clear all

nfam=1000;
$\mathrm{bn}=8 ; \mathrm{sn}=3 ;$
$\mathrm{Rf}=[\mathrm{C} ;$
$\mathrm{i}=0 ;$$\quad$ \%Initial number of families

$$
\mathrm{i}=\mathrm{i}+1 \text {; }
$$

$R f=r o u n d\left(r_{a n d}{ }^{*}(b n-s n+1)+(s n-0.5)\right)$; \quad EEqualitily and randomly generate a clique of 3-8 families while $\operatorname{sum}(\mathrm{Rf})<n f a m$ $R f=[R f, r o u n d(r a n d *(b n-s n+1)+(s n-0.5))] ;$ end
end
$\mathrm{E}=[] ;$
\%Used to store all cliques and families
rnfam=1:nfam;
for $\mathrm{i}=1$: length(Rf)
er=rnfam(1:Rf(i));
$E(i, 1$:length(er))=er;
$\operatorname{rnfam}(1: \operatorname{Rf}(\mathrm{i}))=[]$;
end
$E 2=E$;
$\% \% \%$ Find the connection between cliques and store them in matrix F
$s R f=\operatorname{round}\left(R^{*} 0.8\right)$; \quad \%The number of nodes connected by each clique to other cliques
$s R f 0=s R f ;$
suRf=zeros(1,length(sRf)); \quad \%Used to store the sum of the degrees of the columns of F
Rf01=zeros(1,length(sRf)); \quad \%Used to determine whether the degree of each column is equal to $s R F$
$F=z e r o s(l e n g t h(s R f)$,length(sRf)); \%Used to represent the connection matrix between cliques
k=0;
for $\mathrm{i}=1$:length(Rf)-1
if Rf01 $(\mathrm{i})==0$
$\operatorname{IRf01}=$ find(Rf01(i+1:length(Rf01))==0); \%If the element in Rf01 is equal to 0 , the maximum connectivity is not reached if $s R f(i)<s u m(F(i, 1: i))+$ length(IRf01)
ran=randperm(length(IRf01),sRf(i)-sum(F(i,1:i))); \%Find the order of nodes that can be selected rm=IRf01 (ran) +i ; \quad \%Find the node that can be selected
$\operatorname{suRf}(r m)=\operatorname{suRf}(r m)+1 ; \quad$ \%Update uRf
Rf01=sRf==suRf; \quad \%UpdateRf01
$\mathrm{F}(\mathrm{i}, \mathrm{rm})=1 ; \mathrm{F}(\mathrm{rm}, \mathrm{i})=1 ; \quad$ \%UpdateF
else
Rf01(i)=1;
sRf(i)=sum(F(i,1:i));
$k=k+1$;
end
end

```
find(sRf0-sRf~=0);
```

\%\%\%Establish the final social network, each node represents a family
$\mathrm{G}=[] ; \quad \quad \% \mathrm{G}$ is used to store nodes that need to be changed
for $\mathrm{i}=1$: length(Rf)
$G(i, 1: s R f(i))=E(i$, randperm $(\operatorname{Rf}(i), s R f(i))) ;$
end
\%\%Get the E after updating the same node
ran=ones(length(Rf),1); \quad \%lt is used to store the position that has been replaced
for $\mathrm{i}=1$:length(Rf)-1
$\operatorname{ro}=\operatorname{find}(F(i, i+1$: length $(R f))==1)+i ; \quad \quad$ \%Indicates the line of the family in E that needs to be replaced
for $\mathrm{j}=1$:sRf(i)-ran(i)+1
co=find(E(ro(j),::)==G(ro(j),ran(ro(j)))); \%Co denotes the column to be replaced in E
$\mathrm{E}(\mathrm{ro}(\mathrm{j}), \mathrm{co})=\mathrm{G}(\mathrm{i}, \mathrm{ran}(\mathrm{i}))$;
$\operatorname{ran}(\mathrm{i})=r a n(\mathrm{i})+1$;
$\operatorname{ran}(\mathrm{ro}(\mathrm{j}))=\operatorname{ran}(\mathrm{ro}(\mathrm{j}))+1$;
end
end
\%\%Establish the final matrix H
\%\%Calculating the order of H
eh=[]; \quad \%The matrix E is transformed into row vector and stored in eh
for $\mathrm{i}=1$: length(Rf)
$\mathrm{Er}=\mathrm{E}(\mathrm{i},: \mathrm{i}$;
eh=[eh,Er(find(Er>0))];
end
$\mathrm{i}=1$;
while $\mathrm{i}<$ length(eh)

> eh(find $(\mathrm{eh}(i+1:$ length $(\mathrm{eh}))==\mathrm{eh}(\mathrm{i}))+\mathrm{i})=[] ; \quad$ \%eh is a vector with non repeating elements $\mathrm{i}=\mathrm{i}+1$;
end

H=zeros(nfam,nfam);
for $i=1$:length(eh)
$[m, n]=$ find $(E==e h(i))$; \quad \%eh represents the the row of H
$[x, y]=\operatorname{size}(E(m,:))$;
ec=reshape($\left.E(m,:), 1, x^{*} y\right)$;
$\mathrm{ec}($ find $(\mathrm{ec}==0))=[] ; \mathrm{ec}($ find $(\mathrm{ec}==\mathrm{eh}(\mathrm{i})))=[] ; \quad \% \mathrm{e} 0$ represents the a column of H $\mathrm{H}(\mathrm{eh}(\mathrm{i}), \mathrm{ec})=1 ; \mathrm{H}(\mathrm{ec}, \mathrm{eh}(\mathrm{i}))=1$;
end
\%\%Collecting the relatives by marriage
$i=1$;

```
while sum(F(i,i+1:length(Rf)))>0
    rc=find(F(i,i+1:length(Rf))>0)+i;
    EL=E([i,rc],:);
    su=sum(F(i,i+1:length(Rf))>0);
    n=round((su-1)/2);
    ran=round(rand(1,n)*su+0.5);
for j=1:n
        ELr=EL([1,ran(j)+1],:); %ELR denotes the clique connected to the first clique in EL
            u=0; %Set the condition for finding two cliques with the same element
            k=0; %The position of the element in ELr1
                while u==0
            %fc denotes the clique connected to the i-th clique
                                    %El denotes all cliques connected to clique i
                                    %su is the clique coefficient connected to the ith clique
                                    %ran represents a row randomly selected from EL
                                    %Find the same elements in ELr
                    k=k+1;
                ELr1=ELr(1,:);ELr2=ELr(2,:);
                f=find(ELr2==ELr1(k));
                u=sum(f);
            end
            r1=E(i,:); r2=E(rc(ran(j)),:);
            r1(find(r1==ELr1(k)))=[]; r1=r1(find(r1)>0);
            r2(find(r2==ELr2(f)))=[]; r2=r2(find(r2)>0);
            ran1=r1(round(rand*length(r1)+0.5));
            ran2=r2(round(rand*length(r2)+0.5));
            H(ran1,ran2)=1;H(ran2,ran1)=1;
end
i=i+1;
end
\%Remove the unconnected nodes from the network
\(\mathrm{H}(\) find \((\operatorname{sum}(\mathrm{H})==0),:)=[] ;\)
\(H(:\), find \((\operatorname{sum}(H)==0))=[]\);
```

