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ABSTRACT 43 

The objective of this study and two companion studies (DeBruyn and Casagrande, '86; DeBruyn et al., 44 

'86) was to describe, quantify, and classify retinal ganglion cells in the tree shew (Tupaia belangeri). In 45 

this paper, the distribution and sizes of retinal ganglion cells were analyzed using whole mounted Nissl-46 

stained retinae. Our data show that the ganglion cell layer is characterized by a well-developed visual 47 

streak, an area centralis located close to the temporal retinal margin, and no fovea. Both the area 48 

centralis and visual streak contain a high density of smaller cells. This density reaches a peak of 49 

approximately 20,000 cells/mm2 in the area centralis. Cell density declines and mean cell area and range 50 

of cell areas increases in the periphery (more rapidly for temporal than for nasal retina) but remains high 51 

(3000 cells/mm2) even at the extreme margins of the retina. Additionally, centroperipheral density 52 

gradients in temporal retina are steeper than those in nasal retina such that at points of equal eccentricity 53 

from the area centralis in the nasal and temporal retina (i.e., points that view the same point in the visual 54 

field), cell density in the nasal retina is always higher than in the temporal retina. Cell size analysis shows 55 

that, in general terms, cell area is inversely related to cell density. Mean cell size ranges from 45μm2 in 56 

the area centralis to over 100μm2 in peripheral retina. Nasal-temporal differences are also apparent in 57 

distributions of cell size such that cells in the nasal retina are significantly smaller than their temporal 58 

counterparts at eccentricity-matched points. At density-matched points, nasal cells are not significantly 59 

smaller than temporal cells, although more large (75th-99th% of local cell sizes) cells are present in 60 

temporal retina. 61 

Taken together, our data suggest that the retina of tree shrews is specialized both for binocular 62 

and monocular visual resolution, based upon the existence of an area centralis in the binocular retina, and 63 

the visual streak and high density of ganglion cells in the extreme periphery which relate to monocular 64 

viewing. This organization is best explained by the visual adaptations unique to the tree shrew, not by its 65 

proposed relationship to primates as suggested originally by LeGros Clark, ('59).  (362 words) 66 

  67 
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INTRODUCTION 68 

Only within the last decade has research into the organization of retinal ganglion cells progressed to the 69 

point where enough information is available on cell size, functional specialization, and central projections 70 

to begin to make generalizations concerning the basic features of retinal topography and their functional 71 

significance. Recent evidence from a number of physiological studies indicate that ganglion cells in 72 

several species can be divided into several functional subgroups with different cell sizes (Boycott and 73 

Wässle, '74; Cleland et al, '75; Fukuda, '77; Saito, '83; Stanford and Sherman, '84; see Rodieck and 74 

Brening, '83 for review.). Moreover, differences in the central projections of these cell types have led to 75 

the concept that they form three parallel functional channels (see Stone et al., '79 for review). Beyond 76 

these features, evidence demonstrates that many mammals exhibit topographic specializations within the 77 

ganglion cell layer such as an area centralis, fovea, or visual streak, which permit functional specialization 78 

in response to varied visual environments. The organization of the retina in the tree shrew is of interest for 79 

several reasons. First, there is considerable knowledge about the anatomical and functional organization 80 

of central visual structures in this species.  81 

 For example, as in cat and monkey, the dorsal lateral geniculate nucleus (LGND) of the tree 82 

shrew is laminated and contains both X- and Y-functional subclasses of cells (Laemle, '68; Casagrande 83 

and Harting, '75; Hubel, '75; Sherman et al., '75). Moreover, these cell types are known to project to 84 

layers I, III, IV and VI of visual cortex (Carey et al., '79; Conley et al., '84). Considerable information is 85 

also available on the connections and functional organization of the tree shrew superior colliculus, 86 

pulvinar, and striate and extrastriate visual areas (Lane et al., '71; Harting et al., '72, '73; Kaas et al., '72; 87 

Ohno et al., '75; Albano et al., '78, '79; Graham and Casagrande, '80). In contrast, we know little about 88 

general features of retinal organization in this animal.  89 

The tree shrew also occupies a pivotal position in the postulated phylogeny of primates. LeGros 90 

Clark ('59) placed special emphasis on the relative development of the visual system of the Tupaiadae 91 

when he classified them as primates, yet many features of the tree shrew visual system, such as the 92 

unusual laminar arrangement of the LGND and the extreme development of the superior colliculus, are 93 
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suggestive of an evolutionary path independent of primates. Thus, it becomes of interest to compare the 94 

retinal organization in the tree shrew with that in primates.  95 

Finally, what little we do know about the tree shrew retina suggests that it is almost totally cone 96 

dominated: less than 4% of receptors identified are rods (Immel and Fischer, '82). In support of this 97 

observation is the finding that tree shrews show only a photopic sensitivity curve with no purkinje shift 98 

(Tigges et al., '67). It is, therefore, of interest to examine how a nearly pure cone population is reflected in 99 

the organization of the ganglion cell layer and distribution of ganglion cell classes within this layer. 100 

In this series of experiments, we used retinal whole mounts of tree shrew retinae to investigate 101 

how cells are distributed within the ganglion cell layer and how these cells can be classified based upon 102 

their size, morphology, and central projections. In this paper, the first of our series, we describe the 103 

regional variations in the densities and sizes of Nissl-stained ganglion cell somata. In the next paper 104 

(DeBruyn and Casagrande, '86), we describe the morphology of horseradish peroxidase-filled ganglion 105 

cells and develop a classification scheme based upon a cluster analysis of anatomic features. Finally, in 106 

the third paper (DeBruyn et al., '86) we describe the differences in central projections of populations of 107 

ganglion cells based upon retrograde labelling. These results have been previously presented in 108 

preliminary form (DeBruyn and Casagrande, '78; '80). 109 

  110 
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METHODS 111 

Animals used in these experiments were adult tree shrews (Tupaia belangeri) weighing 120-250 112 

gms and were raised in our colony. 113 

 114 

Preparation of Retinal Whole Mounts 115 

Whole mounts of six retinae from four animals were prepared in a manner similar to that of Wässle et al. 116 

('75). Briefly, the tree shrews were anesthetized with sodium pentobarbital (Nembutal, 55 mg/kg). The 117 

eyes were then enucleated and the anterior chambers were cut away at the ora serrata. 118 

The retinae were removed from the eyecups, floated onto a saline bath where any adhering pigment 119 

epithelium was brushed off, and then immersion-fixed overnight in either 10% formalin or 4% 120 

glutaraldehyde in a phosphate buffer (pH 7.4). Following this procedure, the retinae were floated onto a 121 

gelatinized slide, optic fiber layer uppermost, and several radial cuts were made around the periphery to 122 

aid in flattening the retina. Care was taken to cut at different locations in each retina so that isodensity 123 

maps would not be affected by identical patterns of shrinkage. Following flattening any remaining 124 

vitreous was removed and the retinae were covered with a piece of filter paper soaked in 5% formal-125 

alcohol and weighted under a glass slide in a bath of the same solution overnight. The retinae were then 126 

defatted in xylene, rehydrated through alcohols, stained with cresyl violet, dehydrated, cleared in xylene, 127 

and coverslipped. It is noteworthy that immersion for 20 minutes in 3% glacial acetic acid in 100% 128 

alcohol following the first xylene step improved the quality of staining (Wässle et al., '75). 129 

 130 

Cell Counts 131 

Counts were made in five retinae (3788L, 79-16L, 79-16R, 79-23L, 79-23R) according to previously 132 

described methods (DeBruyn et al., '80), except that peripheral counts were taken at intervals of 0.5 mm 133 

instead of 1 mm. Moreover, in order to define more completely the density changes in the central area of 134 

the retina, cells were counted in every 0.1 mm x 0.1 mm field throughout an area of 2 mm2 in the region 135 

of highest cell density as defined by blood vessels (Fig. 1). The total percentage of retinal surface sampled 136 

in each of the five retinae was approximately 13%.  137 



6 
 

In addition, more extensive counts were made on a sixth retina (80~15L), at intervals of 0.2 mm 138 

instead of 0.5 mm. In addition, every 0.1 mm X 0.1 mm field within an area of 5.6 mm2 in the central 139 

retina (an area approximately enclosed by the 14,000 cell/mm2 isodensity line) was counted. In total, 140 

approximately 40% of the retinal surface was sampled in this retina. 141 

 142 

Construction of Isodensity Maps 143 

In all retinae sampled, isodensity lines were drawn so that they enclosed all areas in which the counts 144 

were greater than or equal to the value assigned to the line. In addition, a three-dimensional isodensity 145 

map (Oyster et al., '81) of retina 80-15L was constructed in the following manner: the outline of the retina 146 

was traced onto a sheet of orthogonal projection graph paper so that the nasal-temporal and superior-147 

inferior dimensions were represented in the X and Y planes, respectively. Each vertical (superior to 148 

inferior) row of sample points (starting with the most temporal row and proceeding nasally) was then 149 

plotted on the map, with the density of cells at each point being represented in the Z plane. As each row 150 

of sample points was plotted, the points were connected so that a series of density vs. position graphs for 151 

each vertical strip of retina was constructed. Isodensity lines were then drawn so they intersected each 152 

graph at the particular value assigned to the line. The use of such a procedure eliminated the need for 153 

interpolation between sample points at which cell density was somewhat higher or lower than the value of 154 

the line. 155 

 156 

Cell Measurements 157 

Samples of cells were taken at 1 mm intervals along the horizontal and vertical meridians. At each point 158 

sampled, the outlines of all cells in 1 to 4 0.1 mm X 0.1 mm fields were drawn at l000X using a Zeiss 159 

camera lucida drawing tube. Cells were included in the sample if they were estimated to have half or 160 

more than half of their profile within the field and were drawn only when their nucleoli were in focus. In 161 

addition, pairs of samples were taken at selected points in the nasal and temporal herniretinae at points 162 

matched for either eccentricity from the area centralis or for cell density. To correct for possible superior-163 

inferior differences in cell sizes, all matched samples were taken at the same elevations above or below 164 
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the area centralis. Cell areas were measured from outlines and all statistics performed using a Bioquant II 165 

computerized image analysis system (Leitz).  166 

 167 

Sources of Potential Error 168 

The construction of isodensity maps necessarily involves a number of steps, any one of which may affect 169 

the accuracy of the final map. First, the number of sample points is important; maps constructed from 170 

relatively few samples clearly lack the accuracy of those in which a fine sampling matrix was used. In the 171 

present study, this problem was avoided by sampling a relatively high percentage of the retinal surface, 172 

including the entire surface within high density regions where changes in density are rapid. Second, 173 

ganglion cells must be identified correctly. Cases in which horseradish peroxidase (HRP) was used to 174 

trace central connections (see DeBruyn et al., '86) helped to set a lower limit on the size of small ganglion 175 

cells which have traditionally been the most difficult to distinguish from other cell types in the ganglion 176 

cell layer (Stone, '65, '78; Hughes, '75; Hughes and Vaney, '80; Hughes and Wieniawa Narckiewicz, '80). 177 

Nevertheless, it is possible that not all of these neurons are ganglion cells, but instead are displaced 178 

amacrine cells (Hughes and Vaney, '80) or "microneurons" (Hughes and Wieniawa-Narckiewicz, 80), that 179 

have been reported in the ganglion cell layer. Thus, the population of ganglion cells in the tree shrew may 180 

have been over-estimated. Third, in areas of high density, the existence of two or three layers of ganglion 181 

cells can make it difficult to distinguish cells. Although this factor was presumably minimized by 182 

performing all counts at l000X under oil immersion, it is possible that some cells may have been missed 183 

in the area centralis. Finally, because no sectioned retinae were examined, it is not possible to say what 184 

percentage, if any, of the ganglion cells is located in the inner nuclear layer (displaced). Since the latter 185 

have been reported to exist in a number of species (Bunt et al., '75; Karten et al., '77; Brecha and Karten, 186 

'79; Kimm et al., '79) it is possible that at least a small number may exist in the tree shrew also. 187 

In interpreting the results of cell size data, it is necessary to take into account the variability that 188 

is inherent in these studies. For example, cell size data are subject to variation in histological technique. 189 

Hughes ('81) has reported that ganglion cells may undergo linear shrinkage of up to 20% during 190 

dehydration and staining, even in retinae in which the overall areal shrinkage is less than 5%. In areal 191 
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terms, this amounts to a 36% reduction in cell size. Moreover, cell size samples are small point-to-point 192 

measures with the large inherent variability that biological samples possess. Thus, these results should be 193 

interpreted conservatively.  194 

  195 
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 196 

RESULTS 197 

General Appearance of the Ganglion Cell Layer 198 

As in other species, major blood vessels emerge from the optic disc which is located in the superior 199 

temporal quadrant of the retina, 0.8 mm superior and 4.5 mm temporal to the geometric center of the 200 

whole mount (Fig. 1). There appears to be little major branching of the vessels; however, small vessels 201 

frequently emerge from the main ones at approximately 45° angles. The only hint of an area of 202 

specialization occurs in the temporal retina where the major vessels curve away from, and then converge 203 

upon, an area approximately 2 mm from the temporal edge of the retina and 1 mm below the optic disc. 204 

This location would be the predicted central vision representation or area centralis based upon 205 

electrophysiological mapping of visual cortex (Kaas et al., '72). Additionally, several smaller vessels 206 

(usually 3) proceed straight infero-temporally from the disc to this area. Although all vessels thin out as 207 

they approach the area centralis, examination at higher magnification reveals no totally avascular area as 208 

has been reported for the macula of the macaque (Ferraz de Olivera and Ripps, '68). Another noticeable 209 

feature of the retina is the presence of a thick layer of optic fibers which is most prominent in the 210 

 

Figure 1: The pattern of major blood vessels in the tree shrew retina. The filled vessels are 
veins, the open ones, arteries. The area centralis is indicated by the thinning of major vessels in 
the temporal retina. I - inferior; N - nasal; S - superior; T temporal; O.D. - optic disc. 
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temporal retina. As in other species, the fibers proceed from the central region to the optic papilla in 211 

sweeping arcs, avoiding the area of highest cell density.  212 

At low magnification, the ganglion cell layer appears very crowded, with large numbers of tightly 213 

packed cells present in even the most peripheral regions (Fig. 2A). Multiple cell layers first appear at a 214 

density of approximately 9,000 cells/mm2 and reach a maximum of three layers thick in the area centralis 215 

(an area delineated by the 16,000 cell/mm2 isodensity line, extending from 0.8 mm nasal to 0.3 mm 216 

temporal and 0.3 mm superior to 0.4 mm inferior to the point of highest cell density). At higher 217 

magnification (Fig. 2B), it is evident that there are two cytologically distinct cell types present in the 218 

peripheral retina: large cells (composing the upper 25% of the local distribution of cell sizes) with distinct 219 

nuclei, nucleoli and Nissl substance, and small cells in which these cytological features are not as evident. 220 

The distinction between these smaller cells and glial cells present in the ganglion cell layer is not always 221 

clear; however, the two types can usually be differentiated on the basis of Nissl substance in the ganglion 222 

cells. As the area centralis is approached, the cytological distinction between large and small cells 223 

becomes less obvious until it disappears at a point approximately 0.4 mm (approximately 5°) eccentric 224 

 

 
 

Figure 2: Photomicrographs of ganglion cells in the tree shrew 
retina. A: A low power photomicrograph of the ganglion cell 
layer in the periphery of the retina. Note the even in this 
eccentric location (temporal retinal margin), the density of 
ganglion cells is still high. Scale = 40 μ. B: High power 
photomicrographs of the various types of ganglion cells in the 
ganglion cell layer. A and B are examples of large ganglion cells 
with distinct nuclei, nucleoli and Nissl substance. C, D, E and 
Fare small ganglion cells in which the nuclear regions are less 
distinct. G and H are glial cells. Note the more homogeneous 
cytoplasm and relative absence of cytological features of the 
glial cells. Scale~ 10 μ. C: a low power photomicrograph of the 
area centralis. Note the homogeneity and small size of the 
ganglion cells in comparison with those in figure 2A. Scale = 40 
μ. 
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from the point of highest cell density. Within this central-most area, the ganglion cells appear as a 225 

continuous mosaic of homogeneous size profiles (Fig. 2C). The absence of large cells from the area of 226 

fixation is a feature which is also found in the primate retina (Webb and Kaas, '76; DeBruyn et al., '80, 227 

'82; Stone and Johnson, '81), although not in the cat (Stone, '65, '78; Hughes, '75, '81). 228 

 229 

Ganglion Cell Topography 230 

A map of ganglion cell densities within retina 80-15L is shown in Figure 3. In this figure, each line 231 

represents a zone of equal cell density or isodensity. Figure 3 also shows the same map represented in 232 

three dimensions with density represented in the third dimension. This format gives a better visual 233 

impression of the centroperipheral density gradient, the extent of the visual streak (defined peripherally 234 

by the 9,000 cell/mm2 isodensity line and centrally by the 16,000 cell/mm2 isodensity line) and the 235 

density fluctuations between isodensity lines than does a conventional two-dimensional isodensity map. 236 

In both maps, the isodensity lines form a series of concentric ellipsoids, with an area of peak density 237 

(center of the area centralis) occurring at a point 2.2 mm from the temporal margin of the retina. Even in 238 

areas of high cell density such as the area centralis, there is no tendency for isodensity lines to become 239 

 

 Figure 3: A: A conventional isodensity map of the tree shrew retina. The isodensity lines are drawn so 
that each encloses all areas in which the counts were greater than or equal to the value assigned to the 
line. Note the prominent visual streak (defined by the 9,000 cell/mm2 line), nasally and the area centralis 
in the temporal retina. Values for each line indicated are in units of 1000 cells/mm2. B: A three-
dimensional isodensity map of the same retina. In this case, the density of cells is represented in the Z-
dimension of the map and the isodensity lines are constructed so that they intersect each graph at the 
indicated density level. Note that density declines at a faster rate in temporal than in nasal retina. Values 
for the lines are the same as in the upper figure. Abbreviations as in previous figures. 
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circular as in the cat (Stone, '65; Hughes, '75), but to remain elliptical with a horizontal to vertical ratio of 240 

2 to 1. 241 

Another noteworthy feature concerns the differences in the rate of change in density in nasal and 242 

temporal retina. As can be seen in figure 3, the rate of decrease in cell density from the area centralis to 243 

the periphery is much higher for temporal than for nasal retina. An important implication of this trend is 244 

that points at equal eccentricities from the center of gaze have different cell densities in nasal and 245 

temporal retina.  246 

 247 

The Visual Streak - Before proceeding further, it is necessary to define the term visual streak as 248 

presently used. The first problem is to define the peripheral boundary of the streak. In previous 249 

investigations, the peripheral boundary of the visual streak has been set somewhat arbitrarily (e.g., 250 

Hughes, '75; Oyster et al., '81) or has not been completely defined (e.g., Rowe and Stone, '76; Stone and 251 

Johnson, '81). Thus, although there is agreement that the streak is formed by isodensity lines which are 252 

horizontally elongated, the degree of this elongation has never been specified. For example, in the cat 253 

(Hughes, '75) the horizontal to vertical ratio of the visual streak is approximately 4 to l, while in the rabbit 254 

(Oyster et al., '81), it is considerably more than this. In both of these species, however, the streak shares 255 

two characteristics: first, it encloses approximately 10% of the retinal area; and second, it contains 256 

approximately 1/3 of the total number of ganglion cells. In the tree shrew, the isodensity line which 257 

matches these characteristics most closely is the 9,000 cell/mm2 line, as it encloses approximately 12% of 258 

the retinal surface and contains approximately 30% of the total number of cells.  259 

A second problem is to define the central boundary of the streak. As in the case of the peripheral 260 

boundary, there is no set definition for separating the streak from the more central portions of the retina 261 

(i.e., the area centralis). Since the streak is formed by horizontally elongated isodensity lines, while those 262 

forming an area centralis are thought to be more circular (Rowe and Stone, '76), the point at which there 263 

is a clear reduction in the horizontal to vertical ratio of the isodensity lines (16,000 cell/mm2 line) was 264 

chosen as the central boundary of the streak.  265 
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The selection of these boundaries allows a lower limit to be set on the degree of horizontal 266 

elongation required for the presence of the visual streak. In the tree shrew, all isodensity lines within the 267 

streak have a horizontal to vertical ratio of approximately 3 to 1 (range 2.83 to 3.37 to 1) while the 268 

maximum ratio of any other line is less than 2.5 to 1 (range = 1.2 to 2.4 to 1). Thus, a conservative 269 

estimate for the minimum horizontal to vertical ratio of isodensity lines within the visual streak of the tree 270 

shrew would be 2.6 to 1.  271 

 272 

Individual Variation - The ratio of horizontal to vertical dimensions of the streak can be used as a 273 

measure of individual variation in cell distribution. Figure 4 shows that the distribution of ganglion cells 274 

varies both within and between individuals. As can be seen in this figure, there is a closer correspondence 275 

between retinae from the same individual than between those of different individuals; variation is 276 

considerably less when the ratios of two retinae from the same animal are compared (79-16 - .11; 79-23 - 277 

 

Figure 4: The intra- vs. interindividual variation in ganglion cell distribution. Note that the horizontal to 
vertical ratios of the visual streaks (indicated under the label of each retina) are more similar in two 
retinae from the same individual than in retinae from different individuals. Due to the low magnification 
factor of this figure, only four isodensity lines are represented in each retina. The position of the area 
centralis is indicated by the cross in each case, and the optic discs are filled. Other conventions as in 
figure 3. Abbreviations as in previous figures. 
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.01) than when ratios of retinae from these two individuals are compared (right retinae - .32; left retinae - 278 

.44).  279 

 280 

Analysis of Cell Sizes 281 

Cell areas ranged from a minimum of 20 μm2 in the area centralis to a maximum of 550 μm2 in the 282 

periphery. Figures 5 and 6 show that frequency histograms of cell areas at all eccentricies form roughly 283 

unimodal curves that are composed of two components; a small-celled peak which includes 85 – 90% of 284 

the total population and a large-celled tail region which contains the remaining 10 – 15% of the cells and 285 

occupies the top 25% of the total range of ganglion cell sizes. As eccentricity from the area centralis 286 

increases, two trends are apparent: First, there is an increase in mean cell size (from 45 μm2 in the area 287 

centralis to over 100 μm2 in the periphery); and second, there is an increase in the proportion of cells 288 

contained within the tail region (i.e., there is an increase in variance). The rate of change in cell size is 289 

 

Figure 5: Histograms of ganglion cell soma sizes sampled at 1 mm intervals along the horizontal 
meridian. Each sample represents 150-200 cells taken from 1-4 0.1 x 0.1 mm fields. The histograms have 
been expressed as percentages to correct for differences in sample sizes. The eccentricity from the area 
centralis is indicated in the upper right of each histogram. Note that at all locations, the histograms are 
unimodal in form. 
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non-uniform with respect to the direction of sampling. Samples taken along the vertical meridian (Fig. 6) 290 

increase in size at a faster rate than do samples taken along the horizontal meridian (Fig. 5). Additionally, 291 

 

Figure 7: A: A comparison of ganglion cell soma sizes at equally eccentric locations (1 mm from the 
vertical meridian) in the nasal (unfilled) and temporal (filled) retina. Note that temporal ganglion cells are 
much larger than their nasal counterparts. As in figure 6, the results have been expressed as a percentage 
of total cells in order to correct for differences in density. B: A comparison of ganglion cell soma sizes at 
locations of equal density in the nasal (unfilled) and temporal (filled) retina. Matched samples were taken 
along the same elevation above and below the horizontal meridian. Below each pair of samples is a 
subtraction histogram in which the number of nasal cells in each bin has been subtracted from the number 
of temporal cells and, the excess has been plotted. Note that although the mean size of ganglion cells in   
nasal and temporal retina does not differ significantly, there is a greater proportion of large ganglion cells 
in temporal retina and of small ganglion cells in nasal retina.  

 

 

 
 

Figure 6: Histograms of ganglion cell sizes 
sampled at 1 mm intervals along the vertical 
meridian. Note that the increase in soma size 
is faster in this direction than along the 
horizontal meridian. Conventions as in the 
previous figure. 
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figure 7A shows that ganglion cells in the temporal retina are significantly larger than nasal ganglion cells 292 

sampled at equally eccentric points from the area centralis, a fact which may be related to the difference 293 

in density (see above). Finally, samples taken from regions of equal cell density along the same elevation 294 

in nasal and temporal retina show no significant difference in cell size, although the percentage of large 295 

ganglion cells is greater in samples taken from the temporal retina, and the percentage of small cells is 296 

greater in the nasal retina (Fig. 7B). 297 

 298 

Individual Variation - Distributions of cell size for matched retinal points show equivalent intra- 299 

as inter-individual variation. This is shown in Fig. 8 for density-matched samples from four different 300 

retinal regions (area centralis, visual streak, nasal, and temporal periphery) in 5 different retinae from 4 301 

animals. This result contrasts with data on maps of cell density in which inter-individual variation is more 302 

pronounced.  303 

 

Figure 8: The intra- vs. interindividual variation in ganglion cell size. The mean size (filled circles) ± 
S.E.M. of density matched samples of ganglion cells from four different retinal regions (area centralis, 
visual streak, nasal, and temporal periphery) has been compared in 5 retinae from 4 different animals 
(131R, 3788L, 81-85R, 81-85L, 80-15L in order of appearance.). Sample densities are: AC - 20,000 
cells/mm2, VS - 15,000 cells/mm2, NP - 7,000 cells/mm2, TP - 5,000 cells /mm2. Stars indicate samples 
taken from two retinae of the same animal. Note that the variation in the mean size of ganglion cells from 
two retinae of the same animal is as great as that for samples from different animals. Note also that the 
inverse relationship of density to ganglion cells size is not constant. For example, the mean size of cells in 
the visual streak of 131R is smaller than that in the area centralis. Finally, note the increase in the size of 
the S.E.M. with decreasing density. Abbreviations: AC, area centralis; NP, Nasal periphery; TP, temporal 
periphery; VS, visual streak. 
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DISCUSSION 304 

The topography of the ganglion cell layer in all mammals studied, including tree shrews, is organized 305 

with a gradient in cell density and cell size such that central areas (e.g., the area centralis or parafovea, 306 

and the visual streak) have higher cell densities and more uniform cell sizes, generally smaller, then more 307 

peripheral retinal areas. Mammals differ in the relative location of specialized central areas, steepness of 308 

density gradients, and distribution of cell size classes within retinal areas. In tree shrews, our data show 309 

that the ganglion cell layer is characterized by a well-developed visual streak, an area centralis close to 310 

the temporal margin, and no fovea. Both the area centralis and the visual streak contain a high density of 311 

smaller cells. Cell density declines while mean soma size and range of soma sizes increases in the 312 

periphery (more rapidly for temporal than for nasal retina) but remains surprisingly high even at the 313 

extreme margins of the retina. The ensuing discussion will consider the functional implications of each of 314 

these features and how each compares with features of the retinal ganglion cell layer described for 315 

primates and other mammals. 316 

 317 

Centro-peripheral Differences in Retinal Topography 318 

As in most other mammals studied retinal ganglion cells in the tree shrew retina exhibit a gradient in 319 

density and cell size, being smaller, more homogeneous, and more tightly packed in the area centralis; 320 

and larger, more heterogeneous, and more loosely packed in the periphery. In other mammals this trend 321 

appears to follow a density gradient laid down in the receptor layer (Osterberg, '35; Steinberg et al., '73; 322 

Ogden, '75) which is repeated in other neuronal layers of the retina (e.g., Wässle et al., '78). Although less 323 

is known about the receptor density trends in tree shrews, there is evidence to suggest that the receptors in 324 

tree shrews also follow similar trends to ganglion cells since peripheral receptor to ganglion cell ratios are 325 

described as 1.6:1 (Rohen and Castenholtz, '67). 326 

A comparison of mammalian retinae suggests that although there is a common trend toward 327 

declining ganglion cell density as one moves toward the periphery, rates of decline differ regionally 328 

within the retina (i.e., nasal-temporal differences) and greatly among species. In the tree shrew, the 329 

centroperipheral gradient is only 4 or 5 to 1 in contrast to gradients of 30 or 50 to 1 for nocturnal species 330 
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with wide binocular overlap, such as the cat (Stone, '65, '78; Hughes, '75, '77), owl monkey (Webb and 331 

Kaas, '76), galago (DeBruyn et al., '80), and slow loris (Debruyn et al., '82); and 300 to 1000 to 1 in 332 

diurnal primates (DeBruyn et al., '82). It is noteworthy that animals with laterally placed eyes, such as 333 

rabbits, squirrels, hamsters, mice, and rats exhibit a shallow gradient (Hughes, 71, '77; Tiao and 334 

Blakemore, '76; Fukuda, '77; Provis, '79; Oyster et al., '81; Dräger and Olson, '81) similar to the tree 335 

shrew, suggesting a greater overall dependence on peripheral vision than is the case for cats or primates. 336 

In the tree shrew, however, the absolute density is much higher than is found in most other mammals with 337 

laterally placed eyes. This adaptation is also found in diurnal squirrels (Hughes, '77) and may reflect a 338 

need for increased resolution and an overall greater dependence on vision in diurnal arboreal habitats. 339 

It has been argued that the overall high ganglion cell density and a smaller centro-peripheral 340 

gradient, such as exists in tree shrews, are characteristics of mammals with “universal macularity", 341 

suggesting that they maintain high resolution throughout their field of view (see Hughes, '77 for review). 342 

This idea is misleading on two counts. First, it is clear that, even in tree shrews, the area centralis has at 343 

least four or five times the theoretical resolving power possible in the extreme periphery. Second, in 344 

animals with small eyes, a minimum number of ganglion cells in the periphery is required if any detail, at 345 

all, is to be resolved. In tree shrews, the theoretical peripheral limit of resolution (see also below), would 346 

be around two cycle/deg. This is, of course, better than would be found at the extreme margins of the 347 

retinae of mammals with steep centro-peripheral cell density gradients, such as cats and primates, in spite 348 

of the larger eye sizes, and may be an advantage in detecting potential predators. 349 

With respect to centro-peripheral variation in cell size, studies in a number of species have 350 

demonstrated that the increases in mean cell size and the variance of cell sizes with eccentricity can be 351 

attributed to two factors. First, there is a general increase in the size of ganglion cells, regardless of 352 

functional subclass. Second, there is a change in the relative proportions of the functional subclasses 353 

which compose the local population so that the relative proportions of large, medium, and small cells, 354 

each of which reflect a different functional class, change (see Perry, '82; Rodieck and Brening, '83). Since 355 

the sizes of tree shrew ganglion cells change in a like manner, it seems reasonable to assume that similar 356 

trends are occurring (see also DeBruyn and Casagrande, '86; DeBruyn et al., '86).  357 
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Two additional related points are relevant to observations on cell size. First, most mammals 358 

studied, including tree shrews, show unimodal distributions of size at all topographic points within the 359 

retina (e.g., Oyster et al., '81; Stone and Johnson, '81. This means that meaningful correlations between 360 

cell size and functional class can only be made by considering size relative to the local distribution within 361 

confined regions; absolute differences in size are, for all practical purposes, meaningless. If size does 362 

correlate with functional class in tree shrews, then central-peripheral differences in the range of cell sizes 363 

suggest that one or a few of the functionally defined classes of ganglion cells in tree shrews are 364 

represented in the area centralis, while an increasing variety are represented at more peripheral locations 365 

(Van Dongen et al., '76). Second, it is clear that although, in general terms, ganglion cell size increases 366 

with decreasing cell density, it is probably more accurate to say that the distribution of relative cell sizes 367 

at a particular locus shows a consistent inverse relationship to density, being narrow at central locations 368 

and broader in the periphery. This is because when individual points are considered (even within the same 369 

retina), the inverse relationship between size and density may break down. An example of this can be 370 

seen in Figure 7 (retina 131R) where the mean size of ganglion cells from the visual streak (15,000 371 

cells/mm2) is smaller than the mean for cells from area centralis (20,000 cells/mm2). 372 

Although the trends described above apply generally to all centro-peripheral gradients in ganglion 373 

cell density and size composition, regional differences are also apparent, the most striking being between 374 

nasal and temporal retina or the retinal region lying temporal to the center of the area centralis. Our 375 

results indicate that there are two principal differences between nasal and temporal retina in tree shrews. 376 

First, the centroperipheral density gradient, particularly outside of the area centralis, is much steeper for 377 

temporal retina, and consequently, mean cell size also increases at a faster rate. Second, the composition 378 

of cell size classes in temporal retina differs such that, even at points of equal density, the relative 379 

percentage of large cells is greater and the overall size distribution is broader than in nasal retina. Similar 380 

nasal-temporal retinal differences have been noted in other mammals including brush-tailed possum 381 

(Freeman and Tancred, '78), rabbit (Provis, '79; however, see Oyster et al., '81), grey fox (Rapaport et al., 382 

'78), dog (Osmotherly, '79), and some primates (Stone and Johnson, '81), suggesting that this type of 383 

regional specialization may have a wide generality. 384 



20 
 

It is apparent that if ganglion cell density relates directly to visual acuity, then acuity in nasal 385 

retina will be higher than that in temporal retina for points of equal eccentricity. However, resolution of 386 

fine detail may be determined only by certain functional cell classes (e.g., Cleland et al., '71). Thus, an 387 

accurate assessment of nasal-temporal functional differences may only be determined by an examination 388 

of the relative distribution of physiological cell classes at equally eccentric locations. Differences in cell 389 

size distribution suggest that such differences in the composition of physiological cell classes exist. By 390 

analogy to work in the cat, cell size distribution differences in tree shrew would imply that, at 391 

corresponding locations, there are proportionally more Y-cells and fewer W-cells in temporal than in 392 

nasal retina (Stone, '78). 393 

Taken together, these results strongly suggest that there are fundamental differences in the visual 394 

information that is processed by the two retinal regions. If this is the case, it is conceivable that nasal and 395 

temporal retina analyze different components of a visual stimulus (such as pattern or movement), and that 396 

the traditional view of the visual system merging identical images from each eye should be modified. 397 

 398 

Central Areas of Specialization 399 

Central areas of specialization within the ganglion cell layer are typically defined by high cell densities, 400 

although other criteria, such as blood vessel patterns, distribution of cell sizes, and functional classes, 401 

have also been used to define these regions (see Rapaport and Stone, '84 for review of this issue). Based 402 

upon ganglion cell density gradients, three types of retinal specialization can be identified. The first of 403 

these is evident in some nocturnal mammals such as mice (Dräger and Olson, '81), rats (Fukuda, '77), 404 

hamsters (Tiao and Blakemore, '76), and opossums (Hokoc and Oswald-Cruz, '79; Rapaport et al., '81). 405 

The pattern in these species is characterized by a shallow decline of ganglion cell density away from a 406 

central zone of increased density. The central zone of higher density, however, is not equivalent to an 407 

area centralis since it represents part of the monocular, not the binocular segment of visual space and, 408 

therefore, represents a specialized zone concerned with monocular vision (Rapaport and Stone, '84; 409 

Jeffery, '85). A second cell dense central zone of specialization is seen in some diurnal or crepuscular· 410 

mammals, such as grey and ground squirrels, and rabbits (Davis, '29; Hughes, '71; Oyster et al., '81; Long 411 
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and Fisher, '83; but see also Provis, '79 for rabbit). These mammals show a similar shallow decline from a 412 

central zone of high ganglion cell density except that the latter zone is horizontally elongated (a visual 413 

streak), and isodensity lines of declining value are also horizontally elongated. Like the central zone of 414 

high ganglion cell density described above for some nocturnal rodents, the visual streak is a specialized 415 

region within nasal retina and may be more concerned with monocular viewing. The third, and most 416 

commonly observed, zone of specialization is one in which a zone of higher ganglion cell density can be 417 

recognized with the area of retina represented at the center of binocular visual field; a zone which we will 418 

define here as a true area centralis. The area centralis is typically represented as a ganglion cell peak 419 

located at the temporal boundary of a variably developed visual streak. An area centralis exists not only 420 

in tree shrews, but also in carnivores (Stone, '65; '78; Hughes, '75, '77; Hebel, '76; Osmotherly, '79), 421 

primates (van Buren, '63; Webb and Kaas, '76; DeBruyn et al., '80, '82; Stone and Johnson, '81), ungulates 422 

(Hughes and Whitteridge, '73; Hebel, '76: Hughes, '77), and some marsupials (Freeman and Tancred, '78; 423 

Tancred, '81). 424 

If one considers each of the above-described types of central specialization as a reflection of 425 

differential adaptations of the retinal mosaic to separate aspects of an animal's lifestyle, then the 426 

organization of retina in tree shrews suggests that it supports at least two roles since both the area 427 

centralis and visual streak are well developed. In fact, if one considers the marked nasal-temporal 428 

difference as another type of regional specialization, one could argue that topography of the retina in tree 429 

shrews supports three separate functional adaptations. Roles of each region of specialization are, in part, 430 

suggested by their location, cell size composition, and central targets. 431 

The tree shrew area centralis is located in the center of the binocular fixation axis. It is almost 432 

devoid of blood vessels and contains the densest population of ganglion cells of uniformly small size. It 433 

has long been argued that these characteristics in other mammals such as cats, allow for binocular 434 

centering of fixation, higher spatial resolution, and possibly stereopsis (Hughes, '77). Personal 435 

observations of tree shrews suggest that they face forward to inspect objects of interest, as would be 436 

expected in order to align information with both area centrales. At present, it is unclear if tree shrews 437 

possess stereopsis. However, assuming that tree shrews at least use the area centralis for obtaining finer 438 
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resolution, then it is theoretically possible to predict their acuity based upon cell density, according to 439 

Shannon's sampling (Goldman, '68), since receptor to ganglion cell ratios are nearly 1:1. Using a mean 440 

retinal circumference of 13 mm (average of 5 retinae) and a visual field extent of 180 degrees (Lane et al., 441 

'71), a magnification factor of 0.07 mm/degree is obtained. Assuming that the peak cell value of (20,200 442 

cells/mm2) is representative, then an area of one square degree would intersect the receptive fields of 99 443 

retinal ganglion cells (20,2000 cells/mm2 x (0.07 mm/degree2) = 99 cells/square degree), and a line one 444 

degree long would intersect the fields of 10 cells. This value corresponds to a cutoff frequency of 5 445 

cycles/degree or a minimum resolvable bar width of 6 minutes of arc. This value is in good agreement 446 

with the figure of around 3 cycles/degree reported behaviorally by Petry et al. ('84) for tree shrews using 447 

extrapolation from contrast sensitivity functions. However, it is noteworthy that in order to arrive at the 448 

behavioral acuity of 1 minute of arc reported for tree shrews by Ordy and Samovajski ('68) tree shrews 449 

would have to possess a peak density of 735,000 cells/mm2 , or roughly 110 layers of retinal ganglion 450 

cells. 451 

Assuming that the tree shrew's area centralis is adapted to provide high resolution binocular 452 

information, then what additional information is provided by the possession of an elongated adaptation 453 

for monocular viewing such as the visual streak? Answers to this question have been sought in correlating 454 

lifestyle with the possession of a streak in mammals or birds who possess a similar adaptation (the linear 455 

area) (see Meyer, '77 and Hughes, '77 for review). Visual streaks have been identified in both nocturnal 456 

and diurnal species, as well as predators and prey. In general, this specialization appears to be associated 457 

with birds and mammals that inhabit open spaces seeking food on the ground. From the latter observation, 458 

it has been argued that the visual streak may help in detection of objects on the horizon (the terrain 459 

theory), in animals that remain in a more or less fixed relationship to this landmark, i.e., on the ground 460 

(Hughes, '77). However, the existence of the visual streak in tree shrews and primates (Stone and 461 

Johnson, '81; DeBruyn et al., '82) is inconsistent with this theory since tree shrews are mostly, although 462 

not exclusively, arboreal and reside in tropical forests where dense foliage would interfere with a view of 463 

the horizon. A second theory on the function of the visual streak suggests that it enhances the ability of an 464 

animal to detect weak visual cues (Rowe and Stone, '76). This might hold for nocturnal carnivores such as 465 
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the cat but does not fit with the strictly diurnal lifestyle and nearly all cone retina of tree shrews (Immel 466 

and Fischer, '82). A third possibility that has been suggested to explain this specialization in birds is that it 467 

may aid in the stabilization of the visual field for detection of movement while the bird is in motion 468 

(Meyer, '77). This idea would fit well with the lifestyle of the tree shrew since tree shrews make 469 

extremely rapid adjustments of head and body in space, both in relation to stationary objects and small 470 

moving prey (winged insects) or predators (human with a large net). Moreover, the tree shrew superior 471 

colliculus, which may be involved in processing such information, also is well developed and shows a 472 

retinotopically expanded representation of the visual streak (see Fig. 6, Lane et al., '71).  473 

 474 

Is the tree shrew retina primate-like? 475 

The relative development of the visual system played a key role in arguments favoring the inclusion of 476 

the Tupaids within the primate order (LeGros Clark, '59). In partial support of this argument, LeGros 477 

Clark ('59) emphasized the similarity between the vascularity pattern of the tree shrew retina, in which 478 

blood vessels are nearly absent from the area centralis, and that of primates. However, this vascularity 479 

pattern is seen in many other mammals with a well-developed area centralis and does not, in and of itself, 480 

support such an evolutionary relationship. In fact, the lack of a fovea, shallow centroperipheral cell 481 

density gradient, well developed visual streak, and virtual absence of rods, with no corresponding 482 

evidence of a scotopic function in tree shrews would suggest that these mammals developed rather 483 

different visual adaptions from those typical of primates. Moreover, in primates, particularly diurnal 484 

primates, the major emphasis of the retina is upon binocular vision as attested to by the sharp cell density 485 

drop-off outside of the parafovea or area centralis. In contrast, in tree shrews, the monocular visual 486 

specializations, (i.e., the visual streak and shallow cell density gradients), dominate the retina. It could be 487 

argued that such monocular specializations would be expected in the lateral-eyed mammals. However, as 488 

discussed above, lateral eyed mammals such as mice and rats (Dräger and Olson,'81; Fukuda, '77), lack a 489 

visual streak and, in some cases, exhibit other forms of central specialization. If one adds to these 490 

observations the fact that many details of the organization of central visual targets of the retina of tree 491 

shrews show major differences from those described in primates and that a percentage of ganglion cells in 492 

tree shrews exhibit physiological properties such as direction and orientation selectivity not found in 493 
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primates (Van Dongen et al., '76), it is evident that the few similarities that exist between the retinal 494 

organization of tree shrews and primates could easily be attributed to evolutionary convergence. 495 

  496 
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