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To evaluate the possibility that the preference of items like  mlIf reflects only the
co-occurrence of their segments in the English lexicon, we calculated several
statistical measures of our materials. These measures correspond to factors which
have been reported in the literature as modulating perceptual accuracy and speed.
The means of these measures, provided in Table I, reflect averages computed
over the twelve items representing each onset type (these means were not used
in our analyses; they are presented merely as descriptive statistics). A brief
description of these measures is found in the text  – below we o‰er a more detailed
description of these measures, their calculation and their expected effects on
behaviour.
The statistical properties included neighbourhood measures and measures of
segment or letter co-occurrence (for auditory and printed materials respectively).
A final measure concerned the identity of the initial consonants.

A target’s lexical neighbourhood comprises all words obtained by adding, deleting
or substituting one of a target’s phonemes (or letters, for printed words). Previous
research suggests that words with a large neighbourhood consisting of frequent
words are recognised more readily in naming and AX tasks (e.g. Carreiras et al.
1997, Perea & Carreiras 1998, Vitevitch & Luce 1998, 1999). The better recognition
of the items with rising-sonority onsets might thus be due to the structure of
their lexical neighbourhoods, rather than sonority per se. We evaluated this
possibility using two neighbourhood measures:

(1)Neighbourhood count
The number of lexical neighbours
a.

Neighbourhood frequency
The summed frequency of a target’s neighbours
b.

For example, the item [mlIf] has one phonological neighbour, /klIf/, whose
frequency is 11 per million. Both measures were calculated from the Speech and
Hearing Lab Neighborhood Database .1

Words whose segments or letters co-occur frequently are better recognised (e.g.
Perea & Carreiras 1998, Vitevitch & Luce 1998, 1999). To determine whether
the advantage of sonority rises is due to these properties, we computed two sets
of measures of co-occurrence, one for the whole word and one for the onset
specifically.
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1Available (March 2009) at http://128.252.27.56/Neighborhood/Home.asp. At present,
the Speech and Hearing Lab Neighborhood Database  incorrectly collapses case-
distinctions in phonological inputs (e.g. it fails to distinguish [lif] and [lIf]). In view
of this problem, we manually inspected the output of the database and corrected
them as necessary.

(2)Whole-word measures
The co-occurrence of elements in the word as a whole was estimated using
either segment- or letter co-occurrence, for auditory and printed words
respectively. Segment co-occurrence in auditory words was captured by
the following measures based on the Phonotactic Probability Calculator
(Vitevitch & Luce 2004):
Position-sensitive phoneme probability
The probability that any given phoneme in the target occurs at the
same string position (first through fourth), averaged across the target’s
four phonemes.
Position-sensitive biphone probability
The probability that any adjacent phoneme pair in the target occurs
at the same string position (averaged across the target’s three biphones).
For printed words (in Experiment 6), we used two measures of letter co-
occurrence:
Bigram count
The number of words sharing each of the target’s adjacent letter pairs
in the same string position (calculated based on Solso & Juel 1980).
Bigram frequency
The summed frequency of the words sharing the target’s bigrams (from
Ku∏era & Francis 1967).
For example, the phoneme probability of the auditory [mlIf] is 0·0382
(averaged across the positional probability of its four phonemes: 0·0572,
0·0447, 0·0350, 0·0159). In its printed form, mlIf shares its second bigram
(lI) with ten words, whose summed frequency is 85 per million (the initial
and final bigrams are not shared with any words), so its bigram count is
10, and its bigram frequency is 85.

a.
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Onset-probability measures
To examine the possibility that the advantage of sonority rises might be
due to the individual probabilities of occurrence of their onset consonants
in their string positions, we computed the log of the product of the position-
specific probabilities of each consonant (i.e. the summed frequency of
words sharing that consonant in its position relative to the total summed
frequency of the sample) in CCVC words listed in the Speech and Hearing
Lab Neighborhood Database . Consider the onset ml. The database includes
a total of 757 CCVC words, three of which begin with an m (mews, mule,
mute) and 199 words that include an l in the second position.2 The
probabilities of m-first and l-second words are respectively 0·003963012
and 0·262879789 and what we call the ‘log cluster probability’ for ml is
the log of their product (0·001041796): 2·982217428.

b.

2To avoid biasing the calculations by theory-internal structural assumptions, we based
frequency calculations on the segment sequences as indicated in the database (see
also §4.2).

Previous research suggests that n-initial onsets might be less perceptible than m-
initial onsets for reasons unrelated to sonority (Byrd 1992, Surprenant & Goldstein
1998). Because failure to register the acoustic input as an onset cluster (e.g.
registering nbIf as bIf) reduces its markedness, we also entered the identity of the
initial consonant into the analysis of auditory stimuli.

In this analysis we assume that for any underlying form /uf/ there is a set of
surface forms faithful to /uf/. There may be multiple such forms because /uf/
may be underspecified to some degree; e.g. prosodic structure may not be present
in /uf/. We assume a surface form [sf] to be fully specified in the sense that it
uniquely determines a phonetic form |jf| which is the fully faithful phonetic
interpretation of [sf]; |jf| in turn determines a unique auditory form {af}, which
results from the fully faithful execution of |jf|. Conversely, we assume that if
[sf1]≠[sf2] then the phonetic forms that are fully faithful to them, |sf1| and |sf2|,
are not equal, and analogously, if |sf1|≠|sf2| then the acoustic forms fully faithful
to them, {af1} and {af2}, are not equal. Assumption 1 spells these out in the
notation of the text.

Assumption 1. Faithful forms: f
For any underlying form /uf/ there is a set f(/uf/) of surface forms faithful to

/uf/: for each [sf]Œf(/uf/), the pair (/uf/, [sf]) satisfies the faithfulness
constraint F/uf/,[sf].

For any surface form [sf] there is a unique phonetic form f([sf]) that is faithful
to [sf]: ([sf], f([sf])) satisfies F[sf],|Jf|. This function f is one-to-one. f([sf])
is also said to be the phonetic form corresponding to [sf].

For any phonetic form |jf| there is a unique auditory form f(|jf|) that is faithful
to |jf|: (|jf|, f(|jf|)) satisfies F|Jf|,{af}. This function ƒ is one-to-one. f(|jf|)
is also said to be the acoustic form corresponding to |jf|.

Def. Grammatical. With respect to a given grammar G:
A surface form [sf] is grammatical i‰ there is an underlying form /uf/ such

that the pair (/uf/, [sf]) is optimal: for any other surface form [sf¢], the
grammar assigns lower harmony to (/uf/, [sf¢]) than to (/uf/, [sf]): (/uf/,
[sf¢])ÉG (/uf/, [sf]).

A phonetic form is grammatical iff it corresponds to a grammatical surface
form.

An acoustic form is grammatical iff it corresponds to a grammatical phonetic
form.

Suppose we are given a phonetic form |jfu| and its corresponding acoustic form
{afu}=f(|jfu|). We are interested in cases where |jfu| is ungrammatical for a
hearer, that is, where there is no surface form [sfg] that is grammatical for the
hearer such that |jfu| is the faithful phonetic interpretation of [sfg]. In this case,
we assume that among the grammatical surface forms, one, call it [sfg], is most
faithful to |jfu|. That is, given any other grammatical surface form [sfg¢], the pair
([sfg], |jfu|) better satisfies faithfulness F[sf],|Jf| than does the pair ([sfg¢], |jfu|);
we write this:

F[sf],|Jf|([sfg], |jfu|)ÇF[sf],|Jf|([sfg¢], |jfu|)

We assume that the phonetic interpretation of this surface form, |jfg|=f([sfg]),
is the grammatical phonetic form that is most faithful to the ungrammatical
acoustic form {afu} corresponding to |jfu|.

Assumption 2. Given any phonetic form |jf0| and its corresponding acoustic form
{af0}=f(|jf0|):

Among grammatical surface forms, one, [sfg], is most faithful to |jf0|; i.e. [sfg]
best satisfies F[sf],|Jf|([sf],|jf0|) among grammatical [sf].

The phonetic form corresponding to [sfg], |jfg|=f([sfg]), is the grammatical
phonetic form that is most faithful to the given acoustic form {af0}: |jfg|
best satisfies F|Jf|,{af}(|jf|, {af0}) among grammatical |jf|.

We assume given an OT grammar G for the mapping between underlying and
surface forms. The harmonic ordering of forms determined by G (Prince &
Smolensky 1993: ch. 5) will be written as follows: when G assigns higher harmony
to (/x/, [x]) than to (/y/, [y]) we write (/x/, [x])ÇG(/y/, [y]) or equivalently H1(/x/,
[x])ÇH1(/y/, [y]), since this is harmony in the first component. Harmony in the
second component, linking surface and phonetic forms, is determined solely by
the faithfulness constraint F[sf],|Jf|, so H2([x], |x|)ÇH2([y], |y|) means that ([x],
|x|) better satisfies faithfulness than does ([y], |y|): F[sf],|Jf|([y], |y|)ÇF[sf],|Jf|([y],
|y|). In the same way, harmony in the third component, linking phonetic and
acoustic forms, is determined by F|Jf|,{af}; H3(|x|, {x})ÇH3(|y|, {y}) means that
F|Jf|,{af}(|x|, {x})ÇF|Jf|,{af}(|y|, {y}). All the analogous definitions apply to É and
to  ª (equal harmony), as well as to Ñ and Ö.

Optimality in component n is the obvious generalisation of the component-1
notion of optimality in OT.

Def. Optimal in a component n
(xn, xn+1) is optimal in component n (‘n-opt’) i‰ for all level-n+1 forms

xn+1¢≠xn+1, Hn(xn, xn+1)ÇHn(xn, xn+1¢)

Def. Harmonic ordering w.r.t. component n
Given two representations X=(/x/, [x], |x|, {x})”(x1, x2, x3, x4) and Y=(y1,

y2, y3, y4):
XÇn Y i‰ either

i. (xn, xn+1) is optimal and (yn, yn+1) is not, or
ii. (xn, xn+1) and (yn, yn+1) are both suboptimal and Hn(xn, xn+1)ÇHn(yn, yn+1)

X ªn Y i‰ either
i. (xn, xn+1) and (yn, yn+1) are both optimal, or

ii. (xn, xn+1) and (yn, yn+1) are both suboptimal and Hn(xn, xn+1) ª Hn(yn, yn+1)
XÑn Y i‰ either XÇn Y or X ªn Y

To combine harmonic ordering across all components, we assume that no
component has priority over any others. Thus for a full (four-level) representation
X to be preferred to Y, written XñY, there must be some component in which
X is preferred and no component in which Y is preferred. The ordering is partial
in that for many pairs X, Y that are not harmonically equivalent, neither XñY
nor YñX. Our ordering is defined for use in perception: it compares X and Y
only if they have the same acoustic form {af}, and are therefore both potential
full perceptual representations for {af}.

Def. Harmonic ordering of full representations:ñ
Given two representations X=(/x/, [x], |x|, {x}), Y=(/y/, [y], |y|, {y}):
XñY i‰ {y}={x} and either

(a) i. Ak [Y is k-opt⁄X is k-opt] &
ii. En [X is n-opt and Y is not n-opt]

or
(b) i. Ak [Y is k-opt » X is k-opt] &

ii. Ak [X is not k-opt⁄XÑk Y] &
iii. En [XÇn Y]

In case (a), optimality makes the decision: X is optimal in some component in
which Y is not (a.ii), and there is no component in which Y is optimal but X is
not (a.i). In case (b), X and Y tie with respect to optimality, in that they are
optimal in exactly the same components (b.i): then relative harmony among sub-
optimal representations decides. Now X is preferred to Y only if there is some
component in which X is suboptimal but higher-harmony than Y (b.iii), and
there is no component in which Y is suboptimal but higher-harmony than X
(b.ii).

Henceforth references such as (b.ii) will always refer to the correspondingly
labelled condition in the definition of ñ.

Lemma 1. Suppose X is optimal in every component. Then
(a) there is no Y such that YñX, and
(b) for every Z such that {z}={x}, XñZ unless Z is also optimal in every

component.

Proof of Lemma 1. Suppose there were a Y such that Y ñX. Then either (a.ii) En
[Y is n-opt and X is not n-opt], which is impossible because X is k-opt Ak,
or (b.iii) En [YÇn X], which is also impossible because X is k-opt k. This
establishes (a). Now suppose given Z such that {z}={x}. Suppose Z is not
optimal in every component: En [Zn is subopt]. Then (a) of the definition of
XÇZ is satisfied, establishing ( b). QED

Lemma 2. Suppose X is suboptimal in component k and optimal in the other
components. Let Y be a candidate with {y}={x}. Then
1. XñY i‰ either

a. Y is (i) suboptimal in some non- k component and (ii) not k-optimal or
b. Y is (ii) optimal in all non- k components and (ii)–(iii) X Çk Y,

2. YñX i‰ [Y is optimal in all non- k components and YÇk X]
3. neither XñY nor YñX if [Y is optimal in component k and suboptimal in

some non-k component].

Proof of Lemma 2. Suppose X is suboptimal in component k and optimal in the
other components, and Y is a candidate with {y}={x}.

Part 1. Under these conditions, conditions (1a) and (1b) of Lemma 2 are
equivalent to (a) and (b) respectively of the definition of X ñY.

Part 2. Exchanging X and Y in (1), we see that (1a) cannot be met and condition
(1b) becomes (2) of Lemma 2.

Part 3. Suppose now that Y is optimal in component k and suboptimal in
some non-k component. Then in the definition of X ñY, condition (i)
cannot hold in either (a) or (b), and the same is true for the definition of
YñX, because in both (a) and (b), (i) requires that the set of components
in which one of the candidates X or Y is optimal is a (not necessarily strict)
subset of the components in which the other candidate is optimal. This
establishes result (3). QED

Now, as in (4) in the text, we define a possible percept as follows.

Def. Perceptual principle
Let X=(/x/, [x], |x|, {x}) be a globally faithful representation and consider
the auditory form {x}. A representation Y is a possible percept for {x} i‰

the acoustic form of Y is {x}, and
there is no Z with acoustic form {x} such that Z ñY.

The main result, (5) in the text, follows.

Proposition:
Let X=(/x/, [x], |x|, {x}) be a globally faithful representation. For the
auditory input {x}, there are two possibilities.
a. If [x] is grammatical then the only possible percept type is

A¢= (/x¢/, [x], |x|, {x})
where /x¢/ is any underlying form for which (/x ¢/, [x]) is optimal.

b.If [x] is not grammatical, there are three possible percept types:
A¢=(/x¢/, [x], |x|, {x})
C¢=(/y¢/, [y], |x|, {x})
D¢=(/y¢/, [y], |y|, {x})
where
[y] is the grammatical surface form most faithful to |x|,
|y|=f([y]) is the phonetic form faithful to [y],
/y¢/ is any underlying form for which (/y ¢/, [y]) is optimal, and
/x¢/Œ f([x]) is any underlying form faithful to [x].

Proof. Part a: grammatical case
That A¢ (as given in the Proposition) is a possible percept follows immediately
from (a) of Lemma 1, since A¢ is optimal in every component: (/x ¢/, [x]) is
optimal by assumption, and in the other two components, A ¢ is faithful, hence
optimal.
Now consider any possible percept U=(/u/, [u], |u|, {u}); we must show
it is of type A¢. As a possible percept of {x}, U must have {u}={x} and we
must not have AñU, where A is a candidate of type A ¢. Now according to
Lemma 1 (b), since A is optimal in every component, we would have A ñU
unless U is also globally optimal. To be optimal in the third component, since
{u}={x}, |u| must be faithful to {x}, so, by Assumption 1, we must have |u|=
|x|, as |x| is the unique phonetic form faithful to {x}: {x}= f(|x|). By identical
reasoning, to be optimal in the second component, [u] must be faithful to
|u|=|x|, so we must have [u]=[x]. To be optimal in the first component, /u/
must be optimal when paired with [x]; this means U is a candidate of type A ¢.

Part b: ungrammatical case
U=(/u/, [u], |u|, {u}) is a possible percept only if {u}={x}. There are three
cases to consider. In case 1, |u|=|x| and [u]=[x]; in case 2, |u|=|x| and [u]
≠[x]; in case 3, |u|≠|x|. We show that in case 1, U is a possible percept i‰
it is of type A¢; in case 2, type C¢; in case 3, type D¢. Note that the globally
faithful candidate X is optimal in components 2 and 3 (as it is faithful there),
but cannot be optimal in component 1 because [x] is ungrammatical: there is
no /x¢/ such that (/x¢/, [x]) is optimal. X thus meets the conditions of Lemma
2, with k=1. While not optimal in component 1, X is however faithful in
component 1, by definition.

Case 1. Here, U=(/u/, [x], |x|, {x}). U is a possible percept i‰ there is no Z
with acoustic form {x} such that Z ñU. Like X, U is optimal in components
2 and 3 but cannot be optimal in component 1. So U satisfies the conditions
of Lemma 2, with k=1. By Part 2 of Lemma 2, for a candidate Z with acoustic
form {x}, ZñU i‰ Z is optimal in components 2 and 3 and Z Ç1 U. This is
true i‰ Z=(/z/, [x], |x|, {x}) and (/z/, [x])Ç1 (/u/, [x]). In this harmony
comparison, the two pairs tie on markedness since they have the same surface
form [x]; (/z/, [x])Ç1 (/u/, [x]) will hold i‰ (/z/, [x]) satisfies faithfulness
better than does (/u/, [x]). For no such Z to exist, it is necessary and su"cient
that /u/ is fully faithful to [x]: if /u/ is fully faithful to [x], no /z/ can be more
faithful, and if /u/ is not faithful to [x], then any /z/ that is faithful to [x] will
satisfy (/z/, [x])Ç1 (/u/, [x]). Thus, under the conditions of Case 1, U is a
possible percept i‰ it is of the form A ¢ as defined in Part 2 of the Proposition.

Case 2. Now, U=(/u/, [u], |x|, {x}), where [u]≠[x]. U is optimal (faithful)
in component 3 but is suboptimal in component 2, since (by Assumption 1)
[x] is the unique surface form faithful to |x|. Since X meets the conditions of
Lemma 2 with k=1, and U is 2-suboptimal, by part 1 of Lemma 2, we will
have XñU i‰ U is not 1-optimal (this is (1a); (1b cannot be met by U). So
to be a possible percept it is necessary that (/u/, [u]) be optimal, i.e. [u] must
be a grammatical surface form and /u/ a possible underlying form for [u]. This
means that U satisfies Lemma 2 with k=2. Now U is a possible percept for
{x} i‰ there is no candidate Z with acoustic form {x} such that Z ñU. By part
2 of Lemma 2, such a ZñU i‰ Z is optimal in components 1 and 3 and Z Ç2 U,
which is true i‰ ZÇ2 U and Z=(/z/, [z], |x|, {x}) with (/z/, [z]) optimal. This
in turn is true i‰ [z] is grammatical and ([z], |x|) is more faithful than ([u],
|u|). If we choose [u] to be the grammatical surface form [y] that is most
faithful to |x| (unique by Assumption 2) then no such [z] exists, otherwise,
choosing [z]=[y] entails ZñU. Thus, under the conditions of Case 2, U is a
possible percept for {x} i‰ [u]=[y] and /u/ is an underlying form /y/ for which
(/y/, [y]) is optimal, that is, i‰ U is a candidate of type C ¢.

Case 3. Now, U=(/u/, [u], |u|, {x}), where |u|≠|x|. U is suboptimal in com-
ponent 3 since (by Assumption 1) |x| is the only phonetic form that is faithful
to {x}. Since X satisfies Lemma 2 with k=1 and U is 3-suboptimal, by part
1 of Lemma 2 we will have X ñU i‰ U is not 1-optimal (this is (1a); (1b)
cannot be satisfied by such a U). So, as in case 2, for U to be a possible percept
of {x} we must have (/u/, [u]) optimal, so [u] must be a grammatical surface
form. Let W be a candidate of type C ¢. W satisfies Lemma 2 with k=2, so
again by part 1 of Lemma 2, W ñU i‰ U is not 2-optimal; U must be 2-
optimal to be a possible percept, which means ([u], |u|) must be faithful. This
means U satisfies Lemma 2 with k=3. So by part 2 of that lemma, there exists
a candidate Z with acoustic form {x} such that Z ñU i‰ there exists Z optimal
in components 1 and 2 and Z Ç3 U, i.e. a Z=(/z/, [z], |z|, {x}) such that [z]
is a grammatical surface form with underlying form /z/, |z|=f([z]), and (|z|,
{x}) is more faithful than (|u|, {x}). Such a Z does not exist if |u| is the (unique)
grammatical phonetic form |y| most faithful to {x}, otherwise, such a Z does
exist, namely, where |z|=|y|. By Assumption 2, this |y|=f([y]), where [y] is
as defined in the Proposition. Thus, under the conditions of Case 3, U is a
possible percept for {x} i‰ U is of type D ¢. QED

Note that the second part of Assumption 2 can be dropped if D ¢ in the
Proposition is set to (/z¢/, [z], |z|, {x}), where |z| is the grammatical phonetic
form most faithful to {x}, [z] is the surface form faithful to |z|, which is
grammatical by definition of ‘grammatical phonetic form’, and /z ¢/ is an
underlying form for which (/z ¢/, [z]) is optimal, which exists since [z] is
grammatical. Now the [z] of D ¢ may not be the same as the [y] of B ¢.
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additional references Appendix B: Measures of segmental lexical statistics

1Neighbourhood measures

2Measures of segment/letter co-occurrence

3The onset’s initial consonant

Table I
Some statistical properties of the auditory and printed stimuli.
The figures provided in the table reflect means per onset type
(averaged across the 12 items representing each onset type).

number of neighbours
neighbours’ frequency (summed)
mean phoneme probability
mean biphone probability
log cluster probability

auditory items

1·58
581
0·0316
0·0016
—5·4097

0·50
390
0·0262
0·0006
—10·7296

sonority risesonority fall

number of neighbours
neighbours’ frequency (summed)
bigram count (summed)
bigram frequency (summed)
log cluster probability

printed items

0·33
1·25
13·67
316·92
—5·4097

0·33
2·00
6·25
224·50
—10·7296

onset type

Appendix A: Formal presentation of the proposition in (5)

statistical property

statistical property
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To evaluate the possibility that the preference of items like  mlIf reflects only the
co-occurrence of their segments in the English lexicon, we calculated several
statistical measures of our materials. These measures correspond to factors which
have been reported in the literature as modulating perceptual accuracy and speed.
The means of these measures, provided in Table I, reflect averages computed
over the twelve items representing each onset type (these means were not used
in our analyses; they are presented merely as descriptive statistics). A brief
description of these measures is found in the text  – below we o‰er a more detailed
description of these measures, their calculation and their expected effects on
behaviour.
The statistical properties included neighbourhood measures and measures of
segment or letter co-occurrence (for auditory and printed materials respectively).
A final measure concerned the identity of the initial consonants.

A target’s lexical neighbourhood comprises all words obtained by adding, deleting
or substituting one of a target’s phonemes (or letters, for printed words). Previous
research suggests that words with a large neighbourhood consisting of frequent
words are recognised more readily in naming and AX tasks (e.g. Carreiras et al.
1997, Perea & Carreiras 1998, Vitevitch & Luce 1998, 1999). The better recognition
of the items with rising-sonority onsets might thus be due to the structure of
their lexical neighbourhoods, rather than sonority per se. We evaluated this
possibility using two neighbourhood measures:

(1)Neighbourhood count
The number of lexical neighbours
a.

Neighbourhood frequency
The summed frequency of a target’s neighbours
b.

For example, the item [mlIf] has one phonological neighbour, /klIf/, whose
frequency is 11 per million. Both measures were calculated from the Speech and
Hearing Lab Neighborhood Database .1

Words whose segments or letters co-occur frequently are better recognised (e.g.
Perea & Carreiras 1998, Vitevitch & Luce 1998, 1999). To determine whether
the advantage of sonority rises is due to these properties, we computed two sets
of measures of co-occurrence, one for the whole word and one for the onset
specifically.
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1Available (March 2009) at http://128.252.27.56/Neighborhood/Home.asp. At present,
the Speech and Hearing Lab Neighborhood Database  incorrectly collapses case-
distinctions in phonological inputs (e.g. it fails to distinguish [lif] and [lIf]). In view
of this problem, we manually inspected the output of the database and corrected
them as necessary.

(2)Whole-word measures
The co-occurrence of elements in the word as a whole was estimated using
either segment- or letter co-occurrence, for auditory and printed words
respectively. Segment co-occurrence in auditory words was captured by
the following measures based on the Phonotactic Probability Calculator
(Vitevitch & Luce 2004):
Position-sensitive phoneme probability
The probability that any given phoneme in the target occurs at the
same string position (first through fourth), averaged across the target’s
four phonemes.
Position-sensitive biphone probability
The probability that any adjacent phoneme pair in the target occurs
at the same string position (averaged across the target’s three biphones).
For printed words (in Experiment 6), we used two measures of letter co-
occurrence:
Bigram count
The number of words sharing each of the target’s adjacent letter pairs
in the same string position (calculated based on Solso & Juel 1980).
Bigram frequency
The summed frequency of the words sharing the target’s bigrams (from
Ku∏era & Francis 1967).
For example, the phoneme probability of the auditory [mlIf] is 0·0382
(averaged across the positional probability of its four phonemes: 0·0572,
0·0447, 0·0350, 0·0159). In its printed form, mlIf shares its second bigram
(lI) with ten words, whose summed frequency is 85 per million (the initial
and final bigrams are not shared with any words), so its bigram count is
10, and its bigram frequency is 85.

a.
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Onset-probability measures
To examine the possibility that the advantage of sonority rises might be
due to the individual probabilities of occurrence of their onset consonants
in their string positions, we computed the log of the product of the position-
specific probabilities of each consonant (i.e. the summed frequency of
words sharing that consonant in its position relative to the total summed
frequency of the sample) in CCVC words listed in the Speech and Hearing
Lab Neighborhood Database . Consider the onset ml. The database includes
a total of 757 CCVC words, three of which begin with an m (mews, mule,
mute) and 199 words that include an l in the second position.2 The
probabilities of m-first and l-second words are respectively 0·003963012
and 0·262879789 and what we call the ‘log cluster probability’ for ml is
the log of their product (0·001041796): 2·982217428.

b.

2To avoid biasing the calculations by theory-internal structural assumptions, we based
frequency calculations on the segment sequences as indicated in the database (see
also §4.2).

Previous research suggests that n-initial onsets might be less perceptible than m-
initial onsets for reasons unrelated to sonority (Byrd 1992, Surprenant & Goldstein
1998). Because failure to register the acoustic input as an onset cluster (e.g.
registering nbIf as bIf) reduces its markedness, we also entered the identity of the
initial consonant into the analysis of auditory stimuli.

In this analysis we assume that for any underlying form /uf/ there is a set of
surface forms faithful to /uf/. There may be multiple such forms because /uf/
may be underspecified to some degree; e.g. prosodic structure may not be present
in /uf/. We assume a surface form [sf] to be fully specified in the sense that it
uniquely determines a phonetic form |jf| which is the fully faithful phonetic
interpretation of [sf]; |jf| in turn determines a unique auditory form {af}, which
results from the fully faithful execution of |jf|. Conversely, we assume that if
[sf1]≠[sf2] then the phonetic forms that are fully faithful to them, |sf1| and |sf2|,
are not equal, and analogously, if |sf1|≠|sf2| then the acoustic forms fully faithful
to them, {af1} and {af2}, are not equal. Assumption 1 spells these out in the
notation of the text.

Assumption 1. Faithful forms: f
For any underlying form /uf/ there is a set f(/uf/) of surface forms faithful to

/uf/: for each [sf]Œf(/uf/), the pair (/uf/, [sf]) satisfies the faithfulness
constraint F/uf/,[sf].

For any surface form [sf] there is a unique phonetic form f([sf]) that is faithful
to [sf]: ([sf], f([sf])) satisfies F[sf],|Jf|. This function f is one-to-one. f([sf])
is also said to be the phonetic form corresponding to [sf].

For any phonetic form |jf| there is a unique auditory form f(|jf|) that is faithful
to |jf|: (|jf|, f(|jf|)) satisfies F|Jf|,{af}. This function ƒ is one-to-one. f(|jf|)
is also said to be the acoustic form corresponding to |jf|.

Def. Grammatical. With respect to a given grammar G:
A surface form [sf] is grammatical i‰ there is an underlying form /uf/ such

that the pair (/uf/, [sf]) is optimal: for any other surface form [sf¢], the
grammar assigns lower harmony to (/uf/, [sf¢]) than to (/uf/, [sf]): (/uf/,
[sf¢])ÉG (/uf/, [sf]).

A phonetic form is grammatical iff it corresponds to a grammatical surface
form.

An acoustic form is grammatical iff it corresponds to a grammatical phonetic
form.

Suppose we are given a phonetic form |jfu| and its corresponding acoustic form
{afu}=f(|jfu|). We are interested in cases where |jfu| is ungrammatical for a
hearer, that is, where there is no surface form [sfg] that is grammatical for the
hearer such that |jfu| is the faithful phonetic interpretation of [sfg]. In this case,
we assume that among the grammatical surface forms, one, call it [sfg], is most
faithful to |jfu|. That is, given any other grammatical surface form [sfg¢], the pair
([sfg], |jfu|) better satisfies faithfulness F[sf],|Jf| than does the pair ([sfg¢], |jfu|);
we write this:

F[sf],|Jf|([sfg], |jfu|)ÇF[sf],|Jf|([sfg¢], |jfu|)

We assume that the phonetic interpretation of this surface form, |jfg|=f([sfg]),
is the grammatical phonetic form that is most faithful to the ungrammatical
acoustic form {afu} corresponding to |jfu|.

Assumption 2. Given any phonetic form |jf0| and its corresponding acoustic form
{af0}=f(|jf0|):

Among grammatical surface forms, one, [sfg], is most faithful to |jf0|; i.e. [sfg]
best satisfies F[sf],|Jf|([sf],|jf0|) among grammatical [sf].

The phonetic form corresponding to [sfg], |jfg|=f([sfg]), is the grammatical
phonetic form that is most faithful to the given acoustic form {af0}: |jfg|
best satisfies F|Jf|,{af}(|jf|, {af0}) among grammatical |jf|.

We assume given an OT grammar G for the mapping between underlying and
surface forms. The harmonic ordering of forms determined by G (Prince &
Smolensky 1993: ch. 5) will be written as follows: when G assigns higher harmony
to (/x/, [x]) than to (/y/, [y]) we write (/x/, [x])ÇG(/y/, [y]) or equivalently H1(/x/,
[x])ÇH1(/y/, [y]), since this is harmony in the first component. Harmony in the
second component, linking surface and phonetic forms, is determined solely by
the faithfulness constraint F[sf],|Jf|, so H2([x], |x|)ÇH2([y], |y|) means that ([x],
|x|) better satisfies faithfulness than does ([y], |y|): F[sf],|Jf|([y], |y|)ÇF[sf],|Jf|([y],
|y|). In the same way, harmony in the third component, linking phonetic and
acoustic forms, is determined by F|Jf|,{af}; H3(|x|, {x})ÇH3(|y|, {y}) means that
F|Jf|,{af}(|x|, {x})ÇF|Jf|,{af}(|y|, {y}). All the analogous definitions apply to É and
to  ª (equal harmony), as well as to Ñ and Ö.

Optimality in component n is the obvious generalisation of the component-1
notion of optimality in OT.

Def. Optimal in a component n
(xn, xn+1) is optimal in component n (‘n-opt’) i‰ for all level-n+1 forms

xn+1¢≠xn+1, Hn(xn, xn+1)ÇHn(xn, xn+1¢)

Def. Harmonic ordering w.r.t. component n
Given two representations X=(/x/, [x], |x|, {x})”(x1, x2, x3, x4) and Y=(y1,

y2, y3, y4):
XÇn Y i‰ either

i. (xn, xn+1) is optimal and (yn, yn+1) is not, or
ii. (xn, xn+1) and (yn, yn+1) are both suboptimal and Hn(xn, xn+1)ÇHn(yn, yn+1)

X ªn Y i‰ either
i. (xn, xn+1) and (yn, yn+1) are both optimal, or

ii. (xn, xn+1) and (yn, yn+1) are both suboptimal and Hn(xn, xn+1) ª Hn(yn, yn+1)
XÑn Y i‰ either XÇn Y or X ªn Y

To combine harmonic ordering across all components, we assume that no
component has priority over any others. Thus for a full (four-level) representation
X to be preferred to Y, written XñY, there must be some component in which
X is preferred and no component in which Y is preferred. The ordering is partial
in that for many pairs X, Y that are not harmonically equivalent, neither XñY
nor YñX. Our ordering is defined for use in perception: it compares X and Y
only if they have the same acoustic form {af}, and are therefore both potential
full perceptual representations for {af}.

Def. Harmonic ordering of full representations:ñ
Given two representations X=(/x/, [x], |x|, {x}), Y=(/y/, [y], |y|, {y}):
XñY i‰ {y}={x} and either

(a) i. Ak [Y is k-opt⁄X is k-opt] &
ii. En [X is n-opt and Y is not n-opt]

or
(b) i. Ak [Y is k-opt » X is k-opt] &

ii. Ak [X is not k-opt⁄XÑk Y] &
iii. En [XÇn Y]

In case (a), optimality makes the decision: X is optimal in some component in
which Y is not (a.ii), and there is no component in which Y is optimal but X is
not (a.i). In case (b), X and Y tie with respect to optimality, in that they are
optimal in exactly the same components (b.i): then relative harmony among sub-
optimal representations decides. Now X is preferred to Y only if there is some
component in which X is suboptimal but higher-harmony than Y (b.iii), and
there is no component in which Y is suboptimal but higher-harmony than X
(b.ii).

Henceforth references such as (b.ii) will always refer to the correspondingly
labelled condition in the definition of ñ.

Lemma 1. Suppose X is optimal in every component. Then
(a) there is no Y such that YñX, and
(b) for every Z such that {z}={x}, XñZ unless Z is also optimal in every

component.

Proof of Lemma 1. Suppose there were a Y such that YñX. Then either (a.ii) En
[Y is n-opt and X is not n-opt], which is impossible because X is k-opt Ak,
or (b.iii) En [YÇn X], which is also impossible because X is k-opt k. This
establishes (a). Now suppose given Z such that {z}={x}. Suppose Z is not
optimal in every component: En [Zn is subopt]. Then (a) of the definition of
XÇZ is satisfied, establishing (b). QED

Lemma 2. Suppose X is suboptimal in component k and optimal in the other
components. Let Y be a candidate with {y}={x}. Then
1. XñY i‰ either

a. Y is (i) suboptimal in some non-k component and (ii) not k-optimal or
b. Y is (ii) optimal in all non-k components and (ii)–(iii) XÇk Y,

2. YñX i‰ [Y is optimal in all non-k components and YÇk X]
3. neither XñY nor YñX if [Y is optimal in component k and suboptimal in

some non-k component].

Proof of Lemma 2. Suppose X is suboptimal in component k and optimal in the
other components, and Y is a candidate with {y}={x}.

Part 1. Under these conditions, conditions (1a) and (1b) of Lemma 2 are
equivalent to (a) and (b) respectively of the definition of XñY.

Part 2. Exchanging X and Y in (1), we see that (1a) cannot be met and condition
(1b) becomes (2) of Lemma 2.

Part 3. Suppose now that Y is optimal in component k and suboptimal in
some non-k component. Then in the definition of XñY, condition (i)
cannot hold in either (a) or (b), and the same is true for the definition of
YñX, because in both (a) and (b), (i) requires that the set of components
in which one of the candidates X or Y is optimal is a (not necessarily strict)
subset of the components in which the other candidate is optimal. This
establishes result (3). QED

Now, as in (4) in the text, we define a possible percept as follows.

Def. Perceptual principle
Let X=(/x/, [x], |x|, {x}) be a globally faithful representation and consider
the auditory form {x}. A representation Y is a possible percept for {x} i‰

the acoustic form of Y is {x}, and
there is no Z with acoustic form {x} such that ZñY.

The main result, (5) in the text, follows.

Proposition:
Let X=(/x/, [x], |x|, {x}) be a globally faithful representation. For the
auditory input {x}, there are two possibilities.
a. If [x] is grammatical then the only possible percept type is

A¢= (/x¢/, [x], |x|, {x})
where /x¢/ is any underlying form for which (/x¢/, [x]) is optimal.

b.If [x] is not grammatical, there are three possible percept types:
A¢=(/x¢/, [x], |x|, {x})
C¢=(/y¢/, [y], |x|, {x})
D¢=(/y¢/, [y], |y|, {x})
where
[y] is the grammatical surface form most faithful to |x|,
|y|=f([y]) is the phonetic form faithful to [y],
/y¢/ is any underlying form for which (/y ¢/, [y]) is optimal, and
/x¢/Œ f([x]) is any underlying form faithful to [x].

Proof. Part a: grammatical case
That A¢ (as given in the Proposition) is a possible percept follows immediately
from (a) of Lemma 1, since A¢ is optimal in every component: (/x ¢/, [x]) is
optimal by assumption, and in the other two components, A ¢ is faithful, hence
optimal.

Now consider any possible percept U=(/u/, [u], |u|, {u}); we must show
it is of type A¢. As a possible percept of {x}, U must have {u}={x} and we
must not have AñU, where A is a candidate of type A ¢. Now according to
Lemma 1 (b), since A is optimal in every component, we would have A ñU
unless U is also globally optimal. To be optimal in the third component, since
{u}={x}, |u| must be faithful to {x}, so, by Assumption 1, we must have |u|=
|x|, as |x| is the unique phonetic form faithful to {x}: {x}= f(|x|). By identical
reasoning, to be optimal in the second component, [u] must be faithful to
|u|=|x|, so we must have [u]=[x]. To be optimal in the first component, /u/
must be optimal when paired with [x]; this means U is a candidate of type A ¢.

Part b: ungrammatical case
U=(/u/, [u], |u|, {u}) is a possible percept only if {u}={x}. There are three
cases to consider. In case 1, |u|=|x| and [u]=[x]; in case 2, |u|=|x| and [u]
≠[x]; in case 3, |u|≠|x|. We show that in case 1, U is a possible percept i‰
it is of type A¢; in case 2, type C¢; in case 3, type D¢. Note that the globally
faithful candidate X is optimal in components 2 and 3 (as it is faithful there),
but cannot be optimal in component 1 because [x] is ungrammatical: there is
no /x¢/ such that (/x¢/, [x]) is optimal. X thus meets the conditions of Lemma
2, with k=1. While not optimal in component 1, X is however faithful in
component 1, by definition.

Case 1. Here, U=(/u/, [x], |x|, {x}). U is a possible percept i‰ there is no Z
with acoustic form {x} such that Z ñU. Like X, U is optimal in components
2 and 3 but cannot be optimal in component 1. So U satisfies the conditions
of Lemma 2, with k=1. By Part 2 of Lemma 2, for a candidate Z with acoustic
form {x}, ZñU i‰ Z is optimal in components 2 and 3 and Z Ç1 U. This is
true i‰ Z=(/z/, [x], |x|, {x}) and (/z/, [x])Ç1 (/u/, [x]). In this harmony
comparison, the two pairs tie on markedness since they have the same surface
form [x]; (/z/, [x])Ç1 (/u/, [x]) will hold i‰ (/z/, [x]) satisfies faithfulness
better than does (/u/, [x]). For no such Z to exist, it is necessary and su"cient
that /u/ is fully faithful to [x]: if /u/ is fully faithful to [x], no /z/ can be more
faithful, and if /u/ is not faithful to [x], then any /z/ that is faithful to [x] will
satisfy (/z/, [x])Ç1 (/u/, [x]). Thus, under the conditions of Case 1, U is a
possible percept i‰ it is of the form A ¢ as defined in Part 2 of the Proposition.

Case 2. Now, U=(/u/, [u], |x|, {x}), where [u]≠[x]. U is optimal (faithful)
in component 3 but is suboptimal in component 2, since (by Assumption 1)
[x] is the unique surface form faithful to |x|. Since X meets the conditions of
Lemma 2 with k=1, and U is 2-suboptimal, by part 1 of Lemma 2, we will
have XñU i‰ U is not 1-optimal (this is (1a); (1b cannot be met by U). So
to be a possible percept it is necessary that (/u/, [u]) be optimal, i.e. [u] must
be a grammatical surface form and /u/ a possible underlying form for [u]. This
means that U satisfies Lemma 2 with k=2. Now U is a possible percept for
{x} i‰ there is no candidate Z with acoustic form {x} such that Z ñU. By part
2 of Lemma 2, such a ZñU i‰ Z is optimal in components 1 and 3 and Z Ç2 U,
which is true i‰ ZÇ2 U and Z=(/z/, [z], |x|, {x}) with (/z/, [z]) optimal. This
in turn is true i‰ [z] is grammatical and ([z], |x|) is more faithful than ([u],
|u|). If we choose [u] to be the grammatical surface form [y] that is most
faithful to |x| (unique by Assumption 2) then no such [z] exists, otherwise,
choosing [z]=[y] entails ZñU. Thus, under the conditions of Case 2, U is a
possible percept for {x} i‰ [u]=[y] and /u/ is an underlying form /y/ for which
(/y/, [y]) is optimal, that is, i‰ U is a candidate of type C ¢.

Case 3. Now, U=(/u/, [u], |u|, {x}), where |u|≠|x|. U is suboptimal in com-
ponent 3 since (by Assumption 1) |x| is the only phonetic form that is faithful
to {x}. Since X satisfies Lemma 2 with k=1 and U is 3-suboptimal, by part
1 of Lemma 2 we will have X ñU i‰ U is not 1-optimal (this is (1a); (1b)
cannot be satisfied by such a U). So, as in case 2, for U to be a possible percept
of {x} we must have (/u/, [u]) optimal, so [u] must be a grammatical surface
form. Let W be a candidate of type C ¢. W satisfies Lemma 2 with k=2, so
again by part 1 of Lemma 2, W ñU i‰ U is not 2-optimal; U must be 2-
optimal to be a possible percept, which means ([u], |u|) must be faithful. This
means U satisfies Lemma 2 with k=3. So by part 2 of that lemma, there exists
a candidate Z with acoustic form {x} such that Z ñU i‰ there exists Z optimal
in components 1 and 2 and Z Ç3 U, i.e. a Z=(/z/, [z], |z|, {x}) such that [z]
is a grammatical surface form with underlying form /z/, |z|=f([z]), and (|z|,
{x}) is more faithful than (|u|, {x}). Such a Z does not exist if |u| is the (unique)
grammatical phonetic form |y| most faithful to {x}, otherwise, such a Z does
exist, namely, where |z|=|y|. By Assumption 2, this |y|=f([y]), where [y] is
as defined in the Proposition. Thus, under the conditions of Case 3, U is a
possible percept for {x} i‰ U is of type D ¢. QED

Note that the second part of Assumption 2 can be dropped if D ¢ in the
Proposition is set to (/z¢/, [z], |z|, {x}), where |z| is the grammatical phonetic
form most faithful to {x}, [z] is the surface form faithful to |z|, which is
grammatical by definition of ‘grammatical phonetic form’, and /z ¢/ is an
underlying form for which (/z ¢/, [z]) is optimal, which exists since [z] is
grammatical. Now the [z] of D ¢ may not be the same as the [y] of B ¢.
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additional references Appendix B: Measures of segmental lexical statistics

1Neighbourhood measures

2Measures of segment/letter co-occurrence

3The onset’s initial consonant

Table I
Some statistical properties of the auditory and printed stimuli.
The figures provided in the table reflect means per onset type
(averaged across the 12 items representing each onset type).

number of neighbours
neighbours’ frequency (summed)
mean phoneme probability
mean biphone probability
log cluster probability

auditory items

1·58
581
0·0316
0·0016
—5·4097

0·50
390
0·0262
0·0006
—10·7296

sonority risesonority fall

number of neighbours
neighbours’ frequency (summed)
bigram count (summed)
bigram frequency (summed)
log cluster probability

printed items

0·33
1·25
13·67
316·92
—5·4097

0·33
2·00
6·25
224·50
—10·7296

onset type

Appendix A: Formal presentation of the proposition in (5)

statistical property

statistical property
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To evaluate the possibility that the preference of items like  mlIf reflects only the
co-occurrence of their segments in the English lexicon, we calculated several
statistical measures of our materials. These measures correspond to factors which
have been reported in the literature as modulating perceptual accuracy and speed.
The means of these measures, provided in Table I, reflect averages computed
over the twelve items representing each onset type (these means were not used
in our analyses; they are presented merely as descriptive statistics). A brief
description of these measures is found in the text  – below we o‰er a more detailed
description of these measures, their calculation and their expected effects on
behaviour.
The statistical properties included neighbourhood measures and measures of
segment or letter co-occurrence (for auditory and printed materials respectively).
A final measure concerned the identity of the initial consonants.

A target’s lexical neighbourhood comprises all words obtained by adding, deleting
or substituting one of a target’s phonemes (or letters, for printed words). Previous
research suggests that words with a large neighbourhood consisting of frequent
words are recognised more readily in naming and AX tasks (e.g. Carreiras et al.
1997, Perea & Carreiras 1998, Vitevitch & Luce 1998, 1999). The better recognition
of the items with rising-sonority onsets might thus be due to the structure of
their lexical neighbourhoods, rather than sonority per se. We evaluated this
possibility using two neighbourhood measures:

(1)Neighbourhood count
The number of lexical neighbours
a.

Neighbourhood frequency
The summed frequency of a target’s neighbours
b.

For example, the item [mlIf] has one phonological neighbour, /klIf/, whose
frequency is 11 per million. Both measures were calculated from the Speech and
Hearing Lab Neighborhood Database .1

Words whose segments or letters co-occur frequently are better recognised (e.g.
Perea & Carreiras 1998, Vitevitch & Luce 1998, 1999). To determine whether
the advantage of sonority rises is due to these properties, we computed two sets
of measures of co-occurrence, one for the whole word and one for the onset
specifically.
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1Available (March 2009) at http://128.252.27.56/Neighborhood/Home.asp. At present,
the Speech and Hearing Lab Neighborhood Database  incorrectly collapses case-
distinctions in phonological inputs (e.g. it fails to distinguish [lif] and [lIf]). In view
of this problem, we manually inspected the output of the database and corrected
them as necessary.

(2)Whole-word measures
The co-occurrence of elements in the word as a whole was estimated using
either segment- or letter co-occurrence, for auditory and printed words
respectively. Segment co-occurrence in auditory words was captured by
the following measures based on the Phonotactic Probability Calculator
(Vitevitch & Luce 2004):
Position-sensitive phoneme probability
The probability that any given phoneme in the target occurs at the
same string position (first through fourth), averaged across the target’s
four phonemes.
Position-sensitive biphone probability
The probability that any adjacent phoneme pair in the target occurs
at the same string position (averaged across the target’s three biphones).
For printed words (in Experiment 6), we used two measures of letter co-
occurrence:
Bigram count
The number of words sharing each of the target’s adjacent letter pairs
in the same string position (calculated based on Solso & Juel 1980).
Bigram frequency
The summed frequency of the words sharing the target’s bigrams (from
Ku∏era & Francis 1967).
For example, the phoneme probability of the auditory [mlIf] is 0·0382
(averaged across the positional probability of its four phonemes: 0·0572,
0·0447, 0·0350, 0·0159). In its printed form, mlIf shares its second bigram
(lI) with ten words, whose summed frequency is 85 per million (the initial
and final bigrams are not shared with any words), so its bigram count is
10, and its bigram frequency is 85.

a.
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Onset-probability measures
To examine the possibility that the advantage of sonority rises might be
due to the individual probabilities of occurrence of their onset consonants
in their string positions, we computed the log of the product of the position-
specific probabilities of each consonant (i.e. the summed frequency of
words sharing that consonant in its position relative to the total summed
frequency of the sample) in CCVC words listed in the Speech and Hearing
Lab Neighborhood Database . Consider the onset ml. The database includes
a total of 757 CCVC words, three of which begin with an m (mews, mule,
mute) and 199 words that include an l in the second position.2 The
probabilities of m-first and l-second words are respectively 0·003963012
and 0·262879789 and what we call the ‘log cluster probability’ for ml is
the log of their product (0·001041796): 2·982217428.

b.

2To avoid biasing the calculations by theory-internal structural assumptions, we based
frequency calculations on the segment sequences as indicated in the database (see
also §4.2).

Previous research suggests that n-initial onsets might be less perceptible than m-
initial onsets for reasons unrelated to sonority (Byrd 1992, Surprenant & Goldstein
1998). Because failure to register the acoustic input as an onset cluster (e.g.
registering nbIf as bIf) reduces its markedness, we also entered the identity of the
initial consonant into the analysis of auditory stimuli.

In this analysis we assume that for any underlying form /uf/ there is a set of
surface forms faithful to /uf/. There may be multiple such forms because /uf/
may be underspecified to some degree; e.g. prosodic structure may not be present
in /uf/. We assume a surface form [sf] to be fully specified in the sense that it
uniquely determines a phonetic form |jf| which is the fully faithful phonetic
interpretation of [sf]; |jf| in turn determines a unique auditory form {af}, which
results from the fully faithful execution of |jf|. Conversely, we assume that if
[sf1]≠[sf2] then the phonetic forms that are fully faithful to them, |sf1| and |sf2|,
are not equal, and analogously, if |sf1|≠|sf2| then the acoustic forms fully faithful
to them, {af1} and {af2}, are not equal. Assumption 1 spells these out in the
notation of the text.

Assumption 1. Faithful forms: f
For any underlying form /uf/ there is a set f(/uf/) of surface forms faithful to

/uf/: for each [sf]Œf(/uf/), the pair (/uf/, [sf]) satisfies the faithfulness
constraint F/uf/,[sf].

For any surface form [sf] there is a unique phonetic form f([sf]) that is faithful
to [sf]: ([sf], f([sf])) satisfies F[sf],|Jf|. This function f is one-to-one. f([sf])
is also said to be the phonetic form corresponding to [sf].

For any phonetic form |jf| there is a unique auditory form f(|jf|) that is faithful
to |jf|: (|jf|, f(|jf|)) satisfies F|Jf|,{af}. This function ƒ is one-to-one. f(|jf|)
is also said to be the acoustic form corresponding to |jf|.

Def. Grammatical. With respect to a given grammar G:
A surface form [sf] is grammatical i‰ there is an underlying form /uf/ such

that the pair (/uf/, [sf]) is optimal: for any other surface form [sf¢], the
grammar assigns lower harmony to (/uf/, [sf¢]) than to (/uf/, [sf]): (/uf/,
[sf¢])ÉG (/uf/, [sf]).

A phonetic form is grammatical iff it corresponds to a grammatical surface
form.

An acoustic form is grammatical iff it corresponds to a grammatical phonetic
form.

Suppose we are given a phonetic form |jfu| and its corresponding acoustic form
{afu}=f(|jfu|). We are interested in cases where |jfu| is ungrammatical for a
hearer, that is, where there is no surface form [sfg] that is grammatical for the
hearer such that |jfu| is the faithful phonetic interpretation of [sfg]. In this case,
we assume that among the grammatical surface forms, one, call it [sfg], is most
faithful to |jfu|. That is, given any other grammatical surface form [sfg¢], the pair
([sfg], |jfu|) better satisfies faithfulness F[sf],|Jf| than does the pair ([sfg¢], |jfu|);
we write this:

F[sf],|Jf|([sfg], |jfu|)ÇF[sf],|Jf|([sfg¢], |jfu|)

We assume that the phonetic interpretation of this surface form, |jfg|=f([sfg]),
is the grammatical phonetic form that is most faithful to the ungrammatical
acoustic form {afu} corresponding to |jfu|.

Assumption 2. Given any phonetic form |jf0| and its corresponding acoustic form
{af0}=f(|jf0|):

Among grammatical surface forms, one, [sfg], is most faithful to |jf0|; i.e. [sfg]
best satisfies F[sf],|Jf|([sf],|jf0|) among grammatical [sf].

The phonetic form corresponding to [sfg], |jfg|=f([sfg]), is the grammatical
phonetic form that is most faithful to the given acoustic form {af0}: |jfg|
best satisfies F|Jf|,{af}(|jf|, {af0}) among grammatical |jf|.

We assume given an OT grammar G for the mapping between underlying and
surface forms. The harmonic ordering of forms determined by G (Prince &
Smolensky 1993: ch. 5) will be written as follows: when G assigns higher harmony
to (/x/, [x]) than to (/y/, [y]) we write (/x/, [x])ÇG(/y/, [y]) or equivalently H1(/x/,
[x])ÇH1(/y/, [y]), since this is harmony in the first component. Harmony in the
second component, linking surface and phonetic forms, is determined solely by
the faithfulness constraint F[sf],|Jf|, so H2([x], |x|)ÇH2([y], |y|) means that ([x],
|x|) better satisfies faithfulness than does ([y], |y|): F[sf],|Jf|([y], |y|)ÇF[sf],|Jf|([y],
|y|). In the same way, harmony in the third component, linking phonetic and
acoustic forms, is determined by F|Jf|,{af}; H3(|x|, {x})ÇH3(|y|, {y}) means that
F|Jf|,{af}(|x|, {x})ÇF|Jf|,{af}(|y|, {y}). All the analogous definitions apply to É and
to  ª (equal harmony), as well as to Ñ and Ö.

Optimality in component n is the obvious generalisation of the component-1
notion of optimality in OT.

Def. Optimal in a component n
(xn, xn+1) is optimal in component n (‘n-opt’) i‰ for all level-n+1 forms

xn+1¢≠xn+1, Hn(xn, xn+1)ÇHn(xn, xn+1¢)

Def. Harmonic ordering w.r.t. component n
Given two representations X=(/x/, [x], |x|, {x})”(x1, x2, x3, x4) and Y=(y1,

y2, y3, y4):
XÇn Y i‰ either

i. (xn, xn+1) is optimal and (yn, yn+1) is not, or
ii. (xn, xn+1) and (yn, yn+1) are both suboptimal and Hn(xn, xn+1)ÇHn(yn, yn+1)

X ªn Y i‰ either
i. (xn, xn+1) and (yn, yn+1) are both optimal, or

ii. (xn, xn+1) and (yn, yn+1) are both suboptimal and Hn(xn, xn+1) ª Hn(yn, yn+1)
XÑn Y i‰ either XÇn Y or X ªn Y

To combine harmonic ordering across all components, we assume that no
component has priority over any others. Thus for a full (four-level) representation
X to be preferred to Y, written XñY, there must be some component in which
X is preferred and no component in which Y is preferred. The ordering is partial
in that for many pairs X, Y that are not harmonically equivalent, neither XñY
nor YñX. Our ordering is defined for use in perception: it compares X and Y
only if they have the same acoustic form {af}, and are therefore both potential
full perceptual representations for {af}.

Def. Harmonic ordering of full representations:ñ
Given two representations X=(/x/, [x], |x|, {x}), Y=(/y/, [y], |y|, {y}):
XñY i‰ {y}={x} and either

(a) i. Ak [Y is k-opt⁄X is k-opt] &
ii. En [X is n-opt and Y is not n-opt]

or
(b) i. Ak [Y is k-opt » X is k-opt] &

ii. Ak [X is not k-opt⁄XÑk Y] &
iii. En [XÇn Y]

In case (a), optimality makes the decision: X is optimal in some component in
which Y is not (a.ii), and there is no component in which Y is optimal but X is
not (a.i). In case (b), X and Y tie with respect to optimality, in that they are
optimal in exactly the same components (b.i): then relative harmony among sub-
optimal representations decides. Now X is preferred to Y only if there is some
component in which X is suboptimal but higher-harmony than Y (b.iii), and
there is no component in which Y is suboptimal but higher-harmony than X
(b.ii).

Henceforth references such as (b.ii) will always refer to the correspondingly
labelled condition in the definition of ñ.

Lemma 1. Suppose X is optimal in every component. Then
(a) there is no Y such that YñX, and
(b) for every Z such that {z}={x}, XñZ unless Z is also optimal in every

component.

Proof of Lemma 1. Suppose there were a Y such that YñX. Then either (a.ii) En
[Y is n-opt and X is not n-opt], which is impossible because X is k-opt Ak,
or (b.iii) En [YÇn X], which is also impossible because X is k-opt k. This
establishes (a). Now suppose given Z such that {z}={x}. Suppose Z is not
optimal in every component: En [Zn is subopt]. Then (a) of the definition of
XÇZ is satisfied, establishing (b). QED

Lemma 2. Suppose X is suboptimal in component k and optimal in the other
components. Let Y be a candidate with {y}={x}. Then
1. XñY i‰ either

a. Y is (i) suboptimal in some non-k component and (ii) not k-optimal or
b. Y is (ii) optimal in all non-k components and (ii)–(iii) XÇk Y,

2. YñX i‰ [Y is optimal in all non-k components and YÇk X]
3. neither XñY nor YñX if [Y is optimal in component k and suboptimal in

some non-k component].

Proof of Lemma 2. Suppose X is suboptimal in component k and optimal in the
other components, and Y is a candidate with {y}={x}.

Part 1. Under these conditions, conditions (1a) and (1b) of Lemma 2 are
equivalent to (a) and (b) respectively of the definition of XñY.

Part 2. Exchanging X and Y in (1), we see that (1a) cannot be met and condition
(1b) becomes (2) of Lemma 2.

Part 3. Suppose now that Y is optimal in component k and suboptimal in
some non-k component. Then in the definition of XñY, condition (i)
cannot hold in either (a) or (b), and the same is true for the definition of
YñX, because in both (a) and (b), (i) requires that the set of components
in which one of the candidates X or Y is optimal is a (not necessarily strict)
subset of the components in which the other candidate is optimal. This
establishes result (3). QED

Now, as in (4) in the text, we define a possible percept as follows.

Def. Perceptual principle
Let X=(/x/, [x], |x|, {x}) be a globally faithful representation and consider
the auditory form {x}. A representation Y is a possible percept for {x} i‰

the acoustic form of Y is {x}, and
there is no Z with acoustic form {x} such that ZñY.

The main result, (5) in the text, follows.

Proposition:
Let X=(/x/, [x], |x|, {x}) be a globally faithful representation. For the
auditory input {x}, there are two possibilities.
a. If [x] is grammatical then the only possible percept type is

A¢= (/x¢/, [x], |x|, {x})
where /x¢/ is any underlying form for which (/x¢/, [x]) is optimal.

b. If [x] is not grammatical, there are three possible percept types:
A¢=(/x¢/, [x], |x|, {x})
C¢=(/y¢/, [y], |x|, {x})
D¢=(/y¢/, [y], |y|, {x})

where
[y] is the grammatical surface form most faithful to |x|,
|y|=f([y]) is the phonetic form faithful to [y],
/y¢/ is any underlying form for which (/y¢/, [y]) is optimal, and
/x¢/Œ f([x]) is any underlying form faithful to [x].

Proof. Part a: grammatical case
That A¢ (as given in the Proposition) is a possible percept follows immediately
from (a) of Lemma 1, since A¢ is optimal in every component: (/x¢/, [x]) is
optimal by assumption, and in the other two components, A¢ is faithful, hence
optimal.

Now consider any possible percept U=(/u/, [u], |u|, {u}); we must show
it is of type A¢. As a possible percept of {x}, U must have {u}={x} and we
must not have AñU, where A is a candidate of type A¢. Now according to
Lemma 1 (b), since A is optimal in every component, we would have AñU
unless U is also globally optimal. To be optimal in the third component, since
{u}={x}, |u| must be faithful to {x}, so, by Assumption 1, we must have |u|=
|x|, as |x| is the unique phonetic form faithful to {x}: {x}=f(|x|). By identical
reasoning, to be optimal in the second component, [u] must be faithful to
|u|=|x|, so we must have [u]=[x]. To be optimal in the first component, /u/
must be optimal when paired with [x]; this means U is a candidate of type A¢.

Part b: ungrammatical case
U=(/u/, [u], |u|, {u}) is a possible percept only if {u}={x}. There are three
cases to consider. In case 1, |u|=|x| and [u]=[x]; in case 2, |u|=|x| and [u]
≠[x]; in case 3, |u|≠|x|. We show that in case 1, U is a possible percept i‰
it is of type A¢; in case 2, type C¢; in case 3, type D¢. Note that the globally
faithful candidate X is optimal in components 2 and 3 (as it is faithful there),
but cannot be optimal in component 1 because [x] is ungrammatical: there is
no /x¢/ such that (/x¢/, [x]) is optimal. X thus meets the conditions of Lemma
2, with k=1. While not optimal in component 1, X is however faithful in
component 1, by definition.

Case 1. Here, U=(/u/, [x], |x|, {x}). U is a possible percept i‰ there is no Z
with acoustic form {x} such that ZñU. Like X, U is optimal in components
2 and 3 but cannot be optimal in component 1. So U satisfies the conditions
of Lemma 2, with k=1. By Part 2 of Lemma 2, for a candidate Z with acoustic
form {x}, ZñU i‰ Z is optimal in components 2 and 3 and ZÇ1 U. This is
true i‰ Z=(/z/, [x], |x|, {x}) and (/z/, [x])Ç1 (/u/, [x]). In this harmony
comparison, the two pairs tie on markedness since they have the same surface
form [x]; (/z/, [x])Ç1 (/u/, [x]) will hold i‰ (/z/, [x]) satisfies faithfulness
better than does (/u/, [x]). For no such Z to exist, it is necessary and su"cient
that /u/ is fully faithful to [x]: if /u/ is fully faithful to [x], no /z/ can be more
faithful, and if /u/ is not faithful to [x], then any /z/ that is faithful to [x] will
satisfy (/z/, [x])Ç1 (/u/, [x]). Thus, under the conditions of Case 1, U is a
possible percept i‰ it is of the form A¢ as defined in Part 2 of the Proposition.

Case 2. Now, U=(/u/, [u], |x|, {x}), where [u]≠[x]. U is optimal (faithful)
in component 3 but is suboptimal in component 2, since (by Assumption 1)
[x] is the unique surface form faithful to |x|. Since X meets the conditions of
Lemma 2 with k=1, and U is 2-suboptimal, by part 1 of Lemma 2, we will
have XñU i‰ U is not 1-optimal (this is (1a); (1b cannot be met by U). So
to be a possible percept it is necessary that (/u/, [u]) be optimal, i.e. [u] must
be a grammatical surface form and /u/ a possible underlying form for [u]. This
means that U satisfies Lemma 2 with k=2. Now U is a possible percept for
{x} i‰ there is no candidate Z with acoustic form {x} such that Z ñU. By part
2 of Lemma 2, such a ZñU i‰ Z is optimal in components 1 and 3 and Z Ç2 U,
which is true i‰ ZÇ2 U and Z=(/z/, [z], |x|, {x}) with (/z/, [z]) optimal. This
in turn is true i‰ [z] is grammatical and ([z], |x|) is more faithful than ([u],
|u|). If we choose [u] to be the grammatical surface form [y] that is most
faithful to |x| (unique by Assumption 2) then no such [z] exists, otherwise,
choosing [z]=[y] entails ZñU. Thus, under the conditions of Case 2, U is a
possible percept for {x} i‰ [u]=[y] and /u/ is an underlying form /y/ for which
(/y/, [y]) is optimal, that is, i‰ U is a candidate of type C ¢.

Case 3. Now, U=(/u/, [u], |u|, {x}), where |u|≠|x|. U is suboptimal in com-
ponent 3 since (by Assumption 1) |x| is the only phonetic form that is faithful
to {x}. Since X satisfies Lemma 2 with k=1 and U is 3-suboptimal, by part
1 of Lemma 2 we will have X ñU i‰ U is not 1-optimal (this is (1a); (1b)
cannot be satisfied by such a U). So, as in case 2, for U to be a possible percept
of {x} we must have (/u/, [u]) optimal, so [u] must be a grammatical surface
form. Let W be a candidate of type C ¢. W satisfies Lemma 2 with k=2, so
again by part 1 of Lemma 2, W ñU i‰ U is not 2-optimal; U must be 2-
optimal to be a possible percept, which means ([u], |u|) must be faithful. This
means U satisfies Lemma 2 with k=3. So by part 2 of that lemma, there exists
a candidate Z with acoustic form {x} such that Z ñU i‰ there exists Z optimal
in components 1 and 2 and Z Ç3 U, i.e. a Z=(/z/, [z], |z|, {x}) such that [z]
is a grammatical surface form with underlying form /z/, |z|=f([z]), and (|z|,
{x}) is more faithful than (|u|, {x}). Such a Z does not exist if |u| is the (unique)
grammatical phonetic form |y| most faithful to {x}, otherwise, such a Z does
exist, namely, where |z|=|y|. By Assumption 2, this |y|=f([y]), where [y] is
as defined in the Proposition. Thus, under the conditions of Case 3, U is a
possible percept for {x} i‰ U is of type D ¢. QED

Note that the second part of Assumption 2 can be dropped if D ¢ in the
Proposition is set to (/z¢/, [z], |z|, {x}), where |z| is the grammatical phonetic
form most faithful to {x}, [z] is the surface form faithful to |z|, which is
grammatical by definition of ‘grammatical phonetic form’, and /z ¢/ is an
underlying form for which (/z ¢/, [z]) is optimal, which exists since [z] is
grammatical. Now the [z] of D ¢ may not be the same as the [y] of B ¢.
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additional references Appendix B: Measures of segmental lexical statistics

1Neighbourhood measures

2Measures of segment/letter co-occurrence

3The onset’s initial consonant

Table I
Some statistical properties of the auditory and printed stimuli.
The figures provided in the table reflect means per onset type
(averaged across the 12 items representing each onset type).

number of neighbours
neighbours’ frequency (summed)
mean phoneme probability
mean biphone probability
log cluster probability

auditory items

1·58
581
0·0316
0·0016
—5·4097

0·50
390
0·0262
0·0006
—10·7296

sonority risesonority fall

number of neighbours
neighbours’ frequency (summed)
bigram count (summed)
bigram frequency (summed)
log cluster probability

printed items

0·33
1·25
13·67
316·92
—5·4097

0·33
2·00
6·25
224·50
—10·7296

onset type

Appendix A: Formal presentation of the proposition in (5)

statistical property

statistical property
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To evaluate the possibility that the preference of items like  mlIf reflects only the
co-occurrence of their segments in the English lexicon, we calculated several
statistical measures of our materials. These measures correspond to factors which
have been reported in the literature as modulating perceptual accuracy and speed.
The means of these measures, provided in Table I, reflect averages computed
over the twelve items representing each onset type (these means were not used
in our analyses; they are presented merely as descriptive statistics). A brief
description of these measures is found in the text  – below we o‰er a more detailed
description of these measures, their calculation and their expected effects on
behaviour.

The statistical properties included neighbourhood measures and measures of
segment or letter co-occurrence (for auditory and printed materials respectively).
A final measure concerned the identity of the initial consonants.

A target’s lexical neighbourhood comprises all words obtained by adding, deleting
or substituting one of a target’s phonemes (or letters, for printed words). Previous
research suggests that words with a large neighbourhood consisting of frequent
words are recognised more readily in naming and AX tasks (e.g. Carreiras et al.
1997, Perea & Carreiras 1998, Vitevitch & Luce 1998, 1999). The better recognition
of the items with rising-sonority onsets might thus be due to the structure of
their lexical neighbourhoods, rather than sonority per se. We evaluated this
possibility using two neighbourhood measures:

(1) Neighbourhood count
The number of lexical neighbours

a.

Neighbourhood frequency
The summed frequency of a target’s neighbours

b.

For example, the item [mlIf] has one phonological neighbour, /klIf/, whose
frequency is 11 per million. Both measures were calculated from the Speech and
Hearing Lab Neighborhood Database .1

Words whose segments or letters co-occur frequently are better recognised (e.g.
Perea & Carreiras 1998, Vitevitch & Luce 1998, 1999). To determine whether
the advantage of sonority rises is due to these properties, we computed two sets
of measures of co-occurrence, one for the whole word and one for the onset
specifically.
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1 Available (March 2009) at http://128.252.27.56/Neighborhood/Home.asp. At present,
the Speech and Hearing Lab Neighborhood Database  incorrectly collapses case-
distinctions in phonological inputs (e.g. it fails to distinguish [lif] and [lIf]). In view
of this problem, we manually inspected the output of the database and corrected
them as necessary.

(2)Whole-word measures
The co-occurrence of elements in the word as a whole was estimated using
either segment- or letter co-occurrence, for auditory and printed words
respectively. Segment co-occurrence in auditory words was captured by
the following measures based on the Phonotactic Probability Calculator
(Vitevitch & Luce 2004):
Position-sensitive phoneme probability
The probability that any given phoneme in the target occurs at the
same string position (first through fourth), averaged across the target’s
four phonemes.
Position-sensitive biphone probability
The probability that any adjacent phoneme pair in the target occurs
at the same string position (averaged across the target’s three biphones).
For printed words (in Experiment 6), we used two measures of letter co-
occurrence:
Bigram count
The number of words sharing each of the target’s adjacent letter pairs
in the same string position (calculated based on Solso & Juel 1980).
Bigram frequency
The summed frequency of the words sharing the target’s bigrams (from
Ku∏era & Francis 1967).
For example, the phoneme probability of the auditory [mlIf] is 0·0382
(averaged across the positional probability of its four phonemes: 0·0572,
0·0447, 0·0350, 0·0159). In its printed form, mlIf shares its second bigram
(lI) with ten words, whose summed frequency is 85 per million (the initial
and final bigrams are not shared with any words), so its bigram count is
10, and its bigram frequency is 85.

a.
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Onset-probability measures
To examine the possibility that the advantage of sonority rises might be
due to the individual probabilities of occurrence of their onset consonants
in their string positions, we computed the log of the product of the position-
specific probabilities of each consonant (i.e. the summed frequency of
words sharing that consonant in its position relative to the total summed
frequency of the sample) in CCVC words listed in the Speech and Hearing
Lab Neighborhood Database . Consider the onset ml. The database includes
a total of 757 CCVC words, three of which begin with an m (mews, mule,
mute) and 199 words that include an l in the second position.2 The
probabilities of m-first and l-second words are respectively 0·003963012
and 0·262879789 and what we call the ‘log cluster probability’ for ml is
the log of their product (0·001041796): 2·982217428.

b.

2To avoid biasing the calculations by theory-internal structural assumptions, we based
frequency calculations on the segment sequences as indicated in the database (see
also §4.2).

Previous research suggests that n-initial onsets might be less perceptible than m-
initial onsets for reasons unrelated to sonority (Byrd 1992, Surprenant & Goldstein
1998). Because failure to register the acoustic input as an onset cluster (e.g.
registering nbIf as bIf) reduces its markedness, we also entered the identity of the
initial consonant into the analysis of auditory stimuli.

In this analysis we assume that for any underlying form /uf/ there is a set of
surface forms faithful to /uf/. There may be multiple such forms because /uf/
may be underspecified to some degree; e.g. prosodic structure may not be present
in /uf/. We assume a surface form [sf] to be fully specified in the sense that it
uniquely determines a phonetic form |jf| which is the fully faithful phonetic
interpretation of [sf]; |jf| in turn determines a unique auditory form {af}, which
results from the fully faithful execution of |jf|. Conversely, we assume that if
[sf1]≠[sf2] then the phonetic forms that are fully faithful to them, |sf1| and |sf2|,
are not equal, and analogously, if |sf1|≠|sf2| then the acoustic forms fully faithful
to them, {af1} and {af2}, are not equal. Assumption 1 spells these out in the
notation of the text.

Assumption 1. Faithful forms: f
For any underlying form /uf/ there is a set f(/uf/) of surface forms faithful to

/uf/: for each [sf]Œf(/uf/), the pair (/uf/, [sf]) satisfies the faithfulness
constraint F/uf/,[sf].

For any surface form [sf] there is a unique phonetic form f([sf]) that is faithful
to [sf]: ([sf], f([sf])) satisfies F[sf],|Jf|. This function f is one-to-one. f([sf])
is also said to be the phonetic form corresponding to [sf].

For any phonetic form |jf| there is a unique auditory form f(|jf|) that is faithful
to |jf|: (|jf|, f(|jf|)) satisfies F|Jf|,{af}. This function ƒ is one-to-one. f(|jf|)
is also said to be the acoustic form corresponding to |jf|.

Def. Grammatical. With respect to a given grammar G:
A surface form [sf] is grammatical i‰ there is an underlying form /uf/ such

that the pair (/uf/, [sf]) is optimal: for any other surface form [sf¢], the
grammar assigns lower harmony to (/uf/, [sf¢]) than to (/uf/, [sf]): (/uf/,
[sf¢])ÉG (/uf/, [sf]).

A phonetic form is grammatical iff it corresponds to a grammatical surface
form.

An acoustic form is grammatical iff it corresponds to a grammatical phonetic
form.

Suppose we are given a phonetic form |jfu| and its corresponding acoustic form
{afu}=f(|jfu|). We are interested in cases where |jfu| is ungrammatical for a
hearer, that is, where there is no surface form [sfg] that is grammatical for the
hearer such that |jfu| is the faithful phonetic interpretation of [sfg]. In this case,
we assume that among the grammatical surface forms, one, call it [sfg], is most
faithful to |jfu|. That is, given any other grammatical surface form [sfg¢], the pair
([sfg], |jfu|) better satisfies faithfulness F[sf],|Jf| than does the pair ([sfg¢], |jfu|);
we write this:

F[sf],|Jf|([sfg], |jfu|)ÇF[sf],|Jf|([sfg¢], |jfu|)

We assume that the phonetic interpretation of this surface form, |jfg|=f([sfg]),
is the grammatical phonetic form that is most faithful to the ungrammatical
acoustic form {afu} corresponding to |jfu|.

Assumption 2. Given any phonetic form |jf0| and its corresponding acoustic form
{af0}=f(|jf0|):

Among grammatical surface forms, one, [sfg], is most faithful to |jf0|; i.e. [sfg]
best satisfies F[sf],|Jf|([sf],|jf0|) among grammatical [sf].

The phonetic form corresponding to [sfg], |jfg|=f([sfg]), is the grammatical
phonetic form that is most faithful to the given acoustic form {af0}: |jfg|
best satisfies F|Jf|,{af}(|jf|, {af0}) among grammatical |jf|.

We assume given an OT grammar G for the mapping between underlying and
surface forms. The harmonic ordering of forms determined by G (Prince &
Smolensky 1993: ch. 5) will be written as follows: when G assigns higher harmony
to (/x/, [x]) than to (/y/, [y]) we write (/x/, [x])ÇG(/y/, [y]) or equivalently H1(/x/,
[x])ÇH1(/y/, [y]), since this is harmony in the first component. Harmony in the
second component, linking surface and phonetic forms, is determined solely by
the faithfulness constraint F[sf],|Jf|, so H2([x], |x|)ÇH2([y], |y|) means that ([x],
|x|) better satisfies faithfulness than does ([y], |y|): F[sf],|Jf|([y], |y|)ÇF[sf],|Jf|([y],
|y|). In the same way, harmony in the third component, linking phonetic and
acoustic forms, is determined by F|Jf|,{af}; H3(|x|, {x})ÇH3(|y|, {y}) means that
F|Jf|,{af}(|x|, {x})ÇF|Jf|,{af}(|y|, {y}). All the analogous definitions apply to É and
to  ª (equal harmony), as well as to Ñ and Ö.

Optimality in component n is the obvious generalisation of the component-1
notion of optimality in OT.

Def. Optimal in a component n
(xn, xn+1) is optimal in component n (‘n-opt’) i‰ for all level-n+1 forms

xn+1¢≠xn+1, Hn(xn, xn+1)ÇHn(xn, xn+1¢)

Def. Harmonic ordering w.r.t. component n
Given two representations X=(/x/, [x], |x|, {x})”(x1, x2, x3, x4) and Y=(y1,

y2, y3, y4):
XÇn Y i‰ either

i. (xn, xn+1) is optimal and (yn, yn+1) is not, or
ii. (xn, xn+1) and (yn, yn+1) are both suboptimal and Hn(xn, xn+1)ÇHn(yn, yn+1)

X ªn Y i‰ either
i. (xn, xn+1) and (yn, yn+1) are both optimal, or

ii. (xn, xn+1) and (yn, yn+1) are both suboptimal and Hn(xn, xn+1) ª Hn(yn, yn+1)
XÑn Y i‰ either XÇn Y or X ªn Y

To combine harmonic ordering across all components, we assume that no
component has priority over any others. Thus for a full (four-level) representation
X to be preferred to Y, written XñY, there must be some component in which
X is preferred and no component in which Y is preferred. The ordering is partial
in that for many pairs X, Y that are not harmonically equivalent, neither XñY
nor YñX. Our ordering is defined for use in perception: it compares X and Y
only if they have the same acoustic form {af}, and are therefore both potential
full perceptual representations for {af}.

Def. Harmonic ordering of full representations:ñ
Given two representations X=(/x/, [x], |x|, {x}), Y=(/y/, [y], |y|, {y}):
XñY i‰ {y}={x} and either

(a) i. Ak [Y is k-opt⁄X is k-opt] &
ii. En [X is n-opt and Y is not n-opt]

or
(b) i. Ak [Y is k-opt » X is k-opt] &

ii. Ak [X is not k-opt⁄XÑk Y] &
iii. En [XÇn Y]

In case (a), optimality makes the decision: X is optimal in some component in
which Y is not (a.ii), and there is no component in which Y is optimal but X is
not (a.i). In case (b), X and Y tie with respect to optimality, in that they are
optimal in exactly the same components (b.i): then relative harmony among sub-
optimal representations decides. Now X is preferred to Y only if there is some
component in which X is suboptimal but higher-harmony than Y (b.iii), and
there is no component in which Y is suboptimal but higher-harmony than X
(b.ii).

Henceforth references such as (b.ii) will always refer to the correspondingly
labelled condition in the definition of ñ.

Lemma 1. Suppose X is optimal in every component. Then
(a) there is no Y such that YñX, and
(b) for every Z such that {z}={x}, XñZ unless Z is also optimal in every

component.

Proof of Lemma 1. Suppose there were a Y such that YñX. Then either (a.ii) En
[Y is n-opt and X is not n-opt], which is impossible because X is k-opt Ak,
or (b.iii) En [YÇn X], which is also impossible because X is k-opt k. This
establishes (a). Now suppose given Z such that {z}={x}. Suppose Z is not
optimal in every component: En [Zn is subopt]. Then (a) of the definition of
XÇZ is satisfied, establishing (b). QED

Lemma 2. Suppose X is suboptimal in component k and optimal in the other
components. Let Y be a candidate with {y}={x}. Then
1. XñY i‰ either

a. Y is (i) suboptimal in some non-k component and (ii) not k-optimal or
b. Y is (ii) optimal in all non-k components and (ii)–(iii) XÇk Y,

2. YñX i‰ [Y is optimal in all non-k components and YÇk X]
3. neither XñY nor YñX if [Y is optimal in component k and suboptimal in

some non-k component].

Proof of Lemma 2. Suppose X is suboptimal in component k and optimal in the
other components, and Y is a candidate with {y}={x}.

Part 1. Under these conditions, conditions (1a) and (1b) of Lemma 2 are
equivalent to (a) and (b) respectively of the definition of XñY.

Part 2. Exchanging X and Y in (1), we see that (1a) cannot be met and condition
(1b) becomes (2) of Lemma 2.

Part 3. Suppose now that Y is optimal in component k and suboptimal in
some non-k component. Then in the definition of XñY, condition (i)
cannot hold in either (a) or (b), and the same is true for the definition of
YñX, because in both (a) and (b), (i) requires that the set of components
in which one of the candidates X or Y is optimal is a (not necessarily strict)
subset of the components in which the other candidate is optimal. This
establishes result (3). QED

Now, as in (4) in the text, we define a possible percept as follows.

Def. Perceptual principle
Let X=(/x/, [x], |x|, {x}) be a globally faithful representation and consider
the auditory form {x}. A representation Y is a possible percept for {x} i‰

the acoustic form of Y is {x}, and
there is no Z with acoustic form {x} such that ZñY.

The main result, (5) in the text, follows.

Proposition:
Let X=(/x/, [x], |x|, {x}) be a globally faithful representation. For the
auditory input {x}, there are two possibilities.
a. If [x] is grammatical then the only possible percept type is

A¢= (/x¢/, [x], |x|, {x})
where /x¢/ is any underlying form for which (/x¢/, [x]) is optimal.

b. If [x] is not grammatical, there are three possible percept types:
A¢=(/x¢/, [x], |x|, {x})
C¢=(/y¢/, [y], |x|, {x})
D¢=(/y¢/, [y], |y|, {x})

where
[y] is the grammatical surface form most faithful to |x|,
|y|=f([y]) is the phonetic form faithful to [y],
/y¢/ is any underlying form for which (/y¢/, [y]) is optimal, and
/x¢/Œ f([x]) is any underlying form faithful to [x].

Proof. Part a: grammatical case
That A¢ (as given in the Proposition) is a possible percept follows immediately
from (a) of Lemma 1, since A¢ is optimal in every component: (/x¢/, [x]) is
optimal by assumption, and in the other two components, A¢ is faithful, hence
optimal.

Now consider any possible percept U=(/u/, [u], |u|, {u}); we must show
it is of type A¢. As a possible percept of {x}, U must have {u}={x} and we
must not have AñU, where A is a candidate of type A¢. Now according to
Lemma 1 (b), since A is optimal in every component, we would have AñU
unless U is also globally optimal. To be optimal in the third component, since
{u}={x}, |u| must be faithful to {x}, so, by Assumption 1, we must have |u|=
|x|, as |x| is the unique phonetic form faithful to {x}: {x}=f(|x|). By identical
reasoning, to be optimal in the second component, [u] must be faithful to
|u|=|x|, so we must have [u]=[x]. To be optimal in the first component, /u/
must be optimal when paired with [x]; this means U is a candidate of type A¢.

Part b: ungrammatical case
U=(/u/, [u], |u|, {u}) is a possible percept only if {u}={x}. There are three
cases to consider. In case 1, |u|=|x| and [u]=[x]; in case 2, |u|=|x| and [u]
≠[x]; in case 3, |u|≠|x|. We show that in case 1, U is a possible percept i‰
it is of type A¢; in case 2, type C¢; in case 3, type D¢. Note that the globally
faithful candidate X is optimal in components 2 and 3 (as it is faithful there),
but cannot be optimal in component 1 because [x] is ungrammatical: there is
no /x¢/ such that (/x¢/, [x]) is optimal. X thus meets the conditions of Lemma
2, with k=1. While not optimal in component 1, X is however faithful in
component 1, by definition.

Case 1. Here, U=(/u/, [x], |x|, {x}). U is a possible percept i‰ there is no Z
with acoustic form {x} such that ZñU. Like X, U is optimal in components
2 and 3 but cannot be optimal in component 1. So U satisfies the conditions
of Lemma 2, with k=1. By Part 2 of Lemma 2, for a candidate Z with acoustic
form {x}, ZñU i‰ Z is optimal in components 2 and 3 and ZÇ1 U. This is
true i‰ Z=(/z/, [x], |x|, {x}) and (/z/, [x])Ç1 (/u/, [x]). In this harmony
comparison, the two pairs tie on markedness since they have the same surface
form [x]; (/z/, [x])Ç1 (/u/, [x]) will hold i‰ (/z/, [x]) satisfies faithfulness
better than does (/u/, [x]). For no such Z to exist, it is necessary and su"cient
that /u/ is fully faithful to [x]: if /u/ is fully faithful to [x], no /z/ can be more
faithful, and if /u/ is not faithful to [x], then any /z/ that is faithful to [x] will
satisfy (/z/, [x])Ç1 (/u/, [x]). Thus, under the conditions of Case 1, U is a
possible percept i‰ it is of the form A¢ as defined in Part 2 of the Proposition.

Case 2. Now, U=(/u/, [u], |x|, {x}), where [u]≠[x]. U is optimal (faithful)
in component 3 but is suboptimal in component 2, since (by Assumption 1)
[x] is the unique surface form faithful to |x|. Since X meets the conditions of
Lemma 2 with k=1, and U is 2-suboptimal, by part 1 of Lemma 2, we will
have XñU i‰ U is not 1-optimal (this is (1a); (1b cannot be met by U). So
to be a possible percept it is necessary that (/u/, [u]) be optimal, i.e. [u] must
be a grammatical surface form and /u/ a possible underlying form for [u]. This
means that U satisfies Lemma 2 with k=2. Now U is a possible percept for
{x} i‰ there is no candidate Z with acoustic form {x} such that ZñU. By part
2 of Lemma 2, such a ZñU i‰ Z is optimal in components 1 and 3 and ZÇ2 U,
which is true i‰ ZÇ2 U and Z=(/z/, [z], |x|, {x}) with (/z/, [z]) optimal. This
in turn is true i‰ [z] is grammatical and ([z], |x|) is more faithful than ([u],
|u|). If we choose [u] to be the grammatical surface form [y] that is most
faithful to |x| (unique by Assumption 2) then no such [z] exists, otherwise,
choosing [z]=[y] entails ZñU. Thus, under the conditions of Case 2, U is a
possible percept for {x} i‰ [u]=[y] and /u/ is an underlying form /y/ for which
(/y/, [y]) is optimal, that is, i‰ U is a candidate of type C¢.

Case 3. Now, U=(/u/, [u], |u|, {x}), where |u|≠|x|. U is suboptimal in com-
ponent 3 since (by Assumption 1) |x| is the only phonetic form that is faithful
to {x}. Since X satisfies Lemma 2 with k=1 and U is 3-suboptimal, by part
1 of Lemma 2 we will have XñU i‰ U is not 1-optimal (this is (1a); (1b)
cannot be satisfied by such a U). So, as in case 2, for U to be a possible percept
of {x} we must have (/u/, [u]) optimal, so [u] must be a grammatical surface
form. Let W be a candidate of type C¢. W satisfies Lemma 2 with k=2, so
again by part 1 of Lemma 2, WñU i‰ U is not 2-optimal; U must be 2-
optimal to be a possible percept, which means ([u], |u|) must be faithful. This
means U satisfies Lemma 2 with k=3. So by part 2 of that lemma, there exists
a candidate Z with acoustic form {x} such that ZñU i‰ there exists Z optimal
in components 1 and 2 and ZÇ3 U, i.e. a Z=(/z/, [z], |z|, {x}) such that [z]
is a grammatical surface form with underlying form /z/, |z|=f([z]), and (|z|,
{x}) is more faithful than (|u|, {x}). Such a Z does not exist if |u| is the (unique)
grammatical phonetic form |y| most faithful to {x}, otherwise, such a Z does
exist, namely, where |z|=|y|. By Assumption 2, this |y|=f([y]), where [y] is
as defined in the Proposition. Thus, under the conditions of Case 3, U is a
possible percept for {x} i‰ U is of type D¢. QED

Note that the second part of Assumption 2 can be dropped if D¢ in the
Proposition is set to (/z¢/, [z], |z|, {x}), where |z| is the grammatical phonetic
form most faithful to {x}, [z] is the surface form faithful to |z|, which is
grammatical by definition of ‘grammatical phonetic form’, and /z¢/ is an
underlying form for which (/z¢/, [z]) is optimal, which exists since [z] is
grammatical. Now the [z] of D¢ may not be the same as the [y] of B¢.
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additional references Appendix B: Measures of segmental lexical statistics

1 Neighbourhood measures

2 Measures of segment/letter co-occurrence

3The onset’s initial consonant

Table I
Some statistical properties of the auditory and printed stimuli.
The figures provided in the table reflect means per onset type
(averaged across the 12 items representing each onset type).

number of neighbours
neighbours’ frequency (summed)
mean phoneme probability
mean biphone probability
log cluster probability

auditory items

1·58
581
0·0316
0·0016
—5·4097

0·50
390
0·0262
0·0006
—10·7296

sonority risesonority fall

number of neighbours
neighbours’ frequency (summed)
bigram count (summed)
bigram frequency (summed)
log cluster probability

printed items

0·33
1·25
13·67
316·92
—5·4097

0·33
2·00
6·25
224·50
—10·7296

onset type

Appendix A: Formal presentation of the proposition in (5)

statistical property

statistical property
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To evaluate the possibility that the preference of items like mlIf reflects only the
co-occurrence of their segments in the English lexicon, we calculated several
statistical measures of our materials. These measures correspond to factors which
have been reported in the literature as modulating perceptual accuracy and speed.
The means of these measures, provided in Table I, reflect averages computed
over the twelve items representing each onset type (these means were not used
in our analyses; they are presented merely as descriptive statistics). A brief
description of these measures is found in the text  – below we o‰er a more detailed
description of these measures, their calculation and their expected effects on
behaviour.

The statistical properties included neighbourhood measures and measures of
segment or letter co-occurrence (for auditory and printed materials respectively).
A final measure concerned the identity of the initial consonants.

A target’s lexical neighbourhood comprises all words obtained by adding, deleting
or substituting one of a target’s phonemes (or letters, for printed words). Previous
research suggests that words with a large neighbourhood consisting of frequent
words are recognised more readily in naming and AX tasks (e.g. Carreiras et al.
1997, Perea & Carreiras 1998, Vitevitch & Luce 1998, 1999). The better recognition
of the items with rising-sonority onsets might thus be due to the structure of
their lexical neighbourhoods, rather than sonority per se. We evaluated this
possibility using two neighbourhood measures:

(1) Neighbourhood count
The number of lexical neighbours

a.

Neighbourhood frequency
The summed frequency of a target’s neighbours

b.

For example, the item [mlIf] has one phonological neighbour, /klIf/, whose
frequency is 11 per million. Both measures were calculated from the Speech and
Hearing Lab Neighborhood Database.1

Words whose segments or letters co-occur frequently are better recognised (e.g.
Perea & Carreiras 1998, Vitevitch & Luce 1998, 1999). To determine whether
the advantage of sonority rises is due to these properties, we computed two sets
of measures of co-occurrence, one for the whole word and one for the onset
specifically.
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1 Available (March 2009) at http://128.252.27.56/Neighborhood/Home.asp. At present,
the Speech and Hearing Lab Neighborhood Database incorrectly collapses case-
distinctions in phonological inputs (e.g. it fails to distinguish [lif] and [lIf]). In view
of this problem, we manually inspected the output of the database and corrected
them as necessary.

(2) Whole-word measures
The co-occurrence of elements in the word as a whole was estimated using
either segment- or letter co-occurrence, for auditory and printed words
respectively. Segment co-occurrence in auditory words was captured by
the following measures based on the Phonotactic Probability Calculator
(Vitevitch & Luce 2004):
Position-sensitive phoneme probability
The probability that any given phoneme in the target occurs at the
same string position (first through fourth), averaged across the target’s
four phonemes.
Position-sensitive biphone probability
The probability that any adjacent phoneme pair in the target occurs
at the same string position (averaged across the target’s three biphones).
For printed words (in Experiment 6), we used two measures of letter co-
occurrence:
Bigram count
The number of words sharing each of the target’s adjacent letter pairs
in the same string position (calculated based on Solso & Juel 1980).
Bigram frequency
The summed frequency of the words sharing the target’s bigrams (from
Ku∏era & Francis 1967).
For example, the phoneme probability of the auditory [mlIf] is 0·0382
(averaged across the positional probability of its four phonemes: 0·0572,
0·0447, 0·0350, 0·0159). In its printed form, mlIf shares its second bigram
(lI) with ten words, whose summed frequency is 85 per million (the initial
and final bigrams are not shared with any words), so its bigram count is
10, and its bigram frequency is 85.

a.

Supplementary materials9

Onset-probability measures
To examine the possibility that the advantage of sonority rises might be
due to the individual probabilities of occurrence of their onset consonants
in their string positions, we computed the log of the product of the position-
specific probabilities of each consonant (i.e. the summed frequency of
words sharing that consonant in its position relative to the total summed
frequency of the sample) in CCVC words listed in the Speech and Hearing
Lab Neighborhood Database . Consider the onset ml. The database includes
a total of 757 CCVC words, three of which begin with an m (mews, mule,
mute) and 199 words that include an l in the second position.2 The
probabilities of m-first and l-second words are respectively 0·003963012
and 0·262879789 and what we call the ‘log cluster probability’ for ml is
the log of their product (0·001041796): 2·982217428.

b.

2 To avoid biasing the calculations by theory-internal structural assumptions, we based
frequency calculations on the segment sequences as indicated in the database (see
also §4.2).

Previous research suggests that n-initial onsets might be less perceptible than m-
initial onsets for reasons unrelated to sonority (Byrd 1992, Surprenant & Goldstein
1998). Because failure to register the acoustic input as an onset cluster (e.g.
registering nbIf as bIf) reduces its markedness, we also entered the identity of the
initial consonant into the analysis of auditory stimuli.

In this analysis we assume that for any underlying form /uf/ there is a set of
surface forms faithful to /uf/. There may be multiple such forms because /uf/
may be underspecified to some degree; e.g. prosodic structure may not be present
in /uf/. We assume a surface form [sf] to be fully specified in the sense that it
uniquely determines a phonetic form |jf| which is the fully faithful phonetic
interpretation of [sf]; |jf| in turn determines a unique auditory form {af}, which
results from the fully faithful execution of |jf|. Conversely, we assume that if
[sf1]≠[sf2] then the phonetic forms that are fully faithful to them, |sf1| and |sf2|,
are not equal, and analogously, if |sf1|≠|sf2| then the acoustic forms fully faithful
to them, {af1} and {af2}, are not equal. Assumption 1 spells these out in the
notation of the text.

Assumption 1. Faithful forms: f
For any underlying form /uf/ there is a set f(/uf/) of surface forms faithful to
/uf/: for each [sf]Œf(/uf/), the pair (/uf/, [sf]) satisfies the faithfulness
constraint F/uf/,[sf].
For any surface form [sf] there is a unique phonetic form f([sf]) that is faithful
to [sf]: ([sf], f([sf])) satisfies F[sf],|Jf|. This function f is one-to-one. f([sf])
is also said to be the phonetic form corresponding to [sf].
For any phonetic form |jf| there is a unique auditory form f(|jf|) that is faithful
to |jf|: (|jf|, f(|jf|)) satisfies F|Jf|,{af}. This function ƒ is one-to-one. f(|jf|)
is also said to be the acoustic form corresponding to |jf|.

Def. Grammatical. With respect to a given grammar G:
A surface form [sf] is grammatical i‰ there is an underlying form /uf/ such

that the pair (/uf/, [sf]) is optimal: for any other surface form [sf¢], the
grammar assigns lower harmony to (/uf/, [sf¢]) than to (/uf/, [sf]): (/uf/,
[sf¢])ÉG (/uf/, [sf]).

A phonetic form is grammatical iff it corresponds to a grammatical surface
form.

An acoustic form is grammatical iff it corresponds to a grammatical phonetic
form.

Suppose we are given a phonetic form |jfu| and its corresponding acoustic form
{afu}=f(|jfu|). We are interested in cases where |jfu| is ungrammatical for a
hearer, that is, where there is no surface form [sfg] that is grammatical for the
hearer such that |jfu| is the faithful phonetic interpretation of [sfg]. In this case,
we assume that among the grammatical surface forms, one, call it [sfg], is most
faithful to |jfu|. That is, given any other grammatical surface form [sfg¢], the pair
([sfg], |jfu|) better satisfies faithfulness F[sf],|Jf| than does the pair ([sfg¢], |jfu|);
we write this:

F[sf],|Jf|([sfg], |jfu|)ÇF[sf],|Jf|([sfg¢], |jfu|)

We assume that the phonetic interpretation of this surface form, |jfg|=f([sfg]),
is the grammatical phonetic form that is most faithful to the ungrammatical
acoustic form {afu} corresponding to |jfu|.

Assumption 2. Given any phonetic form |jf0| and its corresponding acoustic form
{af0}=f(|jf0|):

Among grammatical surface forms, one, [sfg], is most faithful to |jf0|; i.e. [sfg]
best satisfies F[sf],|Jf|([sf],|jf0|) among grammatical [sf].

The phonetic form corresponding to [sfg], |jfg|=f([sfg]), is the grammatical
phonetic form that is most faithful to the given acoustic form {af0}: |jfg|
best satisfies F|Jf|,{af}(|jf|, {af0}) among grammatical |jf|.

We assume given an OT grammar G for the mapping between underlying and
surface forms. The harmonic ordering of forms determined by G (Prince &
Smolensky 1993: ch. 5) will be written as follows: when G assigns higher harmony
to (/x/, [x]) than to (/y/, [y]) we write (/x/, [x])ÇG(/y/, [y]) or equivalently H1(/x/,
[x])ÇH1(/y/, [y]), since this is harmony in the first component. Harmony in the
second component, linking surface and phonetic forms, is determined solely by
the faithfulness constraint F[sf],|Jf|, so H2([x], |x|)ÇH2([y], |y|) means that ([x],
|x|) better satisfies faithfulness than does ([y], |y|): F[sf],|Jf|([y], |y|)ÇF[sf],|Jf|([y],
|y|). In the same way, harmony in the third component, linking phonetic and
acoustic forms, is determined by F|Jf|,{af}; H3(|x|, {x})ÇH3(|y|, {y}) means that
F|Jf|,{af}(|x|, {x})ÇF|Jf|,{af}(|y|, {y}). All the analogous definitions apply to É and
to  ª (equal harmony), as well as to Ñ and Ö.

Optimality in component n is the obvious generalisation of the component-1
notion of optimality in OT.

Def. Optimal in a component n
(xn, xn+1) is optimal in component n (‘n-opt’) i‰ for all level-n+1 forms

xn+1¢≠xn+1, Hn(xn, xn+1)ÇHn(xn, xn+1¢)

Def. Harmonic ordering w.r.t. component n
Given two representations X=(/x/, [x], |x|, {x})”(x1, x2, x3, x4) and Y=(y1,

y2, y3, y4):
XÇn Y i‰ either

i. (xn, xn+1) is optimal and (yn, yn+1) is not, or
ii. (xn, xn+1) and (yn, yn+1) are both suboptimal and Hn(xn, xn+1)ÇHn(yn, yn+1)

X ªn Y i‰ either
i. (xn, xn+1) and (yn, yn+1) are both optimal, or

ii. (xn, xn+1) and (yn, yn+1) are both suboptimal and Hn(xn, xn+1) ª Hn(yn, yn+1)
XÑn Y i‰ either XÇn Y or X ªn Y

To combine harmonic ordering across all components, we assume that no
component has priority over any others. Thus for a full (four-level) representation
X to be preferred to Y, written XñY, there must be some component in which
X is preferred and no component in which Y is preferred. The ordering is partial
in that for many pairs X, Y that are not harmonically equivalent, neither XñY
nor YñX. Our ordering is defined for use in perception: it compares X and Y
only if they have the same acoustic form {af}, and are therefore both potential
full perceptual representations for {af}.

Def. Harmonic ordering of full representations:ñ
Given two representations X=(/x/, [x], |x|, {x}), Y=(/y/, [y], |y|, {y}):
XñY i‰ {y}={x} and either

(a) i. Ak [Y is k-opt⁄X is k-opt] &
ii. En [X is n-opt and Y is not n-opt]

or
(b) i. Ak [Y is k-opt » X is k-opt] &

ii. Ak [X is not k-opt⁄XÑk Y] &
iii. En [XÇn Y]

In case (a), optimality makes the decision: X is optimal in some component in
which Y is not (a.ii), and there is no component in which Y is optimal but X is
not (a.i). In case (b), X and Y tie with respect to optimality, in that they are
optimal in exactly the same components (b.i): then relative harmony among sub-
optimal representations decides. Now X is preferred to Y only if there is some
component in which X is suboptimal but higher-harmony than Y (b.iii), and
there is no component in which Y is suboptimal but higher-harmony than X
(b.ii).

Henceforth references such as (b.ii) will always refer to the correspondingly
labelled condition in the definition of ñ.

Lemma 1. Suppose X is optimal in every component. Then
(a) there is no Y such that YñX, and
(b) for every Z such that {z}={x}, XñZ unless Z is also optimal in every

component.

Proof of Lemma 1. Suppose there were a Y such that YñX. Then either (a.ii) En
[Y is n-opt and X is not n-opt], which is impossible because X is k-opt Ak,
or (b.iii) En [YÇn X], which is also impossible because X is k-opt k. This
establishes (a). Now suppose given Z such that {z}={x}. Suppose Z is not
optimal in every component: En [Zn is subopt]. Then (a) of the definition of
XÇZ is satisfied, establishing (b). QED

Lemma 2. Suppose X is suboptimal in component k and optimal in the other
components. Let Y be a candidate with {y}={x}. Then
1. XñY i‰ either

a. Y is (i) suboptimal in some non-k component and (ii) not k-optimal or
b. Y is (ii) optimal in all non-k components and (ii)–(iii) XÇk Y,

2. YñX i‰ [Y is optimal in all non-k components and YÇk X]
3. neither XñY nor YñX if [Y is optimal in component k and suboptimal in

some non-k component].

Proof of Lemma 2. Suppose X is suboptimal in component k and optimal in the
other components, and Y is a candidate with {y}={x}.

Part 1. Under these conditions, conditions (1a) and (1b) of Lemma 2 are
equivalent to (a) and (b) respectively of the definition of XñY.

Part 2. Exchanging X and Y in (1), we see that (1a) cannot be met and condition
(1b) becomes (2) of Lemma 2.

Part 3. Suppose now that Y is optimal in component k and suboptimal in
some non-k component. Then in the definition of XñY, condition (i)
cannot hold in either (a) or (b), and the same is true for the definition of
YñX, because in both (a) and (b), (i) requires that the set of components
in which one of the candidates X or Y is optimal is a (not necessarily strict)
subset of the components in which the other candidate is optimal. This
establishes result (3). QED

Now, as in (4) in the text, we define a possible percept as follows.

Def. Perceptual principle
Let X=(/x/, [x], |x|, {x}) be a globally faithful representation and consider
the auditory form {x}. A representation Y is a possible percept for {x} i‰

the acoustic form of Y is {x}, and
there is no Z with acoustic form {x} such that ZñY.

The main result, (5) in the text, follows.

Proposition:
Let X=(/x/, [x], |x|, {x}) be a globally faithful representation. For the
auditory input {x}, there are two possibilities.
a. If [x] is grammatical then the only possible percept type is

A¢= (/x¢/, [x], |x|, {x})
where /x¢/ is any underlying form for which (/x¢/, [x]) is optimal.

b. If [x] is not grammatical, there are three possible percept types:
A¢=(/x¢/, [x], |x|, {x})
C¢=(/y¢/, [y], |x|, {x})
D¢=(/y¢/, [y], |y|, {x})

where
[y] is the grammatical surface form most faithful to |x|,
|y|=f([y]) is the phonetic form faithful to [y],
/y¢/ is any underlying form for which (/y¢/, [y]) is optimal, and
/x¢/Œ f([x]) is any underlying form faithful to [x].

Proof. Part a: grammatical case
That A¢ (as given in the Proposition) is a possible percept follows immediately
from (a) of Lemma 1, since A¢ is optimal in every component: (/x¢/, [x]) is
optimal by assumption, and in the other two components, A¢ is faithful, hence
optimal.

Now consider any possible percept U=(/u/, [u], |u|, {u}); we must show
it is of type A¢. As a possible percept of {x}, U must have {u}={x} and we
must not have AñU, where A is a candidate of type A¢. Now according to
Lemma 1 (b), since A is optimal in every component, we would have AñU
unless U is also globally optimal. To be optimal in the third component, since
{u}={x}, |u| must be faithful to {x}, so, by Assumption 1, we must have |u|=
|x|, as |x| is the unique phonetic form faithful to {x}: {x}=f(|x|). By identical
reasoning, to be optimal in the second component, [u] must be faithful to
|u|=|x|, so we must have [u]=[x]. To be optimal in the first component, /u/
must be optimal when paired with [x]; this means U is a candidate of type A¢.

Part b: ungrammatical case
U=(/u/, [u], |u|, {u}) is a possible percept only if {u}={x}. There are three
cases to consider. In case 1, |u|=|x| and [u]=[x]; in case 2, |u|=|x| and [u]
≠[x]; in case 3, |u|≠|x|. We show that in case 1, U is a possible percept i‰
it is of type A¢; in case 2, type C¢; in case 3, type D¢. Note that the globally
faithful candidate X is optimal in components 2 and 3 (as it is faithful there),
but cannot be optimal in component 1 because [x] is ungrammatical: there is
no /x¢/ such that (/x¢/, [x]) is optimal. X thus meets the conditions of Lemma
2, with k=1. While not optimal in component 1, X is however faithful in
component 1, by definition.

Case 1. Here, U=(/u/, [x], |x|, {x}). U is a possible percept i‰ there is no Z
with acoustic form {x} such that ZñU. Like X, U is optimal in components
2 and 3 but cannot be optimal in component 1. So U satisfies the conditions
of Lemma 2, with k=1. By Part 2 of Lemma 2, for a candidate Z with acoustic
form {x}, ZñU i‰ Z is optimal in components 2 and 3 and ZÇ1 U. This is
true i‰ Z=(/z/, [x], |x|, {x}) and (/z/, [x])Ç1 (/u/, [x]). In this harmony
comparison, the two pairs tie on markedness since they have the same surface
form [x]; (/z/, [x])Ç1 (/u/, [x]) will hold i‰ (/z/, [x]) satisfies faithfulness
better than does (/u/, [x]). For no such Z to exist, it is necessary and su"cient
that /u/ is fully faithful to [x]: if /u/ is fully faithful to [x], no /z/ can be more
faithful, and if /u/ is not faithful to [x], then any /z/ that is faithful to [x] will
satisfy (/z/, [x])Ç1 (/u/, [x]). Thus, under the conditions of Case 1, U is a
possible percept i‰ it is of the form A¢ as defined in Part 2 of the Proposition.

Case 2. Now, U=(/u/, [u], |x|, {x}), where [u]≠[x]. U is optimal (faithful)
in component 3 but is suboptimal in component 2, since (by Assumption 1)
[x] is the unique surface form faithful to |x|. Since X meets the conditions of
Lemma 2 with k=1, and U is 2-suboptimal, by part 1 of Lemma 2, we will
have XñU i‰ U is not 1-optimal (this is (1a); (1b cannot be met by U). So
to be a possible percept it is necessary that (/u/, [u]) be optimal, i.e. [u] must
be a grammatical surface form and /u/ a possible underlying form for [u]. This
means that U satisfies Lemma 2 with k=2. Now U is a possible percept for
{x} i‰ there is no candidate Z with acoustic form {x} such that ZñU. By part
2 of Lemma 2, such a ZñU i‰ Z is optimal in components 1 and 3 and ZÇ2 U,
which is true i‰ ZÇ2 U and Z=(/z/, [z], |x|, {x}) with (/z/, [z]) optimal. This
in turn is true i‰ [z] is grammatical and ([z], |x|) is more faithful than ([u],
|u|). If we choose [u] to be the grammatical surface form [y] that is most
faithful to |x| (unique by Assumption 2) then no such [z] exists, otherwise,
choosing [z]=[y] entails ZñU. Thus, under the conditions of Case 2, U is a
possible percept for {x} i‰ [u]=[y] and /u/ is an underlying form /y/ for which
(/y/, [y]) is optimal, that is, i‰ U is a candidate of type C¢.

Case 3. Now, U=(/u/, [u], |u|, {x}), where |u|≠|x|. U is suboptimal in com-
ponent 3 since (by Assumption 1) |x| is the only phonetic form that is faithful
to {x}. Since X satisfies Lemma 2 with k=1 and U is 3-suboptimal, by part
1 of Lemma 2 we will have XñU i‰ U is not 1-optimal (this is (1a); (1b)
cannot be satisfied by such a U). So, as in case 2, for U to be a possible percept
of {x} we must have (/u/, [u]) optimal, so [u] must be a grammatical surface
form. Let W be a candidate of type C¢. W satisfies Lemma 2 with k=2, so
again by part 1 of Lemma 2, WñU i‰ U is not 2-optimal; U must be 2-
optimal to be a possible percept, which means ([u], |u|) must be faithful. This
means U satisfies Lemma 2 with k=3. So by part 2 of that lemma, there exists
a candidate Z with acoustic form {x} such that ZñU i‰ there exists Z optimal
in components 1 and 2 and ZÇ3 U, i.e. a Z=(/z/, [z], |z|, {x}) such that [z]
is a grammatical surface form with underlying form /z/, |z|=f([z]), and (|z|,
{x}) is more faithful than (|u|, {x}). Such a Z does not exist if |u| is the (unique)
grammatical phonetic form |y| most faithful to {x}, otherwise, such a Z does
exist, namely, where |z|=|y|. By Assumption 2, this |y|=f([y]), where [y] is
as defined in the Proposition. Thus, under the conditions of Case 3, U is a
possible percept for {x} i‰ U is of type D¢. QED

Note that the second part of Assumption 2 can be dropped if D¢ in the
Proposition is set to (/z¢/, [z], |z|, {x}), where |z| is the grammatical phonetic
form most faithful to {x}, [z] is the surface form faithful to |z|, which is
grammatical by definition of ‘grammatical phonetic form’, and /z¢/ is an
underlying form for which (/z¢/, [z]) is optimal, which exists since [z] is
grammatical. Now the [z] of D¢ may not be the same as the [y] of B¢.
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additional references Appendix B: Measures of segmental lexical statistics

1 Neighbourhood measures

2 Measures of segment/letter co-occurrence

3The onset’s initial consonant

Table I
Some statistical properties of the auditory and printed stimuli.
The figures provided in the table reflect means per onset type
(averaged across the 12 items representing each onset type).

number of neighbours
neighbours’ frequency (summed)
mean phoneme probability
mean biphone probability
log cluster probability

auditory items

1·58
581
0·0316
0·0016
—5·4097

0·50
390
0·0262
0·0006
—10·7296

sonority risesonority fall

number of neighbours
neighbours’ frequency (summed)
bigram count (summed)
bigram frequency (summed)
log cluster probability

printed items

0·33
1·25
13·67
316·92
—5·4097

0·33
2·00
6·25
224·50
—10·7296

onset type

Appendix A: Formal presentation of the proposition in (5)

statistical property

statistical property
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To evaluate the possibility that the preference of items like mlIf reflects only the
co-occurrence of their segments in the English lexicon, we calculated several
statistical measures of our materials. These measures correspond to factors which
have been reported in the literature as modulating perceptual accuracy and speed.
The means of these measures, provided in Table I, reflect averages computed
over the twelve items representing each onset type (these means were not used
in our analyses; they are presented merely as descriptive statistics). A brief
description of these measures is found in the text  – below we o‰er a more detailed
description of these measures, their calculation and their expected effects on
behaviour.

The statistical properties included neighbourhood measures and measures of
segment or letter co-occurrence (for auditory and printed materials respectively).
A final measure concerned the identity of the initial consonants.

A target’s lexical neighbourhood comprises all words obtained by adding, deleting
or substituting one of a target’s phonemes (or letters, for printed words). Previous
research suggests that words with a large neighbourhood consisting of frequent
words are recognised more readily in naming and AX tasks (e.g. Carreiras et al.
1997, Perea & Carreiras 1998, Vitevitch & Luce 1998, 1999). The better recognition
of the items with rising-sonority onsets might thus be due to the structure of
their lexical neighbourhoods, rather than sonority per se. We evaluated this
possibility using two neighbourhood measures:

(1) Neighbourhood count
The number of lexical neighbours

a.

Neighbourhood frequency
The summed frequency of a target’s neighbours

b.

For example, the item [mlIf] has one phonological neighbour, /klIf/, whose
frequency is 11 per million. Both measures were calculated from the Speech and
Hearing Lab Neighborhood Database.1

Words whose segments or letters co-occur frequently are better recognised (e.g.
Perea & Carreiras 1998, Vitevitch & Luce 1998, 1999). To determine whether
the advantage of sonority rises is due to these properties, we computed two sets
of measures of co-occurrence, one for the whole word and one for the onset
specifically.
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1 Available (March 2009) at http://128.252.27.56/Neighborhood/Home.asp. At present,
the Speech and Hearing Lab Neighborhood Database incorrectly collapses case-
distinctions in phonological inputs (e.g. it fails to distinguish [lif] and [lIf]). In view
of this problem, we manually inspected the output of the database and corrected
them as necessary.

(2) Whole-word measures
The co-occurrence of elements in the word as a whole was estimated using
either segment- or letter co-occurrence, for auditory and printed words
respectively. Segment co-occurrence in auditory words was captured by
the following measures based on the Phonotactic Probability Calculator
(Vitevitch & Luce 2004):

Position-sensitive phoneme probability
The probability that any given phoneme in the target occurs at the
same string position (first through fourth), averaged across the target’s
four phonemes.
Position-sensitive biphone probability
The probability that any adjacent phoneme pair in the target occurs
at the same string position (averaged across the target’s three biphones).

For printed words (in Experiment 6), we used two measures of letter co-
occurrence:

Bigram count
The number of words sharing each of the target’s adjacent letter pairs
in the same string position (calculated based on Solso & Juel 1980).
Bigram frequency
The summed frequency of the words sharing the target’s bigrams (from
Ku∏era & Francis 1967).

For example, the phoneme probability of the auditory [mlIf] is 0·0382
(averaged across the positional probability of its four phonemes: 0·0572,
0·0447, 0·0350, 0·0159). In its printed form, mlIf shares its second bigram
(lI) with ten words, whose summed frequency is 85 per million (the initial
and final bigrams are not shared with any words), so its bigram count is
10, and its bigram frequency is 85.

a.
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Onset-probability measures
To examine the possibility that the advantage of sonority rises might be
due to the individual probabilities of occurrence of their onset consonants
in their string positions, we computed the log of the product of the position-
specific probabilities of each consonant (i.e. the summed frequency of
words sharing that consonant in its position relative to the total summed
frequency of the sample) in CCVC words listed in the Speech and Hearing
Lab Neighborhood Database. Consider the onset ml. The database includes
a total of 757 CCVC words, three of which begin with an m (mews, mule,
mute) and 199 words that include an l in the second position.2 The
probabilities of m-first and l-second words are respectively 0·003963012
and 0·262879789 and what we call the ‘log cluster probability’ for ml is
the log of their product (0·001041796): 2·982217428.

b.

2 To avoid biasing the calculations by theory-internal structural assumptions, we based
frequency calculations on the segment sequences as indicated in the database (see
also §4.2).

Previous research suggests that n-initial onsets might be less perceptible than m-
initial onsets for reasons unrelated to sonority (Byrd 1992, Surprenant & Goldstein
1998). Because failure to register the acoustic input as an onset cluster (e.g.
registering nbIf as bIf) reduces its markedness, we also entered the identity of the
initial consonant into the analysis of auditory stimuli.

In this analysis we assume that for any underlying form /uf/ there is a set of
surface forms faithful to /uf/. There may be multiple such forms because /uf/
may be underspecified to some degree; e.g. prosodic structure may not be present
in /uf/. We assume a surface form [sf] to be fully specified in the sense that it
uniquely determines a phonetic form |jf| which is the fully faithful phonetic
interpretation of [sf]; |jf| in turn determines a unique auditory form {af}, which
results from the fully faithful execution of |jf|. Conversely, we assume that if
[sf1]≠[sf2] then the phonetic forms that are fully faithful to them, |sf1| and |sf2|,
are not equal, and analogously, if |sf1|≠|sf2| then the acoustic forms fully faithful
to them, {af1} and {af2}, are not equal. Assumption 1 spells these out in the
notation of the text.

Assumption 1. Faithful forms: f
For any underlying form /uf/ there is a set f(/uf/) of surface forms faithful to
/uf/: for each [sf]Œf(/uf/), the pair (/uf/, [sf]) satisfies the faithfulness
constraint F/uf/,[sf].
For any surface form [sf] there is a unique phonetic form f([sf]) that is faithful
to [sf]: ([sf], f([sf])) satisfies F[sf],|Jf|. This function f is one-to-one. f([sf])
is also said to be the phonetic form corresponding to [sf].
For any phonetic form |jf| there is a unique auditory form f(|jf|) that is faithful
to |jf|: (|jf|, f(|jf|)) satisfies F|Jf|,{af}. This function ƒ is one-to-one. f(|jf|)
is also said to be the acoustic form corresponding to |jf|.

Def. Grammatical. With respect to a given grammar G:
A surface form [sf] is grammatical i‰ there is an underlying form /uf/ such
that the pair (/uf/, [sf]) is optimal: for any other surface form [sf¢], the
grammar assigns lower harmony to (/uf/, [sf¢]) than to (/uf/, [sf]): (/uf/,
[sf¢])ÉG (/uf/, [sf]).
A phonetic form is grammatical iff it corresponds to a grammatical surface
form.
An acoustic form is grammatical iff it corresponds to a grammatical phonetic
form.

Suppose we are given a phonetic form |jfu| and its corresponding acoustic form
{afu}=f(|jfu|). We are interested in cases where |jfu| is ungrammatical for a
hearer, that is, where there is no surface form [sfg] that is grammatical for the
hearer such that |jfu| is the faithful phonetic interpretation of [sfg]. In this case,
we assume that among the grammatical surface forms, one, call it [sfg], is most
faithful to |jfu|. That is, given any other grammatical surface form [sfg¢], the pair
([sfg], |jfu|) better satisfies faithfulness F[sf],|Jf| than does the pair ([sfg¢], |jfu|);
we write this:

F[sf],|Jf|([sfg], |jfu|)ÇF[sf],|Jf|([sfg¢], |jfu|)

We assume that the phonetic interpretation of this surface form, |jfg|=f([sfg]),
is the grammatical phonetic form that is most faithful to the ungrammatical
acoustic form {afu} corresponding to |jfu|.

Assumption 2. Given any phonetic form |jf0| and its corresponding acoustic form
{af0}=f(|jf0|):
Among grammatical surface forms, one, [sfg], is most faithful to |jf0|; i.e. [sfg]
best satisfies F[sf],|Jf|([sf],|jf0|) among grammatical [sf].
The phonetic form corresponding to [sfg], |jfg|=f([sfg]), is the grammatical
phonetic form that is most faithful to the given acoustic form {af0}: |jfg|
best satisfies F|Jf|,{af}(|jf|, {af0}) among grammatical |jf|.

We assume given an OT grammar G for the mapping between underlying and
surface forms. The harmonic ordering of forms determined by G (Prince &
Smolensky 1993: ch. 5) will be written as follows: when G assigns higher harmony
to (/x/, [x]) than to (/y/, [y]) we write (/x/, [x])ÇG(/y/, [y]) or equivalently H1(/x/,
[x])ÇH1(/y/, [y]), since this is harmony in the first component. Harmony in the
second component, linking surface and phonetic forms, is determined solely by
the faithfulness constraint F[sf],|Jf|, so H2([x], |x|)ÇH2([y], |y|) means that ([x],
|x|) better satisfies faithfulness than does ([y], |y|): F[sf],|Jf|([y], |y|)ÇF[sf],|Jf|([y],
|y|). In the same way, harmony in the third component, linking phonetic and
acoustic forms, is determined by F|Jf|,{af}; H3(|x|, {x})ÇH3(|y|, {y}) means that
F|Jf|,{af}(|x|, {x})ÇF|Jf|,{af}(|y|, {y}). All the analogous definitions apply to É and
to  ª (equal harmony), as well as to Ñ and Ö.
Optimality in component n is the obvious generalisation of the component-1
notion of optimality in OT.

Def. Optimal in a component n
(xn, xn+1) is optimal in component n (‘n-opt’) i‰ for all level-n+1 forms
xn+1¢≠xn+1, Hn(xn, xn+1)ÇHn(xn, xn+1¢)

Def. Harmonic ordering w.r.t. component n
Given two representations X=(/x/, [x], |x|, {x})”(x1, x2, x3, x4) and Y=(y1,

y2, y3, y4):
XÇn Y i‰ either

i. (xn, xn+1) is optimal and (yn, yn+1) is not, or
ii. (xn, xn+1) and (yn, yn+1) are both suboptimal and Hn(xn, xn+1)ÇHn(yn, yn+1)

X ªn Y i‰ either
i. (xn, xn+1) and (yn, yn+1) are both optimal, or

ii. (xn, xn+1) and (yn, yn+1) are both suboptimal and Hn(xn, xn+1) ª Hn(yn, yn+1)
XÑn Y i‰ either XÇn Y or X ªn Y

To combine harmonic ordering across all components, we assume that no
component has priority over any others. Thus for a full (four-level) representation
X to be preferred to Y, written XñY, there must be some component in which
X is preferred and no component in which Y is preferred. The ordering is partial
in that for many pairs X, Y that are not harmonically equivalent, neither XñY
nor YñX. Our ordering is defined for use in perception: it compares X and Y
only if they have the same acoustic form {af}, and are therefore both potential
full perceptual representations for {af}.

Def. Harmonic ordering of full representations:ñ
Given two representations X=(/x/, [x], |x|, {x}), Y=(/y/, [y], |y|, {y}):
XñY i‰ {y}={x} and either

(a) i. Ak [Y is k-opt⁄X is k-opt] &
ii. En [X is n-opt and Y is not n-opt]

or
(b) i. Ak [Y is k-opt » X is k-opt] &

ii. Ak [X is not k-opt⁄XÑk Y] &
iii. En [XÇn Y]

In case (a), optimality makes the decision: X is optimal in some component in
which Y is not (a.ii), and there is no component in which Y is optimal but X is
not (a.i). In case (b), X and Y tie with respect to optimality, in that they are
optimal in exactly the same components (b.i): then relative harmony among sub-
optimal representations decides. Now X is preferred to Y only if there is some
component in which X is suboptimal but higher-harmony than Y (b.iii), and
there is no component in which Y is suboptimal but higher-harmony than X
(b.ii).

Henceforth references such as (b.ii) will always refer to the correspondingly
labelled condition in the definition of ñ.

Lemma 1. Suppose X is optimal in every component. Then
(a) there is no Y such that YñX, and
(b) for every Z such that {z}={x}, XñZ unless Z is also optimal in every

component.

Proof of Lemma 1. Suppose there were a Y such that YñX. Then either (a.ii) En
[Y is n-opt and X is not n-opt], which is impossible because X is k-opt Ak,
or (b.iii) En [YÇn X], which is also impossible because X is k-opt k. This
establishes (a). Now suppose given Z such that {z}={x}. Suppose Z is not
optimal in every component: En [Zn is subopt]. Then (a) of the definition of
XÇZ is satisfied, establishing (b). QED

Lemma 2. Suppose X is suboptimal in component k and optimal in the other
components. Let Y be a candidate with {y}={x}. Then
1. XñY i‰ either

a. Y is (i) suboptimal in some non-k component and (ii) not k-optimal or
b. Y is (ii) optimal in all non-k components and (ii)–(iii) XÇk Y,

2. YñX i‰ [Y is optimal in all non-k components and YÇk X]
3. neither XñY nor YñX if [Y is optimal in component k and suboptimal in

some non-k component].

Proof of Lemma 2. Suppose X is suboptimal in component k and optimal in the
other components, and Y is a candidate with {y}={x}.

Part 1. Under these conditions, conditions (1a) and (1b) of Lemma 2 are
equivalent to (a) and (b) respectively of the definition of XñY.

Part 2. Exchanging X and Y in (1), we see that (1a) cannot be met and condition
(1b) becomes (2) of Lemma 2.

Part 3. Suppose now that Y is optimal in component k and suboptimal in
some non-k component. Then in the definition of XñY, condition (i)
cannot hold in either (a) or (b), and the same is true for the definition of
YñX, because in both (a) and (b), (i) requires that the set of components
in which one of the candidates X or Y is optimal is a (not necessarily strict)
subset of the components in which the other candidate is optimal. This
establishes result (3). QED

Now, as in (4) in the text, we define a possible percept as follows.

Def. Perceptual principle
Let X=(/x/, [x], |x|, {x}) be a globally faithful representation and consider
the auditory form {x}. A representation Y is a possible percept for {x} i‰

the acoustic form of Y is {x}, and
there is no Z with acoustic form {x} such that ZñY.

The main result, (5) in the text, follows.

Proposition:
Let X=(/x/, [x], |x|, {x}) be a globally faithful representation. For the
auditory input {x}, there are two possibilities.
a. If [x] is grammatical then the only possible percept type is

A¢= (/x¢/, [x], |x|, {x})
where /x¢/ is any underlying form for which (/x¢/, [x]) is optimal.

b. If [x] is not grammatical, there are three possible percept types:
A¢=(/x¢/, [x], |x|, {x})
C¢=(/y¢/, [y], |x|, {x})
D¢=(/y¢/, [y], |y|, {x})

where
[y] is the grammatical surface form most faithful to |x|,
|y|=f([y]) is the phonetic form faithful to [y],
/y¢/ is any underlying form for which (/y¢/, [y]) is optimal, and
/x¢/Œ f([x]) is any underlying form faithful to [x].

Proof. Part a: grammatical case
That A¢ (as given in the Proposition) is a possible percept follows immediately
from (a) of Lemma 1, since A¢ is optimal in every component: (/x¢/, [x]) is
optimal by assumption, and in the other two components, A¢ is faithful, hence
optimal.

Now consider any possible percept U=(/u/, [u], |u|, {u}); we must show
it is of type A¢. As a possible percept of {x}, U must have {u}={x} and we
must not have AñU, where A is a candidate of type A¢. Now according to
Lemma 1 (b), since A is optimal in every component, we would have AñU
unless U is also globally optimal. To be optimal in the third component, since
{u}={x}, |u| must be faithful to {x}, so, by Assumption 1, we must have |u|=
|x|, as |x| is the unique phonetic form faithful to {x}: {x}=f(|x|). By identical
reasoning, to be optimal in the second component, [u] must be faithful to
|u|=|x|, so we must have [u]=[x]. To be optimal in the first component, /u/
must be optimal when paired with [x]; this means U is a candidate of type A¢.

Part b: ungrammatical case
U=(/u/, [u], |u|, {u}) is a possible percept only if {u}={x}. There are three
cases to consider. In case 1, |u|=|x| and [u]=[x]; in case 2, |u|=|x| and [u]
≠[x]; in case 3, |u|≠|x|. We show that in case 1, U is a possible percept i‰
it is of type A¢; in case 2, type C¢; in case 3, type D¢. Note that the globally
faithful candidate X is optimal in components 2 and 3 (as it is faithful there),
but cannot be optimal in component 1 because [x] is ungrammatical: there is
no /x¢/ such that (/x¢/, [x]) is optimal. X thus meets the conditions of Lemma
2, with k=1. While not optimal in component 1, X is however faithful in
component 1, by definition.

Case 1. Here, U=(/u/, [x], |x|, {x}). U is a possible percept i‰ there is no Z
with acoustic form {x} such that ZñU. Like X, U is optimal in components
2 and 3 but cannot be optimal in component 1. So U satisfies the conditions
of Lemma 2, with k=1. By Part 2 of Lemma 2, for a candidate Z with acoustic
form {x}, ZñU i‰ Z is optimal in components 2 and 3 and ZÇ1 U. This is
true i‰ Z=(/z/, [x], |x|, {x}) and (/z/, [x])Ç1 (/u/, [x]). In this harmony
comparison, the two pairs tie on markedness since they have the same surface
form [x]; (/z/, [x])Ç1 (/u/, [x]) will hold i‰ (/z/, [x]) satisfies faithfulness
better than does (/u/, [x]). For no such Z to exist, it is necessary and su"cient
that /u/ is fully faithful to [x]: if /u/ is fully faithful to [x], no /z/ can be more
faithful, and if /u/ is not faithful to [x], then any /z/ that is faithful to [x] will
satisfy (/z/, [x])Ç1 (/u/, [x]). Thus, under the conditions of Case 1, U is a
possible percept i‰ it is of the form A¢ as defined in Part 2 of the Proposition.

Case 2. Now, U=(/u/, [u], |x|, {x}), where [u]≠[x]. U is optimal (faithful)
in component 3 but is suboptimal in component 2, since (by Assumption 1)
[x] is the unique surface form faithful to |x|. Since X meets the conditions of
Lemma 2 with k=1, and U is 2-suboptimal, by part 1 of Lemma 2, we will
have XñU i‰ U is not 1-optimal (this is (1a); (1b cannot be met by U). So
to be a possible percept it is necessary that (/u/, [u]) be optimal, i.e. [u] must
be a grammatical surface form and /u/ a possible underlying form for [u]. This
means that U satisfies Lemma 2 with k=2. Now U is a possible percept for
{x} i‰ there is no candidate Z with acoustic form {x} such that ZñU. By part
2 of Lemma 2, such a ZñU i‰ Z is optimal in components 1 and 3 and ZÇ2 U,
which is true i‰ ZÇ2 U and Z=(/z/, [z], |x|, {x}) with (/z/, [z]) optimal. This
in turn is true i‰ [z] is grammatical and ([z], |x|) is more faithful than ([u],
|u|). If we choose [u] to be the grammatical surface form [y] that is most
faithful to |x| (unique by Assumption 2) then no such [z] exists, otherwise,
choosing [z]=[y] entails ZñU. Thus, under the conditions of Case 2, U is a
possible percept for {x} i‰ [u]=[y] and /u/ is an underlying form /y/ for which
(/y/, [y]) is optimal, that is, i‰ U is a candidate of type C¢.

Case 3. Now, U=(/u/, [u], |u|, {x}), where |u|≠|x|. U is suboptimal in com-
ponent 3 since (by Assumption 1) |x| is the only phonetic form that is faithful
to {x}. Since X satisfies Lemma 2 with k=1 and U is 3-suboptimal, by part
1 of Lemma 2 we will have XñU i‰ U is not 1-optimal (this is (1a); (1b)
cannot be satisfied by such a U). So, as in case 2, for U to be a possible percept
of {x} we must have (/u/, [u]) optimal, so [u] must be a grammatical surface
form. Let W be a candidate of type C¢. W satisfies Lemma 2 with k=2, so
again by part 1 of Lemma 2, WñU i‰ U is not 2-optimal; U must be 2-
optimal to be a possible percept, which means ([u], |u|) must be faithful. This
means U satisfies Lemma 2 with k=3. So by part 2 of that lemma, there exists
a candidate Z with acoustic form {x} such that ZñU i‰ there exists Z optimal
in components 1 and 2 and ZÇ3 U, i.e. a Z=(/z/, [z], |z|, {x}) such that [z]
is a grammatical surface form with underlying form /z/, |z|=f([z]), and (|z|,
{x}) is more faithful than (|u|, {x}). Such a Z does not exist if |u| is the (unique)
grammatical phonetic form |y| most faithful to {x}, otherwise, such a Z does
exist, namely, where |z|=|y|. By Assumption 2, this |y|=f([y]), where [y] is
as defined in the Proposition. Thus, under the conditions of Case 3, U is a
possible percept for {x} i‰ U is of type D¢. QED

Note that the second part of Assumption 2 can be dropped if D¢ in the
Proposition is set to (/z¢/, [z], |z|, {x}), where |z| is the grammatical phonetic
form most faithful to {x}, [z] is the surface form faithful to |z|, which is
grammatical by definition of ‘grammatical phonetic form’, and /z¢/ is an
underlying form for which (/z¢/, [z]) is optimal, which exists since [z] is
grammatical. Now the [z] of D¢ may not be the same as the [y] of B¢.
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additional references Appendix B: Measures of segmental lexical statistics

1 Neighbourhood measures

2 Measures of segment/letter co-occurrence

3 The onset’s initial consonant

Table I
Some statistical properties of the auditory and printed stimuli.
The figures provided in the table reflect means per onset type
(averaged across the 12 items representing each onset type).

number of neighbours
neighbours’ frequency (summed)
mean phoneme probability
mean biphone probability
log cluster probability

auditory items

1·58
581
0·0316
0·0016
—5·4097

0·50
390
0·0262
0·0006
—10·7296

sonority risesonority fall

number of neighbours
neighbours’ frequency (summed)
bigram count (summed)
bigram frequency (summed)
log cluster probability

printed items

0·33
1·25
13·67
316·92
—5·4097

0·33
2·00
6·25
224·50
—10·7296

onset type

Appendix A: Formal presentation of the proposition in (5)

statistical property

statistical property
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To evaluate the possibility that the preference of items like mlIf reflects only the
co-occurrence of their segments in the English lexicon, we calculated several
statistical measures of our materials. These measures correspond to factors which
have been reported in the literature as modulating perceptual accuracy and speed.
The means of these measures, provided in Table I, reflect averages computed
over the twelve items representing each onset type (these means were not used
in our analyses; they are presented merely as descriptive statistics). A brief
description of these measures is found in the text  – below we o‰er a more detailed
description of these measures, their calculation and their expected effects on
behaviour.

The statistical properties included neighbourhood measures and measures of
segment or letter co-occurrence (for auditory and printed materials respectively).
A final measure concerned the identity of the initial consonants.

A target’s lexical neighbourhood comprises all words obtained by adding, deleting
or substituting one of a target’s phonemes (or letters, for printed words). Previous
research suggests that words with a large neighbourhood consisting of frequent
words are recognised more readily in naming and AX tasks (e.g. Carreiras et al.
1997, Perea & Carreiras 1998, Vitevitch & Luce 1998, 1999). The better recognition
of the items with rising-sonority onsets might thus be due to the structure of
their lexical neighbourhoods, rather than sonority per se. We evaluated this
possibility using two neighbourhood measures:

(1) Neighbourhood count
The number of lexical neighbours

a.

Neighbourhood frequency
The summed frequency of a target’s neighbours

b.

For example, the item [mlIf] has one phonological neighbour, /klIf/, whose
frequency is 11 per million. Both measures were calculated from the Speech and
Hearing Lab Neighborhood Database.1

Words whose segments or letters co-occur frequently are better recognised (e.g.
Perea & Carreiras 1998, Vitevitch & Luce 1998, 1999). To determine whether
the advantage of sonority rises is due to these properties, we computed two sets
of measures of co-occurrence, one for the whole word and one for the onset
specifically.
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1 Available (March 2009) at http://128.252.27.56/Neighborhood/Home.asp. At present,
the Speech and Hearing Lab Neighborhood Database incorrectly collapses case-
distinctions in phonological inputs (e.g. it fails to distinguish [lif] and [lIf]). In view
of this problem, we manually inspected the output of the database and corrected
them as necessary.

(2) Whole-word measures
The co-occurrence of elements in the word as a whole was estimated using
either segment- or letter co-occurrence, for auditory and printed words
respectively. Segment co-occurrence in auditory words was captured by
the following measures based on the Phonotactic Probability Calculator
(Vitevitch & Luce 2004):

Position-sensitive phoneme probability
The probability that any given phoneme in the target occurs at the
same string position (first through fourth), averaged across the target’s
four phonemes.
Position-sensitive biphone probability
The probability that any adjacent phoneme pair in the target occurs
at the same string position (averaged across the target’s three biphones).

For printed words (in Experiment 6), we used two measures of letter co-
occurrence:

Bigram count
The number of words sharing each of the target’s adjacent letter pairs
in the same string position (calculated based on Solso & Juel 1980).
Bigram frequency
The summed frequency of the words sharing the target’s bigrams (from
Ku∏era & Francis 1967).

For example, the phoneme probability of the auditory [mlIf] is 0·0382
(averaged across the positional probability of its four phonemes: 0·0572,
0·0447, 0·0350, 0·0159). In its printed form, mlIf shares its second bigram
(lI) with ten words, whose summed frequency is 85 per million (the initial
and final bigrams are not shared with any words), so its bigram count is
10, and its bigram frequency is 85.

a.
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Onset-probability measures
To examine the possibility that the advantage of sonority rises might be
due to the individual probabilities of occurrence of their onset consonants
in their string positions, we computed the log of the product of the position-
specific probabilities of each consonant (i.e. the summed frequency of
words sharing that consonant in its position relative to the total summed
frequency of the sample) in CCVC words listed in the Speech and Hearing
Lab Neighborhood Database. Consider the onset ml. The database includes
a total of 757 CCVC words, three of which begin with an m (mews, mule,
mute) and 199 words that include an l in the second position.2 The
probabilities of m-first and l-second words are respectively 0·003963012
and 0·262879789 and what we call the ‘log cluster probability’ for ml is
the log of their product (0·001041796): 2·982217428.

b.

2 To avoid biasing the calculations by theory-internal structural assumptions, we based
frequency calculations on the segment sequences as indicated in the database (see
also §4.2).

Previous research suggests that n-initial onsets might be less perceptible than m-
initial onsets for reasons unrelated to sonority (Byrd 1992, Surprenant & Goldstein
1998). Because failure to register the acoustic input as an onset cluster (e.g.
registering nbIf as bIf) reduces its markedness, we also entered the identity of the
initial consonant into the analysis of auditory stimuli.

In this analysis we assume that for any underlying form /uf/ there is a set of
surface forms faithful to /uf/. There may be multiple such forms because /uf/
may be underspecified to some degree; e.g. prosodic structure may not be present
in /uf/. We assume a surface form [sf] to be fully specified in the sense that it
uniquely determines a phonetic form |jf| which is the fully faithful phonetic
interpretation of [sf]; |jf| in turn determines a unique auditory form {af}, which
results from the fully faithful execution of |jf|. Conversely, we assume that if
[sf1]≠[sf2] then the phonetic forms that are fully faithful to them, |sf1| and |sf2|,
are not equal, and analogously, if |sf1|≠|sf2| then the acoustic forms fully faithful
to them, {af1} and {af2}, are not equal. Assumption 1 spells these out in the
notation of the text.

Assumption 1. Faithful forms: f
For any underlying form /uf/ there is a set f(/uf/) of surface forms faithful to
/uf/: for each [sf]Œf(/uf/), the pair (/uf/, [sf]) satisfies the faithfulness
constraint F/uf/,[sf].
For any surface form [sf] there is a unique phonetic form f([sf]) that is faithful
to [sf]: ([sf], f([sf])) satisfies F[sf],|Jf|. This function f is one-to-one. f([sf])
is also said to be the phonetic form corresponding to [sf].
For any phonetic form |jf| there is a unique auditory form f(|jf|) that is faithful
to |jf|: (|jf|, f(|jf|)) satisfies F|Jf|,{af}. This function ƒ is one-to-one. f(|jf|)
is also said to be the acoustic form corresponding to |jf|.

Def. Grammatical. With respect to a given grammar G:
A surface form [sf] is grammatical i‰ there is an underlying form /uf/ such
that the pair (/uf/, [sf]) is optimal: for any other surface form [sf¢], the
grammar assigns lower harmony to (/uf/, [sf¢]) than to (/uf/, [sf]): (/uf/,
[sf¢])ÉG (/uf/, [sf]).
A phonetic form is grammatical iff it corresponds to a grammatical surface
form.
An acoustic form is grammatical iff it corresponds to a grammatical phonetic
form.

Suppose we are given a phonetic form |jfu| and its corresponding acoustic form
{afu}=f(|jfu|). We are interested in cases where |jfu| is ungrammatical for a
hearer, that is, where there is no surface form [sfg] that is grammatical for the
hearer such that |jfu| is the faithful phonetic interpretation of [sfg]. In this case,
we assume that among the grammatical surface forms, one, call it [sfg], is most
faithful to |jfu|. That is, given any other grammatical surface form [sfg¢], the pair
([sfg], |jfu|) better satisfies faithfulness F[sf],|Jf| than does the pair ([sfg¢], |jfu|);
we write this:

F[sf],|Jf|([sfg], |jfu|)ÇF[sf],|Jf|([sfg¢], |jfu|)

We assume that the phonetic interpretation of this surface form, |jfg|=f([sfg]),
is the grammatical phonetic form that is most faithful to the ungrammatical
acoustic form {afu} corresponding to |jfu|.

Assumption 2. Given any phonetic form |jf0| and its corresponding acoustic form
{af0}=f(|jf0|):
Among grammatical surface forms, one, [sfg], is most faithful to |jf0|; i.e. [sfg]
best satisfies F[sf],|Jf|([sf],|jf0|) among grammatical [sf].
The phonetic form corresponding to [sfg], |jfg|=f([sfg]), is the grammatical
phonetic form that is most faithful to the given acoustic form {af0}: |jfg|
best satisfies F|Jf|,{af}(|jf|, {af0}) among grammatical |jf|.

We assume given an OT grammar G for the mapping between underlying and
surface forms. The harmonic ordering of forms determined by G (Prince &
Smolensky 1993: ch. 5) will be written as follows: when G assigns higher harmony
to (/x/, [x]) than to (/y/, [y]) we write (/x/, [x])ÇG(/y/, [y]) or equivalently H1(/x/,
[x])ÇH1(/y/, [y]), since this is harmony in the first component. Harmony in the
second component, linking surface and phonetic forms, is determined solely by
the faithfulness constraint F[sf],|Jf|, so H2([x], |x|)ÇH2([y], |y|) means that ([x],
|x|) better satisfies faithfulness than does ([y], |y|): F[sf],|Jf|([y], |y|)ÇF[sf],|Jf|([y],
|y|). In the same way, harmony in the third component, linking phonetic and
acoustic forms, is determined by F|Jf|,{af}; H3(|x|, {x})ÇH3(|y|, {y}) means that
F|Jf|,{af}(|x|, {x})ÇF|Jf|,{af}(|y|, {y}). All the analogous definitions apply to É and
to  ª (equal harmony), as well as to Ñ and Ö.
Optimality in component n is the obvious generalisation of the component-1
notion of optimality in OT.

Def. Optimal in a component n
(xn, xn+1) is optimal in component n (‘n-opt’) i‰ for all level-n+1 forms
xn+1¢≠xn+1, Hn(xn, xn+1)ÇHn(xn, xn+1¢)

Def. Harmonic ordering w.r.t. component n
Given two representations X=(/x/, [x], |x|, {x})”(x1, x2, x3, x4) and Y=(y1,
y2, y3, y4):
XÇn Y i‰ either
i.(xn, xn+1) is optimal and (yn, yn+1) is not, or
ii.(xn, xn+1) and (yn, yn+1) are both suboptimal and Hn(xn, xn+1)ÇHn(yn, yn+1)
X ªn Y i‰ either
i.(xn, xn+1) and (yn, yn+1) are both optimal, or
ii.(xn, xn+1) and (yn, yn+1) are both suboptimal and Hn(xn, xn+1) ª Hn(yn, yn+1)
XÑn Y i‰ either XÇn Y or X ªn Y

To combine harmonic ordering across all components, we assume that no
component has priority over any others. Thus for a full (four-level) representation
X to be preferred to Y, written XñY, there must be some component in which
X is preferred and no component in which Y is preferred. The ordering is partial
in that for many pairs X, Y that are not harmonically equivalent, neither XñY
nor YñX. Our ordering is defined for use in perception: it compares X and Y
only if they have the same acoustic form {af}, and are therefore both potential
full perceptual representations for {af}.

Def. Harmonic ordering of full representations:ñ
Given two representations X=(/x/, [x], |x|, {x}), Y=(/y/, [y], |y|, {y}):
XñY i‰ {y}={x} and either
(a)i.Ak [Y is k-opt⁄X is k-opt] &
ii.En [X is n-opt and Y is not n-opt]
or
(b)i.Ak [Y is k-opt » X is k-opt] &
ii.Ak [X is not k-opt⁄XÑk Y] &
iii.En [XÇn Y]

In case (a), optimality makes the decision: X is optimal in some component in
which Y is not (a.ii), and there is no component in which Y is optimal but X is
not (a.i). In case (b), X and Y tie with respect to optimality, in that they are
optimal in exactly the same components (b.i): then relative harmony among sub-
optimal representations decides. Now X is preferred to Y only if there is some
component in which X is suboptimal but higher-harmony than Y (b.iii), and
there is no component in which Y is suboptimal but higher-harmony than X
(b.ii).
Henceforth references such as (b.ii) will always refer to the correspondingly
labelled condition in the definition of ñ.

Lemma 1. Suppose X is optimal in every component. Then
(a)there is no Y such that YñX, and
(b)for every Z such that {z}={x}, XñZ unless Z is also optimal in every
component.

Proof of Lemma 1. Suppose there were a Y such that YñX. Then either (a.ii) En
[Y is n-opt and X is not n-opt], which is impossible because X is k-opt Ak,
or (b.iii) En [YÇn X], which is also impossible because X is k-opt k. This
establishes (a). Now suppose given Z such that {z}={x}. Suppose Z is not
optimal in every component: En [Zn is subopt]. Then (a) of the definition of
XÇZ is satisfied, establishing (b). QED

Lemma 2. Suppose X is suboptimal in component k and optimal in the other
components. Let Y be a candidate with {y}={x}. Then
1. XñY i‰ either

a. Y is (i) suboptimal in some non-k component and (ii) not k-optimal or
b. Y is (ii) optimal in all non-k components and (ii)–(iii) XÇk Y,

2. YñX i‰ [Y is optimal in all non-k components and YÇk X]
3. neither XñY nor YñX if [Y is optimal in component k and suboptimal in

some non-k component].

Proof of Lemma 2. Suppose X is suboptimal in component k and optimal in the
other components, and Y is a candidate with {y}={x}.

Part 1. Under these conditions, conditions (1a) and (1b) of Lemma 2 are
equivalent to (a) and (b) respectively of the definition of XñY.

Part 2. Exchanging X and Y in (1), we see that (1a) cannot be met and condition
(1b) becomes (2) of Lemma 2.

Part 3. Suppose now that Y is optimal in component k and suboptimal in
some non-k component. Then in the definition of XñY, condition (i)
cannot hold in either (a) or (b), and the same is true for the definition of
YñX, because in both (a) and (b), (i) requires that the set of components
in which one of the candidates X or Y is optimal is a (not necessarily strict)
subset of the components in which the other candidate is optimal. This
establishes result (3). QED

Now, as in (4) in the text, we define a possible percept as follows.

Def. Perceptual principle
Let X=(/x/, [x], |x|, {x}) be a globally faithful representation and consider
the auditory form {x}. A representation Y is a possible percept for {x} i‰

the acoustic form of Y is {x}, and
there is no Z with acoustic form {x} such that ZñY.

The main result, (5) in the text, follows.

Proposition:
Let X=(/x/, [x], |x|, {x}) be a globally faithful representation. For the
auditory input {x}, there are two possibilities.
a. If [x] is grammatical then the only possible percept type is

A¢= (/x¢/, [x], |x|, {x})
where /x¢/ is any underlying form for which (/x¢/, [x]) is optimal.

b. If [x] is not grammatical, there are three possible percept types:
A¢=(/x¢/, [x], |x|, {x})
C¢=(/y¢/, [y], |x|, {x})
D¢=(/y¢/, [y], |y|, {x})

where
[y] is the grammatical surface form most faithful to |x|,
|y|=f([y]) is the phonetic form faithful to [y],
/y¢/ is any underlying form for which (/y¢/, [y]) is optimal, and
/x¢/Œ f([x]) is any underlying form faithful to [x].

Proof. Part a: grammatical case
That A¢ (as given in the Proposition) is a possible percept follows immediately
from (a) of Lemma 1, since A¢ is optimal in every component: (/x¢/, [x]) is
optimal by assumption, and in the other two components, A¢ is faithful, hence
optimal.

Now consider any possible percept U=(/u/, [u], |u|, {u}); we must show
it is of type A¢. As a possible percept of {x}, U must have {u}={x} and we
must not have AñU, where A is a candidate of type A¢. Now according to
Lemma 1 (b), since A is optimal in every component, we would have AñU
unless U is also globally optimal. To be optimal in the third component, since
{u}={x}, |u| must be faithful to {x}, so, by Assumption 1, we must have |u|=
|x|, as |x| is the unique phonetic form faithful to {x}: {x}=f(|x|). By identical
reasoning, to be optimal in the second component, [u] must be faithful to
|u|=|x|, so we must have [u]=[x]. To be optimal in the first component, /u/
must be optimal when paired with [x]; this means U is a candidate of type A¢.

Part b: ungrammatical case
U=(/u/, [u], |u|, {u}) is a possible percept only if {u}={x}. There are three
cases to consider. In case 1, |u|=|x| and [u]=[x]; in case 2, |u|=|x| and [u]
≠[x]; in case 3, |u|≠|x|. We show that in case 1, U is a possible percept i‰
it is of type A¢; in case 2, type C¢; in case 3, type D¢. Note that the globally
faithful candidate X is optimal in components 2 and 3 (as it is faithful there),
but cannot be optimal in component 1 because [x] is ungrammatical: there is
no /x¢/ such that (/x¢/, [x]) is optimal. X thus meets the conditions of Lemma
2, with k=1. While not optimal in component 1, X is however faithful in
component 1, by definition.

Case 1. Here, U=(/u/, [x], |x|, {x}). U is a possible percept i‰ there is no Z
with acoustic form {x} such that ZñU. Like X, U is optimal in components
2 and 3 but cannot be optimal in component 1. So U satisfies the conditions
of Lemma 2, with k=1. By Part 2 of Lemma 2, for a candidate Z with acoustic
form {x}, ZñU i‰ Z is optimal in components 2 and 3 and ZÇ1 U. This is
true i‰ Z=(/z/, [x], |x|, {x}) and (/z/, [x])Ç1 (/u/, [x]). In this harmony
comparison, the two pairs tie on markedness since they have the same surface
form [x]; (/z/, [x])Ç1 (/u/, [x]) will hold i‰ (/z/, [x]) satisfies faithfulness
better than does (/u/, [x]). For no such Z to exist, it is necessary and su"cient
that /u/ is fully faithful to [x]: if /u/ is fully faithful to [x], no /z/ can be more
faithful, and if /u/ is not faithful to [x], then any /z/ that is faithful to [x] will
satisfy (/z/, [x])Ç1 (/u/, [x]). Thus, under the conditions of Case 1, U is a
possible percept i‰ it is of the form A¢ as defined in Part 2 of the Proposition.

Case 2. Now, U=(/u/, [u], |x|, {x}), where [u]≠[x]. U is optimal (faithful)
in component 3 but is suboptimal in component 2, since (by Assumption 1)
[x] is the unique surface form faithful to |x|. Since X meets the conditions of
Lemma 2 with k=1, and U is 2-suboptimal, by part 1 of Lemma 2, we will
have XñU i‰ U is not 1-optimal (this is (1a); (1b cannot be met by U). So
to be a possible percept it is necessary that (/u/, [u]) be optimal, i.e. [u] must
be a grammatical surface form and /u/ a possible underlying form for [u]. This
means that U satisfies Lemma 2 with k=2. Now U is a possible percept for
{x} i‰ there is no candidate Z with acoustic form {x} such that ZñU. By part
2 of Lemma 2, such a ZñU i‰ Z is optimal in components 1 and 3 and ZÇ2 U,
which is true i‰ ZÇ2 U and Z=(/z/, [z], |x|, {x}) with (/z/, [z]) optimal. This
in turn is true i‰ [z] is grammatical and ([z], |x|) is more faithful than ([u],
|u|). If we choose [u] to be the grammatical surface form [y] that is most
faithful to |x| (unique by Assumption 2) then no such [z] exists, otherwise,
choosing [z]=[y] entails ZñU. Thus, under the conditions of Case 2, U is a
possible percept for {x} i‰ [u]=[y] and /u/ is an underlying form /y/ for which
(/y/, [y]) is optimal, that is, i‰ U is a candidate of type C¢.

Case 3. Now, U=(/u/, [u], |u|, {x}), where |u|≠|x|. U is suboptimal in com-
ponent 3 since (by Assumption 1) |x| is the only phonetic form that is faithful
to {x}. Since X satisfies Lemma 2 with k=1 and U is 3-suboptimal, by part
1 of Lemma 2 we will have XñU i‰ U is not 1-optimal (this is (1a); (1b)
cannot be satisfied by such a U). So, as in case 2, for U to be a possible percept
of {x} we must have (/u/, [u]) optimal, so [u] must be a grammatical surface
form. Let W be a candidate of type C¢. W satisfies Lemma 2 with k=2, so
again by part 1 of Lemma 2, WñU i‰ U is not 2-optimal; U must be 2-
optimal to be a possible percept, which means ([u], |u|) must be faithful. This
means U satisfies Lemma 2 with k=3. So by part 2 of that lemma, there exists
a candidate Z with acoustic form {x} such that ZñU i‰ there exists Z optimal
in components 1 and 2 and ZÇ3 U, i.e. a Z=(/z/, [z], |z|, {x}) such that [z]
is a grammatical surface form with underlying form /z/, |z|=f([z]), and (|z|,
{x}) is more faithful than (|u|, {x}). Such a Z does not exist if |u| is the (unique)
grammatical phonetic form |y| most faithful to {x}, otherwise, such a Z does
exist, namely, where |z|=|y|. By Assumption 2, this |y|=f([y]), where [y] is
as defined in the Proposition. Thus, under the conditions of Case 3, U is a
possible percept for {x} i‰ U is of type D¢. QED

Note that the second part of Assumption 2 can be dropped if D¢ in the
Proposition is set to (/z¢/, [z], |z|, {x}), where |z| is the grammatical phonetic
form most faithful to {x}, [z] is the surface form faithful to |z|, which is
grammatical by definition of ‘grammatical phonetic form’, and /z¢/ is an
underlying form for which (/z¢/, [z]) is optimal, which exists since [z] is
grammatical. Now the [z] of D¢ may not be the same as the [y] of B¢.
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additional referencesAppendix B: Measures of segmental lexical statistics

1 Neighbourhood measures

2 Measures of segment/letter co-occurrence

3 The onset’s initial consonant

Table I
Some statistical properties of the auditory and printed stimuli.
The figures provided in the table reflect means per onset type
(averaged across the 12 items representing each onset type).

number of neighbours
neighbours’ frequency (summed)
mean phoneme probability
mean biphone probability
log cluster probability

auditory items

1·58
581

0·0316
0·0016
—5·4097

0·50
390

0·0262
0·0006

—10·7296

sonority rise sonority fall

number of neighbours
neighbours’ frequency (summed)
bigram count (summed)
bigram frequency (summed)
log cluster probability

printed items

0·33
1·25

13·67
316·92
—5·4097

0·33
2·00
6·25

224·50
—10·7296

onset type

Appendix A: Formal presentation of the proposition in (5)

statistical property

statistical property
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To evaluate the possibility that the preference of items like mlIf reflects only the
co-occurrence of their segments in the English lexicon, we calculated several
statistical measures of our materials. These measures correspond to factors which
have been reported in the literature as modulating perceptual accuracy and speed.
The means of these measures, provided in Table I, reflect averages computed
over the twelve items representing each onset type (these means were not used
in our analyses; they are presented merely as descriptive statistics). A brief
description of these measures is found in the text  – below we o‰er a more detailed
description of these measures, their calculation and their expected effects on
behaviour.

The statistical properties included neighbourhood measures and measures of
segment or letter co-occurrence (for auditory and printed materials respectively).
A final measure concerned the identity of the initial consonants.

A target’s lexical neighbourhood comprises all words obtained by adding, deleting
or substituting one of a target’s phonemes (or letters, for printed words). Previous
research suggests that words with a large neighbourhood consisting of frequent
words are recognised more readily in naming and AX tasks (e.g. Carreiras et al.
1997, Perea & Carreiras 1998, Vitevitch & Luce 1998, 1999). The better recognition
of the items with rising-sonority onsets might thus be due to the structure of
their lexical neighbourhoods, rather than sonority per se. We evaluated this
possibility using two neighbourhood measures:

(1) Neighbourhood count
The number of lexical neighbours

a.

Neighbourhood frequency
The summed frequency of a target’s neighbours

b.

For example, the item [mlIf] has one phonological neighbour, /klIf/, whose
frequency is 11 per million. Both measures were calculated from the Speech and
Hearing Lab Neighborhood Database.1

Words whose segments or letters co-occur frequently are better recognised (e.g.
Perea & Carreiras 1998, Vitevitch & Luce 1998, 1999). To determine whether
the advantage of sonority rises is due to these properties, we computed two sets
of measures of co-occurrence, one for the whole word and one for the onset
specifically.
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1 Available (March 2009) at http://128.252.27.56/Neighborhood/Home.asp. At present,
the Speech and Hearing Lab Neighborhood Database incorrectly collapses case-
distinctions in phonological inputs (e.g. it fails to distinguish [lif] and [lIf]). In view
of this problem, we manually inspected the output of the database and corrected
them as necessary.

(2) Whole-word measures
The co-occurrence of elements in the word as a whole was estimated using
either segment- or letter co-occurrence, for auditory and printed words
respectively. Segment co-occurrence in auditory words was captured by
the following measures based on the Phonotactic Probability Calculator
(Vitevitch & Luce 2004):

Position-sensitive phoneme probability
The probability that any given phoneme in the target occurs at the
same string position (first through fourth), averaged across the target’s
four phonemes.
Position-sensitive biphone probability
The probability that any adjacent phoneme pair in the target occurs
at the same string position (averaged across the target’s three biphones).

For printed words (in Experiment 6), we used two measures of letter co-
occurrence:

Bigram count
The number of words sharing each of the target’s adjacent letter pairs
in the same string position (calculated based on Solso & Juel 1980).
Bigram frequency
The summed frequency of the words sharing the target’s bigrams (from
Ku∏era & Francis 1967).

For example, the phoneme probability of the auditory [mlIf] is 0·0382
(averaged across the positional probability of its four phonemes: 0·0572,
0·0447, 0·0350, 0·0159). In its printed form, mlIf shares its second bigram
(lI) with ten words, whose summed frequency is 85 per million (the initial
and final bigrams are not shared with any words), so its bigram count is
10, and its bigram frequency is 85.

a.
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Onset-probability measures
To examine the possibility that the advantage of sonority rises might be
due to the individual probabilities of occurrence of their onset consonants
in their string positions, we computed the log of the product of the position-
specific probabilities of each consonant (i.e. the summed frequency of
words sharing that consonant in its position relative to the total summed
frequency of the sample) in CCVC words listed in the Speech and Hearing
Lab Neighborhood Database. Consider the onset ml. The database includes
a total of 757 CCVC words, three of which begin with an m (mews, mule,
mute) and 199 words that include an l in the second position.2 The
probabilities of m-first and l-second words are respectively 0·003963012
and 0·262879789 and what we call the ‘log cluster probability’ for ml is
the log of their product (0·001041796): 2·982217428.

b.

2 To avoid biasing the calculations by theory-internal structural assumptions, we based
frequency calculations on the segment sequences as indicated in the database (see
also §4.2).

Previous research suggests that n-initial onsets might be less perceptible than m-
initial onsets for reasons unrelated to sonority (Byrd 1992, Surprenant & Goldstein
1998). Because failure to register the acoustic input as an onset cluster (e.g.
registering nbIf as bIf) reduces its markedness, we also entered the identity of the
initial consonant into the analysis of auditory stimuli.

In this analysis we assume that for any underlying form /uf/ there is a set of
surface forms faithful to /uf/. There may be multiple such forms because /uf/
may be underspecified to some degree; e.g. prosodic structure may not be present
in /uf/. We assume a surface form [sf] to be fully specified in the sense that it
uniquely determines a phonetic form |jf| which is the fully faithful phonetic
interpretation of [sf]; |jf| in turn determines a unique auditory form {af}, which
results from the fully faithful execution of |jf|. Conversely, we assume that if
[sf1]≠[sf2] then the phonetic forms that are fully faithful to them, |sf1| and |sf2|,
are not equal, and analogously, if |sf1|≠|sf2| then the acoustic forms fully faithful
to them, {af1} and {af2}, are not equal. Assumption 1 spells these out in the
notation of the text.

Assumption 1. Faithful forms: f
For any underlying form /uf/ there is a set f(/uf/) of surface forms faithful to
/uf/: for each [sf]Œf(/uf/), the pair (/uf/, [sf]) satisfies the faithfulness
constraint F/uf/,[sf].
For any surface form [sf] there is a unique phonetic form f([sf]) that is faithful
to [sf]: ([sf], f([sf])) satisfies F[sf],|Jf|. This function f is one-to-one. f([sf])
is also said to be the phonetic form corresponding to [sf].
For any phonetic form |jf| there is a unique auditory form f(|jf|) that is faithful
to |jf|: (|jf|, f(|jf|)) satisfies F|Jf|,{af}. This function ƒ is one-to-one. f(|jf|)
is also said to be the acoustic form corresponding to |jf|.

Def. Grammatical. With respect to a given grammar G:
A surface form [sf] is grammatical i‰ there is an underlying form /uf/ such
that the pair (/uf/, [sf]) is optimal: for any other surface form [sf¢], the
grammar assigns lower harmony to (/uf/, [sf¢]) than to (/uf/, [sf]): (/uf/,
[sf¢])ÉG (/uf/, [sf]).
A phonetic form is grammatical iff it corresponds to a grammatical surface
form.
An acoustic form is grammatical iff it corresponds to a grammatical phonetic
form.

Suppose we are given a phonetic form |jfu| and its corresponding acoustic form
{afu}=f(|jfu|). We are interested in cases where |jfu| is ungrammatical for a
hearer, that is, where there is no surface form [sfg] that is grammatical for the
hearer such that |jfu| is the faithful phonetic interpretation of [sfg]. In this case,
we assume that among the grammatical surface forms, one, call it [sfg], is most
faithful to |jfu|. That is, given any other grammatical surface form [sfg¢], the pair
([sfg], |jfu|) better satisfies faithfulness F[sf],|Jf| than does the pair ([sfg¢], |jfu|);
we write this:

F[sf],|Jf|([sfg], |jfu|)ÇF[sf],|Jf|([sfg¢], |jfu|)

We assume that the phonetic interpretation of this surface form, |jfg|=f([sfg]),
is the grammatical phonetic form that is most faithful to the ungrammatical
acoustic form {afu} corresponding to |jfu|.

Assumption 2. Given any phonetic form |jf0| and its corresponding acoustic form
{af0}=f(|jf0|):
Among grammatical surface forms, one, [sfg], is most faithful to |jf0|; i.e. [sfg]
best satisfies F[sf],|Jf|([sf],|jf0|) among grammatical [sf].
The phonetic form corresponding to [sfg], |jfg|=f([sfg]), is the grammatical
phonetic form that is most faithful to the given acoustic form {af0}: |jfg|
best satisfies F|Jf|,{af}(|jf|, {af0}) among grammatical |jf|.

We assume given an OT grammar G for the mapping between underlying and
surface forms. The harmonic ordering of forms determined by G (Prince &
Smolensky 1993: ch. 5) will be written as follows: when G assigns higher harmony
to (/x/, [x]) than to (/y/, [y]) we write (/x/, [x])ÇG(/y/, [y]) or equivalently H1(/x/,
[x])ÇH1(/y/, [y]), since this is harmony in the first component. Harmony in the
second component, linking surface and phonetic forms, is determined solely by
the faithfulness constraint F[sf],|Jf|, so H2([x], |x|)ÇH2([y], |y|) means that ([x],
|x|) better satisfies faithfulness than does ([y], |y|): F[sf],|Jf|([y], |y|)ÇF[sf],|Jf|([y],
|y|). In the same way, harmony in the third component, linking phonetic and
acoustic forms, is determined by F|Jf|,{af}; H3(|x|, {x})ÇH3(|y|, {y}) means that
F|Jf|,{af}(|x|, {x})ÇF|Jf|,{af}(|y|, {y}). All the analogous definitions apply to É and
to  ª (equal harmony), as well as to Ñ and Ö.
Optimality in component n is the obvious generalisation of the component-1
notion of optimality in OT.

Def. Optimal in a component n
(xn, xn+1) is optimal in component n (‘n-opt’) i‰ for all level-n+1 forms
xn+1¢≠xn+1, Hn(xn, xn+1)ÇHn(xn, xn+1¢)

Def. Harmonic ordering w.r.t. component n
Given two representations X=(/x/, [x], |x|, {x})”(x1, x2, x3, x4) and Y=(y1,
y2, y3, y4):
XÇn Y i‰ either
i.(xn, xn+1) is optimal and (yn, yn+1) is not, or
ii.(xn, xn+1) and (yn, yn+1) are both suboptimal and Hn(xn, xn+1)ÇHn(yn, yn+1)
X ªn Y i‰ either
i.(xn, xn+1) and (yn, yn+1) are both optimal, or
ii.(xn, xn+1) and (yn, yn+1) are both suboptimal and Hn(xn, xn+1) ª Hn(yn, yn+1)
XÑn Y i‰ either XÇn Y or X ªn Y

To combine harmonic ordering across all components, we assume that no
component has priority over any others. Thus for a full (four-level) representation
X to be preferred to Y, written XñY, there must be some component in which
X is preferred and no component in which Y is preferred. The ordering is partial
in that for many pairs X, Y that are not harmonically equivalent, neither XñY
nor YñX. Our ordering is defined for use in perception: it compares X and Y
only if they have the same acoustic form {af}, and are therefore both potential
full perceptual representations for {af}.

Def. Harmonic ordering of full representations:ñ
Given two representations X=(/x/, [x], |x|, {x}), Y=(/y/, [y], |y|, {y}):
XñY i‰ {y}={x} and either
(a)i.Ak [Y is k-opt⁄X is k-opt] &
ii.En [X is n-opt and Y is not n-opt]
or
(b)i.Ak [Y is k-opt » X is k-opt] &
ii.Ak [X is not k-opt⁄XÑk Y] &
iii.En [XÇn Y]

In case (a), optimality makes the decision: X is optimal in some component in
which Y is not (a.ii), and there is no component in which Y is optimal but X is
not (a.i). In case (b), X and Y tie with respect to optimality, in that they are
optimal in exactly the same components (b.i): then relative harmony among sub-
optimal representations decides. Now X is preferred to Y only if there is some
component in which X is suboptimal but higher-harmony than Y (b.iii), and
there is no component in which Y is suboptimal but higher-harmony than X
(b.ii).
Henceforth references such as (b.ii) will always refer to the correspondingly
labelled condition in the definition of ñ.

Lemma 1. Suppose X is optimal in every component. Then
(a)there is no Y such that YñX, and
(b)for every Z such that {z}={x}, XñZ unless Z is also optimal in every
component.

Proof of Lemma 1. Suppose there were a Y such that YñX. Then either (a.ii) En
[Y is n-opt and X is not n-opt], which is impossible because X is k-opt Ak,
or (b.iii) En [YÇn X], which is also impossible because X is k-opt k. This
establishes (a). Now suppose given Z such that {z}={x}. Suppose Z is not
optimal in every component: En [Zn is subopt]. Then (a) of the definition of
XÇZ is satisfied, establishing (b). QED

Lemma 2. Suppose X is suboptimal in component k and optimal in the other
components. Let Y be a candidate with {y}={x}. Then
1. XñY i‰ either
a. Y is (i) suboptimal in some non-k component and (ii) not k-optimal or
b. Y is (ii) optimal in all non-k components and (ii)–(iii) XÇk Y,
2. YñX i‰ [Y is optimal in all non-k components and YÇk X]
3. neither XñY nor YñX if [Y is optimal in component k and suboptimal in
some non-k component].

Proof of Lemma 2. Suppose X is suboptimal in component k and optimal in the
other components, and Y is a candidate with {y}={x}.
Part 1. Under these conditions, conditions (1a) and (1b) of Lemma 2 are
equivalent to (a) and (b) respectively of the definition of XñY.
Part 2. Exchanging X and Y in (1), we see that (1a) cannot be met and condition
(1b) becomes (2) of Lemma 2.
Part 3. Suppose now that Y is optimal in component k and suboptimal in
some non-k component. Then in the definition of XñY, condition (i)
cannot hold in either (a) or (b), and the same is true for the definition of
YñX, because in both (a) and (b), (i) requires that the set of components
in which one of the candidates X or Y is optimal is a (not necessarily strict)
subset of the components in which the other candidate is optimal. This
establishes result (3). QED

Now, as in (4) in the text, we define a possible percept as follows.

Def. Perceptual principle
Let X=(/x/, [x], |x|, {x}) be a globally faithful representation and consider
the auditory form {x}. A representation Y is a possible percept for {x} i‰
the acoustic form of Y is {x}, and
there is no Z with acoustic form {x} such that ZñY.

The main result, (5) in the text, follows.

Proposition:
Let X=(/x/, [x], |x|, {x}) be a globally faithful representation. For the
auditory input {x}, there are two possibilities.
a.If [x] is grammatical then the only possible percept type is
A¢= (/x¢/, [x], |x|, {x})
where /x¢/ is any underlying form for which (/x¢/, [x]) is optimal.

b. If [x] is not grammatical, there are three possible percept types:
A¢=(/x¢/, [x], |x|, {x})
C¢=(/y¢/, [y], |x|, {x})
D¢=(/y¢/, [y], |y|, {x})

where
[y] is the grammatical surface form most faithful to |x|,
|y|=f([y]) is the phonetic form faithful to [y],
/y¢/ is any underlying form for which (/y¢/, [y]) is optimal, and
/x¢/Œ f([x]) is any underlying form faithful to [x].

Proof. Part a: grammatical case
That A¢ (as given in the Proposition) is a possible percept follows immediately
from (a) of Lemma 1, since A¢ is optimal in every component: (/x¢/, [x]) is
optimal by assumption, and in the other two components, A¢ is faithful, hence
optimal.

Now consider any possible percept U=(/u/, [u], |u|, {u}); we must show
it is of type A¢. As a possible percept of {x}, U must have {u}={x} and we
must not have AñU, where A is a candidate of type A¢. Now according to
Lemma 1 (b), since A is optimal in every component, we would have AñU
unless U is also globally optimal. To be optimal in the third component, since
{u}={x}, |u| must be faithful to {x}, so, by Assumption 1, we must have |u|=
|x|, as |x| is the unique phonetic form faithful to {x}: {x}=f(|x|). By identical
reasoning, to be optimal in the second component, [u] must be faithful to
|u|=|x|, so we must have [u]=[x]. To be optimal in the first component, /u/
must be optimal when paired with [x]; this means U is a candidate of type A¢.

Part b: ungrammatical case
U=(/u/, [u], |u|, {u}) is a possible percept only if {u}={x}. There are three
cases to consider. In case 1, |u|=|x| and [u]=[x]; in case 2, |u|=|x| and [u]
≠[x]; in case 3, |u|≠|x|. We show that in case 1, U is a possible percept i‰
it is of type A¢; in case 2, type C¢; in case 3, type D¢. Note that the globally
faithful candidate X is optimal in components 2 and 3 (as it is faithful there),
but cannot be optimal in component 1 because [x] is ungrammatical: there is
no /x¢/ such that (/x¢/, [x]) is optimal. X thus meets the conditions of Lemma
2, with k=1. While not optimal in component 1, X is however faithful in
component 1, by definition.

Case 1. Here, U=(/u/, [x], |x|, {x}). U is a possible percept i‰ there is no Z
with acoustic form {x} such that ZñU. Like X, U is optimal in components
2 and 3 but cannot be optimal in component 1. So U satisfies the conditions
of Lemma 2, with k=1. By Part 2 of Lemma 2, for a candidate Z with acoustic
form {x}, ZñU i‰ Z is optimal in components 2 and 3 and ZÇ1 U. This is
true i‰ Z=(/z/, [x], |x|, {x}) and (/z/, [x])Ç1 (/u/, [x]). In this harmony
comparison, the two pairs tie on markedness since they have the same surface
form [x]; (/z/, [x])Ç1 (/u/, [x]) will hold i‰ (/z/, [x]) satisfies faithfulness
better than does (/u/, [x]). For no such Z to exist, it is necessary and su"cient
that /u/ is fully faithful to [x]: if /u/ is fully faithful to [x], no /z/ can be more
faithful, and if /u/ is not faithful to [x], then any /z/ that is faithful to [x] will
satisfy (/z/, [x])Ç1 (/u/, [x]). Thus, under the conditions of Case 1, U is a
possible percept i‰ it is of the form A¢ as defined in Part 2 of the Proposition.

Case 2. Now, U=(/u/, [u], |x|, {x}), where [u]≠[x]. U is optimal (faithful)
in component 3 but is suboptimal in component 2, since (by Assumption 1)
[x] is the unique surface form faithful to |x|. Since X meets the conditions of
Lemma 2 with k=1, and U is 2-suboptimal, by part 1 of Lemma 2, we will
have XñU i‰ U is not 1-optimal (this is (1a); (1b cannot be met by U). So
to be a possible percept it is necessary that (/u/, [u]) be optimal, i.e. [u] must
be a grammatical surface form and /u/ a possible underlying form for [u]. This
means that U satisfies Lemma 2 with k=2. Now U is a possible percept for
{x} i‰ there is no candidate Z with acoustic form {x} such that ZñU. By part
2 of Lemma 2, such a ZñU i‰ Z is optimal in components 1 and 3 and ZÇ2 U,
which is true i‰ ZÇ2 U and Z=(/z/, [z], |x|, {x}) with (/z/, [z]) optimal. This
in turn is true i‰ [z] is grammatical and ([z], |x|) is more faithful than ([u],
|u|). If we choose [u] to be the grammatical surface form [y] that is most
faithful to |x| (unique by Assumption 2) then no such [z] exists, otherwise,
choosing [z]=[y] entails ZñU. Thus, under the conditions of Case 2, U is a
possible percept for {x} i‰ [u]=[y] and /u/ is an underlying form /y/ for which
(/y/, [y]) is optimal, that is, i‰ U is a candidate of type C¢.

Case 3. Now, U=(/u/, [u], |u|, {x}), where |u|≠|x|. U is suboptimal in com-
ponent 3 since (by Assumption 1) |x| is the only phonetic form that is faithful
to {x}. Since X satisfies Lemma 2 with k=1 and U is 3-suboptimal, by part
1 of Lemma 2 we will have XñU i‰ U is not 1-optimal (this is (1a); (1b)
cannot be satisfied by such a U). So, as in case 2, for U to be a possible percept
of {x} we must have (/u/, [u]) optimal, so [u] must be a grammatical surface
form. Let W be a candidate of type C¢. W satisfies Lemma 2 with k=2, so
again by part 1 of Lemma 2, WñU i‰ U is not 2-optimal; U must be 2-
optimal to be a possible percept, which means ([u], |u|) must be faithful. This
means U satisfies Lemma 2 with k=3. So by part 2 of that lemma, there exists
a candidate Z with acoustic form {x} such that ZñU i‰ there exists Z optimal
in components 1 and 2 and ZÇ3 U, i.e. a Z=(/z/, [z], |z|, {x}) such that [z]
is a grammatical surface form with underlying form /z/, |z|=f([z]), and (|z|,
{x}) is more faithful than (|u|, {x}). Such a Z does not exist if |u| is the (unique)
grammatical phonetic form |y| most faithful to {x}, otherwise, such a Z does
exist, namely, where |z|=|y|. By Assumption 2, this |y|=f([y]), where [y] is
as defined in the Proposition. Thus, under the conditions of Case 3, U is a
possible percept for {x} i‰ U is of type D¢. QED

Note that the second part of Assumption 2 can be dropped if D¢ in the
Proposition is set to (/z¢/, [z], |z|, {x}), where |z| is the grammatical phonetic
form most faithful to {x}, [z] is the surface form faithful to |z|, which is
grammatical by definition of ‘grammatical phonetic form’, and /z¢/ is an
underlying form for which (/z¢/, [z]) is optimal, which exists since [z] is
grammatical. Now the [z] of D¢ may not be the same as the [y] of B¢.

10 I. Berent, T. Lennertz, P. Smolensky and V. Vaknin-Nusbaum

Carreiras, Manuel, Manuel Perea & Jonathan Grainger (1997). E‰ects of orthographic
neighborhood in visual word recognition: cross-task comparisons. Journal of
Experimental Psychology: Learning, Memory, and Cognition 23. 857–871.

Ku∏era, Henry & W. Nelson Francis (1967). Computational analysis of present-day
American English. Providence, RI: Brown University Press.

Perea, Manuel & Manuel Carreiras (1998). E‰ects of syllable frequency and syllable
neighborhood frequency in visual word recognition. Journal of Experimental Psy-
chology: Human Perception and Performance 24. 134–144.

Solso, Robert L. & Connie L. Juel (1980). Positional frequency and versatility of bi-
grams for two- through nine-letter English words. Behavior Research Methods and
Instrumentation 12. 297–343.

Vitevitch, Michael S. & Paul A. Luce (1998). When words compete: levels of processing
in perception of spoken words. Psychological Science 9. 325–329.

Vitevitch, Michael S. & Paul A. Luce (1999). Probabilistic phonotactics and neigh-
borhood activation in spoken word recognition. Journal of Memory and Language 40.
374–408.

Vitevitch, Michael S. & Paul A. Luce (2004). A web-based interface to calculate
phonotactic probability for words and nonwords in English. Behavior Research
Methods, Instruments, and Computers 36. 481–487.

additional referencesAppendix B: Measures of segmental lexical statistics

1 Neighbourhood measures

2 Measures of segment/letter co-occurrence

3 The onset’s initial consonant

Table I
Some statistical properties of the auditory and printed stimuli.
The figures provided in the table reflect means per onset type
(averaged across the 12 items representing each onset type).

number of neighbours
neighbours’ frequency (summed)
mean phoneme probability
mean biphone probability
log cluster probability

auditory items

1·58
581

0·0316
0·0016
—5·4097

0·50
390

0·0262
0·0006

—10·7296

sonority rise sonority fall

number of neighbours
neighbours’ frequency (summed)
bigram count (summed)
bigram frequency (summed)
log cluster probability

printed items

0·33
1·25

13·67
316·92
—5·4097

0·33
2·00
6·25

224·50
—10·7296

onset type

Appendix A: Formal presentation of the proposition in (5)

statistical property

statistical property
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To evaluate the possibility that the preference of items like mlIf reflects only the
co-occurrence of their segments in the English lexicon, we calculated several
statistical measures of our materials. These measures correspond to factors which
have been reported in the literature as modulating perceptual accuracy and speed.
The means of these measures, provided in Table I, reflect averages computed
over the twelve items representing each onset type (these means were not used
in our analyses; they are presented merely as descriptive statistics). A brief
description of these measures is found in the text  – below we o‰er a more detailed
description of these measures, their calculation and their expected effects on
behaviour.

The statistical properties included neighbourhood measures and measures of
segment or letter co-occurrence (for auditory and printed materials respectively).
A final measure concerned the identity of the initial consonants.

A target’s lexical neighbourhood comprises all words obtained by adding, deleting
or substituting one of a target’s phonemes (or letters, for printed words). Previous
research suggests that words with a large neighbourhood consisting of frequent
words are recognised more readily in naming and AX tasks (e.g. Carreiras et al.
1997, Perea & Carreiras 1998, Vitevitch & Luce 1998, 1999). The better recognition
of the items with rising-sonority onsets might thus be due to the structure of
their lexical neighbourhoods, rather than sonority per se. We evaluated this
possibility using two neighbourhood measures:

(1) Neighbourhood count
The number of lexical neighbours

a.

Neighbourhood frequency
The summed frequency of a target’s neighbours

b.

For example, the item [mlIf] has one phonological neighbour, /klIf/, whose
frequency is 11 per million. Both measures were calculated from the Speech and
Hearing Lab Neighborhood Database.1

Words whose segments or letters co-occur frequently are better recognised (e.g.
Perea & Carreiras 1998, Vitevitch & Luce 1998, 1999). To determine whether
the advantage of sonority rises is due to these properties, we computed two sets
of measures of co-occurrence, one for the whole word and one for the onset
specifically.
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1 Available (March 2009) at http://128.252.27.56/Neighborhood/Home.asp. At present,
the Speech and Hearing Lab Neighborhood Database incorrectly collapses case-
distinctions in phonological inputs (e.g. it fails to distinguish [lif] and [lIf]). In view
of this problem, we manually inspected the output of the database and corrected
them as necessary.

(2) Whole-word measures
The co-occurrence of elements in the word as a whole was estimated using
either segment- or letter co-occurrence, for auditory and printed words
respectively. Segment co-occurrence in auditory words was captured by
the following measures based on the Phonotactic Probability Calculator
(Vitevitch & Luce 2004):

Position-sensitive phoneme probability
The probability that any given phoneme in the target occurs at the
same string position (first through fourth), averaged across the target’s
four phonemes.
Position-sensitive biphone probability
The probability that any adjacent phoneme pair in the target occurs
at the same string position (averaged across the target’s three biphones).

For printed words (in Experiment 6), we used two measures of letter co-
occurrence:

Bigram count
The number of words sharing each of the target’s adjacent letter pairs
in the same string position (calculated based on Solso & Juel 1980).
Bigram frequency
The summed frequency of the words sharing the target’s bigrams (from
Ku∏era & Francis 1967).

For example, the phoneme probability of the auditory [mlIf] is 0·0382
(averaged across the positional probability of its four phonemes: 0·0572,
0·0447, 0·0350, 0·0159). In its printed form, mlIf shares its second bigram
(lI) with ten words, whose summed frequency is 85 per million (the initial
and final bigrams are not shared with any words), so its bigram count is
10, and its bigram frequency is 85.

a.
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Onset-probability measures
To examine the possibility that the advantage of sonority rises might be
due to the individual probabilities of occurrence of their onset consonants
in their string positions, we computed the log of the product of the position-
specific probabilities of each consonant (i.e. the summed frequency of
words sharing that consonant in its position relative to the total summed
frequency of the sample) in CCVC words listed in the Speech and Hearing
Lab Neighborhood Database. Consider the onset ml. The database includes
a total of 757 CCVC words, three of which begin with an m (mews, mule,
mute) and 199 words that include an l in the second position.2 The
probabilities of m-first and l-second words are respectively 0·003963012
and 0·262879789 and what we call the ‘log cluster probability’ for ml is
the log of their product (0·001041796): 2·982217428.

b.

2 To avoid biasing the calculations by theory-internal structural assumptions, we based
frequency calculations on the segment sequences as indicated in the database (see
also §4.2).

Previous research suggests that n-initial onsets might be less perceptible than m-
initial onsets for reasons unrelated to sonority (Byrd 1992, Surprenant & Goldstein
1998). Because failure to register the acoustic input as an onset cluster (e.g.
registering nbIf as bIf) reduces its markedness, we also entered the identity of the
initial consonant into the analysis of auditory stimuli.

In this analysis we assume that for any underlying form /uf/ there is a set of
surface forms faithful to /uf/. There may be multiple such forms because /uf/
may be underspecified to some degree; e.g. prosodic structure may not be present
in /uf/. We assume a surface form [sf] to be fully specified in the sense that it
uniquely determines a phonetic form |jf| which is the fully faithful phonetic
interpretation of [sf]; |jf| in turn determines a unique auditory form {af}, which
results from the fully faithful execution of |jf|. Conversely, we assume that if
[sf1]≠[sf2] then the phonetic forms that are fully faithful to them, |sf1| and |sf2|,
are not equal, and analogously, if |sf1|≠|sf2| then the acoustic forms fully faithful
to them, {af1} and {af2}, are not equal. Assumption 1 spells these out in the
notation of the text.

Assumption 1. Faithful forms: f
For any underlying form /uf/ there is a set f(/uf/) of surface forms faithful to
/uf/: for each [sf]Œf(/uf/), the pair (/uf/, [sf]) satisfies the faithfulness
constraint F/uf/,[sf].
For any surface form [sf] there is a unique phonetic form f([sf]) that is faithful
to [sf]: ([sf], f([sf])) satisfies F[sf],|Jf|. This function f is one-to-one. f([sf])
is also said to be the phonetic form corresponding to [sf].
For any phonetic form |jf| there is a unique auditory form f(|jf|) that is faithful
to |jf|: (|jf|, f(|jf|)) satisfies F|Jf|,{af}. This function ƒ is one-to-one. f(|jf|)
is also said to be the acoustic form corresponding to |jf|.

Def. Grammatical. With respect to a given grammar G:
A surface form [sf] is grammatical i‰ there is an underlying form /uf/ such
that the pair (/uf/, [sf]) is optimal: for any other surface form [sf¢], the
grammar assigns lower harmony to (/uf/, [sf¢]) than to (/uf/, [sf]): (/uf/,
[sf¢])ÉG (/uf/, [sf]).
A phonetic form is grammatical iff it corresponds to a grammatical surface
form.
An acoustic form is grammatical iff it corresponds to a grammatical phonetic
form.

Suppose we are given a phonetic form |jfu| and its corresponding acoustic form
{afu}=f(|jfu|). We are interested in cases where |jfu| is ungrammatical for a
hearer, that is, where there is no surface form [sfg] that is grammatical for the
hearer such that |jfu| is the faithful phonetic interpretation of [sfg]. In this case,
we assume that among the grammatical surface forms, one, call it [sfg], is most
faithful to |jfu|. That is, given any other grammatical surface form [sfg¢], the pair
([sfg], |jfu|) better satisfies faithfulness F[sf],|Jf| than does the pair ([sfg¢], |jfu|);
we write this:

F[sf],|Jf|([sfg], |jfu|)ÇF[sf],|Jf|([sfg¢], |jfu|)

We assume that the phonetic interpretation of this surface form, |jfg|=f([sfg]),
is the grammatical phonetic form that is most faithful to the ungrammatical
acoustic form {afu} corresponding to |jfu|.

Assumption 2. Given any phonetic form |jf0| and its corresponding acoustic form
{af0}=f(|jf0|):
Among grammatical surface forms, one, [sfg], is most faithful to |jf0|; i.e. [sfg]
best satisfies F[sf],|Jf|([sf],|jf0|) among grammatical [sf].
The phonetic form corresponding to [sfg], |jfg|=f([sfg]), is the grammatical
phonetic form that is most faithful to the given acoustic form {af0}: |jfg|
best satisfies F|Jf|,{af}(|jf|, {af0}) among grammatical |jf|.

We assume given an OT grammar G for the mapping between underlying and
surface forms. The harmonic ordering of forms determined by G (Prince &
Smolensky 1993: ch. 5) will be written as follows: when G assigns higher harmony
to (/x/, [x]) than to (/y/, [y]) we write (/x/, [x])ÇG(/y/, [y]) or equivalently H1(/x/,
[x])ÇH1(/y/, [y]), since this is harmony in the first component. Harmony in the
second component, linking surface and phonetic forms, is determined solely by
the faithfulness constraint F[sf],|Jf|, so H2([x], |x|)ÇH2([y], |y|) means that ([x],
|x|) better satisfies faithfulness than does ([y], |y|): F[sf],|Jf|([y], |y|)ÇF[sf],|Jf|([y],
|y|). In the same way, harmony in the third component, linking phonetic and
acoustic forms, is determined by F|Jf|,{af}; H3(|x|, {x})ÇH3(|y|, {y}) means that
F|Jf|,{af}(|x|, {x})ÇF|Jf|,{af}(|y|, {y}). All the analogous definitions apply to É and
to  ª (equal harmony), as well as to Ñ and Ö.
Optimality in component n is the obvious generalisation of the component-1
notion of optimality in OT.

Def. Optimal in a component n
(xn, xn+1) is optimal in component n (‘n-opt’) i‰ for all level-n+1 forms
xn+1¢≠xn+1, Hn(xn, xn+1)ÇHn(xn, xn+1¢)

Def. Harmonic ordering w.r.t. component n
Given two representations X=(/x/, [x], |x|, {x})”(x1, x2, x3, x4) and Y=(y1,
y2, y3, y4):
XÇn Y i‰ either
i.(xn, xn+1) is optimal and (yn, yn+1) is not, or
ii.(xn, xn+1) and (yn, yn+1) are both suboptimal and Hn(xn, xn+1)ÇHn(yn, yn+1)
X ªn Y i‰ either
i.(xn, xn+1) and (yn, yn+1) are both optimal, or
ii.(xn, xn+1) and (yn, yn+1) are both suboptimal and Hn(xn, xn+1) ª Hn(yn, yn+1)
XÑn Y i‰ either XÇn Y or X ªn Y

To combine harmonic ordering across all components, we assume that no
component has priority over any others. Thus for a full (four-level) representation
X to be preferred to Y, written XñY, there must be some component in which
X is preferred and no component in which Y is preferred. The ordering is partial
in that for many pairs X, Y that are not harmonically equivalent, neither XñY
nor YñX. Our ordering is defined for use in perception: it compares X and Y
only if they have the same acoustic form {af}, and are therefore both potential
full perceptual representations for {af}.

Def. Harmonic ordering of full representations:ñ
Given two representations X=(/x/, [x], |x|, {x}), Y=(/y/, [y], |y|, {y}):
XñY i‰ {y}={x} and either
(a)i.Ak [Y is k-opt⁄X is k-opt] &
ii.En [X is n-opt and Y is not n-opt]
or
(b)i.Ak [Y is k-opt » X is k-opt] &
ii.Ak [X is not k-opt⁄XÑk Y] &
iii.En [XÇn Y]

In case (a), optimality makes the decision: X is optimal in some component in
which Y is not (a.ii), and there is no component in which Y is optimal but X is
not (a.i). In case (b), X and Y tie with respect to optimality, in that they are
optimal in exactly the same components (b.i): then relative harmony among sub-
optimal representations decides. Now X is preferred to Y only if there is some
component in which X is suboptimal but higher-harmony than Y (b.iii), and
there is no component in which Y is suboptimal but higher-harmony than X
(b.ii).
Henceforth references such as (b.ii) will always refer to the correspondingly
labelled condition in the definition of ñ.

Lemma 1. Suppose X is optimal in every component. Then
(a)there is no Y such that YñX, and
(b)for every Z such that {z}={x}, XñZ unless Z is also optimal in every
component.

Proof of Lemma 1. Suppose there were a Y such that YñX. Then either (a.ii) En
[Y is n-opt and X is not n-opt], which is impossible because X is k-opt Ak,
or (b.iii) En [YÇn X], which is also impossible because X is k-opt k. This
establishes (a). Now suppose given Z such that {z}={x}. Suppose Z is not
optimal in every component: En [Zn is subopt]. Then (a) of the definition of
XÇZ is satisfied, establishing (b). QED

Lemma 2. Suppose X is suboptimal in component k and optimal in the other
components. Let Y be a candidate with {y}={x}. Then
1. XñY i‰ either
a. Y is (i) suboptimal in some non-k component and (ii) not k-optimal or
b. Y is (ii) optimal in all non-k components and (ii)–(iii) XÇk Y,
2. YñX i‰ [Y is optimal in all non-k components and YÇk X]
3. neither XñY nor YñX if [Y is optimal in component k and suboptimal in
some non-k component].

Proof of Lemma 2. Suppose X is suboptimal in component k and optimal in the
other components, and Y is a candidate with {y}={x}.
Part 1. Under these conditions, conditions (1a) and (1b) of Lemma 2 are
equivalent to (a) and (b) respectively of the definition of XñY.
Part 2. Exchanging X and Y in (1), we see that (1a) cannot be met and condition
(1b) becomes (2) of Lemma 2.
Part 3. Suppose now that Y is optimal in component k and suboptimal in
some non-k component. Then in the definition of XñY, condition (i)
cannot hold in either (a) or (b), and the same is true for the definition of
YñX, because in both (a) and (b), (i) requires that the set of components
in which one of the candidates X or Y is optimal is a (not necessarily strict)
subset of the components in which the other candidate is optimal. This
establishes result (3). QED

Now, as in (4) in the text, we define a possible percept as follows.

Def. Perceptual principle
Let X=(/x/, [x], |x|, {x}) be a globally faithful representation and consider
the auditory form {x}. A representation Y is a possible percept for {x} i‰
the acoustic form of Y is {x}, and
there is no Z with acoustic form {x} such that ZñY.

The main result, (5) in the text, follows.

Proposition:
Let X=(/x/, [x], |x|, {x}) be a globally faithful representation. For the
auditory input {x}, there are two possibilities.
a.If [x] is grammatical then the only possible percept type is
A¢= (/x¢/, [x], |x|, {x})
where /x¢/ is any underlying form for which (/x¢/, [x]) is optimal.

b.If [x] is not grammatical, there are three possible percept types:
A¢=(/x¢/, [x], |x|, {x})
C¢=(/y¢/, [y], |x|, {x})
D¢=(/y¢/, [y], |y|, {x})
where
[y] is the grammatical surface form most faithful to |x|,
|y|=f([y]) is the phonetic form faithful to [y],
/y¢/ is any underlying form for which (/y¢/, [y]) is optimal, and
/x¢/Œ f([x]) is any underlying form faithful to [x].

Proof. Part a: grammatical case
That A¢ (as given in the Proposition) is a possible percept follows immediately
from (a) of Lemma 1, since A¢ is optimal in every component: (/x¢/, [x]) is
optimal by assumption, and in the other two components, A¢ is faithful, hence
optimal.
Now consider any possible percept U=(/u/, [u], |u|, {u}); we must show
it is of type A¢. As a possible percept of {x}, U must have {u}={x} and we
must not have AñU, where A is a candidate of type A¢. Now according to
Lemma 1 (b), since A is optimal in every component, we would have AñU
unless U is also globally optimal. To be optimal in the third component, since
{u}={x}, |u| must be faithful to {x}, so, by Assumption 1, we must have |u|=
|x|, as |x| is the unique phonetic form faithful to {x}: {x}=f(|x|). By identical
reasoning, to be optimal in the second component, [u] must be faithful to
|u|=|x|, so we must have [u]=[x]. To be optimal in the first component, /u/
must be optimal when paired with [x]; this means U is a candidate of type A¢.

Part b: ungrammatical case
U=(/u/, [u], |u|, {u}) is a possible percept only if {u}={x}. There are three
cases to consider. In case 1, |u|=|x| and [u]=[x]; in case 2, |u|=|x| and [u]
≠[x]; in case 3, |u|≠|x|. We show that in case 1, U is a possible percept i‰
it is of type A¢; in case 2, type C¢; in case 3, type D¢. Note that the globally
faithful candidate X is optimal in components 2 and 3 (as it is faithful there),
but cannot be optimal in component 1 because [x] is ungrammatical: there is
no /x¢/ such that (/x¢/, [x]) is optimal. X thus meets the conditions of Lemma
2, with k=1. While not optimal in component 1, X is however faithful in
component 1, by definition.

Case 1. Here, U=(/u/, [x], |x|, {x}). U is a possible percept i‰ there is no Z
with acoustic form {x} such that ZñU. Like X, U is optimal in components
2 and 3 but cannot be optimal in component 1. So U satisfies the conditions
of Lemma 2, with k=1. By Part 2 of Lemma 2, for a candidate Z with acoustic
form {x}, ZñU i‰ Z is optimal in components 2 and 3 and ZÇ1 U. This is
true i‰ Z=(/z/, [x], |x|, {x}) and (/z/, [x])Ç1 (/u/, [x]). In this harmony
comparison, the two pairs tie on markedness since they have the same surface
form [x]; (/z/, [x])Ç1 (/u/, [x]) will hold i‰ (/z/, [x]) satisfies faithfulness
better than does (/u/, [x]). For no such Z to exist, it is necessary and su"cient
that /u/ is fully faithful to [x]: if /u/ is fully faithful to [x], no /z/ can be more
faithful, and if /u/ is not faithful to [x], then any /z/ that is faithful to [x] will
satisfy (/z/, [x])Ç1 (/u/, [x]). Thus, under the conditions of Case 1, U is a
possible percept i‰ it is of the form A¢ as defined in Part 2 of the Proposition.

Case 2. Now, U=(/u/, [u], |x|, {x}), where [u]≠[x]. U is optimal (faithful)
in component 3 but is suboptimal in component 2, since (by Assumption 1)
[x] is the unique surface form faithful to |x|. Since X meets the conditions of
Lemma 2 with k=1, and U is 2-suboptimal, by part 1 of Lemma 2, we will
have XñU i‰ U is not 1-optimal (this is (1a); (1b cannot be met by U). So
to be a possible percept it is necessary that (/u/, [u]) be optimal, i.e. [u] must
be a grammatical surface form and /u/ a possible underlying form for [u]. This
means that U satisfies Lemma 2 with k=2. Now U is a possible percept for
{x} i‰ there is no candidate Z with acoustic form {x} such that ZñU. By part
2 of Lemma 2, such a ZñU i‰ Z is optimal in components 1 and 3 and ZÇ2 U,
which is true i‰ ZÇ2 U and Z=(/z/, [z], |x|, {x}) with (/z/, [z]) optimal. This
in turn is true i‰ [z] is grammatical and ([z], |x|) is more faithful than ([u],
|u|). If we choose [u] to be the grammatical surface form [y] that is most
faithful to |x| (unique by Assumption 2) then no such [z] exists, otherwise,
choosing [z]=[y] entails ZñU. Thus, under the conditions of Case 2, U is a
possible percept for {x} i‰ [u]=[y] and /u/ is an underlying form /y/ for which
(/y/, [y]) is optimal, that is, i‰ U is a candidate of type C¢.

Case 3. Now, U=(/u/, [u], |u|, {x}), where |u|≠|x|. U is suboptimal in com-
ponent 3 since (by Assumption 1) |x| is the only phonetic form that is faithful
to {x}. Since X satisfies Lemma 2 with k=1 and U is 3-suboptimal, by part
1 of Lemma 2 we will have XñU i‰ U is not 1-optimal (this is (1a); (1b)
cannot be satisfied by such a U). So, as in case 2, for U to be a possible percept
of {x} we must have (/u/, [u]) optimal, so [u] must be a grammatical surface
form. Let W be a candidate of type C¢. W satisfies Lemma 2 with k=2, so
again by part 1 of Lemma 2, WñU i‰ U is not 2-optimal; U must be 2-
optimal to be a possible percept, which means ([u], |u|) must be faithful. This
means U satisfies Lemma 2 with k=3. So by part 2 of that lemma, there exists
a candidate Z with acoustic form {x} such that ZñU i‰ there exists Z optimal
in components 1 and 2 and ZÇ3 U, i.e. a Z=(/z/, [z], |z|, {x}) such that [z]
is a grammatical surface form with underlying form /z/, |z|=f([z]), and (|z|,
{x}) is more faithful than (|u|, {x}). Such a Z does not exist if |u| is the (unique)
grammatical phonetic form |y| most faithful to {x}, otherwise, such a Z does
exist, namely, where |z|=|y|. By Assumption 2, this |y|=f([y]), where [y] is
as defined in the Proposition. Thus, under the conditions of Case 3, U is a
possible percept for {x} i‰ U is of type D¢. QED

Note that the second part of Assumption 2 can be dropped if D¢ in the
Proposition is set to (/z¢/, [z], |z|, {x}), where |z| is the grammatical phonetic
form most faithful to {x}, [z] is the surface form faithful to |z|, which is
grammatical by definition of ‘grammatical phonetic form’, and /z¢/ is an
underlying form for which (/z¢/, [z]) is optimal, which exists since [z] is
grammatical. Now the [z] of D¢ may not be the same as the [y] of B¢.
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additional referencesAppendix B: Measures of segmental lexical statistics

1 Neighbourhood measures

2 Measures of segment/letter co-occurrence

3 The onset’s initial consonant

Table I
Some statistical properties of the auditory and printed stimuli.
The figures provided in the table reflect means per onset type
(averaged across the 12 items representing each onset type).

number of neighbours
neighbours’ frequency (summed)
mean phoneme probability
mean biphone probability
log cluster probability

auditory items

1·58
581

0·0316
0·0016
—5·4097

0·50
390

0·0262
0·0006

—10·7296

sonority rise sonority fall

number of neighbours
neighbours’ frequency (summed)
bigram count (summed)
bigram frequency (summed)
log cluster probability

printed items

0·33
1·25

13·67
316·92
—5·4097

0·33
2·00
6·25

224·50
—10·7296

onset type

Appendix A: Formal presentation of the proposition in (5)

statistical property

statistical property
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To evaluate the possibility that the preference of items like mlIf reflects only the
co-occurrence of their segments in the English lexicon, we calculated several
statistical measures of our materials. These measures correspond to factors which
have been reported in the literature as modulating perceptual accuracy and speed.
The means of these measures, provided in Table I, reflect averages computed
over the twelve items representing each onset type (these means were not used
in our analyses; they are presented merely as descriptive statistics). A brief
description of these measures is found in the text  – below we o‰er a more detailed
description of these measures, their calculation and their expected effects on
behaviour.

The statistical properties included neighbourhood measures and measures of
segment or letter co-occurrence (for auditory and printed materials respectively).
A final measure concerned the identity of the initial consonants.

A target’s lexical neighbourhood comprises all words obtained by adding, deleting
or substituting one of a target’s phonemes (or letters, for printed words). Previous
research suggests that words with a large neighbourhood consisting of frequent
words are recognised more readily in naming and AX tasks (e.g. Carreiras et al.
1997, Perea & Carreiras 1998, Vitevitch & Luce 1998, 1999). The better recognition
of the items with rising-sonority onsets might thus be due to the structure of
their lexical neighbourhoods, rather than sonority per se. We evaluated this
possibility using two neighbourhood measures:

(1) Neighbourhood count
The number of lexical neighbours

a.

Neighbourhood frequency
The summed frequency of a target’s neighbours

b.

For example, the item [mlIf] has one phonological neighbour, /klIf/, whose
frequency is 11 per million. Both measures were calculated from the Speech and
Hearing Lab Neighborhood Database.1

Words whose segments or letters co-occur frequently are better recognised (e.g.
Perea & Carreiras 1998, Vitevitch & Luce 1998, 1999). To determine whether
the advantage of sonority rises is due to these properties, we computed two sets
of measures of co-occurrence, one for the whole word and one for the onset
specifically.
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1 Available (March 2009) at http://128.252.27.56/Neighborhood/Home.asp. At present,
the Speech and Hearing Lab Neighborhood Database incorrectly collapses case-
distinctions in phonological inputs (e.g. it fails to distinguish [lif] and [lIf]). In view
of this problem, we manually inspected the output of the database and corrected
them as necessary.

(2) Whole-word measures
The co-occurrence of elements in the word as a whole was estimated using
either segment- or letter co-occurrence, for auditory and printed words
respectively. Segment co-occurrence in auditory words was captured by
the following measures based on the Phonotactic Probability Calculator
(Vitevitch & Luce 2004):

Position-sensitive phoneme probability
The probability that any given phoneme in the target occurs at the
same string position (first through fourth), averaged across the target’s
four phonemes.
Position-sensitive biphone probability
The probability that any adjacent phoneme pair in the target occurs
at the same string position (averaged across the target’s three biphones).

For printed words (in Experiment 6), we used two measures of letter co-
occurrence:

Bigram count
The number of words sharing each of the target’s adjacent letter pairs
in the same string position (calculated based on Solso & Juel 1980).
Bigram frequency
The summed frequency of the words sharing the target’s bigrams (from
Ku∏era & Francis 1967).

For example, the phoneme probability of the auditory [mlIf] is 0·0382
(averaged across the positional probability of its four phonemes: 0·0572,
0·0447, 0·0350, 0·0159). In its printed form, mlIf shares its second bigram
(lI) with ten words, whose summed frequency is 85 per million (the initial
and final bigrams are not shared with any words), so its bigram count is
10, and its bigram frequency is 85.

a.
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Onset-probability measures
To examine the possibility that the advantage of sonority rises might be
due to the individual probabilities of occurrence of their onset consonants
in their string positions, we computed the log of the product of the position-
specific probabilities of each consonant (i.e. the summed frequency of
words sharing that consonant in its position relative to the total summed
frequency of the sample) in CCVC words listed in the Speech and Hearing
Lab Neighborhood Database. Consider the onset ml. The database includes
a total of 757 CCVC words, three of which begin with an m (mews, mule,
mute) and 199 words that include an l in the second position.2 The
probabilities of m-first and l-second words are respectively 0·003963012
and 0·262879789 and what we call the ‘log cluster probability’ for ml is
the log of their product (0·001041796): 2·982217428.

b.

2 To avoid biasing the calculations by theory-internal structural assumptions, we based
frequency calculations on the segment sequences as indicated in the database (see
also §4.2).

Previous research suggests that n-initial onsets might be less perceptible than m-
initial onsets for reasons unrelated to sonority (Byrd 1992, Surprenant & Goldstein
1998). Because failure to register the acoustic input as an onset cluster (e.g.
registering nbIf as bIf) reduces its markedness, we also entered the identity of the
initial consonant into the analysis of auditory stimuli.

In this analysis we assume that for any underlying form /uf/ there is a set of
surface forms faithful to /uf/. There may be multiple such forms because /uf/
may be underspecified to some degree; e.g. prosodic structure may not be present
in /uf/. We assume a surface form [sf] to be fully specified in the sense that it
uniquely determines a phonetic form |jf| which is the fully faithful phonetic
interpretation of [sf]; |jf| in turn determines a unique auditory form {af}, which
results from the fully faithful execution of |jf|. Conversely, we assume that if
[sf1]≠[sf2] then the phonetic forms that are fully faithful to them, |sf1| and |sf2|,
are not equal, and analogously, if |sf1|≠|sf2| then the acoustic forms fully faithful
to them, {af1} and {af2}, are not equal. Assumption 1 spells these out in the
notation of the text.

Assumption 1. Faithful forms: f
For any underlying form /uf/ there is a set f(/uf/) of surface forms faithful to
/uf/: for each [sf]Œf(/uf/), the pair (/uf/, [sf]) satisfies the faithfulness
constraint F/uf/,[sf].
For any surface form [sf] there is a unique phonetic form f([sf]) that is faithful
to [sf]: ([sf], f([sf])) satisfies F[sf],|Jf|. This function f is one-to-one. f([sf])
is also said to be the phonetic form corresponding to [sf].
For any phonetic form |jf| there is a unique auditory form f(|jf|) that is faithful
to |jf|: (|jf|, f(|jf|)) satisfies F|Jf|,{af}. This function ƒ is one-to-one. f(|jf|)
is also said to be the acoustic form corresponding to |jf|.

Def. Grammatical. With respect to a given grammar G:
A surface form [sf] is grammatical i‰ there is an underlying form /uf/ such
that the pair (/uf/, [sf]) is optimal: for any other surface form [sf¢], the
grammar assigns lower harmony to (/uf/, [sf¢]) than to (/uf/, [sf]): (/uf/,
[sf¢])ÉG (/uf/, [sf]).
A phonetic form is grammatical iff it corresponds to a grammatical surface
form.
An acoustic form is grammatical iff it corresponds to a grammatical phonetic
form.

Suppose we are given a phonetic form |jfu| and its corresponding acoustic form
{afu}=f(|jfu|). We are interested in cases where |jfu| is ungrammatical for a
hearer, that is, where there is no surface form [sfg] that is grammatical for the
hearer such that |jfu| is the faithful phonetic interpretation of [sfg]. In this case,
we assume that among the grammatical surface forms, one, call it [sfg], is most
faithful to |jfu|. That is, given any other grammatical surface form [sfg¢], the pair
([sfg], |jfu|) better satisfies faithfulness F[sf],|Jf| than does the pair ([sfg¢], |jfu|);
we write this:

F[sf],|Jf|([sfg], |jfu|)ÇF[sf],|Jf|([sfg¢], |jfu|)

We assume that the phonetic interpretation of this surface form, |jfg|=f([sfg]),
is the grammatical phonetic form that is most faithful to the ungrammatical
acoustic form {afu} corresponding to |jfu|.

Assumption 2. Given any phonetic form |jf0| and its corresponding acoustic form
{af0}=f(|jf0|):
Among grammatical surface forms, one, [sfg], is most faithful to |jf0|; i.e. [sfg]
best satisfies F[sf],|Jf|([sf],|jf0|) among grammatical [sf].
The phonetic form corresponding to [sfg], |jfg|=f([sfg]), is the grammatical
phonetic form that is most faithful to the given acoustic form {af0}: |jfg|
best satisfies F|Jf|,{af}(|jf|, {af0}) among grammatical |jf|.

We assume given an OT grammar G for the mapping between underlying and
surface forms. The harmonic ordering of forms determined by G (Prince &
Smolensky 1993: ch. 5) will be written as follows: when G assigns higher harmony
to (/x/, [x]) than to (/y/, [y]) we write (/x/, [x])ÇG(/y/, [y]) or equivalently H1(/x/,
[x])ÇH1(/y/, [y]), since this is harmony in the first component. Harmony in the
second component, linking surface and phonetic forms, is determined solely by
the faithfulness constraint F[sf],|Jf|, so H2([x], |x|)ÇH2([y], |y|) means that ([x],
|x|) better satisfies faithfulness than does ([y], |y|): F[sf],|Jf|([y], |y|)ÇF[sf],|Jf|([y],
|y|). In the same way, harmony in the third component, linking phonetic and
acoustic forms, is determined by F|Jf|,{af}; H3(|x|, {x})ÇH3(|y|, {y}) means that
F|Jf|,{af}(|x|, {x})ÇF|Jf|,{af}(|y|, {y}). All the analogous definitions apply to É and
to  ª (equal harmony), as well as to Ñ and Ö.
Optimality in component n is the obvious generalisation of the component-1
notion of optimality in OT.

Def. Optimal in a component n
(xn, xn+1) is optimal in component n (‘n-opt’) i‰ for all level-n+1 forms
xn+1¢≠xn+1, Hn(xn, xn+1)ÇHn(xn, xn+1¢)

Def. Harmonic ordering w.r.t. component n
Given two representations X=(/x/, [x], |x|, {x})”(x1, x2, x3, x4) and Y=(y1,
y2, y3, y4):
XÇn Y i‰ either
i.(xn, xn+1) is optimal and (yn, yn+1) is not, or
ii.(xn, xn+1) and (yn, yn+1) are both suboptimal and Hn(xn, xn+1)ÇHn(yn, yn+1)
X ªn Y i‰ either
i.(xn, xn+1) and (yn, yn+1) are both optimal, or
ii.(xn, xn+1) and (yn, yn+1) are both suboptimal and Hn(xn, xn+1) ª Hn(yn, yn+1)
XÑn Y i‰ either XÇn Y or X ªn Y

To combine harmonic ordering across all components, we assume that no
component has priority over any others. Thus for a full (four-level) representation
X to be preferred to Y, written XñY, there must be some component in which
X is preferred and no component in which Y is preferred. The ordering is partial
in that for many pairs X, Y that are not harmonically equivalent, neither XñY
nor YñX. Our ordering is defined for use in perception: it compares X and Y
only if they have the same acoustic form {af}, and are therefore both potential
full perceptual representations for {af}.

Def. Harmonic ordering of full representations:ñ
Given two representations X=(/x/, [x], |x|, {x}), Y=(/y/, [y], |y|, {y}):
XñY i‰ {y}={x} and either
(a)i.Ak [Y is k-opt⁄X is k-opt] &
ii.En [X is n-opt and Y is not n-opt]
or
(b)i.Ak [Y is k-opt » X is k-opt] &
ii.Ak [X is not k-opt⁄XÑk Y] &
iii.En [XÇn Y]

In case (a), optimality makes the decision: X is optimal in some component in
which Y is not (a.ii), and there is no component in which Y is optimal but X is
not (a.i). In case (b), X and Y tie with respect to optimality, in that they are
optimal in exactly the same components (b.i): then relative harmony among sub-
optimal representations decides. Now X is preferred to Y only if there is some
component in which X is suboptimal but higher-harmony than Y (b.iii), and
there is no component in which Y is suboptimal but higher-harmony than X
(b.ii).
Henceforth references such as (b.ii) will always refer to the correspondingly
labelled condition in the definition of ñ.

Lemma 1. Suppose X is optimal in every component. Then
(a)there is no Y such that YñX, and
(b)for every Z such that {z}={x}, XñZ unless Z is also optimal in every
component.

Proof of Lemma 1. Suppose there were a Y such that YñX. Then either (a.ii) En
[Y is n-opt and X is not n-opt], which is impossible because X is k-opt Ak,
or (b.iii) En [YÇn X], which is also impossible because X is k-opt k. This
establishes (a). Now suppose given Z such that {z}={x}. Suppose Z is not
optimal in every component: En [Zn is subopt]. Then (a) of the definition of
XÇZ is satisfied, establishing (b). QED

Lemma 2. Suppose X is suboptimal in component k and optimal in the other
components. Let Y be a candidate with {y}={x}. Then
1. XñY i‰ either
a. Y is (i) suboptimal in some non-k component and (ii) not k-optimal or
b. Y is (ii) optimal in all non-k components and (ii)–(iii) XÇk Y,
2. YñX i‰ [Y is optimal in all non-k components and YÇk X]
3. neither XñY nor YñX if [Y is optimal in component k and suboptimal in
some non-k component].

Proof of Lemma 2. Suppose X is suboptimal in component k and optimal in the
other components, and Y is a candidate with {y}={x}.
Part 1. Under these conditions, conditions (1a) and (1b) of Lemma 2 are
equivalent to (a) and (b) respectively of the definition of XñY.
Part 2. Exchanging X and Y in (1), we see that (1a) cannot be met and condition
(1b) becomes (2) of Lemma 2.
Part 3. Suppose now that Y is optimal in component k and suboptimal in
some non-k component. Then in the definition of XñY, condition (i)
cannot hold in either (a) or (b), and the same is true for the definition of
YñX, because in both (a) and (b), (i) requires that the set of components
in which one of the candidates X or Y is optimal is a (not necessarily strict)
subset of the components in which the other candidate is optimal. This
establishes result (3). QED

Now, as in (4) in the text, we define a possible percept as follows.

Def. Perceptual principle
Let X=(/x/, [x], |x|, {x}) be a globally faithful representation and consider
the auditory form {x}. A representation Y is a possible percept for {x} i‰
the acoustic form of Y is {x}, and
there is no Z with acoustic form {x} such that ZñY.

The main result, (5) in the text, follows.

Proposition:
Let X=(/x/, [x], |x|, {x}) be a globally faithful representation. For the
auditory input {x}, there are two possibilities.
a.If [x] is grammatical then the only possible percept type is
A¢= (/x¢/, [x], |x|, {x})
where /x¢/ is any underlying form for which (/x¢/, [x]) is optimal.

b.If [x] is not grammatical, there are three possible percept types:
A¢=(/x¢/, [x], |x|, {x})
C¢=(/y¢/, [y], |x|, {x})
D¢=(/y¢/, [y], |y|, {x})
where
[y] is the grammatical surface form most faithful to |x|,
|y|=f([y]) is the phonetic form faithful to [y],
/y¢/ is any underlying form for which (/y¢/, [y]) is optimal, and
/x¢/Œ f([x]) is any underlying form faithful to [x].

Proof. Part a: grammatical case
That A¢ (as given in the Proposition) is a possible percept follows immediately
from (a) of Lemma 1, since A¢ is optimal in every component: (/x¢/, [x]) is
optimal by assumption, and in the other two components, A¢ is faithful, hence
optimal.
Now consider any possible percept U=(/u/, [u], |u|, {u}); we must show
it is of type A¢. As a possible percept of {x}, U must have {u}={x} and we
must not have AñU, where A is a candidate of type A¢. Now according to
Lemma 1 (b), since A is optimal in every component, we would have AñU
unless U is also globally optimal. To be optimal in the third component, since
{u}={x}, |u| must be faithful to {x}, so, by Assumption 1, we must have |u|=
|x|, as |x| is the unique phonetic form faithful to {x}: {x}=f(|x|). By identical
reasoning, to be optimal in the second component, [u] must be faithful to
|u|=|x|, so we must have [u]=[x]. To be optimal in the first component, /u/
must be optimal when paired with [x]; this means U is a candidate of type A¢.

Part b: ungrammatical case
U=(/u/, [u], |u|, {u}) is a possible percept only if {u}={x}. There are three
cases to consider. In case 1, |u|=|x| and [u]=[x]; in case 2, |u|=|x| and [u]
≠[x]; in case 3, |u|≠|x|. We show that in case 1, U is a possible percept i‰
it is of type A¢; in case 2, type C¢; in case 3, type D¢. Note that the globally
faithful candidate X is optimal in components 2 and 3 (as it is faithful there),
but cannot be optimal in component 1 because [x] is ungrammatical: there is
no /x¢/ such that (/x¢/, [x]) is optimal. X thus meets the conditions of Lemma
2, with k=1. While not optimal in component 1, X is however faithful in
component 1, by definition.

Case 1. Here, U=(/u/, [x], |x|, {x}). U is a possible percept i‰ there is no Z
with acoustic form {x} such that ZñU. Like X, U is optimal in components
2 and 3 but cannot be optimal in component 1. So U satisfies the conditions
of Lemma 2, with k=1. By Part 2 of Lemma 2, for a candidate Z with acoustic
form {x}, ZñU i‰ Z is optimal in components 2 and 3 and ZÇ1 U. This is
true i‰ Z=(/z/, [x], |x|, {x}) and (/z/, [x])Ç1 (/u/, [x]). In this harmony
comparison, the two pairs tie on markedness since they have the same surface
form [x]; (/z/, [x])Ç1 (/u/, [x]) will hold i‰ (/z/, [x]) satisfies faithfulness
better than does (/u/, [x]). For no such Z to exist, it is necessary and su"cient
that /u/ is fully faithful to [x]: if /u/ is fully faithful to [x], no /z/ can be more
faithful, and if /u/ is not faithful to [x], then any /z/ that is faithful to [x] will
satisfy (/z/, [x])Ç1 (/u/, [x]). Thus, under the conditions of Case 1, U is a
possible percept i‰ it is of the form A¢ as defined in Part 2 of the Proposition.

Case 2. Now, U=(/u/, [u], |x|, {x}), where [u]≠[x]. U is optimal (faithful)
in component 3 but is suboptimal in component 2, since (by Assumption 1)
[x] is the unique surface form faithful to |x|. Since X meets the conditions of
Lemma 2 with k=1, and U is 2-suboptimal, by part 1 of Lemma 2, we will
have XñU i‰ U is not 1-optimal (this is (1a); (1b cannot be met by U). So
to be a possible percept it is necessary that (/u/, [u]) be optimal, i.e. [u] must
be a grammatical surface form and /u/ a possible underlying form for [u]. This
means that U satisfies Lemma 2 with k=2. Now U is a possible percept for
{x} i‰ there is no candidate Z with acoustic form {x} such that ZñU. By part
2 of Lemma 2, such a ZñU i‰ Z is optimal in components 1 and 3 and ZÇ2 U,
which is true i‰ ZÇ2 U and Z=(/z/, [z], |x|, {x}) with (/z/, [z]) optimal. This
in turn is true i‰ [z] is grammatical and ([z], |x|) is more faithful than ([u],
|u|). If we choose [u] to be the grammatical surface form [y] that is most
faithful to |x| (unique by Assumption 2) then no such [z] exists, otherwise,
choosing [z]=[y] entails ZñU. Thus, under the conditions of Case 2, U is a
possible percept for {x} i‰ [u]=[y] and /u/ is an underlying form /y/ for which
(/y/, [y]) is optimal, that is, i‰ U is a candidate of type C¢.

Case 3. Now, U=(/u/, [u], |u|, {x}), where |u|≠|x|. U is suboptimal in com-
ponent 3 since (by Assumption 1) |x| is the only phonetic form that is faithful
to {x}. Since X satisfies Lemma 2 with k=1 and U is 3-suboptimal, by part
1 of Lemma 2 we will have XñU i‰ U is not 1-optimal (this is (1a); (1b)
cannot be satisfied by such a U). So, as in case 2, for U to be a possible percept
of {x} we must have (/u/, [u]) optimal, so [u] must be a grammatical surface
form. Let W be a candidate of type C¢. W satisfies Lemma 2 with k=2, so
again by part 1 of Lemma 2, WñU i‰ U is not 2-optimal; U must be 2-
optimal to be a possible percept, which means ([u], |u|) must be faithful. This
means U satisfies Lemma 2 with k=3. So by part 2 of that lemma, there exists
a candidate Z with acoustic form {x} such that ZñU i‰ there exists Z optimal
in components 1 and 2 and ZÇ3 U, i.e. a Z=(/z/, [z], |z|, {x}) such that [z]
is a grammatical surface form with underlying form /z/, |z|=f([z]), and (|z|,
{x}) is more faithful than (|u|, {x}). Such a Z does not exist if |u| is the (unique)
grammatical phonetic form |y| most faithful to {x}, otherwise, such a Z does
exist, namely, where |z|=|y|. By Assumption 2, this |y|=f([y]), where [y] is
as defined in the Proposition. Thus, under the conditions of Case 3, U is a
possible percept for {x} i‰ U is of type D¢. QED

Note that the second part of Assumption 2 can be dropped if D¢ in the
Proposition is set to (/z¢/, [z], |z|, {x}), where |z| is the grammatical phonetic
form most faithful to {x}, [z] is the surface form faithful to |z|, which is
grammatical by definition of ‘grammatical phonetic form’, and /z¢/ is an
underlying form for which (/z¢/, [z]) is optimal, which exists since [z] is
grammatical. Now the [z] of D¢ may not be the same as the [y] of B¢.
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additional referencesAppendix B: Measures of segmental lexical statistics

1 Neighbourhood measures

2 Measures of segment/letter co-occurrence

3 The onset’s initial consonant

Table I
Some statistical properties of the auditory and printed stimuli.
The figures provided in the table reflect means per onset type
(averaged across the 12 items representing each onset type).

number of neighbours
neighbours’ frequency (summed)
mean phoneme probability
mean biphone probability
log cluster probability

auditory items

1·58
581

0·0316
0·0016
—5·4097

0·50
390

0·0262
0·0006

—10·7296

sonority rise sonority fall

number of neighbours
neighbours’ frequency (summed)
bigram count (summed)
bigram frequency (summed)
log cluster probability

printed items

0·33
1·25

13·67
316·92
—5·4097

0·33
2·00
6·25

224·50
—10·7296

onset type

Appendix A: Formal presentation of the proposition in (5)

statistical property

statistical property


