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ES.1 Methods

ES.1.1 Mechanisms of spatialisation of epidemics and the nature of
importations

We give here more details about the notions summarised in Figure 2 concerning the
spatialisation of epidemics. Also, we make explicit the definitions regarding importations
used in all the work.

Transportation is the actual movement of an infected individual to a new location.
Importation occurs when an infected individual having acquired their infection in one
location arrives in a different location while still infected with the disease. There can
be two outcomes to an importation event; our terminology uses the point of view of
SARS-CoV-2, the ætiological agent of COVID-19.

• An unsuccessful importation is one that does not lead to any further local transmis-
sion. Note that unsuccessful importations usually are not detected. It is possible
that a location will see many unsuccessful importation events before it actually
detects one.

• A successful importation is one that leads to at least one local transmission event,
i.e., where the import case becomes the origin of one or more local transmission
chains.

Amplification is then a critical phase of propagation that typically follows a successful
importation. During amplification, cases multiply within a community, usually expo-
nentially. In view of this, we define the severity of a successful importation as follows.

• A noncritical successful importation results in local chains of transmission that
are not sustained, i.e., a minor outbreak. Case counts remain low before even-
tually dying out. As for unsuccessful importations, some of these local chains of
transmission might go completely unnoticed.
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• A critical successful importation sees sustained local chains of transmission. This
is a major outbreak.

Finally, exportation is the process through which a community that is seeing some local
transmission becomes the source of transportation events. Note that exportation does
not require amplification to be taking place, although amplification does increase the
probability that an individual leaving the community is harbouring the pathogen.

In our classification, exportation and transportation are very closely related. They
are, however, considered as separate processes because they provide different entry points
into the control of the spatial spread of COVID-19. Here, some methods of control of
the spatial spread of an epidemic are listed.

• Acting on transportation involves limiting the number of individuals hailing from
known exporting locations that are allowed to enter one’s jurisdiction. In the case
of COVID-19, this has taken the form of partial or complete travel bans.

• To minimize the chance that, were an importation to occur, it be a successful
one, most jurisdictions imposed a quarantine for travellers inbound from other
locations. Some jurisdictions also implemented entry screening.

• Once successful importations occur, jurisdictions used a variety of non-pharmaceutical
interventions (NPI) to limit spread, i.e., curtail the amplification phase.

ES.1.2 Structure of the epidemiological model

The structure of the epidemiological model is a slight modification of the SLIAR model
in [1], itself a modified version of the SLIAR model in [2]. However, we use a reinter-
pretation of the terms of the model to better correspond to the reality of COVID-19,
although we keep the notation as in the papers above for simplicity. In short, rather than
symptomatic and asymptomatic infections as in classical SLIAR models, we consider in-
fections that are detected and undetected. In the perspective of response to a crisis,
using a case detection-based definition allows to tailor model outputs to the situation
in the location under consideration. We denote I the detected individuals and A the
undetected ones. Detected infections are those that, at some point during the course of
their infection or after death are identified through testing and are classified as confirmed
cases in most of the data available online; the remainder of infections are undetected.
Both detected and undetected infections can be symptomatic or asymptomatic cases.
For instance, with low testing, some symptomatic cases might go undetected. Likewise,
in the case of proper contact tracing, some asymptomatic cases may be detected.

The flow diagram is as shown in Figure ES.1: susceptible individuals, upon infection,
move to the latent compartment. Incubation and latent periods are assumed to overlap.
When their latent period is over, individuals can either progress to a detected infection
or an undetected one. (Returning to a biological rather than observational definition of
cases, it is generally assumed that in practice, there are more symptomatically infected
individuals who are detected and more asymptomatic individuals who are undetected.)
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Figure ES.1: Flow diagram of the SL1L2I1I2A1A2RIRAD model. Φ = β(I1+I2+ξ(A1+
A2) + ηL2) is the force of infection. Blue compartments are observable
(detected), with I1 and I2 usually indistinguishable and observed as I1+I2.

At the end of the infectious period, individuals are removed ; they no longer spread the
disease.

As in [1], there are two each of the latent, detected infectious and undetected infectious
compartments. This is so that the time of sojourn in these disease states is Erlang dis-
tributed; see ES.2.3. Also, the force of infection Φ includes contributions not only from
detected infectious I and undetected infectious A individuals but also from individuals in
L2. This is to accommodate observations of pre-symptomatic COVID-19 infections [3].
Finally, contrary to [1], the removed compartment is further subdivided into compart-
ments for individuals having recovered from detected and undetected infections, RI and
RA, respectively, and those having died from the disease, D.

The case detection-based model we use here implies that some of the model parameters
in [1] need to be reinterpreted. The mean duration of the incubation period, 2/ε, is
unchanged from the original SLIAR model; so is the mean duration 2/γ of the infectious
period. The parameter δ ∈ [0, 1] is the fatality ratio for detected cases, or, in other
words, the case fatality ratio. Detection occurs for a fraction 1 − π ∈ [0, 1] of cases.
Finally, η and ξ are modifiers of infectiousness due to being in late stage incubation and
undetected, respectively.

Some remarks are in order concerning some of these parameters. First, concerning π,
the fraction of cases undetected. Here, we think of detection as occurring throughout the
course of the infection, not just at the end of the incubation period. This means that, in
principle, there should be flows from the undetected compartments to the detected ones,
e.g., from A1 to I2. However, our focus here is on the role of non-detection in the risk
of importing COVID-19 cases, not on the specific role of testing. As a consequence, it is
sufficient to make a phenomenological description of testing. A jurisdiction performing
more testing will have lower values of π. Second, the parameters η and ξ play here a
different role to the one they usually play in SLIAR models, because they modify the
infectiousness of incubating or undetected individuals. In typical SLIAR models, they
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take values less than 1 because it is assumed that asymptomatically infectious individ-
uals are less infectious than symptomatically infected ones. In the case of COVID-19,
detected individuals typically have to self isolate or are hospitalised. As a consequence,
these parameters can take here non-negative real values, not just values in [0, 1].

Some notation is introduced to make discussions simpler. Individuals of type I are
those infected with the disease, i.e., I ∈ {L1, L2, I1, I2, A1, A2}. The prevalence of infec-
tion at time t is then I(t) = L1(t) + L2(t) + I1(t) + I2(t) + A1(t) + A2(t). Individuals
of type U are unobservable infected, i.e., U ∈ {L1, L2, A1, A2}. Observable infected are
O ∈ {I1, I2}. The prevalence of unobservable and observable infections are obtained like
that of infected cases, by summing the corresponding state variables. We can also define
sets UT and OT for, respectively, total unobserved and observed cases, by adding RA to
U and RI and D to O; these will not be used here.

We refer to [1] for some basic properties of the corresponding ordinary differential
equations (ODE) model and just mention here that the effective reproduction number
of the ODE version is

Rt = β

(
2
πξ

γ
+ 2

1− π
γ

+
η

ε

)
S(0), (ES.1)

where S(0) is the initial susceptible population [1]. This formula is applicable to the
stochastic model and is therefore useful to set some parameter values. It is used for
instance when considering the intensity of NPI measures in the local community.

ES.1.3 Base model with a single importation event

Let t ∈ [0,∞) be a continuous variable (time). The random vector V(t) defined as

(S(t), L1(t), L2(t), I1(t), I2(t), A1(t), A2(t), RI(t), RA(t), D(t))

is the state of the system at time t. Denote ∆V(t) = V(t + ∆t) −V(t) the change in
system state in the time interval [t, t + ∆t], with ∆t > 0 sufficiently small to have at
most one change during this interval. The probability of a transition is

P (∆V(t)|V(t)) , (ES.2)

where ∆V(t) = (∆S,∆L1,∆L2,∆I1,∆I2,∆A1,∆A2,∆RI ,∆RA,∆D). The compo-
nents ∆S,∆L1, . . . ,∆D take only the values ±1 and 0 because of the hypothesis on
∆t being small enough. Transition probabilities are defined as follows (only nonzero
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values are shown):

Rate ∆S ∆L1 ∆L2 ∆I1 ∆I2 ∆A1 ∆A2 ∆RI ∆RA ∆D

ΦS −1 1
εL1 −1 1
(1− π)εL2 −1 1
γI1 −1 1
δγI2 −1 1
(1− δ)γI2 −1 1
πεL2 −1 1
γA1 −1 1
γA2 −1 1

(ES.3)

Parameters are β, the transmission coefficient, η and ξ the modifications of infectious-
ness for individuals who are, respectively, pre-symptomatically and undetected infec-
tious. A fraction 1− π of individuals are detected during the course of their infection or
after dying from the disease (and correspondingly, π are undetected).

Finally, ε and γ describe the rates at which incubation and infectiousness end, respec-
tively. The fraction δ is the case fatality ratio.

Model (ES.3), when it is used to consider single introduction events, is combined with
initial conditions at time t = 0 of the form S(0) = S0 (the initial susceptible population),
RI(0) = RA(0) = D(0) = 0 and one or several of L1(0), L2(0), I1(0), I2(0), A1(0) or A2(0)
containing an integer number of individuals. In most cases, we consider the importation
of a single individual, although in Section 3.1.2 we consider the effect of introductions
of more than one infected individual.

When considering importations of a single infected individual at time t = 0, explicit
formula can be derived concerning probabilities of events affecting individuals. For in-
stance, suppose that importation is of a single infected individual in the L2 compartment,
i.e., L2(0) = 1 with all other infected compartments empty. The probability that this
individual recovers or dies from the disease without ever transmitting the virus is(

(1− π)ε

ε+ βηS(0)

)(
γ

γ + βS(0)

)2

+

(
πε

ε+ βηS(0)

)(
γ

γ + βξS(0)

)2

. (ES.4)

The first term is the probability of progression from L2 to I1 without local transmission.
The second one is the probability of progression from I1 to D or RI without local
transmission. The third term is the probability of progression from L2 to A1 without
local transmission and the last term is the progression from A1 to RA without local
transmission.

ES.1.4 Adding repeated importations to the model

A case importation event is described by three components: the time at which the
event occurs, the size of the importation (the number of cases imported simultaneously),
and the type (epidemiological status) of cases that are imported. In order to better
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understand the role of the rate of importation and lower the number of parameters
affecting the output of the model, we suppose here that all importations are of size 1
and focus on the rate (timing) and nature (type) of importations.

The timing of importations is described using a Poisson process with a parameter λ;
the mean time between importation events is 1/λ. An imported infected individual can
belong to one of the six compartments L1, L2, I1, I2, A1 or A2; the infectious status of
the imported individual is the type of the importation event. The probability of each
type is given by pL1 , pL2 , pI1 , pI2 , pA1 and pA2 where pL1 +pL2 +pI1 +pI2 +pA1 +pA2 = 1.

So the model with repeated importations is the CTMC with transition rates given by
(ES.3), with initial condition S(0) = S0 and all other compartments zero, to which the
following transitions are added.

Rate ∆L1 ∆L2 ∆I1 ∆I2 ∆A1 ∆A2

λpL1 1
λpL2 1
λpI1 1
λpI2 1
λpA1 1
λpA2 1

(ES.5)

ES.1.5 Estimation of importation rates

The number per day of case arrivals in destination from origin i can be approximated
by:

λi ' fraction active cases among population at origin i

× fraction undetected among active cases at origin i (ES.6)

× number of PAX per day from origin i to destination.

In general, a given location is connected to many other locations, say, N of them.
Using (ES.6), we obtain a value λi for each of the i = 1, . . . , N locations that are
potential sources of importation for the location under consideration. As arrival times are
Poisson distributed, from the perspective of the receiving location, arrival times of events
are independent exponentially distributed random variables. As a consequence, the
parameter of the Poisson distribution for a location is obtained by considering competing
risks and

λ =

N∑
i=1

λi. (ES.7)

ES.1.6 Characterising outbreak severity

To define the severity of the outcome, a threshold τ is chosen by adapting the results
developed by Whittle [4] for a simpler stochastic SIR model. Whittle establishes that
the probability of a major outbreak for an SIR model is 1 − (1/Rt)

I(0) if Rt > 1,
while no major outbreak is possible when Rt < 1, where I(0) is the initial number of
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infected individuals in the population. He also establishes the probability of a minor
outbreak when Rt < 1, but this is not used here as we employ a different method for
detecting minor outbreaks. Rather than computing the probability of a major outbreak,
we decide on a probability p (in practice, p = 0.95) of observing a major outbreak and
set the threshold τ = − ln(1− p)/ ln(Rt). This threshold is then interpreted as follows:
suppose that during a simulation, we observe a successful importation; if at some point
following the importation, the prevalence of the disease increases to or past τ , then with
probability p, a major outbreak occurs.

As a consequence, we classify the type of importation events as follows.

• A successful importation sees an S → L1 transition for a local susceptible individ-
ual.

• An unsuccessful importation event does not lead to such a transition.

• A critical successful importation is detected by checking, when Rt > 1, whether for
some t ∈ [0, tf ], the prevalence of infection I(t) > τ . There is no major outbreak
(and thus no critical successful importations) for Rt < 1.

• A noncritical successful importation is a successful importation that is not critical.

Severity can be further evaluated using observable infected cases O(t), unobservable
infected cases U(t), and total prevalence of infection I(t).

ES.2 Results

The examples that follow use the data for Prince Edward Island (PEI). Although not
completely homogeneous, PEI is small in surface area (5,660 square kilometres) and
quite densely populated (25 inhabitants per square kilometre). PEI can be reached by
plane, ferry and through a bridge linking it to the continent (the Confederation Bridge).
PEI has, to this point, had very few cases of COVID-19, most of them being imported.

ES.2.1 Role of the nature of the import case

Table ES.1 shows that the earlier in the course of the infection the imported case is, the
more likely they are to lead to a successful importation and, conversely, importations in
late stages of infection are less likely to be successful.

Note that the proportion of simulations with unsuccessful importation (UI) can be
computed theoretically from equations such as (ES.4). These values can be compared
to those in Table ES.1, which are obtained by simulation, giving a good agreement (not
shown). In further simulations, we assume that I individuals cannot travel. Note that we
take sample values of Rt somewhat arbitrarily, reasoning as follows. The value Rt = 2.5
was a value that was often given during the early days of the pandemic. So for us, this
represents a non-contained epidemic where public health authorities are doing little to
curtail spread. This is also the maximum value for the range of Rt we consider. If public
health authorities take measures but those measures are not entirely satisfactory, then
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Compartment with initial case
Rt L1 L2 A1 A2

UI 0.8 0.56 0.571 0.248 0.489
– 1.2 0.455 0.438 0.173 0.402
– 2.5 0.235 0.245 0.062 0.234

NSI 0.8 0.44 0.429 0.752 0.511
– 1.2 0.429 0.440 0.552 0.428
– 2.5 0.103 0.113 0.042 0.079

CSI 0.8 0 0 0 0
– 1.2 0.116 0.122 0.275 0.170
– 2.5 0.662 0.642 0.896 0.687

Table ES.1: Proportion of simulations with unsuccessful (UI), noncritical (NSI) and crit-
ical (CSI) successful importations, as a function of the type of initial case.

the epidemic would still spread, albeit at a much lower rate. This is the value Rt = 1.2.
Finally, if efforts are satisfactory but not perfect, then the epidemic tends to die out, so
Rt = 0.8.

ES.2.2 Time to detection of local cases after importation

We continue with single stimulation simulations and present here results not discussed
in the main text. We take the example of importation at time t = 0 of an L1 individual;
results are qualitatively similar for importations of other types, with only the time
distributions varying.

In Figure ES.2, the first violin plot describes the distribution of local extinction times,
the second shows the time distribution of the first local detected case, the third represents
the time distribution of the first import detected case, i.e. when the import case L1

becomes I1. The distribution of serial intervals generated by the index case is shown on
the right. Here, we define the serial interval as the length of time between the start of
the simulation (i.e., the importation of an L1 individual) and the time at which the first
local infection occurs (S → L1 transition).

The median time to the detection (I1 individual) following an importation event is
4.7 days (95% confidence interval 1.01 − 13.6) for the import case and 15.3 days (95%
confidence interval 6.04−30.6) for a local case. In contrast, the first local infection event
(S → L1 transition) occurs, on average, 9.4 days following an importation event (95%
confidence interval 2.7− 21.8), and more than 81% of these first infections occur after 5
days (roughly the median time of the first L2 → I1 transition).

Thus, if the import case is detected, this happens generally slightly before the first
local transmission event takes place. In such a situation, the immediate isolation of the
infected import case can prevent over half the local transmissions this individual would
make. Note that this highlights the importance of quarantine: those transmissions that
happen before isolation would not have taken place had this individual been quarantined.
So quarantine is an efficacious way to compensate for delays in detection and isolation.
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Figure ES.2: Time to extinction of the disease, first detected locally infected individual,
first detected imported case, and serial interval. Base case simulation with
S(0) = 142, 906 (population of Prince Edward Island), L1(0) = 1 and all
other states equal to 0. Horizontal lines indicate the median value. Black
rectangles are the inter-quartile range. Here, Rt = 0.8.

Most first detections of local I1 take place within 20 days following the importation of
an L1 individual; however, in some situations, the first infected and detected I1 individual
appears more than 30 days after the importation event. This characterises silent local
transmission chains, i.e., ones involving only undetected infected individuals.

ES.2.3 Effect of the distribution of incubation periods

As mentioned in Section 2.1, compartments for L, I and A are subdivided in order to have
Erlang distributed times of sojourn in these compartments rather than exponentially
distributed ones. For instance, an individual traversing the two compartments L1 and
L2 at the rate ε spends an average time 2/ε between entry into L1 and exit from L2,
with their time of sojourn Erlang distributed.

Between the incubation and infectious periods, the average COVID-19 patient spends
an average of 15 days infected. The time horizon for the present work and for other
work on COVID-19, on the other hand, is short. With such commensurate time scales,
the variance of distributions becomes important. Several papers have considered distri-
butions of incubation periods [5, 6]. Early work on 181 patients outside Hubei province
before 24 February 2020 [5] found the best fit for the distribution of incubation times
for these patients to be an Erlang distribution with shape parameter (the number of
compartments needed in our approach) equal to six. In order to judge the effect of using
more compartments to obtain a better shaped distribution of incubation times, we ran
the same simulations as in Table ES.1, with six L compartments instead of two as in the
rest of this work. Results are shown in Table ES.2; the model is robust to the number
of latent compartments used.
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Compartment with initial case
n L1 L2 A1 A2

UI 2 0.401 0.434 0.757 0.848
– 6 0.436 0.392 0.746 0.836

NSI 2 0.484 0.458 0.208 0.132
– 6 0.464 0.513 0.225 0.151

Table ES.2: Proportions of simulations with unsuccessful (UI) and noncritical successful
(NSI) importations, as a function of the type of initial case, when Rt = 1.2.
n is the number of latent compartments used in the simulations.

ES.2.4 Estimation of importation rates

As some of our numerics is inspired by the example of Prince Edward Island (PEI),
let us continue with this. The first day of the “Atlantic bubble”, where residents of
all Maritime provinces of Canada were allowed to travel freely between these provinces,
8,500 people used the Confederation Bridge, which links PEI to the continent (in New
Brunswick), going towards PEI. Suppose that cases in this flow happen with the same
rate as in the general population and that prevalence in the general population can be
deduced from confirmed case counts.

Assume that all travellers to PEI that day came from New Brunswick and that this
relaxation of travel restrictions happened when New Brunswick experienced its highest
number of active cases, on 2 April 2020, when there were 72 active cases [7]. The estimate
of the population of New Brunswick for the second quarter of 2020 was 780,890 [8], i.e., a
fraction of active cases of 0.000092202. Estimates for the prevalence of asymptomaticity
and non-detection vary widely, with the latter being to a large extent driven by testing
effort. Let us use a figure that seems reasonable at that stage of the pandemic, when
New Brunswick had very few cases and where asymptomaticity was therefore the main
driver for non-detection: 20%. (At the time of writing, New Brunswick still has very
few cases.) Based on (ES.6), this gives 0.156744228 expected cases that day or, in other
words, a mean time between importations of about 6.4 days, implying a rather high risk
of importation (see Figure 5).

In practice, the Atlantic Bubble was put in place on 3 July 2020, at which time there
was 1 active case in New Brunswick. Reasoning the same way, the mean time between
importations in this instance would be of about 460 days, giving a very low risk of
importation.

ES.2.5 Effect of importation rates on outbreak severity

Using the threshold τ derived from Whittle [4], we investigate in Figure ES.3 the pro-
portion of simulations with critical successful importations when Rt > 1.
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ES.2.6 Effect of post-arrival quarantine

The efficacy of quarantine can be expressed as the complement of the probability that
an imported case is still in one of the unobservable infected states L1, L2, A1, or A2

at the end of the quarantine time tq, i.e., the probability they emerge from quarantine
infected and undetected. Consider the matrix of transition rates constructed from the
entries of the first column of (ES.3), represented here as the table of transition rates
between stages of infection:

L1 L2 I1 I2 A1 A2 RI RA D

L1 −ε 0 0 0 0 0 0 0 0
L2 ε −ε 0 0 0 0 0 0 0
I1 0 (1− π)ε −γ 0 0 0 0 0 0
I2 0 0 γ −γ 0 0 0 0 0
A1 0 πε 0 0 −γ 0 0 0 0
A2 0 0 0 0 γ −γ 0 0 0
RI 0 0 0 (1− δ)γ 0 0 0 0 0
RA 0 0 0 0 0 γ 0 0 0
D 0 0 0 δγ 0 0 0 0 0

Let T be the matrix whose entries are given in this table, and let tij denote the ith row
jth column entry of T. The diagonal entries of T are the rates of exit from each stage,
and tij with i 6= j is the rate of transition from stage j to stage i. If we let pi(t) denote
the probability a given individual is in stage i at time t then p(t) satisfies the differential
equations dp

dt = Tp, whose solutions are the matrix exponential eTt. Specifically, entries
of eTt are the probabilities an individual is in the corresponding row-stage at time t
conditional on having started in the corresponding column-stage at time 0. Figure 6
gives a graphical representation of eTt with parameters specified in Table 1 and t set to
7 days and 14 days respectively. Specifically, the entries of e7T are as follows:

L1 L2 I1 I2 A1 A2 RI RA D

L1 0.086 0 0 0 0 0 0 0 0
L2 0.211 0.086 0 0 0 0 0 0 0
I1 0.304 0.299 0.247 0 0 0 0 0 0
I2 0.168 0.246 0.345 0.247 0 0 0 0 0
A1 0.076 0.075 0 0 0.247 0 0 0 0
A2 0.042 0.061 0 0 0.345 0.247 0 0 0
RI 0.088 0.182 0.399 0.736 0 0 0.978 0 0
RA 0.023 0.047 0 0 0.408 0.753 0 1 0
D 0.002 0.004 0.009 0.017 0 0 0.022 0 1

An individual in stage L2 at time 0 is distributed at time t = 7 according to column
2 of the table.

If an infected individual with state distributed according to pX arrives in a community
at time 0 and is placed in quarantine for a time tq, then that individual’s state at time
tq has distribution eTtqpX . Further, the probability the individual is in one of the states
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in {L1, L2, A1, A2} at time t is given by ueTtpX where u is the characteristic vector
for undetected infections, u = (1, 1, 0, 0, 1, 1, 0, 0, 0) and a range of times tq. If, after
tq days, the individual is still in an unobservable state U , then quarantine has failed.
Otherwise, quarantine is considered a success. Recall that, in the model, I individuals
have been detected by the authority, explaining why I1 and I2 individuals are considered
as a success of the quarantine. We define the efficacy of quarantine, c, as the probability,

c = 1− ueTtqpX , (ES.8)

that the imported case is in either an observable state, I1, I2, RI , or D, or recovered in
state RA. Figure 7 represents c for different values of tq, where ueTtqpX is computed for
pX = (0.25, 0.25, 0, 0, 0.25, 0.25, 0, 0, 0)T .

Furthermore, the quarantine-regulated importation rate λq is expressed by

λq = (1− c)λ. (ES.9)
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