and it solves this

The total number of updates performed by the EDRA in the run considered
coincides with the sum a1+…+a6 of the number a1 of updates triggered
by ERC 1 plus the number a2 of updates triggered by ERC 2 and so on
down to the number a6 of updates triggered by ERC 6. Furthermore, these
non-negative numbers a1, …, a6 must satisfy the inequalities in (97). Thus
the number of updates performed by the EDRA to reach convergence
cannot be smaller than the solution of the optimisation problem (98). In
other words, the solution of this optimisation problem provides a bound
on the best-case number of updates performed by the EDRA on the input
matrix (93). As (98) is a linear program, it can be easily solved with standard
linear programming techniques.

By reasoning this way, I conclude that the six strict inequalities q1>q2, …,
q6>q7 are equivalent to the six inequalities in (97) in terms of the number
of updates a1, …, a6 triggered by ERC 1 through ERC 6 respectively.
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optimisation problem using Matlab built-in subroutines for linear pro-
gramming. Aggravated Pater’s comparative matrices for n=5, 7, 9, 11, 13,
15 constraints are provided in the file AggravatedPaterMatrices.txt. Both
files are available here.)

Let me close by pointing out the close parallelism between the reasoning
presented in this section and the explanation for Pater’s (2008) counter-
example against the GLA’s convergence provided in §5.3. The equations
in (95) are analogous to those in (44) in §5.3, and both are a special case of
the vector equation (84) in Appendix C. The inequalities in (97) are analogous
to those in (45) in §5.3. Finally, showing that there are no coe!cient a’s
that solve the inequalities in (97) and add up to a small number corresponds
to the final step of the explanation of Pater’s counterexample, which showed
that there are no coe!cient a’s that solve the inequalities (45).

Appendix A: Extension to arbitrary initial ranking vectors
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Throughout the paper, I have investigated convergence in the case where
the initial RVs Ú1init, …, Úninit were all identical, say all equal to zero (the
actual value does not really matter). In this appendix, I show how to obtain
error bounds for demotion-only and calibrated re-ranking rules in the case
of an arbitrary initial ranking vector _init=(Ú1init, …, Úninit). It turns out that
the properties of the initial ranking vector that are relevant for the error-
bounds can be extracted through the quantity B(_init) defined in (71), namely
the sum of the di‰erence between each initial RV Úkinit and the smallest RV
minh=1Úhinit. Intuitively, this quantity measures how scattered the initial
RVs are. In fact, B(_init) is null for the case of identical initial RVs, small
for RVs close to each other and large if there are some RVs that are very
small and some other RVs that are very large.

1The crucial invariant
Tesar & Smolensky’s (generalised) Fact 2 from §6.2 provides an invariant
for the current RVs entertained by the EDRA in the case of null initial
RVs. It says that the current RVs can never become much smaller than
zero, as long as the EDRA only demotes the loser-preferring constraints
that need to be demoted, i.e. the undominated ones. The reasoning trivially
extends to arbitrary initial ranking values, yielding the following further
generalisation of Fact 2: the current ranking values can never become much
smaller than the smallest initial ranking value.
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In §2.3, I defined OT-consistency between an ERC and a ranking vector
as in (14), repeated below in (99). This appendix qualifies this definition
with some remarks.

Appendix E: On the notion of OT-consistency for ranking vectors

(99) A ranking vector is (OT-)consistent with an ERC provided that each
of its refinements is consistent with that ERC, according to the original
notion of consistency (9).

T&S introduce a variant of the standard OT framework, replacing total
rankings with stratified hierarchies, which can assign multiple constraints
to a single stratum. Stratified hierarchies are thus equivalent to ranking
vectors, which can assign the same ranking values to multiple constraints.
Yet the notion of consistency assumed by T&S is very di‰erent from the
one in (99), as T&S allow for the tie among constraints assigned to the same
stratum to be resolved additively. Without getting into the details of this
alternative definition of OT-consistency, let me illustrate the di‰erence
with an example. Consider the ERC (100a) together with the ranking vector
(100b). Because of the two identical ranking values q1=q2=2, this ranking
vector would represent a stratified hierarchy that assigns both C1 and C2

to the top stratum, with C3 ranked underneath.

1 Comparison with Tesar & Smolensky’s (1998) notion of OT-
consistency for stratified hierarchies

(100) C3C1 C2

( )12 2_=
b.a. C2

ERC

C1

w l[

C3

w ]

as the l and the w of the two equally highest-ranked constraints C1 and C2

‘cancel out’ because of the additive interaction between equally
rankedconstraints. But the ranking vector (100b) is not consistent with the
ERC (100a) according to the definition (99), since the ranking vector (100b)
admits the refinement C2êC1êC3, which is not consistent with the ERC
(100a). As the paper assumes the classical notion of OT-consistency (99),
it is framed squarely within standard OT. Contrary to what suggested by
T&S, there is no need to step outside of the standard OT framework for
algorithmic purposes.
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A reviewer worries that the notion of OT consistency (99), which requires
consistency to hold for all refinements, might not be e!ciently computable.
For instance, if all ranking values are identical, then don’t we have to check
consistency for all n! refinements, causing a complexity explosion? That is
not the case. Here is a way to see this. Let W(a) and L(a) be the sets of
winner- and loser-preferring constraints relative to an ERC a. It turns out
that a ranking vector _=(q1, …, qn) is consistent with an ERC a according
to condition (99) provided the following strict inequality (101) holds, which
says that the largest ranking value over winner-preferrers is larger than the
largest ranking value over loser-preferrers.

Computational e!ciency2

Furthermore, the inequality (101) can be checked in n steps (where n is the
number of constraints). In the end, the consistency condition (99) can thus
be e!ciently computed.

Let me explain why the consistency condition (99) is equivalent to the
strict inequality (101). Suppose that the latter inequality (101) holds. Every
refinement of this ranking vector will then rank the winner-preferrer that
attains the maximum maxkÊW(a) Úk above the loser-preferrer that attains
the maximum maxhÊL(a) Úh. In other words, it will rank this winner-preferrer
above every loser-preferrer. Every refinement is thus consistent with the
ERC a, and condition (99) holds. Vice versa, suppose that inequality (101)
does not hold, i.e. the largest ranking value over winner-preferrers is at
most as large as the largest ranking value over loser-preferrers. Thus the
current ranking vector admits a refinement that ranks the loser-preferrer
that attains the maximum maxhÊL(a) Úh above the winner-preferrer that
attains the maximum maxkÊW(a) Úk. In other words, it admits a refinement
that ranks a loser-preferrer above every winner-preferrer. This refinement
is thus not consistent with the ERC a, and condition (99) fails.

Finally, let me explain why inequality (101) can be checked in n steps
(where n is the number of constraints). Posit W=—≥ and L=—≥. Scan
through the current ranking values, for k=1, 2, … n. If Úk is larger than

(101)
kÊW(a)
maxÚk

hÊL(a)
maxÚh>

a1®a3+a4>0

Consistency with Pater’s ERC matrix3
In §5.2, I considered Pater’s (2008) ERC matrix (42). This ERC matrix
requires the ranking C1êC2êC3êC4êC5. Thus, a ranking vector  _=(q1,
q2, q3, q4, q5) is OT-consistent with this ERC matrix according to condition
(99), provided it admits only that ranking as a renement. This means in
turn that the ranking values must satisfy the four strict inequalities q1>q2,
q2>q3, q3>q4 and q4>q5. In §5.3, I showed that these four strict inequalities
can be rewritten as in (45) in terms of the number of updates a1, …, a4,
triggered by the four ERCs in Pater’s ERC matrix. Furthermore, I have
claimed that these inequalities (45) admit no solution. To see this, rewrite
these inequalities (45) as in (102), by moving everything on one side.

If we sum all four inequalities together, we obtain inequality (103a). If we
sum together only the second and third inequalities in (102), we obtain
inequality (103b).

(103) a.
—a1+a3®a4>0b.

As the two inequalities thus derived in (103) are inconsistent, the four
original inequalities (102) admit no solution.

additional reference

Bertsekas, Dimitri P., Angelia Nedic & Asuman E. Ozdaglar (2003). Convex analysis
and optimization. Nashua, NH: Athena Scientific.

According to the alternative definition of OT-consistency introduced by
T&S, the ranking vector (100b) is indeed consistent with the ERC (100a),

W (larger than L) and Ck is winner-preferring (loser-preferring), then set
W=Úk (set L=Úk). After having scanned all ranking values, condition (101)
holds i‰ W>L. This process only takes n steps.

http://journals.cambridge.org/sup_S0952675712000127sup001
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(75)

qk

Úkinit

h=1,…,n
Úhinit—(k®1)min

Theorem 1 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the demotion-only re-ranking rule (73) run
on a consistent input ERC matrix corresponding to n constraints
starting from an arbitrary initial ranking vector _init=(Ú1init, …, Úninit)
can perform at most B(_init)+n(n®1)/2 errors before converging.

(77)%
n

k=1h=1,…,n
Úhinitmin®(k®1)(=n%
n

k=1
qk})
h=1,…,n
Úhinit®min
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We have thus proven the following extension of Theorem 1 from null to
arbitrary initial RVs. Recall that, if the initial RVs are all identical (say, all
null), then B(_init)=0. In this case, the bound B(_init)+n(n®1)/2 provided
by the following theorem thus reduces to the bound n(n®1)/2 already
obtained in §3.

The bound B(_init)+n(n®1)/2 on the worst-case number of errors is tight,
as shown by the same example in (26) in the paper with the ERCs fed in
the fixed order a1£a2£a3 and with the initial ranking vector _init=(4,3,
2,1).

3Calibrated re-ranking rules
Consider next the calibrated demotion/promotion re-ranking rule (51) from
§6, repeated in (76).

The invariant (72) ensures that the sum of the current RVs can be lower
bounded, as in (77).

As seen in §6.3, the sum of the current RVs is decreased by at least 1/n with
every update. After T updates, it has thus decreased by at least T/n from
the sum of the initial RVs, as stated in (78).

1
2
n(n®1)

(76)Decrease the RV of each of the l undominated loser-preferrers by 1.a.
Increase the RV of each of the w winner-preferrers by p=l/(w+1).b.
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conic property. The update vectors are called conically independent
provided that there are no coe!cients a1, …, am that satisfy the three
conditions in (85); see Bertsekas et al. (2003). In other words, it is not
possible to synthesise the null vector as a conic combination of the update
vectors, unless of course the coe!cients are all set equal to zero.

Fact 6 below says that OT-consistency of the input ERC matrix (with a
unique l per row) entails conic independence of the corresponding update
vectors, and Fact 7 says that conic independence of the update vectors in
turn entails that the EDRA cannot loop. Fact 5 thus follows from the two
auxiliary Facts 6 and 7. The assumption that the input ERCs have a unique
l per row can be easily dropped, as discussed at the end of this section.

Fact 6
Consider an input ERC matrix that has a unique l per row. If it is
consistent, then the corresponding update vectors defined in (83) are
conically independent.

Proof. Recall from Fact 1 that any consistent ERC matrix has the shape in
(22) (repeated in (86)), modulo reordering of its rows and its columns and
relabelling of the constraints. (86) has a top block of rows whose first entry
is w, followed by a second block of rows whose first entry is e and whose
second entry is w, and so on.

2Giorgio Magri

Fact 2 (further generalised)
Assume that the input ERC matrix is consistent with a ranking.
Without loss of generality, assume that this ranking is C1êC1ê…êCn.
Let q1, …, qn be the current RVs entertained by an EDRA in a generic
run on those input ERCs, up to a generic time, starting from arbitrary
initial RVs Ú1init, …, Úninit. Assume that the re-ranking rule used by the
EDRA demotes by 1 only the currently undominated loser-preferrers
(no assumptions are made on constraint promotion). The current RVs
thus satisfy condition (72) for every k=1, …, n. That is, the RV qk of
the constraint Ck assigned to the kth stratum (with the 1st stratum
being the top one) never drops by more than (k®1) below the smallest
initial RV minh=1,…,nÚhinit.

(72)qk}
h=1,…,n
Úhinit®(k®1)min

(73)Decrease the RV of each undominated loser-preferrer by 1.a.
Do nothing to the current RV of the other constraints.b.

2Demotion-only re-ranking rules
Consider the demotion-only re-ranking rule (17) from §3, repeated in (73).

At least one constraint is demoted at each update. Hence, the total number
T of updates is at most the sum of the number of times C1 has been demoted,
and the number of times C2 has been demoted, etc, as stated in (74a). Each
time constraint Ck is demoted, it is demoted by 1, and it is never promoted.
Hence the number of times that constraint Ck has been demoted up to the
time considered is equal to the distance Úkinit®Úk between its initial RV Úkinit
and its current RV Úk, as stated in (74b). The inequality (72) says that Úk
sits between Úkinit and minh=1,…,nÚhinit®(k®1), as depicted in (75). Thus the
distance between the latter two points upper bounds the distance Úkinit®Úk,
as stated in (74c). Finally, step (e) follows from definition (71) of the constant
B(_init) and from the identity %
n

k=1(k®1)=n(n®1)/2.

Theorem 2 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the calibrated promotion/demotion re-
ranking rule (76) run on a consistent input ERC matrix corresponding
to n constraints starting from an arbitrary initial ranking vector
_init=(Ú1init, …, Úninit) can perform at most nB(_init)+n2(n®1)/2 errors
before converging.
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In the case of an arbitrary initial ranking vector as well, the error-bound
for the calibrated case is worse by a factor of n than the error-bound for
the demotion-only case.

Combining the two inequalities (77) and (78), I conclude that the number
T of updates must be smaller than nB(_init)+n2(n®1)/2. We have thus
proven the following extension of Theorem 2 from null to arbitrary initial
RVs.

In §6, I looked for concreteness at a specific calibrated re-ranking rule,
namely the one in (51) (= (76)), which demotes each of the l undominated
loser-preferrers by 1 and promotes each of the w winner-preferrers by
l/(w+1). Here I look at the generic calibrated re-ranking rule in (79).

Appendix B: Convergence of a generic calibrated re-ranking rule

This re-ranking rule is calibrated as long as d>0. Indeed, the distance of
the promotion amount p from the calibration threshold l/w is controlled by
the constant d: the larger d, the smaller the promotion amount p is with
respect to the calibration threshold. In particular, the case d=1 corresponds
to re-ranking rule (51), and the case where d goes to infinity corresponds
to the demotion-only case p=0 considered in §3.
The reasoning for the case d=1 presented in §6 trivially extends to an
arbitrary d>0, yielding the following generalisation of Theorem 2 of §6.

Theorem 2 (extended to arbitrary calibrated promotion amounts)
An EDRA with the general calibrated re-ranking rule (79) run on a
consistent input ERC matrix corresponding to n constraints starting
from null initial RVs can perform at most the number of mistakes in
(80) before converging, where W is the largest number of winner-
preferrers over all input ERCs.
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Appendix C: Why EDRAs cannot loop
Consider the general re-ranking rule in (82).

Proof. With every update, the sum of the current RVs is decreased by l. It
is furthermore increased by wl/(w+d), as each of the w winner-preferrers
is promoted by l/(w+d). In the end, the sum of the current RVs is thus
decreased by l®(wl/(w+d))=dl/(w+d) . As the number l of undominated
loser-preferrers is at least 1 and the number w of winner-preferrers is at
most W, I conclude that the sum of the current RVs is decreased by at least
T(d/(W+d)) after T updates. On the other hand, the sum of the current
RVs starts at zero and can never become smaller than —n(n®1)/2, by the
generalised Fact 2 stated in §6.2. In conclusion, the number of updates T
in the case of the re-ranking rule (79) must satisfy the inequality
T(d/(W+d)){n(n®1)/2, which yields the error-bound in (80).º

The bound (81) for d=1 gives back the bound n2(n®1)/2 of the original
Theorem 2 in §6. As d increases and the promotion amount p=l/(w+d)
thus gets smaller relative to the calibration threshold l/w, the bound (81)
on the number of mistakes decreases, ensuring faster convergence. In the
limit of d going to infinity, the coe!cient (n®1+d)/d goes to 1, and the
bound (81) thus becomes the bound n(n®1)/2 already obtained in Theorem
1 of §3 for the case with null p=0 promotion amount.
Note that the cubic rather than quadratic growth in n of the bound (81)
comes from the fact that I have upper bounded the largest number W of
winner-preferrers in a generic input ERC, with n®1. But in most
applications, W is much smaller than n®1, as the winner and loser forms
that correspond to an ERC di‰er only in a few respects, and thus most of
the constraints are even. Furthermore, if the loser forms are properly chosen
so that the input ERCs have as few winner-preferrers as possible, then W
might be forced into a constant in certain applications. In that case, the
error-bound (80) for calibrated promotion grows only quadratically in the
number of constraints n, just like the bound n(n®1)/2 for the demotion-
only case.

As there is a total of n constraints, and each ERC must have at least a
loser-preferrer (ERCs that have no loser-preferrers cannot ever trigger any
update and can therefore be ignored), then the largest number W of winner-
preferrers is upper bound by n®1, and the bound (80) becomes (81).
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Fact 5
If the input ERC matrix is consistent, the EDRA (Fig. 5) with any
promotion/demotion re-ranking rule of the form (82) can never loop
back to a current ranking vector that it had previously made a mistake
on in that same run.

Let m be the total number of input ERCs. To simplify the presentation,
let me start by assuming that the input ERC matrix has a unique l per
ERC. The contribution of the ith ERC ai to the current ranking vector
according to this re-ranking rule can thus be summarised with the cor-
responding update vector ai, as in (83): the entry corresponding to the
loser-preferrer is equal to —1; the entries corresponding to winner-preferrers
are set equal to the corresponding promotion amount p>0; all other entries
are 0.

Throughout this section, I assume that the promotion amount p is never
null. I show that the EDRA with the re-ranking rule (82) cannot loop on
consistent input ERC matrices, as stated in Fact 5, repeated below. The
proof is based on a connection between OT-consistency and conic
independence.

Suppose that the initial RVs are all null. The current ranking vector _t

entertained at time t by the EDRA with the re-ranking rule (82) can be
described as in (84), i.e. as a combination of the update vectors, each
multiplied by the number of updates ait triggered by the corresponding ith
ERC in the run considered up to time t. Equation (43), obtained in the dis-
cussion of Pater’s counterexample in §5.3, is a special case of the general
equation (84). Of course, the coe!cients ait are by definition all non-negative.
Thus the identity (84) can be summarised by saying that the current ranking
vector is a conic combination of the m update vectors.

As the current ranking vector is a conic combination of the update vectors,
it is interesting to study the conic geometry of these vectors, i.e. the formal
properties of their conic combinations. Here is a particularly important
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Suppose that a conic combination of these update vectors (88) with some
non-negative coe!cients yields the null vector, namely that conditions
(85a) and (b) hold. Let’s focus on the first component of this conic combi-
nation, as in (89). The first component of the update vectors in the 1st block
is always positive (recall that p>0 by hypothesis). Suppose there are k
vectors in the 1st block. The first component of the remaining m®k update
vectors is always null. In order for the first component of this conic
combination to be zero, the non-negative coe!cients that multiply the
update vectors in the 1st block must all be null, namely a1=…=ak=0.

The update vectors can now be read straightforwardly from (87): the ith
update vector is obtained by looking at the ith column. Recall that the
mapping (83) from ERCs into update vectors replaces a e with a 0 and a w
with the positive quantity p>0. The collection of update vectors can thus
be made a little more explicit, as in (88). (Each update vector can have a
di‰erent value for the promotion amount p. This fact does not play any
role in the reasoning, so I do not encode it explicitly in the notation, and
use the same p for all update vectors.)
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By moving everything to the right-hand side, (91a) can of course be restated
as in (92a), where I have introduced the coe!cients ai=ait¢®ait for all i=1,
…, m. The property (91b), that ait¢ is larger than or equal to ait because time
t¢ follows time t, can then be restated as (92b), that all coe!cients ai are
non-negative. The property (91c), that some coe!cient ait¢ is di‰erent from
the corresponding coe!cient ait because some update has happened between
times t and t¢, can be restated as the property (92c), that at least one of the
coe!cients ai is non-null.

The conditions in (92) say that the null vector can be synthesised as a conic
combination of the update vectors, without the coe!cients a1, …, am all
being null. This contradicts the hypothesis that the update vectors are
conically independent.º

Fact 7
If the update vectors are conically independent, then the EDRA cannot
loop back to a current ranking vector it had previously updated.

Proof. Suppose by contradiction that the EDRA can indeed loop back to
a ranking vector that it had dismissed at a previous time. This means that
it is possible for the algorithm to walk through a learning path with the
properties in (90).

Assumption (90a), that the ranking vectors _t and _t¢ entertained at times
t and t¢ coincide, can be expressed as the identity (91a), using the description
(84) of the current ranking vector in terms of update vectors. Here, ait and
ait¢ are the number of updates triggered by ERC 1 up to time t and t¢
respectively; an analogous interpretation holds for the other coe!cients.
As the number of updates grows with time, assumption (90b), that time t¢
follows time t, thus entails that the coe!cient ait¢ at time t¢ is larger than
or equal to the corresponding coe!cient ait at time t, as stated in (91b).
Furthermore, assumption (90c) entails that some update has happened at
some time between t and t¢, so that at least one of the coe!cients has
increased by at least 1 from time t to time t¢, as stated in (91c).
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Appendix D: On the number of updates for smallest non-calibrated
promotion
Recall from §7.5 that the aggravated Pater’s ERC matrix for n constraints
is obtained from the corresponding diagonal matrix by adding two w’s to
the right of each l. To illustrate, I give in (93) the matrix corresponding
to n=7 constraints. It has 6=n®1 ERCs; it has a w on every diagonal
entry, followed by an l followed in turn by two more w’s (except for the
last two rows, whose l’s are followed by one and zero w’s respectively).

To conclude the proof of Fact 5, I need to consider the case where the
input ERC matrix contains rows with multiple l’s. The additional di!culty
in this case is that the contribution of the ith ERC to the current ranking
vector depends on the number of currently undominated loser-preferrers,
i.e. it can be di‰erent at di‰erent times, and thus cannot be distilled into
a unique update vector ai, as in (83). But this di!culty can be straight-
forwardly overcome, at the expense of a slightly more cumbersome notation.
Let m be the total number of ERCs. Suppose that the ith ERC has li loser-
preferrers Ck1, …, Ckli. Let C
i

1, …, C
i

2li—1 be all 2
li®1 non-empty subsets
of the set {Ck1, …, Ckli} of loser-preferrers. For every such subset Cij, let
ai, j be the update vector defined as follows: the components corresponding
to the loser-preferrers in the subset Cij are equal to —1; the components
corresponding to winner-preferrers are equal to p; the remaining components
are equal to 0. Furthermore, let ati, j be the number of updates triggered by
this ith ERC up to time t, because all and only the loser-preferrers in the
set Cij were currently undominated. The current ranking vector can then
be expressed as a conic combination of these update vectors through these
non-negative coe!cients, namely _t=%
m

i=1 %j=12
li

—1 ati, j ai, j. Again, these
update vectors ai, j are conically independent. I can thus trivially extend
the preceding reasoning.
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Here is how these equations are obtained. The RV q1 of constraint C1 starts
out null. It is only modified when ERC 1 triggers an update, in which case,
it is increased by 1/3, as ERC 1 contains 3 winner-preferrers. In other
words, the final RV q1 of constraint C1 is 1/3 of the total number a1 of
updates triggered by ERC 1, as stated by the first equation in (95).
Analogously, the RV q2 of constraint C2 starts out null, is decreased by 1
every time ERC 1 triggers an update and is increased by 1/3 every time
ERC 2 triggers an update, whereby we get the second equation in (95). The
remaining equations in (95) are obtained analogously.

The input matrix (93) is only consistent with the ranking C1êC2 …êC7.
As the final ranking vector _=(q1, …, q7) entertained by the EDRA at
convergence is consistent with the input matrix of ERCs, it must therefore
satisfy the six strict inequalities q1>q2, …, q6>q7. Consider for instance
the first of these six inequalities, repeated in (96a). Using the first two
equations in (95), this inequality can be rewritten as in (96b), in terms of
the numbers of updates a1 and a2 triggered by ERC 1 and ERC 2 respectively.
If both sides of inequality (96b) are multiplied by the constant 3, we get
the equivalent inequality (96c). As the variables a1, a2, as well as the
coe!cients, are integers, the strict inequality (96c) is equivalent to the loose
inequality (96d), where I have added 1 to the right-hand side.

The convergence Theorem 3 ensures that after a finite number of errors
the EDRA will converge to a final ranking vector consistent with the input
ERC matrix, and learning will cease. Yet the theorem does not provide any
estimate of the number of errors made before convergence. This section
shows that this number grows exponentially with the number n of constraints,
as anticipated in §7.5.

For concreteness, suppose the input matrix is the aggravated Pater’s
matrix (93), corresponding to n=7 constraints. Let _=(q1, …, q7) be the
final ranking vector the EDRA has converged on. Let a1, …, a6 be the total
number of updates triggered by each of the six input ERCs in the run
considered. The final RVs q1, …, q7 can be expressed in terms of the
coe!cients a1, …, a6, as in (95).

(94) Decrease the RV of the loser-preferrer by 1.a.
Increase the RV of each of the w winner-preferrers by l/w.b.
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The reasoning just developed in the concrete case of the aggravated Pater’s
matrix in (93) corresponding to n=7 constraints extends to the case of an
arbitrary number n of constraints. I can always construct an optimisation
problem akin to (98) that provides a bound on the best-case number of
updates performed by the EDRA on that aggravated Pater’s matrix. The
solution of the optimisation problems thus obtained for the aggravated
Pater’s matrices corresponding to various choices of the number n of
constraints are reported in Table Ia. (These values were computed using
the Matlab file MinimumRunningTime.m. It takes as input the aggravated
Pater’s ERC matrix corresponding to n constraints, for any n. It constructs
the corresponding optimisation problem akin to (98), generalising the
reasoning just presented here in the special case of the aggravated Pater’s
comparative tableaux corresponding to n=7 constraints, and it solves this

The total number of updates performed by the EDRA in the run considered
coincides with the sum a1+…+a6 of the number a1 of updates triggered
by ERC 1 plus the number a2 of updates triggered by ERC 2 and so on
down to the number a6 of updates triggered by ERC 6. Furthermore, these
non-negative numbers a1, …, a6 must satisfy the inequalities in (97). Thus
the number of updates performed by the EDRA to reach convergence
cannot be smaller than the solution of the optimisation problem (98). In
other words, the solution of this optimisation problem provides a bound
on the best-case number of updates performed by the EDRA on the input
matrix (93). As (98) is a linear program, it can be easily solved with standard
linear programming techniques.

By reasoning this way, I conclude that the six strict inequalities q1>q2, …,
q6>q7 are equivalent to the six inequalities in (97) in terms of the number
of updates a1, …, a6 triggered by ERC 1 through ERC 6 respectively.
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optimisation problem using Matlab built-in subroutines for linear pro-
gramming. Aggravated Pater’s comparative matrices for n=5, 7, 9, 11, 13,
15 constraints are provided in the file AggravatedPaterMatrices.txt. Both
files are available here.)

Let me close by pointing out the close parallelism between the reasoning
presented in this section and the explanation for Pater’s (2008) counter-
example against the GLA’s convergence provided in §5.3. The equations
in (95) are analogous to those in (44) in §5.3, and both are a special case of
the vector equation (84) in Appendix C. The inequalities in (97) are analogous
to those in (45) in §5.3. Finally, showing that there are no coe!cient a’s
that solve the inequalities in (97) and add up to a small number corresponds
to the final step of the explanation of Pater’s counterexample, which showed
that there are no coe!cient a’s that solve the inequalities (45).

Appendix A: Extension to arbitrary initial ranking vectors
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Throughout the paper, I have investigated convergence in the case where
the initial RVs Ú1init, …, Úninit were all identical, say all equal to zero (the
actual value does not really matter). In this appendix, I show how to obtain
error bounds for demotion-only and calibrated re-ranking rules in the case
of an arbitrary initial ranking vector _init=(Ú1init, …, Úninit). It turns out that
the properties of the initial ranking vector that are relevant for the error-
bounds can be extracted through the quantity B(_init) defined in (71), namely
the sum of the di‰erence between each initial RV Úkinit and the smallest RV
minh=1Úhinit. Intuitively, this quantity measures how scattered the initial
RVs are. In fact, B(_init) is null for the case of identical initial RVs, small
for RVs close to each other and large if there are some RVs that are very
small and some other RVs that are very large.

1The crucial invariant
Tesar & Smolensky’s (generalised) Fact 2 from §6.2 provides an invariant
for the current RVs entertained by the EDRA in the case of null initial
RVs. It says that the current RVs can never become much smaller than
zero, as long as the EDRA only demotes the loser-preferring constraints
that need to be demoted, i.e. the undominated ones. The reasoning trivially
extends to arbitrary initial ranking values, yielding the following further
generalisation of Fact 2: the current ranking values can never become much
smaller than the smallest initial ranking value.

14 Giorgio Magri

In §2.3, I defined OT-consistency between an ERC and a ranking vector
as in (14), repeated below in (99). This appendix qualifies this definition
with some remarks.

Appendix E: On the notion of OT-consistency for ranking vectors

(99) A ranking vector is (OT-)consistent with an ERC provided that each
of its refinements is consistent with that ERC, according to the original
notion of consistency (9).

T&S introduce a variant of the standard OT framework, replacing total
rankings with stratified hierarchies, which can assign multiple constraints
to a single stratum. Stratified hierarchies are thus equivalent to ranking
vectors, which can assign the same ranking values to multiple constraints.
Yet the notion of consistency assumed by T&S is very di‰erent from the
one in (99), as T&S allow for the tie among constraints assigned to the same
stratum to be resolved additively. Without getting into the details of this
alternative definition of OT-consistency, let me illustrate the di‰erence
with an example. Consider the ERC (100a) together with the ranking vector
(100b). Because of the two identical ranking values q1=q2=2, this ranking
vector would represent a stratified hierarchy that assigns both C1 and C2

to the top stratum, with C3 ranked underneath.

1 Comparison with Tesar & Smolensky’s (1998) notion of OT-
consistency for stratified hierarchies

(100) C3C1 C2

( )12 2_=
b.a. C2

ERC

C1

w l[

C3

w ]

as the l and the w of the two equally highest-ranked constraints C1 and C2

‘cancel out’ because of the additive interaction between equally
rankedconstraints. But the ranking vector (100b) is not consistent with the
ERC (100a) according to the definition (99), since the ranking vector (100b)
admits the refinement C2êC1êC3, which is not consistent with the ERC
(100a). As the paper assumes the classical notion of OT-consistency (99),
it is framed squarely within standard OT. Contrary to what suggested by
T&S, there is no need to step outside of the standard OT framework for
algorithmic purposes.
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A reviewer worries that the notion of OT consistency (99), which requires
consistency to hold for all refinements, might not be e!ciently computable.
For instance, if all ranking values are identical, then don’t we have to check
consistency for all n! refinements, causing a complexity explosion? That is
not the case. Here is a way to see this. Let W(a) and L(a) be the sets of
winner- and loser-preferring constraints relative to an ERC a. It turns out
that a ranking vector _=(q1, …, qn) is consistent with an ERC a according
to condition (99) provided the following strict inequality (101) holds, which
says that the largest ranking value over winner-preferrers is larger than the
largest ranking value over loser-preferrers.

Computational e!ciency2

Furthermore, the inequality (101) can be checked in n steps (where n is the
number of constraints). In the end, the consistency condition (99) can thus
be e!ciently computed.

Let me explain why the consistency condition (99) is equivalent to the
strict inequality (101). Suppose that the latter inequality (101) holds. Every
refinement of this ranking vector will then rank the winner-preferrer that
attains the maximum maxkÊW(a) Úk above the loser-preferrer that attains
the maximum maxhÊL(a) Úh. In other words, it will rank this winner-preferrer
above every loser-preferrer. Every refinement is thus consistent with the
ERC a, and condition (99) holds. Vice versa, suppose that inequality (101)
does not hold, i.e. the largest ranking value over winner-preferrers is at
most as large as the largest ranking value over loser-preferrers. Thus the
current ranking vector admits a refinement that ranks the loser-preferrer
that attains the maximum maxhÊL(a) Úh above the winner-preferrer that
attains the maximum maxkÊW(a) Úk. In other words, it admits a refinement
that ranks a loser-preferrer above every winner-preferrer. This refinement
is thus not consistent with the ERC a, and condition (99) fails.

Finally, let me explain why inequality (101) can be checked in n steps
(where n is the number of constraints). Posit W=—≥ and L=—≥. Scan
through the current ranking values, for k=1, 2, … n. If Úk is larger than

(101)
kÊW(a)
maxÚk

hÊL(a)
maxÚh>

a1®a3+a4>0

Consistency with Pater’s ERC matrix3
In §5.2, I considered Pater’s (2008) ERC matrix (42). This ERC matrix
requires the ranking C1êC2êC3êC4êC5. Thus, a ranking vector  _=(q1,
q2, q3, q4, q5) is OT-consistent with this ERC matrix according to condition
(99), provided it admits only that ranking as a renement. This means in
turn that the ranking values must satisfy the four strict inequalities q1>q2,
q2>q3, q3>q4 and q4>q5. In §5.3, I showed that these four strict inequalities
can be rewritten as in (45) in terms of the number of updates a1, …, a4,
triggered by the four ERCs in Pater’s ERC matrix. Furthermore, I have
claimed that these inequalities (45) admit no solution. To see this, rewrite
these inequalities (45) as in (102), by moving everything on one side.

If we sum all four inequalities together, we obtain inequality (103a). If we
sum together only the second and third inequalities in (102), we obtain
inequality (103b).

(103) a.
—a1+a3®a4>0b.

As the two inequalities thus derived in (103) are inconsistent, the four
original inequalities (102) admit no solution.

additional reference

Bertsekas, Dimitri P., Angelia Nedic & Asuman E. Ozdaglar (2003). Convex analysis
and optimization. Nashua, NH: Athena Scientific.

According to the alternative definition of OT-consistency introduced by
T&S, the ranking vector (100b) is indeed consistent with the ERC (100a),

W (larger than L) and Ck is winner-preferring (loser-preferring), then set
W=Úk (set L=Úk). After having scanned all ranking values, condition (101)
holds i‰ W>L. This process only takes n steps.
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(75)

qk

Úkinit

h=1,…,n
Úhinit—(k®1)min

Theorem 1 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the demotion-only re-ranking rule (73) run
on a consistent input ERC matrix corresponding to n constraints
starting from an arbitrary initial ranking vector _init=(Ú1init, …, Úninit)
can perform at most B(_init)+n(n®1)/2 errors before converging.

(77)%
n

k=1h=1,…,n
Úhinitmin®(k®1)(=n%
n

k=1
qk})
h=1,…,n
Úhinit®min
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We have thus proven the following extension of Theorem 1 from null to
arbitrary initial RVs. Recall that, if the initial RVs are all identical (say, all
null), then B(_init)=0. In this case, the bound B(_init)+n(n®1)/2 provided
by the following theorem thus reduces to the bound n(n®1)/2 already
obtained in §3.

The bound B(_init)+n(n®1)/2 on the worst-case number of errors is tight,
as shown by the same example in (26) in the paper with the ERCs fed in
the fixed order a1£a2£a3 and with the initial ranking vector _init=(4,3,
2,1).

3Calibrated re-ranking rules
Consider next the calibrated demotion/promotion re-ranking rule (51) from
§6, repeated in (76).

The invariant (72) ensures that the sum of the current RVs can be lower
bounded, as in (77).

As seen in §6.3, the sum of the current RVs is decreased by at least 1/n with
every update. After T updates, it has thus decreased by at least T/n from
the sum of the initial RVs, as stated in (78).

1
2
n(n®1)

(76)Decrease the RV of each of the l undominated loser-preferrers by 1.a.
Increase the RV of each of the w winner-preferrers by p=l/(w+1).b.
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conic property. The update vectors are called conically independent
provided that there are no coe!cients a1, …, am that satisfy the three
conditions in (85); see Bertsekas et al. (2003). In other words, it is not
possible to synthesise the null vector as a conic combination of the update
vectors, unless of course the coe!cients are all set equal to zero.

Fact 6 below says that OT-consistency of the input ERC matrix (with a
unique l per row) entails conic independence of the corresponding update
vectors, and Fact 7 says that conic independence of the update vectors in
turn entails that the EDRA cannot loop. Fact 5 thus follows from the two
auxiliary Facts 6 and 7. The assumption that the input ERCs have a unique
l per row can be easily dropped, as discussed at the end of this section.

Fact 6
Consider an input ERC matrix that has a unique l per row. If it is
consistent, then the corresponding update vectors defined in (83) are
conically independent.

Proof. Recall from Fact 1 that any consistent ERC matrix has the shape in
(22) (repeated in (86)), modulo reordering of its rows and its columns and
relabelling of the constraints. (86) has a top block of rows whose first entry
is w, followed by a second block of rows whose first entry is e and whose
second entry is w, and so on.

2Giorgio Magri

Fact 2 (further generalised)
Assume that the input ERC matrix is consistent with a ranking.
Without loss of generality, assume that this ranking is C1êC1ê…êCn.
Let q1, …, qn be the current RVs entertained by an EDRA in a generic
run on those input ERCs, up to a generic time, starting from arbitrary
initial RVs Ú1init, …, Úninit. Assume that the re-ranking rule used by the
EDRA demotes by 1 only the currently undominated loser-preferrers
(no assumptions are made on constraint promotion). The current RVs
thus satisfy condition (72) for every k=1, …, n. That is, the RV qk of
the constraint Ck assigned to the kth stratum (with the 1st stratum
being the top one) never drops by more than (k®1) below the smallest
initial RV minh=1,…,nÚhinit.

(72)qk}
h=1,…,n
Úhinit®(k®1)min

(73)Decrease the RV of each undominated loser-preferrer by 1.a.
Do nothing to the current RV of the other constraints.b.

2Demotion-only re-ranking rules
Consider the demotion-only re-ranking rule (17) from §3, repeated in (73).

At least one constraint is demoted at each update. Hence, the total number
T of updates is at most the sum of the number of times C1 has been demoted,
and the number of times C2 has been demoted, etc, as stated in (74a). Each
time constraint Ck is demoted, it is demoted by 1, and it is never promoted.
Hence the number of times that constraint Ck has been demoted up to the
time considered is equal to the distance Úkinit®Úk between its initial RV Úkinit
and its current RV Úk, as stated in (74b). The inequality (72) says that Úk
sits between Úkinit and minh=1,…,nÚhinit®(k®1), as depicted in (75). Thus the
distance between the latter two points upper bounds the distance Úkinit®Úk,
as stated in (74c). Finally, step (e) follows from definition (71) of the constant
B(_init) and from the identity %
n

k=1(k®1)=n(n®1)/2.

Theorem 2 (extended to arbitrary initial ranking vectors)
The EDRA (Fig. 5) with the calibrated promotion/demotion re-
ranking rule (76) run on a consistent input ERC matrix corresponding
to n constraints starting from an arbitrary initial ranking vector
_init=(Ú1init, …, Úninit) can perform at most nB(_init)+n2(n®1)/2 errors
before converging.
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In the case of an arbitrary initial ranking vector as well, the error-bound
for the calibrated case is worse by a factor of n than the error-bound for
the demotion-only case.

Combining the two inequalities (77) and (78), I conclude that the number
T of updates must be smaller than nB(_init)+n2(n®1)/2. We have thus
proven the following extension of Theorem 2 from null to arbitrary initial
RVs.

In §6, I looked for concreteness at a specific calibrated re-ranking rule,
namely the one in (51) (= (76)), which demotes each of the l undominated
loser-preferrers by 1 and promotes each of the w winner-preferrers by
l/(w+1). Here I look at the generic calibrated re-ranking rule in (79).

Appendix B: Convergence of a generic calibrated re-ranking rule

This re-ranking rule is calibrated as long as d>0. Indeed, the distance of
the promotion amount p from the calibration threshold l/w is controlled by
the constant d: the larger d, the smaller the promotion amount p is with
respect to the calibration threshold. In particular, the case d=1 corresponds
to re-ranking rule (51), and the case where d goes to infinity corresponds
to the demotion-only case p=0 considered in §3.
The reasoning for the case d=1 presented in §6 trivially extends to an
arbitrary d>0, yielding the following generalisation of Theorem 2 of §6.

Theorem 2 (extended to arbitrary calibrated promotion amounts)
An EDRA with the general calibrated re-ranking rule (79) run on a
consistent input ERC matrix corresponding to n constraints starting
from null initial RVs can perform at most the number of mistakes in
(80) before converging, where W is the largest number of winner-
preferrers over all input ERCs.

Supplementary materials5

Appendix C: Why EDRAs cannot loop
Consider the general re-ranking rule in (82).

Proof. With every update, the sum of the current RVs is decreased by l. It
is furthermore increased by wl/(w+d), as each of the w winner-preferrers
is promoted by l/(w+d). In the end, the sum of the current RVs is thus
decreased by l®(wl/(w+d))=dl/(w+d) . As the number l of undominated
loser-preferrers is at least 1 and the number w of winner-preferrers is at
most W, I conclude that the sum of the current RVs is decreased by at least
T(d/(W+d)) after T updates. On the other hand, the sum of the current
RVs starts at zero and can never become smaller than —n(n®1)/2, by the
generalised Fact 2 stated in §6.2. In conclusion, the number of updates T
in the case of the re-ranking rule (79) must satisfy the inequality
T(d/(W+d)){n(n®1)/2, which yields the error-bound in (80).º

The bound (81) for d=1 gives back the bound n2(n®1)/2 of the original
Theorem 2 in §6. As d increases and the promotion amount p=l/(w+d)
thus gets smaller relative to the calibration threshold l/w, the bound (81)
on the number of mistakes decreases, ensuring faster convergence. In the
limit of d going to infinity, the coe!cient (n®1+d)/d goes to 1, and the
bound (81) thus becomes the bound n(n®1)/2 already obtained in Theorem
1 of §3 for the case with null p=0 promotion amount.
Note that the cubic rather than quadratic growth in n of the bound (81)
comes from the fact that I have upper bounded the largest number W of
winner-preferrers in a generic input ERC, with n®1. But in most
applications, W is much smaller than n®1, as the winner and loser forms
that correspond to an ERC di‰er only in a few respects, and thus most of
the constraints are even. Furthermore, if the loser forms are properly chosen
so that the input ERCs have as few winner-preferrers as possible, then W
might be forced into a constant in certain applications. In that case, the
error-bound (80) for calibrated promotion grows only quadratically in the
number of constraints n, just like the bound n(n®1)/2 for the demotion-
only case.

As there is a total of n constraints, and each ERC must have at least a
loser-preferrer (ERCs that have no loser-preferrers cannot ever trigger any
update and can therefore be ignored), then the largest number W of winner-
preferrers is upper bound by n®1, and the bound (80) becomes (81).
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Fact 5
If the input ERC matrix is consistent, the EDRA (Fig. 5) with any
promotion/demotion re-ranking rule of the form (82) can never loop
back to a current ranking vector that it had previously made a mistake
on in that same run.

Let m be the total number of input ERCs. To simplify the presentation,
let me start by assuming that the input ERC matrix has a unique l per
ERC. The contribution of the ith ERC ai to the current ranking vector
according to this re-ranking rule can thus be summarised with the cor-
responding update vector ai, as in (83): the entry corresponding to the
loser-preferrer is equal to —1; the entries corresponding to winner-preferrers
are set equal to the corresponding promotion amount p>0; all other entries
are 0.

Throughout this section, I assume that the promotion amount p is never
null. I show that the EDRA with the re-ranking rule (82) cannot loop on
consistent input ERC matrices, as stated in Fact 5, repeated below. The
proof is based on a connection between OT-consistency and conic
independence.

Suppose that the initial RVs are all null. The current ranking vector _t

entertained at time t by the EDRA with the re-ranking rule (82) can be
described as in (84), i.e. as a combination of the update vectors, each
multiplied by the number of updates ait triggered by the corresponding ith
ERC in the run considered up to time t. Equation (43), obtained in the dis-
cussion of Pater’s counterexample in §5.3, is a special case of the general
equation (84). Of course, the coe!cients ait are by definition all non-negative.
Thus the identity (84) can be summarised by saying that the current ranking
vector is a conic combination of the m update vectors.

As the current ranking vector is a conic combination of the update vectors,
it is interesting to study the conic geometry of these vectors, i.e. the formal
properties of their conic combinations. Here is a particularly important
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Suppose that a conic combination of these update vectors (88) with some
non-negative coe!cients yields the null vector, namely that conditions
(85a) and (b) hold. Let’s focus on the first component of this conic combi-
nation, as in (89). The first component of the update vectors in the 1st block
is always positive (recall that p>0 by hypothesis). Suppose there are k
vectors in the 1st block. The first component of the remaining m®k update
vectors is always null. In order for the first component of this conic
combination to be zero, the non-negative coe!cients that multiply the
update vectors in the 1st block must all be null, namely a1=…=ak=0.

The update vectors can now be read straightforwardly from (87): the ith
update vector is obtained by looking at the ith column. Recall that the
mapping (83) from ERCs into update vectors replaces a e with a 0 and a w
with the positive quantity p>0. The collection of update vectors can thus
be made a little more explicit, as in (88). (Each update vector can have a
di‰erent value for the promotion amount p. This fact does not play any
role in the reasoning, so I do not encode it explicitly in the notation, and
use the same p for all update vectors.)
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By moving everything to the right-hand side, (91a) can of course be restated
as in (92a), where I have introduced the coe!cients ai=ait¢®ait for all i=1,
…, m. The property (91b), that ait¢ is larger than or equal to ait because time
t¢ follows time t, can then be restated as (92b), that all coe!cients ai are
non-negative. The property (91c), that some coe!cient ait¢ is di‰erent from
the corresponding coe!cient ait because some update has happened between
times t and t¢, can be restated as the property (92c), that at least one of the
coe!cients ai is non-null.

The conditions in (92) say that the null vector can be synthesised as a conic
combination of the update vectors, without the coe!cients a1, …, am all
being null. This contradicts the hypothesis that the update vectors are
conically independent.º

Fact 7
If the update vectors are conically independent, then the EDRA cannot
loop back to a current ranking vector it had previously updated.

Proof. Suppose by contradiction that the EDRA can indeed loop back to
a ranking vector that it had dismissed at a previous time. This means that
it is possible for the algorithm to walk through a learning path with the
properties in (90).

Assumption (90a), that the ranking vectors _t and _t¢ entertained at times
t and t¢ coincide, can be expressed as the identity (91a), using the description
(84) of the current ranking vector in terms of update vectors. Here, ait and
ait¢ are the number of updates triggered by ERC 1 up to time t and t¢
respectively; an analogous interpretation holds for the other coe!cients.
As the number of updates grows with time, assumption (90b), that time t¢
follows time t, thus entails that the coe!cient ait¢ at time t¢ is larger than
or equal to the corresponding coe!cient ait at time t, as stated in (91b).
Furthermore, assumption (90c) entails that some update has happened at
some time between t and t¢, so that at least one of the coe!cients has
increased by at least 1 from time t to time t¢, as stated in (91c).
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Appendix D: On the number of updates for smallest non-calibrated
promotion
Recall from §7.5 that the aggravated Pater’s ERC matrix for n constraints
is obtained from the corresponding diagonal matrix by adding two w’s to
the right of each l. To illustrate, I give in (93) the matrix corresponding
to n=7 constraints. It has 6=n®1 ERCs; it has a w on every diagonal
entry, followed by an l followed in turn by two more w’s (except for the
last two rows, whose l’s are followed by one and zero w’s respectively).

To conclude the proof of Fact 5, I need to consider the case where the
input ERC matrix contains rows with multiple l’s. The additional di!culty
in this case is that the contribution of the ith ERC to the current ranking
vector depends on the number of currently undominated loser-preferrers,
i.e. it can be di‰erent at di‰erent times, and thus cannot be distilled into
a unique update vector ai, as in (83). But this di!culty can be straight-
forwardly overcome, at the expense of a slightly more cumbersome notation.
Let m be the total number of ERCs. Suppose that the ith ERC has li loser-
preferrers Ck1, …, Ckli. Let C
i

1, …, C
i

2li—1 be all 2
li®1 non-empty subsets
of the set {Ck1, …, Ckli} of loser-preferrers. For every such subset Cij, let
ai, j be the update vector defined as follows: the components corresponding
to the loser-preferrers in the subset Cij are equal to —1; the components
corresponding to winner-preferrers are equal to p; the remaining components
are equal to 0. Furthermore, let ati, j be the number of updates triggered by
this ith ERC up to time t, because all and only the loser-preferrers in the
set Cij were currently undominated. The current ranking vector can then
be expressed as a conic combination of these update vectors through these
non-negative coe!cients, namely _t=%
m

i=1 %j=12
li

—1 ati, j ai, j. Again, these
update vectors ai, j are conically independent. I can thus trivially extend
the preceding reasoning.
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Here is how these equations are obtained. The RV q1 of constraint C1 starts
out null. It is only modified when ERC 1 triggers an update, in which case,
it is increased by 1/3, as ERC 1 contains 3 winner-preferrers. In other
words, the final RV q1 of constraint C1 is 1/3 of the total number a1 of
updates triggered by ERC 1, as stated by the first equation in (95).
Analogously, the RV q2 of constraint C2 starts out null, is decreased by 1
every time ERC 1 triggers an update and is increased by 1/3 every time
ERC 2 triggers an update, whereby we get the second equation in (95). The
remaining equations in (95) are obtained analogously.
The input matrix (93) is only consistent with the ranking C1êC2 …êC7.
As the final ranking vector _=(q1, …, q7) entertained by the EDRA at
convergence is consistent with the input matrix of ERCs, it must therefore
satisfy the six strict inequalities q1>q2, …, q6>q7. Consider for instance
the first of these six inequalities, repeated in (96a). Using the first two
equations in (95), this inequality can be rewritten as in (96b), in terms of
the numbers of updates a1 and a2 triggered by ERC 1 and ERC 2 respectively.
If both sides of inequality (96b) are multiplied by the constant 3, we get
the equivalent inequality (96c). As the variables a1, a2, as well as the
coe!cients, are integers, the strict inequality (96c) is equivalent to the loose
inequality (96d), where I have added 1 to the right-hand side.

The convergence Theorem 3 ensures that after a finite number of errors
the EDRA will converge to a final ranking vector consistent with the input
ERC matrix, and learning will cease. Yet the theorem does not provide any
estimate of the number of errors made before convergence. This section
shows that this number grows exponentially with the number n of constraints,
as anticipated in §7.5.
For concreteness, suppose the input matrix is the aggravated Pater’s
matrix (93), corresponding to n=7 constraints. Let _=(q1, …, q7) be the
final ranking vector the EDRA has converged on. Let a1, …, a6 be the total
number of updates triggered by each of the six input ERCs in the run
considered. The final RVs q1, …, q7 can be expressed in terms of the
coe!cients a1, …, a6, as in (95).

(94)Decrease the RV of the loser-preferrer by 1.a.
Increase the RV of each of the w winner-preferrers by l/w.b.
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The reasoning just developed in the concrete case of the aggravated Pater’s
matrix in (93) corresponding to n=7 constraints extends to the case of an
arbitrary number n of constraints. I can always construct an optimisation
problem akin to (98) that provides a bound on the best-case number of
updates performed by the EDRA on that aggravated Pater’s matrix. The
solution of the optimisation problems thus obtained for the aggravated
Pater’s matrices corresponding to various choices of the number n of
constraints are reported in Table Ia. (These values were computed using
the Matlab file MinimumRunningTime.m. It takes as input the aggravated
Pater’s ERC matrix corresponding to n constraints, for any n. It constructs
the corresponding optimisation problem akin to (98), generalising the
reasoning just presented here in the special case of the aggravated Pater’s
comparative tableaux corresponding to n=7 constraints, and it solves this

The total number of updates performed by the EDRA in the run considered
coincides with the sum a1+…+a6 of the number a1 of updates triggered
by ERC 1 plus the number a2 of updates triggered by ERC 2 and so on
down to the number a6 of updates triggered by ERC 6. Furthermore, these
non-negative numbers a1, …, a6 must satisfy the inequalities in (97). Thus
the number of updates performed by the EDRA to reach convergence
cannot be smaller than the solution of the optimisation problem (98). In
other words, the solution of this optimisation problem provides a bound
on the best-case number of updates performed by the EDRA on the input
matrix (93). As (98) is a linear program, it can be easily solved with standard
linear programming techniques.

By reasoning this way, I conclude that the six strict inequalities q1>q2, …,
q6>q7 are equivalent to the six inequalities in (97) in terms of the number
of updates a1, …, a6 triggered by ERC 1 through ERC 6 respectively.

Supplementary materials 13
optimisation problem using Matlab built-in subroutines for linear pro-
gramming. Aggravated Pater’s comparative matrices for n=5, 7, 9, 11, 13,
15 constraints are provided in the file AggravatedPaterMatrices.txt. Both
files are available here.)

Let me close by pointing out the close parallelism between the reasoning
presented in this section and the explanation for Pater’s (2008) counter-
example against the GLA’s convergence provided in §5.3. The equations
in (95) are analogous to those in (44) in §5.3, and both are a special case of
the vector equation (84) in Appendix C. The inequalities in (97) are analogous
to those in (45) in §5.3. Finally, showing that there are no coe!cient a’s
that solve the inequalities in (97) and add up to a small number corresponds
to the final step of the explanation of Pater’s counterexample, which showed
that there are no coe!cient a’s that solve the inequalities (45).

Appendix A: Extension to arbitrary initial ranking vectors
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Throughout the paper, I have investigated convergence in the case where
the initial RVs Ú1init, …, Úninit were all identical, say all equal to zero (the
actual value does not really matter). In this appendix, I show how to obtain
error bounds for demotion-only and calibrated re-ranking rules in the case
of an arbitrary initial ranking vector _init=(Ú1init, …, Úninit). It turns out that
the properties of the initial ranking vector that are relevant for the error-
bounds can be extracted through the quantity B(_init) defined in (71), namely
the sum of the di‰erence between each initial RV Úkinit and the smallest RV
minh=1Úhinit. Intuitively, this quantity measures how scattered the initial
RVs are. In fact, B(_init) is null for the case of identical initial RVs, small
for RVs close to each other and large if there are some RVs that are very
small and some other RVs that are very large.

1The crucial invariant
Tesar & Smolensky’s (generalised) Fact 2 from §6.2 provides an invariant
for the current RVs entertained by the EDRA in the case of null initial
RVs. It says that the current RVs can never become much smaller than
zero, as long as the EDRA only demotes the loser-preferring constraints
that need to be demoted, i.e. the undominated ones. The reasoning trivially
extends to arbitrary initial ranking values, yielding the following further
generalisation of Fact 2: the current ranking values can never become much
smaller than the smallest initial ranking value.
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In §2.3, I defined OT-consistency between an ERC and a ranking vector
as in (14), repeated below in (99). This appendix qualifies this definition
with some remarks.

Appendix E: On the notion of OT-consistency for ranking vectors

(99) A ranking vector is (OT-)consistent with an ERC provided that each
of its refinements is consistent with that ERC, according to the original
notion of consistency (9).

T&S introduce a variant of the standard OT framework, replacing total
rankings with stratified hierarchies, which can assign multiple constraints
to a single stratum. Stratified hierarchies are thus equivalent to ranking
vectors, which can assign the same ranking values to multiple constraints.
Yet the notion of consistency assumed by T&S is very di‰erent from the
one in (99), as T&S allow for the tie among constraints assigned to the same
stratum to be resolved additively. Without getting into the details of this
alternative definition of OT-consistency, let me illustrate the di‰erence
with an example. Consider the ERC (100a) together with the ranking vector
(100b). Because of the two identical ranking values q1=q2=2, this ranking
vector would represent a stratified hierarchy that assigns both C1 and C2

to the top stratum, with C3 ranked underneath.

1 Comparison with Tesar & Smolensky’s (1998) notion of OT-
consistency for stratified hierarchies

(100) C3C1 C2

( )12 2_=
b.a. C2

ERC

C1

w l[

C3

w ]

as the l and the w of the two equally highest-ranked constraints C1 and C2

‘cancel out’ because of the additive interaction between equally
rankedconstraints. But the ranking vector (100b) is not consistent with the
ERC (100a) according to the definition (99), since the ranking vector (100b)
admits the refinement C2êC1êC3, which is not consistent with the ERC
(100a). As the paper assumes the classical notion of OT-consistency (99),
it is framed squarely within standard OT. Contrary to what suggested by
T&S, there is no need to step outside of the standard OT framework for
algorithmic purposes.
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A reviewer worries that the notion of OT consistency (99), which requires
consistency to hold for all refinements, might not be e!ciently computable.
For instance, if all ranking values are identical, then don’t we have to check
consistency for all n! refinements, causing a complexity explosion? That is
not the case. Here is a way to see this. Let W(a) and L(a) be the sets of
winner- and loser-preferring constraints relative to an ERC a. It turns out
that a ranking vector _=(q1, …, qn) is consistent with an ERC a according
to condition (99) provided the following strict inequality (101) holds, which
says that the largest ranking value over winner-preferrers is larger than the
largest ranking value over loser-preferrers.

Computational e!ciency2

Furthermore, the inequality (101) can be checked in n steps (where n is the
number of constraints). In the end, the consistency condition (99) can thus
be e!ciently computed.

Let me explain why the consistency condition (99) is equivalent to the
strict inequality (101). Suppose that the latter inequality (101) holds. Every
refinement of this ranking vector will then rank the winner-preferrer that
attains the maximum maxkÊW(a) Úk above the loser-preferrer that attains
the maximum maxhÊL(a) Úh. In other words, it will rank this winner-preferrer
above every loser-preferrer. Every refinement is thus consistent with the
ERC a, and condition (99) holds. Vice versa, suppose that inequality (101)
does not hold, i.e. the largest ranking value over winner-preferrers is at
most as large as the largest ranking value over loser-preferrers. Thus the
current ranking vector admits a refinement that ranks the loser-preferrer
that attains the maximum maxhÊL(a) Úh above the winner-preferrer that
attains the maximum maxkÊW(a) Úk. In other words, it admits a refinement
that ranks a loser-preferrer above every winner-preferrer. This refinement
is thus not consistent with the ERC a, and condition (99) fails.

Finally, let me explain why inequality (101) can be checked in n steps
(where n is the number of constraints). Posit W=—≥ and L=—≥. Scan
through the current ranking values, for k=1, 2, … n. If Úk is larger than

(101)
kÊW(a)
maxÚk

hÊL(a)
maxÚh>

a1®a3+a4>0

Consistency with Pater’s ERC matrix3
In §5.2, I considered Pater’s (2008) ERC matrix (42). This ERC matrix
requires the ranking C1êC2êC3êC4êC5. Thus, a ranking vector  _=(q1,
q2, q3, q4, q5) is OT-consistent with this ERC matrix according to condition
(99), provided it admits only that ranking as a renement. This means in
turn that the ranking values must satisfy the four strict inequalities q1>q2,
q2>q3, q3>q4 and q4>q5. In §5.3, I showed that these four strict inequalities
can be rewritten as in (45) in terms of the number of updates a1, …, a4,
triggered by the four ERCs in Pater’s ERC matrix. Furthermore, I have
claimed that these inequalities (45) admit no solution. To see this, rewrite
these inequalities (45) as in (102), by moving everything on one side.

(102) +2a1
—2a1
+a1

>0
>0
>0
>0

—a2
+2a2
—2a2
+a2

—a3
+2a3
—2a3

—a4
+2a4

If we sum all four inequalities together, we obtain inequality (103a). If we
sum together only the second and third inequalities in (102), we obtain
inequality (103b).

(103) a.
—a1+a3®a4>0b.

As the two inequalities thus derived in (103) are inconsistent, the four
original inequalities (102) admit no solution.

additional reference
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According to the alternative definition of OT-consistency introduced by
T&S, the ranking vector (100b) is indeed consistent with the ERC (100a),

W (larger than L) and Ck is winner-preferring (loser-preferring), then set
W=Úk (set L=Úk). After having scanned all ranking values, condition (101)
holds i‰ W>L. This process only takes n steps.




