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1 Expected degree of bias and parameter settings

Based on Equation (3) in the main text, we extensively explored the relationship between the bias in vaccine effectiveness
(VE) estimates and the parameter settings. Figure S1 shows the expected degree of bias for different combinations
of parameter values (sensitivity: α, specificity: β, true VE: 1− γ and case ratio: δ

1+δ ). A nonlinear relationship can
be seen in the contour plots. In general, the influence of sensitivity is larger in the high case ratio region, and that of
specificity is larger in the low case ratio region. Both sensitivity and specificity affect the bias when the case ratio is
intermediate. Interestingly, the true VE have different effects depending on the case ratio: high VE leads to larger bias
when the case ratio is low, while moderate VE gives the largest bias when the case ratio is intermediate to high.

As the specificity of diagnostic tests tend to be higher than the sensitivity, we further explored the cases of higher
specificity (> 95%) in Figure S2. Even if the specificity is sufficiently high, the level of bias can be larger than one
might expect within the realistic range of case ratio (0.1-0.7).

2 Univariate model and parameter estimation

The sample size of a TND study is usually unconstrained as the study design requires every patient with TD-like
symptoms to be included, where the study population is typically limited to patients visiting specific medical institutions
and is sufficiently smaller than the total population. Therefore, it is natural that we assume that the reported incidence
of TD and ND both follow Poisson-distributions. The mean number of unvaccinated patients in the dataset is given
as λU = qmU (r1µ+ r0)nU . Let λV = mV nV

mUnU
λU so that λV corresponds to the mean number of vaccinated patients

when γ = 1, i.e. VE = 0. This definition is to ensure that parameters γ and λV are mutually independent. Let δ = r1µ
r0

be the odds of the (medically-attended) target disease in the unvaccinated population. Using these four parameters
γ, δ, λV , λU , we get the following table for (potentially mis-classified) mean case counts:

Vaccinated Unvaccinated
Test positive αγδ+(1−β)

1+δ λV
αδ+(1−β)

1+δ λU

Test negative (1−α)γδ+β
1+δ λV

(1−α)δ+β
1+δ λU

Subtotal 1+γδ
1+δ λV λU

When data D = (XV , YV , XU , YU ) is obtained following this misclassified pattern, we can construct the likelihood of
obtaining such data, given underlying parameters, as

L(γ, δ, λV , λU ;D) = Pois

(
XV ;

αγδ + (1− β)

1 + δ
λV

)
Pois

(
YV ;

(1− α)γδ + β

1 + δ
λV

)
Pois

(
XU ;

αδ + (1− β)

1 + δ
λU

)
Pois

(
YU ;

(1− α)δ + β

1 + δ
λU

)
.
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By expanding this equation we get

L(γ, δ, λV , λU ;D)

=
[αγδ + (1− β)]XV [(1− α)γδ + β]YV [αδ + (1− β)]XU [(1− α)δ + β]YUλSV

V λSU

U

(1 + δ)SV (1 + δ)SUXV !YV !XU !YU ! exp
(

1+γδ
1+δ λV

)
exp (λU )

, (S2)

where SV = XV + YV and SU = XU + YU .

For mathematical convenience, we change the variable λV to λ
′

V = 1+γδ
1+δ λV . Let l = logL(γ, δ, λ

′

V , λU ;X). Partial
derivatives of l are

∂l

∂γ
=

αδXV

αγδ + (1− β)
+

(1− α)δYV
(1− α)γδ + β

− δSV
1 + γδ

∂l

∂δ
=

αγXV

αγδ + (1− β)
+

(1− α)γYV
(1− α)γδ + β

+
αXU

αδ + (1− β)
+

(1− α)YU
(1− α)δ + β

− γSV
1 + γδ

− SU
1 + δ

∂l

∂λ
′
V

=
SV
λ

′
V

− 1

∂l

∂λU
=
SU
λU
− 1
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Equation (S3) gives the maximum likelihood estimates:

γ∗ =
XV − 1−β

β YV

YV − 1−α
α XV

·
YU − 1−α

α XU

XU − 1−β
β YU

δ∗ =
β

α
·
XU − 1−β

β YU

YU − 1−α
α XU

λ
′∗
V = SV
λ∗U = SU
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The confidence intervals for parameters can be constructed using the Fisher’s information matrix from Equation (S3).
λ

′

V and λU are independent from other parameters and

Var(λ
′

V ) = − ∂2l

∂λ
′2
V

=
SV
λ

′2
V

− ∂2l

∂λ2U
=
SU
λ2U

(S5)

We log-transform γ and δ for mathematical convenience. Noting that ∂v
∂(log u) = u ∂v∂u , we get

− ∂2l

∂(log(γ))2
=

γδ

(1 + γδ)2
SV −

α(1− β)γδ

[αγδ + (1− β)]2
XV −

(1− α)βγδ

[(1− α)γδ + β]2
YV

− ∂2l

∂ log γ∂ log δ
=

γδ

(1 + γδ)2
SV −

α(1− β)γδ

[αγδ + (1− β)]2
XV −

(1− α)βγδ

[(1− α)γδ + β]2
YV

− ∂2l

∂(log δ)2
=

γδ

(1 + γδ)2
SV −

α(1− β)γδ

[αγδ + (1− β)]2
XV −

(1− α)βγδ

[(1− α)γδ + β]2
YV

+
δ

(1 + δ)2
SU −

α(1− β)δ

[αδ + (1− β)]2
XU −

(1− α)βδ

[(1− α)δ + β]2
YU
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With the parameter values estimated in Eq. (S4), we get the following information matrix


x̂V ŷV
SV

[
1− SV

(
α(1−β)
XV

+ (1−α)β
YV

)]
x̂V ŷV
SV

[
1− SV

(
α(1−β)
XV

+ (1−α)β
YV

)]
x̂V ŷV
SV

[
1− SV

(
α(1−β)
XV

+ (1−α)β
YV

)]
x̂V ŷV
SV

[
1− SV

(
α(1−β)
XV

+ (1−α)β
YV

)]
+ x̂U ŷU

SU

[
1− SU

(
α(1−β)
XU

+ (1−α)β
YU

)]
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where x̂ξ = 1
c [βXξ − (1− β)Yξ] and ŷξ = 1

c [αYξ − (1− α)Xξ] are the estimated true case counts for ξ = V,U . Let
pV = xV /(xV + yV ) and pU = xU/(xU + yU ) be the corresponding true binomial probabilities.

The inverse of the information matrix provides variance of estimates: in particular, for log γ we get

Var(log γ∗) =
SV
xV yV

· 1[
1−

(
α(1−β)
πV

+ (1−α)β
1−πV

)] +
SU
xUyU

· 1[
1−

(
α(1−β)
πU

+ (1−α)β
1−πU

)]
=

SV
xV yV

· πV (1− πV )

(1− πV − (1− α))(πV − (1− β))
+

SU
xUyU

· πU (1− πU )

(1− πU − (1− α)(πU − (1− β))

=
c2

SV

πV (1− πV )

(1− πV − (1− α))2(πV − (1− β))2
+

c2

SU

πU (1− πU )

(1− πU − (1− α))2(πU − (1− β))2
,

(S7)

equivalent to the Eq. (7) in the main text. We can relate this to the true standard error that would be obtained with
perfect tests,

SD(log γtrue) =

√
1

SV pV (1− pV )
+

1

SUpU (1− pU )
=

√
σV 2

SV
+
σU 2

SU
, (S8)

or to the observed standard error (without correction),

SD(log γraw) =

√
1

SV πV (1− πV )
+

1

SUπU (1− πU )
=

√
ΣV

2

SV
+

ΣU
2

SU
, (S9)

where σV = [pV (1 − pV )]−1/2 and σU = [pU (1 − pU )]−1/2 are the components of the true standard error and
ΣV = [πV (1− πV )]−1/2 and ΣU = [πU (1− πU )]−1/2 are those of uncorrected standard error. We get

σ∗ = SD(log(γ∗)) =

√√√√σ2
V

SV
· 1(

1− 1−α
1−πV

)(
1− 1−β

πV

) +
σ2
U

SU
· 1(

1− 1−α
1−πU

)(
1− 1−β

πU

)
=

1

c

√
Σ2
V

SV
·
(
πV (1− πV )

pV (1− pV )

)2

+
Σ2
U

SU
·
(
πU (1− πU )

pU (1− pU )

)2

.
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This equation indicates that the confidence intervals diverge when the true outcome is bipolarised (pV , pU ' 0 or 1).

3 Multivariate model and likelihood

Suppose that covariates ξ = (ξ1, ξ2, ..., ξn) are included in the model, and that ξ1 corresponds to vaccination history
(1: vaccinated, 0: unvaccinated). ξ is expected to have a certain distribution over the total population N , and let us
denote the frequency density of covariates ξ by N(ξ), where

∫
N(ξ)dξ = N . Let ρ1(ξ) and ρ0(ξ) be the conditional

probabilities that an individual is included in the study with TD and ND, respectively, given covariates ξ. Incorporating
misclassification, the probability of an individual i with covariates ξi being included and tested positive/negative will be

ρ+(ξi) = αρ1(ξi) + (1− β)ρ0(ξi)

ρ−(ξi) = (1− α)ρ1(ξi) + βρ0(ξi)
(S11)

Assuming that disease incidences follow Poisson distributions, as in the univariate case, we can obtain the probability
density of observing data D = {Zi, ξi}i=1,2,...S (Zi denotes the test result of individual i) as

P(D) = Pois(S+;λ+) Pois(S−;λ−)
∏
i∈{+}

ρ+(ξi)N(ξi)

λ+

∏
i∈{−}

ρ−(ξi)N(ξi)

λ−
. (S12)
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where λ+ and λ− are the mean incidence of being included in the study and tested positive/negative: λ± =∫
ρ±(ξ)N(ξ)dξ. The first two Poisson distributions on the right-hand side of Eq. (S12) give the probability that

the study yields S+ positive and S− negative subjects. The products that follow represent the probability density for
covariates ξi observed in the positive/negative group.

Suppose that we model this system using a parameter set θ. We could directly model ρ1(ξi; θ) and ρ0(ξi; θ); however,
it is often more convenient to model the binomial probability for the true outcome p1(ξi) = ρ1(ξi)

ρ(ξi)
and p0(ξi) = ρ0(ξi)

ρ(ξi)
,

where ρ(ξi) = ρ1(ξi) + ρ0(ξi) = ρ+(ξi) + ρ−(ξi) is the probability density of being included in the study given
covariates ξ, because the absolute scale of incidence is rarely of a primary concern. The binomial probabilities for the
respective observed outcomes (with errors) are then given by:

π+(ξi; θ) = αp1(ξi; θ) + (1− β)p0(ξi; θ)

π−(ξi; θ) = (1− α)p1(ξi; θ) + βp0(ξi; θ)
(S13)

Let us use parameter set θ to model the binomial probabilities π+ (and π−) and assume that another set of parameters η
(nuisance parameters) characterise ρ(ξi). Then our objective is reduced to the estimation of θ and η.

Rearranging Equation (S12), we get the joint likelihood for θ and η:

L(θ, η;D) =

(
S

S+

)
Pois(S;λ(η))

S∏
i=1

ρ(ξi; η)N(ξi)

λ(η)

S∏
i=1

πZi(ξi; θ), (S14)

where λ(η) is the overall mean incidence: λ(η) =
∫
ρ(ξ; η)N(ξ)dξ. The factor outside the products on the right-hand

side of Eq. (S14) is the probability that the study yields S subjects of which S+ are positives and S− are negatives.
The first product is the probability density for covariates ξi observed in data D, and the second product is the binomial
probabilities for the test results Zi. When only θ is of our concern, we can obtain the MLE for θ by maximising

L(θ;D) =

S∏
i=1

πZi(ξi; θ) =
∏
i∈{+}

[αp1(ξi; θ) + (1− β)p0(ξi; θ)]
∏
i∈{−}

[(1− α)p1(ξi; θ) + βp0(ξi; θ)], (S15)

as θ and η are separate in the likelihood (S14).

4 Increased uncertainty introduced by misclassification

Although our bias correction methods provide unbiased VE estimates from potentially misclassified test results, the
resulting uncertainty is larger than that which would be obtained from estimates using the true disease status. In Figure
S3, we compared bias-corrected estimates obtained from misclassified data (by the direct likelihood method in the
multivariate setting) with those obtained from the true data (i.e., 100% sensitivity and specificity). Although both
estimates are unbiased around the true value, the results from the misclassified data exhibit higher variability (by a factor
of 1.1-3.0) due to the loss of information caused by misdiagnosis. Increased uncertainty due to misclassification should
be carefully considered when one calculates the power of test-negative design studies. Overestimated test performance
may not only underestimate the true VE but also lead to overconfidence.
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Figure S1: Bias in VE estimates caused by misclassification. Absolute bias (difference between the estimated VE and
the true VE) for a set of parameter values is displayed in contour plots in percentage points. Negative figures indicate
that the estimated VE is lower than the true VE.
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Figure S2: Bias in VE estimates caused by misclassification (high specificity). Absolute bias (difference between the
estimated VE and the true VE) for a set of parameter values is displayed in contour plots in percentage points. Negative
figures indicate that the estimated VE is lower than the true VE.
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Figure S3: Uncertainty in VE estimates obtained from the true/misclassified datasets in the multivariate setting. The
distributions of VE estimates from the simulated true (yellow) and misclassified (light blue) data are shown. The direct
likelihood method was employed to correct biases in the misclassified data.
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