clear all
$\% \% R R$ is the matrix of all cliques
$\% \% \mathrm{H}$ is the adjacency matrix
$\% \% \mathrm{M}$ is the corresponding matrix of family and family members
$\% \% \%$ Start to build family dinner
\%\%Search the family relationship matrix
Q=[];
$R 3=R R($ find (sum $(R R>0,2)==3),:$); \quad \%Search cliques with 3 families
[$m, n]=s i z e(R 3)$;
for $\mathrm{i}=1$:m
$R D=R R ;$
$r=R D(i,:) ;$
RD(i,:)=[];
pd=[];
for $\mathrm{j}=1: 3$
$[x, y]=f i n d(R D==r(j))$;
$\mathrm{pd}=\left[\mathrm{pd}, \mathrm{x}^{\prime}\right] ;$
end
$\mathrm{k}=0$;
su=0;

\%Restore RD to RR

\%Temporary storage of cliques to be tested
\%The original matrix RR removes the rows to be tested
\%Used to store families in cliques
while $\mathrm{k}<$ length (pd)
$k=k+1$;
$\mathrm{pd} 1=\mathrm{pd}(\mathrm{k}+1$: length(pd) $)$;
su=su+sum(pd1==pd(k));
$\operatorname{pd}($ find $(p d 1==\operatorname{pd}(\mathrm{k}))+\mathrm{k})=[] ;$
end
if $s u==2$
$\mathrm{Q}=[\mathrm{Q} ; \mathrm{R} 3(\mathrm{i},:)] ;$
end
end
\%\%Set up families in each clique to join the dinner party
$R D=R R ;$
$\mathrm{p}=0.7$; \quad \%The probability of each family having a feast every day
$[m, n]=\operatorname{size}(H)$; $\quad \% m$ is the number of families
prob=binornd $(1, p, 1, m)$; \quad \%If each family have dinner on the same day
RR=RD;
for $\mathrm{j}=1$: length(prob)
[$\mathrm{x}, \mathrm{y}]=$ find ($\mathrm{RR}==\mathrm{j}$);
$r=$ round(rand*length $(x)+0.5$);
row1=x(r); col1=y(r);
$R R($ row 1, col1 $)=j^{*}(\operatorname{prob}(j)==1) ;$
if length $(x)>1$
\%R represents rank
\%Select the row and column of the clique having a feast
\%Join the feast (1), not join the feast (0)

```
                x(r)=[]; y(r)=[];
                row0=x; col0=y;
                for i=1:length(row0)
                    RR(row0(i),colO(i))=0;
                    end
end
end
```

\%\%Get rid of the fact that there are two families in laws having dinner together
\%First, find the clique of the in laws
[$m, n]=\operatorname{size}(Q)$;
$\mathrm{rq}=[]$; \quad \%rq is the serial number of all the families in RD
for $\mathrm{i}=1$:m
$[x, y]=$ find $(R D==Q(i,:)) ;$
$r q=[r q, x(1)] ;$
end
\%Get rid of in laws with two feasts
RE=RR;
RR=RE;
$\mathrm{Rq}=\mathrm{RR}(\mathrm{rq},:)$;
frq=find(sum (Rq>0,2)==2);
$R q=\operatorname{Rq}(f r q,:) ; \quad$ \%Rq is used to store in laws with two feasts
rq2=rq(frq); \quad \%rq2 represents the number of rows in the RR
$m _a x=[] ;$
for $\mathrm{i}=1$:length(rq2)

end
\%\%Remove individual meals

RF=RR;

RR=RF;
fr=find(sum $(R R>0,2)==1)$;
R01 $=$ RR(fr,:);
\%Find the row for families that dine alone
\%A matrix of families dining alone
[m,n]=size(R01);
for $\mathrm{i}=1$:m
r01=R01(i,:);
$\mathrm{sf}=\mathrm{r01}(\mathrm{find}(\mathrm{r01}>0)$); \quad \%Families eating alone
$[x, y]=$ find $(R D==s f)$; $\quad \% X$ is the clique in $R D$ of the family dining alone
$x($ find $(x==f r(i)))=[]$;
$\mathrm{fa}=\mathrm{x}($ find $(\operatorname{sum}(\operatorname{RR}(\mathrm{x},:)>0,2)>0))$; \quad \%fa is the optional clique in $R R$ for the family having dinner alone,
\%which is the remaining clique after removing the empty clique
if length(fa) >0
$\operatorname{Rr}=\operatorname{RR}(\mathrm{fa}($ round $($ rand*length(fa) $)+0.5)),:) ; \quad$ \%One clique of $R \mathrm{RR}$ randomly selected for dinner
$\mathrm{f}=\mathrm{find}(\operatorname{Rr}==0) ;$
$\operatorname{Rr}(\mathrm{f}(1))=\mathrm{sf} ; \quad$
end
$\operatorname{RR}(f r(i),::=0 ;$
end
$R G=R R ;$
RR=RG;
$\mathrm{Rq}=\mathrm{RR}(\mathrm{rq}, \mathrm{F}) ;$
frq=find(sum(Rq>0,2)==2);
$\mathrm{Rq}=\mathrm{Rq}(\mathrm{frq},:)$; \quad \%Rq is used to store in laws with two family dinners
rq2=rq(frq); \quad \%rq2 represents the number of rows in the RR
m_ax=[];
for $i=1$: length $(r q 2)$

\%\%Establish the matrix M of family member relationship
[m, n]=size(H);
$\mathrm{N}=10000$;
$p=[0.2,0.33,0.28,0.19] ;$
$\mathrm{n} 1=$ ones $\left(1, \mathrm{~N}^{*} \mathrm{p}(1)\right)$; $\mathrm{n} 2=o n e s\left(1, \mathrm{~N}^{*} \mathrm{p}(2)\right)^{*} 2 ; \mathrm{n} 3=$ ones $\left(1, \text { round }\left(\mathrm{N}^{*} \mathrm{p}(3)\right)\right)^{*} 3 ; n 4=o n e s\left(1, \mathrm{~N}^{*} \mathrm{p}(4)\right)^{*} 4$;
$N f=[n 1, n 2, n 3, n 4]$;
$\mathrm{m} 2=\mathrm{Nf}(\text { randperm }(\mathrm{N}, \mathrm{m}))^{\prime}$
m3=1:sum(m2);
m4=[];
for $\mathrm{i}=1$: m
$m 4(\mathrm{i}, 1: \mathrm{m} 2(\mathrm{i}))=\mathrm{m} 3(1: \mathrm{m} 2(\mathrm{i}))^{\prime} ;$
$\mathrm{m} 3(1: \mathrm{m} 2(\mathrm{i}))=[$]
end
M=m4;

