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1 Introduction

The Supplementary Material is structured as follows. In Section 2, we introduce a model and

the analysis of the corresponding model in terms of the fractions aiming at the calculation of

the basic reproduction number R0. In Section 2, we present the estimation of model parameters

based on the data collected from São Paulo State.

2 Mathematical model

In this section, we present the mathematical model used in the main text, and the calculation

of the basic reproduction number R0 by analyzing the trivial equilibrium point in the steady

state.

2.1 Formulation of a model

In a community where SARS-CoV-2 (new coronavirus) is circulating, the risk of infection is

greater in elder than young persons, as well as elder persons are under the increased probabil-

ity of being symptomatic and higher coronavirus disease 2019 (CoViD-19) induced mortality.

Hence, the community is divided into two groups and composed of young (60 years old or less,

denoted by subscript y) and elder (60 years old or more, denoted by subscript o) persons. The

vital dynamic of this community is described by the per-capita rates of birth (φ) and death

(µ).

For each subpopulation j (j = y, o), all persons are divided into eight classes: susceptible

Sj, susceptible persons who are isolated Qj, exposed Ej, asymptomatic Aj, asymptomatic

persons who are caught by test and then isolated Q1j, symptomatic persons at the initial

phase of CoViD-19 (or pre-diseased, those who do not manifest disease) D1j, pre-diseased

persons caught by test and then isolated, plus mild CoViD-19 (or non-hospitalized) Q2j, and

symptomatic persons with severe CoViD-19 (hospitalized) D2j. However, all young and elder

persons in classes Aj, Q2j, and D2j enter into the same immune class I, the 17th class.

The natural history of CoViD-19 is the same for young (j = y) and elder (j = o) subpopu-

lations. We assume that only persons in the asymptomatic (Aj) and pre-diseased (D1j) classes

are transmitting the virus, and other infected classes (Q1j, Q2j and D2j) are under voluntary

or forced isolation. Susceptible persons are infected according to λjSj (known as the mass

action law [1]) and enter into class Ej, where λj is the per-capita incidence rate (or the force
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of infection) defined by λj = λ (δjy + ψδjo), with λ being

λ =
1

N
(β1yAy + β2yD1y + β1oAo + β2oD1o) , (1)

where δik is Kronecker delta, with δik = 1 if i = k, and 0, if i 6= k, and β1j and β2j are the

transmission rates, that is, the rates at which viruses encounter susceptible people and infect

them. After an average period 1/σj in class Ej, where σj is the incubation rate, exposed

persons enter into the asymptomatic class Aj (with probability pj) or pre-diseased class D1j

(with probability 1 − pj). After an average period 1/γj in class Aj, where γj is the recovery

rate of asymptomatic persons, asymptomatic persons acquire immunity (recovered) and enter

into immune class I. Another route of exit from class Aj is being caught by a test at a rate

ηj and entering into class Q1j and then, after a period 1/γj, entering into class I. Possibly

asymptomatic persons are in voluntary isolation, which is described by the voluntary isolation

rate χj. The pre-diseased persons, after an average period 1/γ1j in class D1j, where γ1j is the

infective rate of pre-diseased persons, enter into non-hospitalized class Q2j (with probability

mj) or hospitalized class D2j (with probability 1−mj). Hospitalized persons acquire immunity

after a period 1/γ2j, where γ2j is the recovery rate of severe CoViD-19, and enter into immune

class I or die under the disease induced (additional) mortality rate αj. Another route of exiting

D2j is by treatment, described by the treatment rate θj. After an average period 1/γj in class

Q2j, non-hospitalized persons acquire immunity and enter into immune class I, or enter into

class D2j at a relapsing rate ξj.

In the model, we consider a unique pulse in isolation at time t = τ isj , described by kjSjδ
(
t− τ isj

)
,

and m intermittent releases described by
∑m

i=1 lijQjδ (t− ti), where ti = τ isj +
∑i

w=1 τwj,

j = y, o, and δ (x) is Dirac delta function, that is, δ (x) =∞, if x = 0, otherwise, δ (x) = 0, with∫∞
0
δ (x) dx = 1. The parameters kj and lij, i = 1, 2, · · · ,m, are the proportions in isolation

and release of isolated persons, and τwj is the period between successive releases. All classes

and parameters are summarized in Figure 1 shown in the main text.

Based on the above descriptions, the new coronavirus transmission model is described by

the ordinary differential equations with j = y, o. The equations for susceptible persons are
d

dt
Sy = φN − (ϕ+ µ)Sy − λSy − kySδ

(
t− τ isy

)
+

m∑
i=1

liyQyδ

(
t− τ isj −

i∑
w=1

τwy

)
d

dt
So = ϕSy − µSo − λψSo − koSoδ (t− τ iso ) +

m∑
i=1

lioQoδ

(
t− τ isj −

i∑
w=1

τwo

)
,

(2)
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for infectious persons,

d

dt
Qj = kjSjδ

(
t− τ isj

)
− µQj −

m∑
i=1

lijQjδ

(
t− τ isj −

i∑
w=1

τwj

)
d

dt
Ej = λ (δjy + ψδjo)Sj − (σj + µ)Ej

d

dt
Aj = pjσjEj − (γj + ηj + χj + µ)Aj

d

dt
Q1j = (ηj + χj)Aj − (γj + µ)Q1j

d

dt
D1j = (1− pj)σjEj − (γ1j + η1j + µ)D1j

d

dt
Q2j = (mjγ1j + η1j)D1j − (γj + ξj + µ)Q2j,

d

dt
D2j = (1−mj) γ1jD1j + ξjQ2j − (γ2j + θj + µ+ αj)D2j,

(3)

and for immune persons,

d

dt
I = γyAy + γyQ1y + γyQ2y + (γ2y + θy)D2y + γoAo + γoQ1o + γoQ2o+

(γ2o + θo)D2o − µI,
(4)

where Nj = Sj +Qj + Ej + Aj +Q1j +D1j +Q2j +D2j, and N = Ny +No + I obeys

d

dt
N = (φ− µ)N − αyD2y − αoD2o, (5)

with the initial number of population at t = 0 being N(0) = N0 = N0y + N0o, where the

numbers of young and elder persons are N0y and N0o. If φ = µ+(αyD2y + αoD2o) /N , the total

size of the population is constant.

The non-autonomous system of equations (2), (3), and (4) is simulated permitting intermit-

tent interventions to the initial and boundary conditions. Hence, the equations for susceptible

and isolated persons become
d

dt
Sy = φN − (ϕ+ µ)Sy − λSy

d

dt
So = ϕSy − µSo − λψSo

d

dt
Qy = −µQj,

(6)

for j = y, o, and other equations are the same.

For the system of equations (3), (4), and (6), the initial conditions (at t = 0) are, for

4



j = y, o,

Sj (0) = N0j, Xj (0) = nXj
, where Xj = Qj, Ej, Aj, Q1j, D1j, Q2j, D2j, I, (7)

and nXj
is a non-negative number. For instance, nEy = nEo = 0 means the absence of exposed

individuals (young and elder) at the beginning of the epidemic. We split the boundary condi-

tions into isolation and release occurring at the same time for young and elder persons, that is,

τ is = τ isy = τ iso and τi = τiy = τio, for i = 1, 2, · · ·, m, resulting in ti = τ is +
∑i

w=1 τw. A unique

isolation at t = τ is is described by the boundary conditions

Sj (τ is+) = Sj (τ is−) (1− kj) and Qj (τ is+) = Qj (τ is−) + Sj (τ is−) kj, (8)

plus

Xj (τ is+) = Xj (τ is−) , where Xj = Ej, Aj, Q1j, D1j, Q2j, D2j, I, (9)

with τ is− = limt→τ is t (for t < τ is), and τ is+ = limτ is←t t (for t > τ is). The boundary conditions

for a series of pulses released at ti, for i = 1, 2, · · ·, m, are

Sj
(
t+i
)

= Sj
(
t−i
)

+ lijQj

(
t−i
)

and Qj

(
t+t
)

= (1− lij)Qj

(
t−i
)
, (10)

plus

Xj

(
t+i
)

= Xj

(
t−i
)
, where Xj = Ej, Aj, Q1j, D1j, Q2j, D2j, I. (11)

If τi = τ , then ti = τ is + iτ .

If isolation is applied to a completely susceptible population at t = 0, we have Sj (0+) =

N0j (1− kj) and Qj (0+) = N0jkj. However, if isolation is adopted at t = τ isj without a screening

of persons harbouring the virus, then many of the asymptomatic persons could be isolated with

susceptible persons, and the virus should be circulating through a restricted contact occurring

in the household and/or neighborhood.

From the system of equations (3), (4), and (6), we derive the number of accumulated severe

CoViD-19 cases, the number of accumulated deaths due to CoViD-19, and the number of

occupied beds in hospitals.

The numbers of accumulated CoViD-19 (hospitalized) cases Ωy and Ωo are given by the

exits from D1y, Q2o, D2o, and Q2y that are entered into classes D2y and D2o, that is,

Ω = Ωy + Ωo, with


d

dt
Ωy = (1−my) γ1yD1y + ξyQ2y

d

dt
Ωo = (1−mo) γ1oD1o + ξoQ2o

(12)
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with Ωy(0) = Ωo(0) = 1.

The number of accumulated deaths caused by severe CoViD-19 Π can be calculated from

the hospitalized cases. This number of deaths is

Π = Πy + Πo, with


d

dt
Πy = αyD2y

d

dt
Πo = αoD2o,

(13)

with Πy(0) = Πo(0) = 0.

Finally, the number of occupied beds B during the epidemic is, for j = y, o,

B1 = B1y +B1o, with


d

dt
B1y = h1y (1− hy)

d

dt
Ωy − (µ+ αy + ς1y)B1y

d

dt
B1o = h1o (1− ho)

d

dt
Ωo − (µ+ αo + ς1o)B1o,

(14)

for beds in hospitals with B1y(0) = B1o(0) = 1, and

B2 = B2y +B2o, with


d

dt
B2y = h1yhy

d

dt
Ωy − (µ+ αy + ς2y)B2y

d

dt
B2o = h1oho

d

dt
Ωo − (µ+ αo + ς2o)B2o,

(15)

for beds in ICUs, with B2y(0) = B2o(0) = 0. The fraction of severe CoViD-19 needing ICUs

is hj, and 1/ς1j and 1/ς2j are the average occupying time of beds in hospitals and ICUs for

young and elder persons, where ς1j and ς2j are the discharging rates from hospitals and ICUs.

The fraction h1j is the severe CoViD-19 needing prolonged hospital care. The total number of

occupied beds is B = B1 +B2.

The system of equations (2), (3), and (4) is non-autonomous. Nevertheless, the fractions

of persons in each compartment approach the steady state (see next section 2.2, where all the

equations cited below can be found). Hence, at t = 0, the basic reproduction number R0 is

obtained substituting s0y and s0o by N0y/N0 and N0o/N0 in equation (20), resulting in

R0 = R0y
N0y

N0

+R0o
N0o

N0

=
[
pyR

1
0y + (1− py)R2

0y

] N0y

N0

+
[
poR

1
0o + (1− po)R2

0o

]
ψ
N0o

N0

,

where we used equations (26) and (27). We use the effective reproduction number Ref given

by equation (29), and study its variation during the epidemic. At t = 0, we have Ref (0) = R0,

and as the time increases, Ref decreases as susceptible persons decrease by infection. However,
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at t = τ is a pulse in isolation is introduced, and Ref jumps down to Ref (τ
is+) = Rr given by

Rr = R0

[
Sy(τ is−)(1−ky)

N0
+

So(τ is−)(1−ko)
N0

]
, (16)

where Sy (τ is−) and So (τ is−) are the numbers of susceptible young and elder persons at the

time just before the introduction of isolation. At the i-th release time ti, Ref jumps up to

Ref (t
+
i ) = Ru(i) given by

Ru(i) = R0

[
Sy
(
t−i
)

+ liyQy

(
t−i
)

N0

+
So
(
t−i
)

+ lioQo

(
t−i
)

N0

]
,

and at the last time of release t = tm, all isolated persons are released. When t→∞, we have

Ref = 1, and the new coronavirus epidemic reaches the equilibrium value s∗ = 1/R0, given by

equation (28).

2.2 Analysis of the trivial equilibrium point

The system of non-linear differential equations (2), (3), and (4) is non-autonomous and non-

constant population. To obtain an autonomous system of equations, we let kj = lij = 0, j = y, o.

To obtain equilibrium points, we use the fractions of individuals in each compartment, defined

by

xj =
Xj

N
, where X = Sj, Qj, Ej, Aj, Q1j , D1j , Q2j , D2j , I,

for j = y, o, resulting in

d

dt
xj ≡

d

dt

Xj

N
=

1

N

d

dt
Xj − xj

1

N

d

dt
N =

1

N

d

dt
Xj − xj (φ− µ) + xj (αyd2y + αod2o) ,

where we used the equation (5) for N . Hence, the system of equations (2), (3), and (4) become,

for susceptible persons,
d

dt
sy = φ− (ϕ+ φ) sy − λsy + sy (αyd2y + αod2o)

d

dt
so = ϕsy − φso − λψso + so (αyd2y + αod2o) ,

(17)
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for infected persons,

d

dt
qj = −φqj + qj (αyd2y + αod2o)

d

dt
ej = λ (δjy + ψδjo) sj − (σj + φ) ej + ej (αyd2y + αod2o)

d

dt
aj = pjσjej − (γj + ηj + χj + φ) aj + aj (αyd2y + αod2o)

d

dt
q1j = (ηj + χj) aj − (γj + φ) q1j + q1j (αyd2y + αod2o)

d

dt
d1j = (1− pj)σjej − (γ1j + η1j + φ) d1j + d1j (αyd2y + αod2o)

d

dt
q2j = (η1j +mjγ1j) d1j − (γj + ξj + φ) q2j + q2j (αyd2y + αod2o)

d

dt
d2j = (1−mj) γ1jd1j + ξjq2j − (γ2j + θj + φ+ αj) d2j + d2j (αyd2y + αod2o) ,

(18)

and for immune persons,

d

dt
i = γyay + γyq1y + γyq2y + (γ2y + θy) d2y + γoao + γoq1o + γoq2o + (γ2o + θo) d2o − φi+

i (αyd2y + αod2o) ,

(19)

where λ is the force of infection given by equation (1) re-written as

λ = β1yay + β2yd1y + β1oao + β2od1o.

The system of equations (17), (18), and (19) obeys∑
j=y,o

(sj + qj + ej + aj + q1j + d1j + q2j + d2j) + i = 1,

which results in the sum of derivatives of all classes equal to zero, and the steady state is

achieved when t → ∞, although all classes vary with time. This system of equations is not

easy to determine the non-trivial (endemic) equilibrium point P ∗, and we analyze only the

trivial (disease-free) equilibrium point.

The disease-free equilibrium P 0 is given by

P 0 =
(
s0j , q

0
j = 0, e0j = 0, a0j = 0, q01j = 0, d01j = 0, q02j = 0, d02j = 0, i0 = 0

)
,
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for j = y, o, where 
s0y =

φ

φ+ ϕ

s0o =
ϕ

φ+ ϕ
,

(20)

with s0y + s0o = 1.

To assess the stability of P 0, we apply the next generation matrix theory [2]. The next

generation matrix is obtained considering the vector of variables x = (ey, ay, d1y, eo, ao, d1o)

restricted to the infectious classes of equations (17), (18) and (19). The vectors f and v are

constructed considering only equations corresponding to the classes ey, ay, d1y, eo, ao, and d1o.

In the first approach, we consider the vectors f and v as

fT =



λsy + ey (αyd2y + αod2o)

pyσyey + ay (αyd2y + αod2o)

(1− py)σyey + d1y (αyd2y + αod2o)

λψso + eo (αyd2y + αod2o)

poσoeo + ao (αyd2y + αod2o)

(1− po)σoeo + d1o (αyd2y + αod2o)


(21)

and

vT =



(σy + φ) ey

(γy + ηy + χy + φ) ay

(γ1y + η1y + φ) d1y

(σo + φ) eo

(γo + ηo + χo + φ) ao

(γ1o + η1o + φ) d1o


, (22)

where the superscript T stands for the transposition of a matrix. From these vectors, we obtain

the matrices F and V (see [2] for the mathematical procedure), where V is a diagonal matrix.

The next generation matrix FV −1 evaluated at the trivial equilibrium P 0 is

FV −1 =



0
β1ys0y

γy+ηy+χy+φ

β2ys0y
γ1y+η1y+φ

0
β1os0y

γo+ηo+χo+φ

β2os0y
γ1o+η1o+φ

pyσy
σy+φ

0 0 0 0 0
(1−py)σy
σy+φ

0 0 0 0 0

0 β1yψs0o
γy+ηy+χy+φ

β2yψs0o
γ1y+η1y+φ

0 β1oψs0o
γo+ηo+χo+φ

β2oψs0o
γ1o+η1o+φ

0 0 0 poσo
σo+φ

0 0

0 0 0 (1−po)σo
σo+φ

0 0


,
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and the characteristic equation corresponding to FV −1 is

ω4
(
ω2 −Ri

)
= 0, (23)

where Ri is the reproduction number with intervention given by

Ri = Riys
0
y +Rios

0
o, where

{
Riy = pyR

1
iy + (1− py)R2

iy

Rio = [poR
1
io + (1− po)R2

io]ψ,
(24)

and Riy and Rio are the partial reproduction numbers defined by
R1
iy =

σy
σy + φ

β1y
γy + ηy + χy + φ

, and R2
iy =

σy
σy + φ

β2y
γ1y + η1y + φ

R1
io =

σo
σo + φ

β1o
γo + ηo + χo + φ

, and R2
io =

σo
σo + φ

β2o
γ1o + η1o + φ

.
(25)

To assess the stability of the equilibrium point P 0, we apply the method proposed in [3]

and proved in [4], instead of the spectral radius (ρ (FV −1) =
√
Ri). Hence, the sum of the

coefficients of the characteristic equation is the threshold Ri, and P 0 is locally asymptotically

stable (LAS) if Ri < 1.

In the second approach, we consider the vectors f and v given by

f = (λsy, 0, 0, λψso, 0, 0)

and

vT =



(σy + φ) ey − ey (αyd2y + αod2o)

−pyσyey + (γy + ηy + χy + φ) ay − ay (αyd2y + αod2o)

− (1− py)σyey + (γ1y + η1y + φ) d1y − d1y (αyd2y + αod2o)

(σo + φ) eo − eo (αyd2y + αod2o)

−poσoeo + (γo + ηo + χo + φ) ao − ao (αyd2y + αod2o)

− (1− po)σoeo + (γ1o + η1o + φ) d1o − d1o (αyd2y + αod2o)


,

from which we obtain the matrices F and V , where V is the matrix with the most number of

non-zero elements. The next generation matrix FV −1 evaluated at the trivial equilibrium P 0
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is

FV −1 =



Riys
0
y

β1ys0y
γy+ηy+χy+φ

β2ys0y
γ1y+η1y+φ

Rios
0
y

β1os0y
γo+ηo+χo+φ

β2os0y
γ1o+η1o+φ

0 0 0 0 0 0

0 0 0 0 0 0

Riys
0
o

β1yψs0o
γy+ηy+χy+φ

β2yψs0o
γ1y+η1y+φ

Rios
0
o

β1oψs0o
γo+ηo+χo+φ

β2oψs0o
γ1o+η1o+φ

0 0 0 0 0 0

0 0 0 0 0 0


,

and the characteristic equation corresponding to FV −1 is

ω5 (ω −Ri) = 0.

In this case, the spectral radius is ρ (FV −1) = Ri = Riys
0
y+Rios

0
o given by equation (24), which

is equal to the sum of the coefficients. Hence, P 0 is LAS if ρ < 1.

Notice that in the absence of interventions, that is, letting in the equations (24) and (25)

ηj = η1j = χj = ξj = θj = 0 for j = y, o, we have the basic reproduction number R0 given by

R0 = R0ys
0
y +R0os

0
o, where

{
R0y = pyR

1
0y + (1− py)R2

0y

R0o = [poR
1
0o + (1− po)R2

0o]ψ,
(26)

where R0y and R0o are given by
R1

0y =
σy

σy + φ

β1y
γy + φ

, and R2
0y =

σy
σy + φ

β2y
γ1y + φ

R1
0o =

σo
σo + φ

β1o
γo + φ

, and R2
0o =

σo
σo + φ

β2o
γ1o + φ

.
(27)

In the above two constructions of vectors f and v, we obtained the same threshold Ri (R0

in the absence of interventions). Hence, according to [5], the inverse of the basic reproduction

number R0 given by equation (26) is a function of the fraction of susceptible individuals at the

endemic equilibrium s∗ through

f
(
s∗, s∗y, s

∗
o

)
=

1

R0

=
1

R0ys0y +R0os0o
, (28)

where s∗ = s∗y + s∗o (see [5] and [6]). For this reason, the effective reproduction number Ref [7],

which varies with time, can not be defined either by Ref = R0 (sy + so), nor Ref = R0ysy+R0oso.

The function f (κ) is determined by calculating the coordinates of the non-trivial equilibrium

point P ∗. For instance, for the dengue transmission model, f (s∗1, s
∗
2) = s∗1 × s∗2, where s∗1 and

s∗2 are the fractions at equilibrium of, respectively, human and mosquito populations [6]. For
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the tuberculosis model considering drug-sensitive and resistant strains, there is not f (κ), but

s∗ is the solution of a second degree polynomial [5].

From equation (28), let us assume that f
(
s∗, s∗y, s

∗
o

)
= s∗y + s∗o. Then, we can define the

approximated effective reproduction number Ref as

Ref = R0 (sy + so) , (29)

which depends on time, and at the steady state (Ref = 1), we have s∗ = 1/R0.

The partial reproduction number R1
0ys

0
y (or R2

0ys
0
o) is the secondary cases produced by

an asymptomatic individual (or pre-diseased individual) in a completely susceptible young

subpopulation without control, and the partial reproduction number R1
0os

0
o (or R2

0os
0
o) is the

secondary cases produced by an asymptomatic individual (or pre-diseased individual) in a

completely susceptible elder subpopulation without control. If all parameters are equal, and

ψ = 1, then

R0 =
[
pR1

0 + (1− p)R2
0

]
,

where R1
0 = R1

0ys
0
y +R1

0os
0
o and R2

0 = R2
0ys

0
y +R2

0os
0
o are the partial reproduction numbers.

The basic reproduction number R0 given by equation (26) depends on the parameters related

to the natural history of CoViD-19 and the transmission rates. However, the model parameters

are not accurate, and it is expected that R0 is influenced by the inaccuracy of those values. The

variation of R0 with uncertainties in the parameters can be assessed by the sensitivity analysis

[8].

3 Model parameters estimation

The results obtained in the foregoing section are applied to describe the new coronavirus infec-

tions in São Paulo State, Brazil. A traveler returning from Italy on 21 February 2020 was the

first case of CoViD-19, which was confirmed on 26 February. The first death due to CoViD-19

was a 62 years old male with comorbidity who never travelled abroad, hence considered as

autochthonous transmission. He manifested the first symptoms on 10 March, was hospitalized

on 14 March, and died on 16 March. On 24 March, São Paulo State implemented the isolation

of persons in non-essential activities and all students until 6 April. The isolation was extended

to 22 April and postponed to 10 May.

Let us determine the initial conditions supplied to the system of equations (3), (4), and (6).

São Paulo State has N (0) = N0 = 44.6 × 106 inhabitants with 15.3% of elder subpopulation

[9]. The value of parameter ϕ given in Table 2 in the main text was calculated from the
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equation (20), ϕ = bφ/ (1− b), where b = 0.153 is the proportion of elder persons, and we

obtain ϕ = 6.7×10−6 days−1. Hence, the initial conditions for susceptible persons are Sy (0) =

Ny(0) = N0y = 37.8 × 106 (s̄0y = N0y/N0 = 0.848) and So (0) = No (0) = N0o = 6.8 × 106

(s̄0o = N0o/N0 = 0.152). For other variables, using py = 0.8 and my = 0.8 from Table 2, the ratio

asymptomatic:symptomatic is 4 : 1, and the ratio mild:severe (non-hospitalized:hospitalized)

CoViD-19 is 4 : 1. We also use these ratios for elder persons, although po = 0.75 and mo = 0.75.

Hence, if we assume that there is one person in D2j (the first confirmed case), then there are 4

persons in Q2j. The sum (5) is the number of persons in class D1j, implying that there are 20

in class Aj, hence, the sum (25) is the number of persons in class Ej. Finally, at the beginning

of the epidemic, there are not isolated, tested, and immunized persons.

Therefore, the trajectories of the new coronavirus propagation are obtained by evaluating

the system of equations (3), (4), and (6) numerically using the 4th order Runge-Kutta method,

with the initial conditions being given by{
Sj (0) = N0j, Qj (0) = Q1j(0) = 0, Ej (0) = 25,

Aj(0) = 20, D1j(0) = 5, Q2j(0) = 4 D2j(0) = 1, I(0) = 0.

The initial simulation time t = 0 corresponds to the calendar time 26 February 2020, when the

first case was confirmed.

To estimate the transmission rates, we assume

βy = β1y = β2y = β1o = β2o, and βo = ψβy,

that is, all transmission rates in young persons are equal, as well as in elder persons. Hence, the

forces of infection are λy = (Ay +D1y + Ao +D1o) βy/N and λo = ψλy. The reason to include

factor ψ is the reduced capacity of a defense mechanism by elder persons (physical barriers,

innate and adaptive immune responses, etc.). The force of infection takes into account all

virus released by infectious individuals (Ay, D1y, Ao, and D1o), the rate of encounter with

susceptible persons, and the capacity to infect them (see [10] [11]). Additionally, the amount

inhaled by susceptible persons (especially health care workers) can be determinant in the chance

of infection and the prognosis of CoViD-19 [12].

Based on the data collected from São Paulo State, we estimate the transmission (βy and βo)

and additional mortality (αy and αo) rates, and the proportions ky and ko of isolated persons.

Currently, there is not a sufficient number of kits to detect infection by the new coronavirus.

For this reason, tests to confirm infection by this virus are done only in hospitalized persons and

those who died manifesting symptoms of CoViD-19. Taking into account hospitalized persons
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with CoViD-19 (Ω = Ωy + Ωo), we fit the transmission rates and the proportion in isolation,

and those who died due to CoViD-19 (Π = Πy + Πo), we fit the additional mortality rates.

These parameters can be fitted applying the least square method (see [13]), that is,

min
n∑
i=1

{
Zy (ti) + Zo (ti)−

[
Zob
y (ti) + Zob

o (ti)
]}2

, (30)

where min stands for the minimum value, n is the number of observations, ti is the i-th obser-

vation time, Zj stands for Ωj given by equation (12) and for Πj given by equation (13), and

Zob
j stands for the observed number of hospitalized persons Ωob

j and the number of deaths Πob
j ,

j = y, o.

The least square estimation method is extremely complex, and considering the observed data

only in one variable of the dynamic system may not be appropriate (see [14]). For this reason,

we evaluate the sum of squared differences by varying the model parameters. This simplified

method of parameter evaluation does not provide uncertainties associated with the parameters.

The effects of these uncertainties on the epidemic can be assessed by global sensitivity analysis

[15], and stochastic simulations can be performed to evaluate the variation in the dynamic

variables [16].

3.1 Fitting the transmission rates

The introduction of isolation occurred at t = 27, corresponding to the calendar time 24 March,

but the effects are expected to appear on 2 April. (The sum of the incubation and pre-diseased

infection periods is 9 days, see Table 2 in the main text.) Hence, we will estimate taking

into account the confirmed cases of CoViD-19 from 26 February (t = 0) to 2 April (t = 36),

totalizing 37 observations.

To estimate the transmission rates βy and βo, we let αy = αo = 0 and the system of equations

(3), (4), and (6), with initial conditions given by equation (7), is evaluated and we calculate

n∑
i=1

{
Ωy (ti) + Ωo (ti)−

[
Ωob
y (ti) + Ωob

o (ti)
]}2

by varying βy and βo = ψβy. The estimated values are βy = 0.75 and βo = 0.88 (both in days−1),

where Ψ = 1.17, resulting in the basic reproduction number R0 = 6.8 (partials R0y = 5.6 and

R0o = 1.2), according to equation (26). Figure S1(a) shows the estimated curve of Ω and the

observed data, plus two curves with lower transmission rates: βy = 0.55 and βo = 0.64 (both in

days−1), with R0 = 5.0, and βy = 0.45 and βo = 0.53 (both in days−1), with R0 = 4.1 (partials
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R0y = 3.4 and R0o = 0.7). Figure S1(b) shows the curves of D2 for young, elder, and total

persons for R0 = 6.8 and 4.1, from t = 30 until 180.
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Figure S1: The estimated curve of severe CoViD-19 cases Ω (βy = 0.75 and βo = 0.88 (both in
days−1), with R0 = 6.8) and the observed data, plus two curves with lower transmission rates:
βy = 0.55 and βo = 0.64 (both in days−1), with R0 = 5.0; and βy = 0.45 and βo = 0.53 (both
in days−1), with R0 = 4.1. Estimation was done using data from t = 0 to t = 39 (a), and the
extended curves of D2 until t = 250 (b). The continuous curve is for R0 = 6.8, and dashed
curve for R0 = 4.1.

From Figure S1(a), as R0 decreases, the estimations become worse. From Figure S1(b), the

peaks of the epidemic for young, elder, and total persons are, respectively, 5.08×105, 1.78×105,

and 6.86×105 for R0 = 6.8, and the peaks are 3.90×105, 1.43×105, and 5.33×105 for R0 = 4.1.

For all persons, the peaks of the epidemic occur at t = 68 for R0 = 6.8, and at t = 101 for

R0 = 4.1.

3.2 Fitting the additional mortality rates

We estimate taking into account confirmed deaths due to CoViD-19 from 16 March (t = 19) to

5 April (t = 39), totalizing 21 observations.

To estimate the mortality rates αy and αo, we fix the previously estimated transmission

rates βy and βo. The system of equations (3), (4), and (6), with initial conditions given by

equation (7), is evaluated and we calculate

n∑
i=1

{
Πy (ti) + Πo (ti)−

[
Πob
y (ti) + Πob

o (ti)
]}2
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by varying αy and αo. From the fact that fatality among young persons is lower than elder

persons, we let αy = 0.2αo [17], and estimate only one variable αo. We estimate the additional

mortality rates αy and αo for two values of R0. First, for the transmission rates βy = 0.75

and βo = 0.88 (both in days−1), the estimated mortality rates are αy = 0.0052 and αo = 0.026

(both in days−1). For R0 = 4.1, fixing βy = 0.45 and βo = 0.53 (both in days−1), we estimated

αy = 0.08 and αo = 0.4 (both in days−1). This is called the first estimation method.

The first estimation method used only one information: the risk of death is higher in elders

than young persons (we used αy = 0.2αo). However, the fatality among hospitalized elder

persons is around 10% [17]. Combining both findings, we assume that the deaths for young

and elder persons are, respectively, 2% and 10% of accumulated cases when Ωy and Ωo approach

plateaus (see Figures S3(a) and S4(a) below). This is called the second estimation method,

which takes into account this second information besides the one used in the first estimation

method. In this procedure, the estimated rates are αy = 0.0018 and αo = 0.009 (both in

days−1) for both R0.

Figure S2 shows the estimated curves of Π = Πy+Πo provided by both methods of estimation

and the observed data for R0 = 6.8 (a) and 4.1 (b). The second method of estimation fits badly

the interval of estimation from t = 19 to 39.
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Figure S2: The estimated curves of Π provided by both methods of estimation and the observed
data from t = 0 until 39. The first estimation method provided for R0 = 6.8, αy = 0.0052 and
αo = 0.026 (a), and for R0 = 4.1, αy = 0.08 and αo = 0.4 (b). Both figures show also the
second method of estimation, providing the same αy = 0.0009 and αo = 0.009. The rates αy
and αo are in days−1.

For R0 = 6.8, Figure S3(a) shows the estimated curves of accumulated number of severe

CoViD-19 (Ωy, Ωo, and Ω = Ωy + Ωo), from equation (12). At t = 120, Ω approached an
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asymptote (or plateau), which can be understood as the time when the first wave of the epidemic

ends. The curves Ωy, Ωo, and Ω reach values, respectively, 1.51×106, 0.43×106, and 1.94×106.

Figure S3(b) shows the estimated curves of the accumulated number of CoViD-19 deaths (Πy,

Πo, and Π = Πy+Πo), from equation (13). The values of Πy, Πo, and Π are, for the first method

of estimation, respectively, 0.747× 105 (4.9%), 1.14× 105 (26.7%) and 1.88× 105 (9.7%), and

for the second method of estimation, respectively, 2.67× 104 (1.77%), 4.77× 104 (11.2%) and

7.44× 104 (3.8%). The percentage between parentheses is the ratio Π/Ω.
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Figure S3: For R0 = 6.8, the estimated curves of accumulated number of severe CoViD-19
(Ωy, Ωo and Ω = Ωy + Ωo) (a), and accumulated number of CoViD-19 deaths (Πy, Πo and
Π = Πy+Πo) (b). The continuous curve for αo = 0.026 days−1, and dashed curve for αo = 0.009
days−1.

From Figure S3, the first estimation method for the additional mortality rates provided

around 2.5-time more deaths than the second method. Especially, the first method estimated

26.7% against 11.2% of deaths in the elder subpopulation, while for the young subpopulation,

5% against 2% in comparison with the second method. Hence, the second estimation method

is more credible.

For R0 = 4.1, Figure S4(a) shows the estimated curves of the accumulated number of severe

CoViD-19 (Ωy, Ωo, and Ω = Ωy + Ωo), from equation (12). At t = 200, the curves Ωy, Ωo, and

Ω reach values, respectively, 1.48 × 106, 0.42 × 106, and 1.91 × 106. Figure S4(b) shows the

estimated curves of the accumulated number of CoViD-19 deaths (Πy, Πo, and Π = Πy + Πo),

from equation (13). The values of Πy, Πo, and Π are, for the first method of estimation,

respectively, 6.60× 105 (44.4%), 3.58× 105 (84.9%) and 1.02× 106 (53.4%), and for the second

method of estimation, respectively, 2.62×104 (1.8%), 4.72×104 (11.2%) and 7.34×104 (3.9%).

The percentage between parentheses is the ratio Π/Ω.
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Figure S4: For R0 = 4.1, the estimated curves of accumulated number of severe CoViD-19
(Ωy, Ωo and Ω = Ωy + Ωo) (a), and accumulated number of CoViD-19 deaths (Πy, Πo and
Π = Πy + Πo) (b). The continuous curve for αo = 0.4 days−1, and dashed curve for αo = 0.009
days−1.

From Figure S4, the first estimation method for the additional mortality rates provided

much higher values than the second method, for instance, 25-time more deaths in the young

subpopulation. Especially, the first method estimated 85% against 11.2% of deaths in the elder

subpopulation in comparison with the second method. Notice that, from Figures S3 and S4,

at the end of the first wave of the epidemic, we have quite the same number of accumulated

CoViD-19 cases for R0 = 6.8 and 4.1 (difference at most 1.8%) despite big differences in the

accumulated deaths.

3.3 Estimation of the proportion in isolation

Isolation was introduced at t = 27 (24 March), and we estimate ky and ko taking into account

the confirmed cases of CoViD-19 from t = 27 to 55 (21 April), totalizing 29 observations.

To estimate the proportion in isolation, we vary k letting k = ky = ko. The system

of equations (3), (4), and (6), with boundary conditions given by equations (8) and (9), is

evaluated and we calculate

n∑
i=1

{
Ωy (ti) + Ωo (ti)−

[
Ωb

2y (ti) + Ωob
o (ti)

]}2
,

where t1 = 27 and t29 = 55. We varied k, k = 0, 0.4, 0.6, 0.7, and 0.8, and we choose as the

estimated value k = 0.5, which is close to the observed proportions of isolation in São Paulo

18



State [18].

Figure S5(a) shows the estimated curve of Ω = Ωy + Ωo and the observed data, plus the

curves for k = 0, 0.4, 0.6, 0.7, and 0.8. Figure S5(b) shows the curves of D2 for 6 different

values of k, extended from t = 0 until 250. For k = 0, 0.4, 0.5, 0.6, 0.7, and 0.8, the peaks of

the epidemic are, respectively, 6.89 × 105, 3.12 × 105, 2.25 × 105, 1.42 × 105, 0.68 × 105, and

0.14× 105, which decrease as k increases, and displace to the right to, respectively, t = 68, 82,

88, 99, 118, and 165.
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Figure S5: The estimated curve of Ω for k = 0.5, and the observed data, plus five curves of k,
k = 0, 0.4, 0.6, 0.7, and 0.8 (a), and the extended curves of D2 from t = 0 until 250 (b).

Figure S6 shows the curves of Ωy, Ωo, and Ω = Ωy+Ωo (a) and Πy, Πo, and Π = Πy+Πo (b)

without (k = 0, continuous curves) and with (k = 0.5, dashed curves) isolation. For k = 0.5,

at t = 250, the curves Ωy, Ωo, and Ω attain values, respectively, 7.30 × 105, 2.09 × 105, and

9.38×105, and Πy, Πo, and Π attain, respectively, 1.29×104 (1.77%), 2.33×104 (11.17%), and

3.62× 104 (3.86%). The percentage between parentheses is the ratio Π/Ω.

Figure S7 shows the curves of Sy, So, and S = Sy + So (a) and Iy, Io, and I = Iy + Io (b)

without (k = 0, continuous curves) and with (k = 0.5, dashed curves) isolation. For k = 0.5, at

t = 250, the numbers of susceptible persons Sy, So, and S = Sy+So are, respectively, 9.95×105

(2.63%), 7.94 × 104 (1.17%), and 1.08 × 106 (2.41%). The percentage between parentheses is

the ratio S(250)/S(0). The numbers of immune persons Iy, Io, and I increase from zero to,

respectively, 1.81 × 107 (47.9%), 0.33 × 107 (48.4%), and 2.14 × 107 (48%), for k = 0.5. The

percentage between parentheses is the ratio I/S(0), and S(0), where Sy (0) = 37.8 × 106 and

So (0) = 6.8× 106.

From the foregoing section, we transport the values for k = 0 at the end of the first wave
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Figure S6: The curves of Ωy, Ωo, and Ω = Ωy + Ωo (a), and Πy, Πo, and Π = Πy + Πo (b)
without (k = 0, continuous curves) and with (proportion k = 0.5, dashed curves) isolation.

of the epidemic. For Ωy, Ωo, and Ω, we have 1.51 × 106, 0.43 × 106, and 1.94 × 106, and for

Πy, Πo, and Π, the values are 2.67× 104 (1.77%), 4.77× 104 (11.19%), and 7.44× 104 (3.84%).

The percentage between parentheses is the ratio Π/Ω. For Sy, So, and S, we have 2.35 × 105

(0.62%), 0.30× 104 (0.043%), and 2.38× 105 (0.53%), and the percentage between parentheses

is the ratio S(200)/S(0). For Iy, Io, and I, we have 3.755 × 107 (99.4%), 0.67 × 107 (98.8%),

and 4.43× 107 (99.3%), and the percentage between parentheses is the ratio I/S(0). At t = 0,

for Sy, So, and S, we have 3.78× 107, 0.68× 107, and 4.46× 107.

For k = 0.5, at the end of the first wave of the epidemic, in comparison with k = 0, the severe

CoViD-19 cases Ωy, Ωo, and Ω decreased by 51%, 49%, and 48%, while Πy, Πo, and Π decreased

by 48%, 49%, and 49%. The susceptible persons Sy, So, and S increased by 424%, 2701%, and

453%, while Iy, Io, and I decreased by 48%, 49%, and 48%. Notice that the numbers of severe

CoViD-19, deaths due to CoViD-19, and immune persons decreased by 50%, while susceptible

young persons were increased around 4-time (27-time for elder persons). These epidemiological

scenarios for k = 0.5 show that the elder subpopulation will be at a higher risk of infection in

the second wave of the epidemic.

To assess the effects of isolation on the epidemic, we consider k = 0.6, 0.7, and 0.8. As k

increases (assuming 0.6, 0.7, and 0.8), the peaks of D2 decrease to 142.3, 68, and 13.7 (all in

thousand), occurring at 99 (4 June), 118 (23 June) and 165 (9 August), which are delayed in

31, 50, and 97 days in comparison with k = 0. Table S1 shows the values of Ω, Π, S, and I

at t = 250, for k = 0.6, 0.7, and 0.8. Percentages are calculated with respect to k = 0. As

k increases, the numbers of severe CoViD-19 and deaths decrease, which help in the hospital
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Figure S7: The curves of Sy, So, and S = Sy + So (a), and Iy, Io, and I = Iy + Io (b) without
(k = 0, continuous curves) and with (proportion k = 0.5, dashed curves) isolation.

management and health care system. However, the number of susceptible persons increases

and fewer persons are immune at the end of the first wave of the epidemic as k increases, which

indicates more risk of the second wave of the epidemic, especially in elder subpopulation.

Table S1: The values of Ω, Π, S, and I at t = 250, for k = 0.6, 0.7, and 0.8. y, o, and Σ stand
for, respectively, young, elder, and total persons.

k = 0.6 k = 0.7 k = 0.8
y o Σ y o Σ y o Σ

Ω (105) 5.58 1.62 7.20 3.72 1.10 4.82 1.43 0.44 1.87
Π 9866 18060 27926 6568 12270 18838 2451 4752 7203
S (106) 1.51 0.15 1.66 2.39 0.30 2.69 4.24 0.65 4.90
I (106) 13.86 2.55 16.41 9.24 1.74 10.97 3.50 0.68 4.18

Ω (%) 36.94 37.89 37.15 24.61 25.79 24.87 9.48 10.37 9.67
Π (%) 36.95 37.89 37.55 24.60 25.74 25.33 9.18 9.97 9.69
S (%) 477 5055 520 755 9845 841 1342 21606 1534
I (%) 36.98 37.82 37.11 24.65 25.73 24.81 9.32 10.13 9.45

Table S1 summarized the epidemic in the circulating population when a proportion k of the

population is isolated. In comparison with the epidemic without isolation, at the end of the first

wave of the epidemic, the numbers of severe CoViD-19 cases Ω, deaths Π, and immune persons

I were decreased by around 100k%, while susceptible persons were increased. For k = 0.5,

0.6, 0.7, and 0.8, the susceptible young persons have increased by around, respectively, 4, 5, 7,

and 13-time, while for the susceptible elder persons, 27, 50, 100, and 216-time. The effect of
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isolation to control the epidemic is portrayed by the increased number of susceptible persons

at the end of the epidemic. Clearly, the elder subpopulation is highly benefitted from the

isolation, much more than the young subpopulation. This finding shows that the interaction

between elder and young subpopulations results in much more cases of CoViD-19 in the elder

subpopulation, and the isolation protects the more vulnerable elder persons.

We summarize the estimation of the model parameters and the current epidemiological

scenario under isolation.

At t = 0, the numbers of susceptible persons, Sy, So, and S = Sy + So are, respectively,

3.78×107, 0.68×107, and 4.46×107, which diminish due to infection. At t = 200, for R0 = 6.8,

the numbers of susceptible young, elder, and total persons are, respectively, 2.35×105 (0.62%),

0.29× 104 (0.04%), and 2.38× 105 (0.53%). For R0 = 4.1, the numbers of susceptible persons

are 8.82 × 105 (2.34%), 6.96 × 104 (1.02%), and 9.52 × 105 (2.13%). The percentage between

parentheses is the ratio S(200)/S(0). The numbers of susceptible young and total persons are

4-time higher when R0 decreases from 6.8 to 4.1, while for elder persons, it is 24-time.

For R0 = 6.8, at t = 200, the numbers of immune persons (Iy, Io, and I) increase from

zero to, respectively, 3.76× 107 (99.4%), 0.67× 107 (98.8%), and 4.43× 107 (99.3%), for young,

elder and total persons. For R0 = 4.1, the numbers of immune persons are 3.69× 107 (97.7%),

0.67 × 107 (97.9%), and 4.36 × 107 (97.7%), for young, elder and total persons, respectively.

The percentage between parentheses is the ratio I/S(0).

At the end of the first wave of the epidemic, the values of Ω, Π, S, and I are practically

the same for R0 = 6.8 and 4.1. However, the peak of the epidemic for R0 = 6.8 is higher than

R0 = 4.1, and the curve of the epidemic for R0 = 4.1 is more spread over time than the curve

for R0 = 6.8.

The adoption of isolation in São Paulo State maintained 18.9 × 106 young and 3.4 × 106

elder persons in the susceptible class. These susceptible persons will be joined with those in

the circulating population, showing that strategies of release must be planned carefully. In the

main text, the estimated model parameters are used to understand the current epidemiological

scenario of the new coronavirus in São Paulo State, and to evaluate the release of isolated

persons.

To evaluate how the model parameters affect the epidemic, we varied the estimated values.

Two decreased values in the transmission rates, resulting in R0 = 5 and R0 = 4.1, under-

estimated the curves of the epidemic (see Figure S1(a)). The estimated additional mortality

rates fitting very well the curve of deaths at the beginning of the epidemic provided an unrealistic

number of deaths at the end of the first wave of the epidemic. We chose decreased mortality

rates to obtain a more realistic estimation of deaths at the end of the epidemic (see Figures
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S2-S4). We varied by 10% the estimated proportion in isolation, and we obtained an under-

estimated curve of the epidemic for k = 0.6, but good fitting for k = 0.4. However, we choose

k = 0.5 based on the observed proportions in isolation in São Paulo State (see Figure S5).
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