Epidemiology and Infection. A unified and flexible modelling framework for the analysis of malaria serology data. Supplementary material. Irene Kyomuhangi *1 and Emanuele Giorgi¹ $^1{\rm CHICAS},$ Lancaster Medical School, Lancaster University, UK $^*{\rm i.kyomuhangi@lancaster.ac.uk}$ $^{^*}$ Corresponding author #### A Additional illustration of the mechanisms underlying the unified mechanistic model ## A.1 Contribution of individuals of different ages to the estimation of transmission parameters λ and γ Figure. S 1: An illustration of how individuals of different ages contribute to estimation of λ and γ for Pf AMA1 through historical time. Data is taken from section 4. a-h and h, as defined by equation 11, represent X-years ago, and the age of the individual X-years ago, respectively. For example in the top right panel, all individuals above 1 year will contribute to the estimation of γ one year ago, however in the bottom right panel, only individuals above 10 years will contribute to the estimation of γ 10 years ago. Note that individuals who contribute to the estimation of γ do so equally, regardless of how old they were at the time, i.e. regardless of the value of h. Also note that the further back in time we estimate γ , the fewer the number individuals, n, contribute to the estimate. #### A.2 Model formulations for the unified mechanistic model #### Time discretization of the RCM Let p(a) be the proportion of seropositive (S^+) individuals at age a. Given that individuals seroconvert from seronegative S^- to S^+ at rate $\lambda(a)$, and serorevert from S^+ to S^- at rate ω , the standard expression of the temporal dynamics in the RCM: $$\frac{dp}{da} = \lambda(a)(1-p(a)) - \omega p(a)$$ We then approximate this as $$\frac{dp}{da} \approx p(a) - p(a-1)$$ Therefore, $$p(a) - p(a-1) = \lambda(a)(1-p(a)) - \omega(a)$$ $$p(a) - p(a-1) = \lambda(a) - (\lambda(a)p(a)) - \omega p(a)$$ $$p(a) + (\lambda(a)p(a)) + \omega p(a) = \lambda(a) + p(a-1)$$ $$p(a)(1+\omega+\lambda(a)) = \lambda(a) + p(a-1)$$ $$p(a) = \frac{1}{1+\omega+\lambda(a)}(\lambda(a)+p(a-1))$$ Assuming $\lambda(0) = 0$, it follows that p(0) = 0 It then follows that, $$p(1) = \frac{1}{1+\omega+\lambda_1}(\lambda_1+0)$$ $$= \frac{\lambda_1}{1+\omega+\lambda_1}$$ $$p(2) = \frac{1}{1+\omega+\lambda_2}(\lambda_2+\frac{\lambda_1}{1+\omega+\lambda_1})$$ $$p(3) = \frac{1}{1+\omega+\lambda_3}\left(\lambda_3+\frac{1}{1+\omega+\lambda_2}\left(\lambda_2+\frac{\lambda_1}{1+\omega+\lambda_1}\right)\right)$$ And more generally, $$p(a) = \sum_{h=1}^{a} \frac{\lambda(h)}{\prod_{k=h}^{a} (1 + \lambda(h-k) + \omega)}$$ #### Time discretization of the AAM Let $\mu(a)$ be geometric mean antibody level of individuals at age a. Assuming anti-malaria antibodies of individuals are boosted at rate $\gamma(a)$ upon exposure, and decay at rate r in the absence of exposure, the standard expression of the temporal dynamics in the AAM: $$\frac{d\mu}{da} = \gamma(a) - r\mu_a$$ We then apply the approximation e approximation $$\frac{d\mu}{da} \approx \mu_a - \mu_{a-1}$$ which leads to $$\mu(a) - \mu_{a-1} = \gamma(a) - r\mu_a$$ $$\mu_a = \frac{1}{1+r} \left(\gamma(a) + \mu_{a-1} \right)$$ Assuming $\gamma(0) = 0$, we have $\mu(0) = 0$ It then follows that, $$\mu(1) = \frac{1}{1+r} \gamma$$ $$\mu(2) = \frac{1}{1+r} \left(\gamma + \left(\frac{1}{1+r} \gamma_1 \right) \right)$$ $$= \frac{1}{1+r} \gamma_2 + \left(\frac{1}{1+r} \right)^2 \gamma_1$$ $$\mu(3) = \frac{1}{1+r} \left(\gamma_3 + \frac{1}{1+r} \gamma_2 + \left(\frac{1}{1+r} \right)^2 \gamma_1 \right)$$ $$= \frac{1}{1+r} \gamma_3 + \left(\frac{1}{1+r} \right)^2 \gamma_2 + \left(\frac{1}{1+r} \right)^3 \gamma_1 \right)$$ And more generally, $$\mu(a) = \sum_{h=1}^{a} \gamma(h) \left(\frac{1}{1+r}\right)^{a-h+1}$$ # B Implementation of the unified mechanistic model in Section 4 ### B.1 Akaike Information Criterion (AIC) comparisons for the implementation of the unified mechanistic model **Table. S 1:** Preliminary analysis of Western Kenya data, comparing the AIC for the empirical model (EM) and unified mechanistic models (UFM) with time-varying λ & constant γ , constant λ & time-varying γ , and different values of ω . | Model | ω | AIC | |---|------------|-----------| | EM | _ | 29711.460 | | UFM, constant λ , time-varying γ | Continuous | 30166.680 | | UFM, time-varying λ , constant γ | Continuous | 29801.920 | | | 0.01 | 29791.910 | | | 0.5 | 29800.680 | | | 1 | 29799.920 |