

Supplementary Figure S1. Vertebrate RHO gene tree estimated by maximum likelihood (PHYML). Numbers at the nodes are aLRT support values.

Supplementary Figure S2. Vertebrate RHO gene tree estimated by Bayesian inference (MrBayes). Numbers at the nodes are posterior probabilities.

Supplementary Figure S3. Mammalian RHO gene tree estimated by maximum likelihood (PHYML). Numbers at the nodes are aLRT support values.

Supplementary Figure S4. Mammalian RHO gene tree estimated by Bayesian inference (MrBayes). Numbers at the nodes are posterior probabilities.

Supplementary Figure S5. Vertebrate RPE65 gene tree estimated by maximum likelihood (PHYML). Numbers at the nodes are aLRT support values.

Supplementary Figure S6. Vertebrate RPE65 gene tree estimated by Bayesian inference (MrBayes). Numbers at the nodes are posterior probabilities.

0.04

Supplementary Figure S7. Mammalian RPE65 gene tree estimated by maximum likelihood (PHYML). Numbers at the nodes are aLRT support values.

0.04

Supplementary Figure S8. Mammalian RPE65 gene tree estimated by Bayesian inference (MrBayes). Numbers at the nodes are posterior probabilities.

Table S1. RHO and RPE65 Accession numbers

Species Name	Accession Number
Vertebrate RHO data set:	
Ailuropoda melanoleuca	XM_002921249.2
Alligator mississippiensis	NM_001287282.1
Alligator sinensis	XM_006039400.1
Ambystoma tigrinum	U36574.1
Anas_platyrhynchos	XM_005012054
Anolis carolinensis	NM_001291387.1
Astyanax mexicanus	U12328.1
Balaenoptera acutorostrata scammon	XM_00/192608.1
Bos mutus	XM_005902834.1
Bos taurus	NM_001014890.1
Bubalus bubalis	XM_0060/8900.1
Callithrix jacchus	XM_008982215.1
	NM_001292252.1
Camelus ferus	XM_006180073.1
Canis jamiliaris	X/1380.1
Cavia porceitus	NM_0011/3085.1
Clear Ceratoinerium simum simum	XM_004442424.1
	XM_00/05994/.1
Chinchilla lanigera	XM_00538/085.1
Chilorocebus sabaeus	XM_00/9853/8.1
Chrysemys picia belli	XM_006868643.1
Chrysochioris asiatica Columba linia	XM_006868670.1
Condulung oristata	XM_005509036
Conayiura cristata Crisectulus griseus	NM_001244407.1
Chicelulus griseus	A D042800 1
Cynops pyrrnogaster	AD043890.1 HM267062 1
Dasynus novemeinetus	XM 004477246 1
Echinops talfairi	XM_004702378.1
Elenhantulus edwardii	XM_0069010401
Enephaniaius eawaran Entesicus fuscus	XM_008152292.1
Epiesieus juseus Fanus caballus	XM_001490301.3
Frinaceus euronaeus	XM_007517079.1
Falco peregrinus	XM_005240222_1
Felis catus	NM_001009242.1
Ficedula albicollis	XM_005053322.1
Gallus gallus	NM_001030606.1
Geospiza fortis	XM_005426641.1
Gorilla gorilla gorilla	XM 004036292.1
Hanlochromis hurtoni	NM 001287832.1
Heterocephalus glaber	XM 004902702.1
Homo sapiens	NM 000539.3
Jaculus jaculus	XM 004651581.1
Latimeria chalumnae	XM 005997817.1
Lepisosteus oculatus	XM_006630625.1
Lipotes vexillifer	XM_007461564.1
Loxodonta africana	NM 001280858.1
Macaca mulatta	XM_001094250.1
Maylandia zebra	AY775114.1
Meleagris gallopavo	XM_003210211.2
Melopsittacus undulatus	AF021242.1
Mesocricetus auratus	XM_005066100.1
Microtus ochrogaster	XM_005365058.1
Monodelphis domestica	XM_001366188.2
Mus musculus	BC031766.1
Mustela putorius furo	XM_004738577.1

Myotis brandtii Myotis davidii Myotis lucifugus Neolamprologus brichardi Nomascus leucogenys Ochotona princeps Octodon degus Odobenus rosmarus divergens Orcinus orca Oreochromis niloticus Ornithorhynchus anatinus Orycteropus afer afer Oryctolagus cuniculus Oryzias latipes Ovis aries Pan paniscus Pan troglodytes Pantholops hodgsonii Papio anubis Pelodiscus sinensis Peromyscus maniculatus bairdii Petromyzon marinus Physeter catodon Poecilia formosa Pongo abelii Pseudopodoces humilis Pteropus alecto Pundamilia nyererei Python bivittatus Rattus norvegicus Saimiri boliviensis boliviensis Sarcophilus harrisii Sorex araneus Spermophilus tridecemlineatus Sus scrofa Taeniopygia guttata Takifugu rubripes Tarsius syrichta Trichechus manatus Tupaia chinensis Tursiops truncatus Vicugna pacos Xenopus (Silurana) tropicalis Xenopus laevis Xiphophorus maculatus Zonotrichia albicollis Vertebrate RPE65 data set: Ailuropoda melanoleuca Alligator mississippiensis Alligator sinensis Ambystoma tigrinum Anas platyrhynchos Anolis carolinensis Astyanax mexicanus

Astyanax mexicanus Mueller

Bos mutus Bos taurus

Bubalus bubalis

Callithrix jacchus

Balaenoptera acutorostrata scammoni

XM 006758300.1 XM 006083811.1 AY775110.1 XM 003265030.3 XM_004581320.1 XM 004645617.2 XM 004395657.1 XM 004284305.2 AY775108.1 NM 001127627.1 XM 007956743 XM 008260202.1 AB180742.1 XM 004018534.2 XM 003829435.2 XM 516740.5 XM 005955745.1 XM 003906878.2 XM 006132837.1 XM 006978532.1 AH005459.1 XM 007126220.1 XM 007562291.1 XM 002813145.3 XM 005521947.1 XM 006917646.1 XM 005740519.1 XM 007423262.1 NM_033441.1 XM 003926159.2 XM 003762449.1 XM 004613232.1 XM 005333784.1 NM 214221.1 NM 001076695.1 NM 001078631.1 XM 008047820.1 AF055319.1 XM 006160664.1 NM 001280659.1 XM 006206787.1 NM 001097334.1 NM 001087048.1 XM 005805648.1 XM 005490154.1 XM 002924661 XM 006273833 XM 006037631 AF047465 XM 005022335 XM 003225837 XM 007254601 XM 007256147 XM 007182907 XM 005906391 NM 174453 XM 006052721 XM_002750946

XM 005870029.1

Callorhinchus milii	XN
Camelus ferus	XN
Canis lupus familiaris	NN
Capra hircus	XN
Cavia porcellus	XN
Ceratotherium simum simum	XN
Chelonia mvdas	XN
Chinchilla lanigera	XN
Chlorocebus sabaeus	XN
Chrysemys nicta bellii	XN
<i>Chrysochloris asiatica</i>	XN
Columba livia	XN
Condylura cristata	XN
Cricetulus griseus	XN
Cynons myrchogaster	
Danio rerio (RPE65a)	NN
Danio rerio (RPE65b)	NN
Danio rerio (RPE65c)	NN
Danio rerio (M E050)	
Echinops tolfairi	
Elembors leijuiri	
Elephaniulus eawarali	
Equus caballus	
Erinaceus europaeus	
Falco peregrinus	XN
Felis catus	XN
Ficedula albicollis	XN
Gallus gallus	NN
Geospiza fortis	XN
Gorilla gorilla	XN
Haplochromis burtoni	XN
Haplochromis burtoni Mueller	XN
Heterocephalus glaber	XN
Homo sapiens	NN
Jaculus jaculus	XN
Latimeria chalumnae	XN
Lepisosteus oculatus	XN
Lipotes vexillifer	XN
Loxodonta africana	XN
Macaca mulatta	XN
Maylandia zebra	XN
Maylandia zebra Mueller	XN
Meleagris gallopavo	XN
Melopsittacus undulatus	XN
Mesocricetus auratus	XN
Microtus ochrogaster	XN
Monodelphis domestica	XN
Mus musculus	NN
Mustela putorius furo	XN
Myotis brandtii	XN
Myotis davidii	XN
Myotis lucifugus	XN
Neolamprologus brichardi	XN
Neolamprologus brichardi Mueller	XN
Nomascus leucogenys	XN
Ochotona princeps	XN
Octodon degus	XN
Odobenus rosmarus divergens	XN
Orcinus orca	XN
Oreochromis niloticus	XN
Oreochromis niloticus Mueller	XN

M 007909431 M 006191021 M 001003176 M 005678276 M 003479100 M 004431484 M 007063459 M 005385268 M 007978338 M 005300122 M 006862419 M_005498947 M 004679108 M 007622486 3095018 M 200751 M 001089433 M 001113653 M_004483698 M_004699612 M_006879787 M_008139423 M 001498619 M 007525692 M 005244483 M 003990180 M 005050653 M 204884 M 005429539 M 004025957 M 005912639 M 005951067 M 004899378 M 000329 M_004671381 M_006011611 M_006635249 M_007460114 M 003411238 M 001095946 M 004542781 M 004562051 M_003208913 M_005151194 M_005086971 M_005357442 M 007480405 M 029987 M 004762993 M 005861199 M 006770093 M 006099228 M 006786395 M 006797803 M 003260179 M 004588764 M 004633990 M 004415169 M_004280749 M_003437873 M_005462114

Ornithorhynchus anatinus	XM_007673238
Orycteropus afer afer	XM_007959394
Oryctolagus cuniculus	XM 002715929
Oryzias latipes	XM_004079386
Oryzias latipes Mueller	XM_004068058
Ovis aries	XM_004002070
Pan paniscus	XM 003807877
Pan troglodytes	XM_009460457
Pantholops hodgsonii	XM 005978384
Papio anubis	XM_009210604
Pelodiscus sinensis	XM 006123356
Peromyscus maniculatus bairdii	XM_006996780
Petromyzon marinus	JX115001
Physeter catodon	XM 007116544
Poecilia formosa	XM_007548703
Poecilia formosa Mueller	XM_007543119
Pongo abelii	XM_002810712
Pseudopodoces humilis	XM_005521247
Pteropus alecto	XM_006919310
Pundamilia nvererei	XM_005721435
Pundamilia nyererei Mueller	XM_005753540
Python bivittatus	XM_007433578
Rattus norvegicus	AF035673
Saimiri boliviensis	XM 003921428
Sarcophilus harrisii	XM_012547548
Sorex araneus	XM_004607272
Spermophilus tridecemlineatus	XM_005332357
Sus scrofa	XM_003127931
Taeniopygia guttata	XM_002187684
Takifugu rubripes	XM_003975265
Takifugu rubripes Mueller	XM_003977490
Tarsius syrichta	XM_008048441
Trichechus manatus latirostris	XM_004369044
Tupaia chinensis	XM_006167148
Tursiops truncatus	XM_004331382
Vicugna pacos	XM_006205347
Xenopus laevis	NM 001086800
Xenopus tropicalis	NM_001127066
Xiphophorus maculatus	XM_005807594
Xiphophorus maculatus Mueller	XM_005805238
Zonotrichia albicollis	XM_005496384
Mammal RHO data set:	
Ailuropoda melanoleuca	XM 002921249.2
Amblvsomus hottentotus	GO290298

Artibeus jamaicensis Balaenoptera acutorostrata scammoni Bathyergus suillus Bos mutus Bos taurus Bubalus bubalis Caluromys philander Camelus ferus Canis lupus familiaris Cavia porcellus Ceratotherium simum simum Chaerephon plicatus Chinchilla lanigera Chlorocebus sabaeus Chrysochloris asiatica Condylura cristata

1249.2 GQ290299 XM 007192608.1 GQ290300 XM 005902834.1 NM 001014890.1 XM 006078900.1 AY313946.1 XM 006180073.1 XM 005632035.1 NM 001173085.1 XM 004442424.1 GQ290301.1 XM 005387085.1 XM 007985378.1 XM 006868670.1 XM 004692360.2 Cricetulus griseus Cryptomys damarensis Cynopterus brachyotis Cynopterus sphinx Dasypus novemcinctus Delphinus delphis Dobsonia viridis Echinops telfairi Elephantulus edwardii Enhydra lutris Eonycteris spelaea Eptesicus fuscus Equus caballus Equus przewalskii Erignathus barbatus Erinaceus europaeus Eubalaena glacialis Felis catus Globicephala melas Gorilla gorilla Heterocephalus glaber Hipposideros larvatus Hipposideros pomona Hipposideros pratti Homo sapiens *Hydrurga leptonyx* Jaculus jaculus Leptonychotes weddellii Lipotes vexillifer Loxodonta africana Macaca fascicularis Macaca mulatta Macroscelides proboscideus Megaderma spasma Mesocricetus auratus Mesoplodon bidens Microtus ochrogaster Miniopterus fuliginosus Mirounga angustirostris Monodelphis domestica Mus musculus Mustela putorius furo Myotis brandtii Myotis davidii Myotis laniger Myotis lucifugus Myotis ricketti Nomascus leucogenys Nyctalus plancyi Nyctimene cephalotes Ochotona princeps Octodon degus Odobenus rosmarus divergens Orcinus orca Ornithorhynchus anatinus Orycteropus afer afer Oryctolagus cuniculus Otolemur crassicaudatus Ovis aries Pan paniscus Pan troglodytes

NM 001244407.1 XM 010637946.1 GQ290303 GQ863420.1 XM 004477246.1 AF055314.1 GQ290304 XM 004702378.1 XM 006901040.1 AY883931.1 GO290305 XM 008152292.1 XM 001490301.3 XM 008531022.1 AY883932.1 XM 007517079.1 JO730751.1 NM 001009242.1 AF055315.1 XM 004036292.1 XM 004902702.1 GQ290308.1 GQ863426.1 GQ290309.1 AB464154.1 AY883930.1 XM 004651581.1 XM 006740235.1 XM 007461564.1 NM 001280858.1 NM 001283360.1 XM 001094250.1 GQ290310 GQ290316.1 XM 005066100.1 AF055316.1 XM 005365058.1 GQ290311 AY228452.1 XM 001366188.2 BC031766.1 XM 004738577.1 XM 005870029.1 XM 006758300.1 GQ863435.1 XM 006083811.1 GQ290312.1 XM 003265030.3 GQ863422.1 GQ290313 XM 004581320.1 XM 004645617.2 XM 004395657.1 XM 004284305.2 NM 001127627.1 XM 007956743.1 NM 001082349.1 AB112591.1 XM 004018534.2 XM 003829435.2 XM_516740

XM 007075434.1
XM 005955745.1
XM 003906878.2
XM 006978532.1
AF055318.1
AF055317.1
XM 007126220.1
XM 002813145.3
XM 006917646.1
NM 033441.1
GQ290314.1
GQ863432.1
GQ290315.1
GQ863434.1
GQ290317.1
XM 003926159.2
XM 003762449.1
AY159786.2
XM 004613232.1
AF309568.1
XM 005333784.1
NM 214221.1
JX103830
GQ290318.1
XM 008047820.1
AF055319.1
XM 006160664.1
NM 001280659.1
AY883926.1
XM_006206787.1
AY883924.1

Mammal RPE65 data set:

Ailuropoda melanoleuca Balaenoptera acutorostrata scammoni Bos mutus Bos taurus Bubalus bubalis Callithrix jacchus Camelus ferus Canis lupus familiaris Capra hircus Cavia porcellus Ceratotherium simum simum Chinchilla lanigera Chlorocebus sabaeus Chrysochloris asiatica Condylura cristata Cricetulus griseus Dasypus novemcinctus Echinops telfairi Elephantulus edwardii Eptesicus fuscus Equus caballus Erinaceus europaeus Felis catus Gorilla gorilla Heterocephalus glaber Homo sapiens Jaculus jaculus Lipotes vexillifer

XM 002924661 XM 007182907 XM_005906391 NM_174453 XM_006052721 XM 002750946 XM 010963423 NM 001003176 XM 005678276 XM_003479100 XM_004431484 XM_005385268 XM_007978338 XM 006862419 XM 004679108 XM 007622486 XM 004483698 XM 004699612 XM 006879787 XM_008139423 XM_001498619 XM 007525692 XM 003990180 XM 004025957 XM 004899378 KJ892021 XM_004671381 XM_007460114

Loxodonta africana	XM_003411238
Macaca mulatta	XM_001095946
Mesocricetus auratus	XM_005086971
Microtus ochrogaster	XM_005357442
Monodelphis domestica	XM_007480405
Mus musculus	NM_029987
Mustela putorius furo	XM_004762993
Myotis brandtii	XM_005861199
Myotis davidii	XM_006770093
Myotis lucifugus	XM_006099228
Nomascus leucogenys	XM_003260179
Ochotona princeps	XM_004588764
Octodon degus	XM_004633990
Odobenus rosmarus divergens	XM_004415169
Orcinus orca	XM_004280749
Ornithorhynchus anatinus	XM_007673238
Orycteropus afer	XM_007959394
Oryctolagus cuniculus	XM_002715929
Ovis aries	XM_004002070
Pan paniscus	XM_003807877
Pan troglodytes	XM_009460457
Pantholops hodgsonii	XM_005978384
Papio anubis	XM_009210604
Peromyscus maniculatus bairdii	XM_006996780
Physeter catodon	XM_007116544
Pongo abelii	XM_002810712
Pteropus alecto	XM_006919310
Rattus norvegicus	AF035673
Saimiri boliviensis	XM_003921428
Sarcophilus harrisii	XM_012547548
Sorex araneus	XM_004607272
Spermophilus tridecemlineatus	XM_005332357
Sus scrofa	XM_003127931
Tarsius syrichta	XM_008048441
Trichechus manatus latirostris	XM_004369044
Tupaia chinensis	XM_006167148
Tursiops truncatus	XM_004331382
Vicugna pacos	XM_006205347

All Pathogenic Sites Confirmed Pathogenic Sites Vert Mamm Human Vert Mamm Human References Kaushal & Khorana, 1994 Kaushal et al., 1994 Sung et al., 1991; Kaushal & Khorana, 1994; Kaushal et al., Sung et al., 1991; 1993; Olsson et al., 1992; Kaushal & Khorana, 1994; McKibbin et al., 2007 Kaushal & Khorana, 1994 Andrés et al., 2003; Bosch et al., 2003; Piechnick et al., 2012 Matias-Florentino et al., 2009, but see Vincent et al., 2013 Kaushal & Khorana, 1994; Hwa et al., 1997; Bosch et al., 2003; Bosch-Presegué et al., 2011 Sung et al., 1993 Min et al., 1993 Shi et al., 1995 Sung et al., 1991; Kaushal & Khorana, 1994; Bosch et al., 2003 Audo et al., 2010 Hwa et al., 1997;Sung et al., 1991; Bosch et al., 2003 Rao et al., 1994; Gross et al., 2003b; Bosch-Presegué et al., 2011; Toledo et al., 2011; Singhal et al., 2013 Gross et al., 2003a; 2003b; Janz & Farrens, 2004; Piechnick et al., 2012 Sung et al., 1991; Kaushal & Khorana, 1994 Karnik et al., 1988; Hwa et al., 1999; Krebs et al., 2010 Dryja et al., 2000a Sung et al., 1993; Garriga et al., 1996 Garriga et al., 1996 Sakmar et al., 1989; Weitz & Nathans, 1993; Min et al., 1993; Sung et al., 1993; Acharya & Karnik, 1996 Andrés et al., 2003 Natochin et al., 2003; Yamashita et al., 2000 Zhu et al., 2006; Zhang et al., 2012 Kartasasmita et al., 2011 Hwa et al., 1997 Dryja et al., 1991; Sung et al., 1993; Kaushal & Khorana, 1994; Breikers et al., 2002 Antiñolo et al., 1994; Dryja et al., 1991; Sung et al., 1993; Kaushal & Khorana, 1994; Vaithinathan et al., 1994 Sung et al., 1991; Kaushal & Khorana, 1994 Iannaccone et al., 2006 Dryja et al., 1991; Sung et al., 1993; Kaushal & Khorana, 1994; Yan et al., 2002; Lewis et al., 2004; Janz & Farrens, 2004; Lüdeke et al., 2005; Feldman et al., 2012 Fishman et al., 1992; Sung et al., 1993 Dryja et al., 2000 Karnik et al., 1988; McKibbin et al., 2007 Liu et al., 2013; Sung et al., 1993; Kaushal & Khorana, 1994; Janz & Farrens, 2004; Yan et al., 2007; Liu et al., 2011; Piechnick et al., 2012 Hwa et al., 1999;Karnik et al., 1988 Dryja et al., 1991; Sung et al., 1993; Kaushal & Khorana, 1994 Sung et al., 1991; Kaushal & Khorana, 1994; Janz et al., 2003; Liu et al., 2013 Aguilà et al., 2009; Piechnick et al., 2012 Weitz & Nathans, 1992; Sung et al., 1993; Kaushal & Khorana, 1994; Hwa et al., 1997; Lewis et al., 2006 Kaushal & Khorana, 1994 Rosenfeld et al., 1995

Supplemental table 2. Rhodopsin disease sites found in various mutation databases (OMIM, dbSNP, UniProt, HGMD) used in analyses. Vertebrate, mammal, and human amino acid numberings are listed. RHO disease sites confirmed to be pathogenic via *in vitro* or family co-segregating studies are also listed with references.

All	Pathogenic	Sites	53 Confirmed Pathogenic Sites						
Vert	Mamm	Human	Vert	Mam	Human	Reference			
176	176	176	292	292	292	Weitz & Nathans, 1992; Dryja et al., 1993; Jin et al., 2003			
178	178	178	296	296	296	Robinson et al., 1992; Kaushal & Khorana, 1994			
179	179	179	297	297	297	Hwa et al., 1997			
180	180	180	343	341	341	Zhao et al., 2001			
181	181	181	349	347	342	Scott et al., 1993			
182	182	182	350	348	343	Zhang et al., 1997			
184	184	184	351	349	344	Concepcion & Chen, 2010			
185	185	185	352	350	345	Dryja et al., 1991			
186	186	186	354	352	347	Berson et al., 1991; Sung et al., 1991; Li et al., 1996; Banin et al., 1999			
187	187	187							
188	188	188							
190	190	190							
193	193	193							
207	207	207							
209	209	209							
211	211	211							
215	215	215							
216	216	216							
220	220	220							
222	222	222							
249	249	249							
252	252	252							
267	267	267							
270	270	270							
284	284	284							
289	289	289							
292	292	292							
295	295	295							
296	296	296							
297	297	297							
311	311	311							
312	312	312							
328	328	328							
343	341	341							
349	347	342							
350	348	343							
351	349	344							
352	350	345							
353	351	346							
354	352	347							

Supplemental table 3. RPE65 pathogenic sites found in various mutation databases (OMIM, dbSNP, UniProt, HGMD) used in analyses. Vertebrate, mammal, and human amino acid numberings are consistent.

All dis	ease sites
Human	Human
1	417
6	431
22	434
25	435
32	436
40	443
44	452
60	457
64	460
68	462
70	470
79	473
85	515
91	528
95	533
101	
102	
104	
118	
124	
132	
144	
148	
162	
167	
182	
205	
215	
234	
239	
244	
249	
251	
287	
294	
303	
313	
318	
321	
330	
341	
343	
360	
363	
368	
370	
393	
402	
403	
407	
408	
700	

Tree	Model	np	lnL	k		Pa	arameters		Null	LRT	df	Р
Vertebrate	M0	199	-25222.6	2.52			0.05538		n/a			
	M1a	200	-24968.5	2.67	р:	0.935	0.065		M0	508.0	1	0.0000
					w:	0.045	1.000					
	M2a	202	-24968.5	2.67	р:	0.935	0.065	0.000	M1a	0.0	2	1.0000
					w:	0.045	1.000	5.230				
	M3	203	-24324.9	2.53	р:	0.628	0.268	0.105	M0	1795.4	4	0.0000
					w:	0.007	0.095	0.313				
	M7	200	-24306.5	2.53	р:	0.267	q:	3.279	n/a			
	M8a	201	-24301.0	2.53	р:	0.281	q:	3.955	n/a			
					p1:	0.006	w:	1.000				
	M8	202	-24301.0	2.53	р:	0.281	q:	3.955	M7	11.0	2	0.0042
					p1:	0.006	w:	1.000	M8a	0.0	1	1.0000
Mammal	M0	213	-18022.4	4.19			0.04136		n/a			
	M1a	214	-17762.4	4.38	p:	0.959	0.041		M0	520.0	1	0.0000
					w:	0.032	1.000					
	M2a	216	-17762.4	4.38	р:	0.959	0.000	0.041	M1a	0.0	2	1.0000
					w:	0.032	1.000	1.000				
	M3	217	-17324.0	4.29	р:	0.767	0.194	0.039	M0	1396.9	4	0.0000
					w:	0.006	0.130	0.463				
	M7	214	-17319.8	4.28	р:	0.163	q:	2.032	n/a			
	M8	216	-17319.8	4.28	р:	0.163	q:	2.032	M7	0.0	2	1.0000
					p1:	0.000	w:	1.000				

Supplemental table 4. Random sites (PAML) analyses for RHO based on the Bayesian vertebrate and mammal trees

Note: np, number of parameters; ln L, ln likelihood; κ , transition/transversion ratio; df, degrees of freedom. For models M7-M8, p and q describe the shape of the beta distribution, and ω_p refers to the positively selected site class (with proportion in parentheses) for models M8 and M8a (where it is constrained to one).

Tree	Model	np	lnL	k]	Parameters		Null	LRT	df	Р
Vertebrate	M0	222	-41156.4	2.09			0.06459		n/a			
	M1a	223	-40986.4	2.09	p:	0.972	0.028		M0	339.9	1	0.0000
					w:	0.060	1.000					
	M2a	225	-40986.4	2.19	р:	0.972	0.028	0.000	Mla	0.0	2	1.0000
					w:	0.060	1.000	999.000				
	M3	226	-40188.4	2.09	р:	0.513	0.345	0.142	M0	1935.9	4	0.0000
					w:	0.007	0.086	0.254				
	M7	223	-40170.4	2.09	р:	0.397	q :	4.698	n/a			
	M8a	224	-40159.8	2.09	р:	0.408	q:	5.155	n/a			
					p1:	0.002	w:	1.000				
	M8	225	-40159.0	2.09	р:	0.408	q :	5.143	M7	22.7	2	0.0000
					p1:	0.002	w:	1.350	M8a	1.5	1	0.2146
Mammal	M0	125	-16164.7	2.99			0.05513		n/a			
	M1a	126	-16063.6	3.18	р:	0.955	0.045		M0	202.2	1	0.0000
					w:	0.040	1.000					
	M2a	128	-16063.6	3.17	р:	0.955	0.045	0.000	M1a	0.0	2	1.0000
					w:	0.040	1.000	6.196				
	M3	129	-15913.5	2.99	р:	0.735	0.206	0.059	M0	502.4	4	0.0000
					w:	0.008	0.136	0.406				
	M7	126	-15914.4	2.99	р:	0.210	q :	3.051	n/a			
	M8	128	-15914.2	2.99	p:	0.213	q:	3.184	M7	0.5	2	0.7922
					p1:	0.001	w:	1.000				

Supplemental table 5. Random sites (PAML) analyses for RPE65 based on the Bayesian vertebrate and mammal trees

Note: np, number of parameters; ln L, ln likelihood; κ , transition/transversion ratio; df, degrees of freedom. For models M7-M8, p and q describe the shape of the beta distribution, and ω_p refers to the positively selected site class (with proportion in parentheses) for models M8 and M8a (where it is constrained to one).

Supplemental table 6. Vertebrate RHO and RPE65 all pathogenic vs. non-pathogenic d_N/d_S site estimates produced by FUBAR, FEL and M8 compared with Mann-Whitney tests

Tree	Gene	Molecular evolutionary analysis	Pathogenic site N	Non- pathogenic site N	Pathogenic Mean Rank ²	Non- pathogenic Mean Rank ²	U	Z	р
	RHO	FUBAR	84	271	34.99	143	8853	-3.077	0.0021
ML	RHO	FEL^1	81	261	33.98	137.5	8301	-3.037	0.0024
	RHO	M8	84	271	37.02	141	9657	-2.417	0.0156
	RPE65	FUBAR	66	467	26.17	240.8	11740	-3.136	0.0017
ML	RPE65	FEL^1	66	465	25.37	240.6	11260	-3.582	0.0003
	RPE65	M8	66	467	26.72	240.3	12030	-3.222	0.0013
	RHO	FUBAR	84	271	34.89	143.1	8817	-3.121	0.0018
Bayes	RHO	FEL^1	81	260	33.88	137.1	8234	-3.082	0.0021
	RHO	M8	84	271	37.37	140.6	9695	-2.490	0.0128
Bayes	RPE65	FUBAR	66	467	26.33	240.7	11830	-3.061	0.0022
	RPE65	FEL^1	66	465	25.58	240.4	11370	-3.487	0.0005
	RPE65	M8	66	467	26.84	240.2	12090	-3.168	0.0015

1. FEL d_N/d_S site estimates for all datasets were corrected to remove undefined and infinite values before Mann-Whitney tests.

2. Mann-Whitney U statistics were calculated for pathogenic vs non-pathogenic d_N/d_S mean ranks for all RHO and RPE65 datasets.

Supplemental table 7. Results of Mann-Whitney tests between FUBAR-estimated d_N/d_S of pathogenic vs non pathogenic sites.

Tree	Gene	Pathogenic sites	Dataset	Pathogenic site N	Non- pathogenic site N	Pathogenic Mean Rank	Non- Pathogenic Mean Rank	U	Z	р
	RHO	Confirmed	Vertebrate	53	302	17.54	160.5	4795	-4.655	0.0000
	RHO	Confirmed	Mammal	53	302	20.08	156.9	5657	-3.347	0.0008
MI	RHO	All	Vertebrate	84	271	34.99	143	8853	-3.077	0.0021
IVIL	RHO	All	Mammal	84	269	36.67	140.3	9374	-2.356	0.0185
	RPE65	All	Vertebrate	66	467	26.17	240.8	11740	-3.136	0.0017
	RPE65	All	Mammal	66	467	29.61	237.4	13570	-1.569	0.1166
	RHO	Confirmed	Vertebrate	53	302	17.47	160.5	4770	-4.691	0.0000
	RHO	Confirmed	Mammal	53	302	20.11	156.9	5667	-3.333	0.0009
Bayes	RHO	All	Vertebrate	84	271	34.89	143.1	8817	-3.121	0.0018
Bayes	RHO	All	Mammal	84	269	36.7	140.3	9384	-2.344	0.0191
	RPE65	Full	Vertebrate	66	467	26.33	240.7	11830	-3.061	0.0022
	RPE65	Full	Mammal	66	467	29.6	237.4	13560	-1.577	0.1148

Tree	Gene	Pathogenic Sites	Dataset	Pathogenic site N	Non- pathogenic site N	Pathogenic Mean Rank	Non- Pathogenic Mean Rank	U	Z	р
	RHO	Confirmed	Vert	53	302	21.89	156.1	6339	-2.414	0.0158
М	RHO	Confirmed	Mamm	53	302	22.05	155	6352	-2.333	0.0197
	RHO	All	Vert	84	271	39.38	138.6	10410	-1.181	0.2376
IVIL	RHO	All	Mamm	84	269	38.69	138.3	10090	-1.480	0.1388
	RPE65	All	Vert	66	467	27.12	239.9	12240	-2.705	0.0068
	RPE65	All	Mamm	66	467	30.71	236.3	14160	-1.068	0.2854
	RHO	Confirmed	Vert	53	302	21.69	156.3	6271	-2.514	0.0120
	RHO	Confirmed	Mamm	53	302	22.09	154.9	6367	-2.311	0.0208
Davias	RHO	All	Vert	84	271	39.15	138.9	10330	-1.283	0.1996
вayes	RHO	All	Mamm	84	269	38.68	138.3	10080	-1.488	0.1367
	RPE65	All	Vert	66	467	26.98	240	12170	-2.767	0.0057
	RPE65	All	Mamm	66	467	30.72	236.3	14160	-1.066	0.2862

Supplemental table 8. Results of Mann-Whitney tests between FEL estimated d_N - d_S of pathogenic vs non pathogenic sites.

Supplemental table 9. Vertebrate RHO disease vs. non-disease *dN* and *dS* site estimates calculated from FUBAR.

Tree	Gene	Pathogenic Sites	Metric	Pathogenic site N	Non- pathogenic site N	Pathogenic Mean Rank	Non- pathogenic Mean Rank	U	Z	р
ML	RHO	Confirmed	dN	53	302	18.41	159.6	5103	-4.208	0.0000
	RHO	Confirmed	dS	53	302	30.81	147.2	6500	-2.180	0.0293
	RHO	All	dN	84	271	34.86	143.1	8806	-3.134	0.0017
	RHO	All	dS	84	271	43.19	134.8	11000	-0.464	0.6425
	RPE65	All	dN	66	467	27.61	239.4	12510	-2.479	0.0132
	RPE65	All	dS	66	467	38.17	228.8	12690	-2.324	0.0201
Bayes	RHO	Confirmed	dN	53	302	18.41	159.6	5102	-4.209	0.0000
	RHO	Confirmed	dS	53	302	30.81	147	6441	-2.266	0.0235
	RHO	All	dN	84	271	34.86	143.1	8806	-3.134	0.0017
	RHO	All	dS	84	271	43.19	134.5	10900	-0.588	0.5563
	RPE65	All	dN	66	467	27.61	239.2	12620	-2.384	0.0171
	RPE65	All	dS	66	467	38.17	228.7	12610	-2.391	0.0168

- ACHARYA S & KARNIK SS (1996). Modulation of GDP release from transducin by the conserved Glu134-Arg135 sequence in rhodopsin. *Journal of Biological Chemistry* **271**, 25406–25411.
- AGUILÀ M, TOLEDO D, MORILLO M, DOMINGUEZ M, VAZ B, ALVAREZ R, DE LERA AR & GARRIGA P (2009). Structural coupling of 11-cis-7-methyl-retinal and amino acids at the ligand binding pocket of rhodopsin. *Photochemistry and Photobiology* **85**, 485–493.
- ANDRÉS A, GARRIGA P & MANYOSA J (2003). Altered functionality in rhodopsin point mutants associated with retinitis pigmentosa. *Biochemical and Biophysical Research Communications* **303**, 294–301.
- ANTIÑOLO G, SÁNCHEZ B, BORREGO S, RUEDA T, CHAPARRO P & CABEZA JC (1994). Identification of a new mutation at codon 171 of rhodopsin gene causing autosomal dominant retinitis pigmentosa. *Human Molecular Genetics* **3**, 1421.
- AUDO I, FRIEDRICH A, MOHAND-SAÏD S, LANCELOT M-E, ANTONIO A, MOSKOVA-DOUMANOVA V, POCH O, BHATTACHARYA S, SAHEL J-A & ZEITZ C (2010). An unusual retinal phenotype associated with a novel mutation in RHO. Archives of Ophthalmology 128, 1036–1045.
- BANIN E, CIDECIYAN AV, ALEMAN TS, PETTERS RM, WONG F, MILAM AH & JACOBSON SG (1999). Retinal rod photoreceptor-specific gene mutation perturbs cone pathway development. *Neuron* 23, 549–557.
- BERSON EL, ROSNER B, SANDBERG MA, WEIGEL-DIFRANCO C & DRYJA TP (1991). Ocular findings in patients with autosomal dominant retinitis pigmentosa and rhodopsin, proline-347-leucine. *American Journal of Ophthalmology* **111**, 614–623.
- BOSCH L, RAMON E, DEL VALLE LJ & GARRIGA P (2003). Structural and functional role of helices I and II in rhodopsin: A novel interplay evidenced by mutations at gly-51 and gly-89 in the transmembrane domain. *Journal of Biological Chemistry* **278**, 20203–20209.
- BOSCH-PRESEGUÉ L, RAMON E, TOLEDO D, CORDOMÍ A & GARRIGA P (2011). Alterations in the photoactivation pathway of rhodopsin mutants associated with retinitis pigmentosa. *FEBS Journal* **278**, 1493–1505.
- BREIKERS G, PORTIER-VANDELUYTGAARDEN MJM, BOVEE-GEURTS PHM & DEGRIP WJ (2002). Retinitis pigmentosa-associated rhodopsin mutations in three membranelocated cysteine residues present three different biochemical phenotypes. *Biochemical and Biophysical Research Communications* 297, 847–853.
- CONCEPCION F & CHEN J (2010). Q344ter Mutation Causes Mislocalization of Rhodopsin Molecules That Are Catalytically Active: A Mouse Model of Q344ter-Induced Retinal Degeneration ed. Lewin A. *PLoS ONE* **5**, e10904–e10914.
- DRYJA TP, BERSON EL, RAO VR & OPRIAN DD (1993). Heterozygous missense mutation in the rhodopsin gene as a cause of congenital stationary night blindness. *Nature Genetics* **4**, 280–283.

- DRYJA TP, HAHN LB, COWLEY GS, MCGEE TL & BERSON EL (1991). Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa. *Proceedings of the National Academy of Sciences U.S.A.* **88**, 9370–9374.
- DRYJA TP, MCEVOY JA, MCGEE TL & BERSON EL (2000). Novel rhodopsin mutations Gly114Val and Gln184Pro in dominant retinitis pigmentosa. *Investigative Ophthalmology & Visual Science* **41**, 3124–3127.
- FELDMAN T, OSTROVSKY M & KHOLMURODOV K (2012). Model of Abnormal chromophore-protein interaction for E181K rhodopsin mutation: computer Molecular dynamics s tudy. *The Open Biochemistry Journal* **6**, 94–102.
- FISHMAN GA, STONE EM, SHEFFIELD VC, GILBERT LD & KIMURA AE (1992). Ocular findings associated with rhodopsin gene codon 17 and codon 182 transition mutations in dominant retinitis pigmentosa. *Archives of Ophthalmology* **110**, 54–62.
- GARRIGA P, LIU X & KHORANA HG (1996). Structure and function in rhodopsin: correct folding and misfolding in point mutants at and in proximity to the site of the retinitis pigmentosa mutation Leu-125-->Arg in the transmembrane helix C. *Proceedings of the National Academy of Sciences U.S.A.* **93**, 4560–4564.
- GROSS AK, RAO VR & OPRIAN DD (2003*a*). Characterization of rhodopsin congenital night blindness mutant T94I. *Biochemistry* **42**, 2009–2015.
- GROSS AK, XIE G & OPRIAN DD (2003*b*). Slow binding of retinal to rhodopsin mutants G90D and T94D. *Biochemistry* **42**, 2002–2008.
- HWA J, GARRIGA P, LIU X & KHORANA HG (1997). Structure and function in rhodopsin: packing of the helices in the transmembrane domain and folding to a tertiary structure in the intradiscal domain are coupled. *Proceedings of the National Academy of Sciences U.S.A.* **94**, 10571–10576.
- HWA J, REEVES PJ, KLEIN-SEETHARAMAN J, DAVIDSON F & KHORANA HG (1999). Structure and function in rhodopsin: further elucidation of the role of the intradiscal cysteines, Cys-110, -185, and -187, in rhodopsin folding and function. *Proceedings* of the National Academy of Sciences U.S.A. **96**, 1932–1935.
- IANNACCONE A, MAN D, WASEEM N, JENNINGS BJ, GANAPATHIRAJU M, GALLAHER K, REESE E, BHATTACHARYA SS & KLEIN-SEETHARAMAN J (2006). Retinitis pigmentosa associated with rhodopsin mutations: Correlation between phenotypic variability and molecular effects. *Vision Research* **46**, 4556–4567.
- JANZ JM & FARRENS DL (2004). Role of the retinal hydrogen bond network in rhodopsin schiff base stability and hydrolysis. *Journal of Biological Chemistry* **279**, 55886–55894.
- JANZ JM, FAY JF & FARRENS DL (2003). Stability of dark state rhodopsin is mediated by a conserved ion pair in intradiscal loop E-2. *Journal of Biological Chemistry* **278**, 16982–16991.

- JIN S, CORNWALL MC & OPRIAN DD (2003). Opsin activation as a cause of congenital night blindness. *Nature Neuroscience* **6**, 731–735.
- KARNIK SS, SAKMAR TP, CHEN HB & KHORANA HG (1988). Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. *Proceedings of the National Academy of Sciences U.S.A* 85, 8459–8463.
- KARTASASMITA A, FUJIKI K, ISKANDAR E, SOVANI I, FUJIMAKI T & MURAKAMI A (2011). A novel nonsense mutation in Rhodopsin gene in two Indonesian Families with Autosomal Recessive Retinitis Pigmentosa. *Ophthalmic Genetics* **32**, 57–63.
- KAUSHAL S & KHORANA HG (1994). Structure and function in rhodopsin. 7. Point mutations associated with autosomal dominant retinitis pigmentosa. *Biochemistry*; 33, 6121-6128.
- KAUSHAL S, RIDGE KD & KHORANA HG (1994). Structure and function in rhodopsin: the role of asparagine-linked glycosylation. *Proceedings of the National Academy of Sciences U.S.A.* **91**, 4024–4028.
- KREBS MP, HOLDEN DC, JOSHI P, CLARK CL III, LEE AH & KAUSHAL S (2010). Molecular mechanisms of rhodopsin retinitis pigmentosa and the efficacy of pharmacological rescue. *Journal of Molecular Biology* **395**, 1063–1078.
- LEWIS JW, SZUNDI I, KAZMI MA, SAKMAR TP & KLIGER DS (2004). Time-resolved photointermediate changes in rhodopsin glutamic acid 181 mutants. *Biochemistry* **43**, 12614–12621.
- LEWIS JW, SZUNDI I, KAZMI MA, SAKMAR TP & KLIGER DS (2006). Proton movement and photointermediate kinetics in rhodopsin mutants. *Biochemistry* **45**, 5430–5439.
- LI T, SNYDER WK, OLSSON JE & DRYJA TP (1996). Transgenic mice carrying the dominant rhodopsin mutation P347S: evidence for defective vectorial transport of rhodopsin to the outer segments. *Proceedings of the National Academy of Sciences* U.S.A. **93**, 14176–14181.
- LIU J, LIU MY, NGUYEN JB, BHAGAT A, MOONEY V & YAN ECY (2011). Thermal properties of rhodopsin: Insight into the molecular mechanism of dim-light vision. *Journal of Biological Chemistry* **286**, 27622–27629.
- LIU MY, LIU J, MEHROTRA D, LIU Y, GUO Y, BALDERA-AGUAYO PA, MOONEY VL, NOUR AM & YAN ECY (2013). Thermal stability of rhodopsin and progression of retinitis pigmentosa: comparison of S186W and D190N rhodopsin mutants. *Journal of Biological Chemistry* 288, 17698–17712.
- LÜDEKE S, BECK M, YAN ECY, SAKMAR TP, SIEBERT F & VOGEL R (2005). The role of Glu181 in the photoactivation of rhodopsin. *Journal of Molecular Biology* 353, 345– 356.
- MATIAS-FLORENTINO M, AYALA-RAMIREZ R, GRAUE-WIECHERS F & ZENTENO JC (2009). Molecular screening of rhodopsin and peripherin/RDS genes in Mexican families with autosomal dominant retinitis pigmentosa. *Current Eye Research* **34**, 1050–1056.

- MCKIBBIN C, TOYE AM, REEVES PJ, KHORANA HG, EDWARDS PC, VILLA C & BOOTH PJ (2007). Opsin stability and folding: The role of Cys185 and abnormal disulfide bond formation in the intradiscal domain. *Journal of Molecular Biology* **374**, 1309–1318.
- MIN KC, ZVYAGA TA, CYPESS AM & SAKMAR TP (1993). Characterization of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. Mutations on the cytoplasmic surface affect transducin activation. *Journal of Biological Chemistry* 268, 9400–9404.
- NATOCHIN M, GASIMOV KG, MOUSSAIF M & ARTEMYEV NO (2003). Rhodopsin Determinants for Transducin Activation: A gain-of-function approach. *Journal of Biological Chemistry* **278**, 37574–37581.
- OLSSON JE, GORDON JW, PAWLYK BS, ROOF D, HAYES A, MOLDAY RS, MUKAI S, COWLEY GS, BERSON EL & DRYJA TP (1992). Transgenic mice with a rhodopsin mutation (Pro23His): a mouse model of autosomal dominant retinitis pigmentosa. *Neuron* **9**, 815–830.
- PIECHNICK R, RITTER E & HILDEBRAND PW (2012). Effect of channel mutations on the uptake and release of the retinal ligand in opsin. *Proceedings of the National Academy of Sciences U.S.A.* **109**, 5247-5252.
- RAO VR, COHEN GB & OPRIAN DD (1994). Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. *Nature* **367**, 639–642.
- ROBINSON PR, COHEN GB, ZHUKOVSKY EA & OPRIAN DD (1992). Constitutively active mutants of rhodopsin. *Neuron* 9, 719–725.
- ROSENFELD PJ, HAHN LB, SANDBERG MA, DRYJA TP & BERSON EL (1995). Low incidence of retinitis pigmentosa among heterozygous carriers of a specific rhodopsin splice site mutation. *Investigative Ophthalmology & Visual Science* **36**, 2186–2192.
- SAKMAR TP, FRANKE RR & KHORANA HG (1989). Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. *Proceedings of the National Academy of Sciences U.S.A.* **86**, 8309–8313.
- SCOTT K, SIEVING PA & BINGHAM E (1993). Rhodopsin mutations associated with autosomal-dominant retinitis-pigmentosa. *American Journal of Human Genetics* **53**, 147.
- SHI W, OSAWA S, DICKERSON CD & WEISS ER (1995). Rhodopsin mutants discriminate sites important for the activation of rhodopsin kinase and G_t. *Journal of Biological Chemistry* 270, 2112–2119.
- SINGHAL A, OSTERMAIER MK, VISHNIVETSKIY SA, PANNEELS V, HOMAN KT, TESMER JJG, VEPRINTSEV D, DEUPI X, GUREVICH VV, SCHERTLER GFX & STANDFUSS J (2013). Insights into congenital stationary night blindness based on the structure of G90D rhodopsin. *Nature Publishing Group* 14, 520–526.
- SUNG CH, DAVENPORT CM & NATHANS J (1993). Rhodopsin mutations responsible for autosomal dominant retinitis pigmentosa. Clustering of functional classes along the

polypeptide chain. Journal of Biological Chemistry 268, 26645-26649.

- SUNG CH, SCHNEIDER BG, AGARWAL N, PAPERMASTER DS & NATHANS J (1991). Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. *Proceedings of the National Academy of Sciences U.S.A.* **88**, 8840–8844.
- TOLEDO D, RAMON E, AGUILÀ M, CORDOMÍ A, PÉREZ JJ, MENDES HF, CHEETHAM ME & GARRIGA P (2011). Molecular mechanisms of disease for mutations at Gly-90 in rhodopsin. *Journal of Biological Chemistry* **286**, 39993–40001.
- VAITHINATHAN R, BERSON EL & DRYJA TP (1994). Further screening of the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa. *Genomics* **21**, 461–463.
- VINCENT AL, CARROLL J, FISHMAN GA, SAUER A, SHARP D, SUMMERFELT P, WILLIAMS V, DUBIS AM, KOHL S & WONG F (2013). Rhodopsin F45L allele does not cause Autosomal Dominant Retinitis Pigmentosa in a large Caucasian family. *Translational Vision Science and Technology* 2, 4.
- WEITZ CJ & NATHANS J (1992). Histidine residues regulate the transition of photoexcited rhodopsin to its active conformation, metarhodopsin II. *Neuron* **8**, 465–472.
- WEITZ CJ & NATHANS J (1993). Rhodopsin activation: effects of the metarhodopsin Imetarhodopsin II equilibrium of neutralization or introduction of charged amino acids within putative transmembrane regions. *Biochemistry* **32**, 14176-14182.
- YAMASHITA T, TERAKITA A & SHICHIDA Y (2000). Distinct roles of the second and third cytoplasmic loops of bovine rhodopsin in G protein activation. *Journal of Biological Chemistry* **275**, 34272–34279.
- YAN E, EPPS J, LEWIS JW & SZUNDI I (2007). Photointermediates of the rhodopsin S186A mutant as a probe of the hydrogen-bond network in the chromophore pocket and the mechanism of counterion switch. *The Journal of Physical Chemistry C* **111**, 8843-8848.
- YAN ECY, KAZMI MA, DE S, CHANG BSW, SEIBERT C, MARIN EP, MATHIES RA & SAKMAR TP (2002). Function of extracellular loop 2 in rhodopsin: glutamic acid 181 modulates stability and absorption wavelength of M etarhodopsin II. *Biochemistry* 41, 3620–3627.
- ZHANG L, SPORTS CD, OSAWA S & WEISS ER (1997). Rhodopsin phosphorylation sites and their role in arrestin binding. *Journal of Biological Chemistry* **272**, 14762–14768.
- ZHANG N, KOLESNIKOV AV, JASTRZEBSKA B, MUSTAFI D, SAWADA O, MAEDA T, GENOUD C, ENGEL A, KEFALOV VJ & PALCZEWSKI K (2012). Autosomal recessive retinitis pigmentosa E150K opsin mice exhibit photoreceptor disorganization. *Journal of Clinical Investigation* 123, 121–137.
- ZHAO K, XIONG S, WANG L & CUI Y (2001). Novel rhodopsin mutation in a Chinese family with autosomal dominant retinitis pigmentosa. *Ophthalmic Genetics* 22, 155–

ZHU L, IMANISHI Y, FILIPEK S, ALEKSEEV A, JASTRZEBSKA B, SUN W, SAPERSTEIN DA & PALCZEWSKI K (2006). Autosomal Recessive Retinitis Pigmentosa and E150K Mutation in the Opsin Gene. *Journal of Biological Chemistry* **281**, 22289–22298.