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The basic reproduction number R0 is computed for a simplified version of the PRAM, without
antiviral and immunization interventions. By removing these classes, the following compartments
of the PRAM remainin: Susceptible (1) S(1), Susceptible (2) S(2), Exposed (5) E, Not Medically
Attended (7) NA, Medically Attended (6) MA, Not treated with AV (9) NT , Hospitalized (10) H,
Recovered (12) R, and Death (11) D. Each compartment is divided into 7 age groups and 2 risks
levels. The 14 sub-compartments are indexed by (a, r) where a is the age group and r is risk level.

The population size of the group (a, r) is denoted by N(a,r). A compartment sub indexed by
(a, ·) represents the sum of both risk groups of the compartment, for example MA(k,·) = MA(k,1) +
MA(k,2). The (i, j)-entry of the contact matrix is denoted by c(i,j).

With this notation, the ODE system is given by

S
(1)′

(a,r) = −βS(1)
(a,r)

7∑
k=1

c(a,k)

N(k,·)

[
MA(k,·) +NA(k,·) +NT(k,·) +H(k,·)

]
S
(2)′

(a,r) = −βS(2)
(a,r)

7∑
k=1

c(a,k)

N(k,·)

[
MA(k,·) +NA(k,·) +NT(k,·) +H(k,·)

]
E′(a,r) = β

(
S
(1)
(a,r) + S

(2)
(a,r)

) 7∑
k=1

c(a,k)

N(k,·)

[
MA(k,·) +NA(k,·) +NT(k,·) +H(k,·)

]
− πE(a,r)

NA′(a,r) =
(
1− s(r)

)
πE(a,r) − θNA(a,r)

MA′(a,r) = s(r)πE(a,r) − δMA(a,r)

NT ′(a,r) = δMA(a,r) − τNT(a,r)

H ′(a,r) = h(r)τNT(a,r) − µH(a,r)

R′(a,r) = θNA(a,r) + (1− h(r))τNT(a,r) + (1−m(r))µH(a,r)

D′(a,r) = m(r)µH(a,r),

(1)

To find the basic reproduction number R0 we use the next generation matrix approach, de-
scribed below.
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1. Identify the disease compartments. In our case: E,NA,MA,NT,H

2. Decompose the dynamics into F (secondary infections) and V (all other transitions). Thus,
we must express each sub-compartment as

x(a,r) = F x
(a,r) − V x

(a,r), where x = E,NA,MA,NT,H.

This step is easy because all secondary infections enter the class E.

3. Linearized the ODE model about the disease free equilibrium (DFE) by computing the
matrices F and V with entries

F(i,j) =
∂Fi

∂xj

∣∣∣
DFE

and V(i,j) =
∂Vi

∂xj

∣∣∣
DFE

where xi are equal to Ea,1, Ea,2, NAa,1, NAa,2, . . . ,Ha,1, Ha,2, a = 1, . . . , 7, in that order.
This is

E1,1, . . . , E7,1, E1,2, . . . , E7,2︸ ︷︷ ︸
xi for i=1,...,14

, NA1,1, . . . , NA7,2︸ ︷︷ ︸
xi for i=15,...,28

, . . . , H1,1, . . . ,H7,2︸ ︷︷ ︸
xi for i=57,...,70

and xi = Fi−Vi.

4. Compute FV −1.

5. R0 is equal to the largest eigenvalue of the matrix FV −1, also known as the spectral radius
and denoted by ρ(FV −1).

Once the infectious stages have been identified, step 2 is fairly easy because all secondary
infections enter the class E. Therefore

V E
(a,r) = πE′(a,r), FE

(a,r) = β
(
S
(1)
(a,r) + S

(2)
(a,r)

) 7∑
k=1

c(a,k)
N(k,·)

[
MA(k,·) +NA(k,·) +NT(k,·) +H(k,·)

]
,

V x
(a,r) = −x′(a,r), F x

(a,r) = 0, for x = NA,MA,NT and H.

To complete step 3, notice that the DFE is S
(1)
(a,r) = S

(1)
(a,r)(0), S

(2)
(a,r) = S

(2)
(a,r)(0) and all other

compartments equal to zero. In particular S
(1)
(a,r) +S

(2)
(a,r) = N(a,r). Then compute the Jacobian and

evaluate at DFE

∂FE
(a′,r′)

∂E(a,r)
= 0,

∂FE
(a′,r′)

∂E(a,r)

∣∣∣∣∣
DFE

= 0

∂FE
(a′,r′)

∂NA(a,r)
= β

(
S
(1)
(a′,r′) + S

(2)
(a′,r′)

) c(a′,a)
N(a,·)

,
∂FE

(a′,r′)

∂NA(a,r)

∣∣∣∣∣
DFE

= βc(a′,a)
N(a′,r′)

N(a,·)

∂FE
(a′,r′)

∂MA(a,r)
= β

(
S
(1)
(a′,r′) + S

(2)
(a′,r′)

) c(a′,a)
N(a,·)

,
∂FE

(a′,r′)

∂MA(a,r)

∣∣∣∣∣
DFE

= βc(a′,a)
N(a′,r′)

N(a,·)

∂FE
(a′,r′)

∂NT(a,r)
= β

(
S
(1)
(a′,r′) + S

(2)
(a′,r′)

) c(a′,a)
N(a,·)

,
∂FE

(a′,r′)

∂NT(a,r)

∣∣∣∣∣
DFE

= βc(a′,a)
N(a′,r′)

N(a,·)

∂FE
(a′,r′)

∂H(a,r)
= β

(
S
(1)
(a′,r′) + S

(2)
(a′,r′)

) c(a′,a)
N(a,·)

,
∂FE

(a′,r′)

∂H(a,r)

∣∣∣∣∣
DFE

= βc(a′,a)
N(a′,r′)

N(a,·)
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Thus, the F matrix is given by the block matrix

F =


0 F ∗ F ∗ F ∗ F ∗

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


where each zero represents a 14× 14 zero matrix,

F ∗ = β

[
F (1) F (1)

F (2) F (2)

]
,

and F (1), F (2) can be decomposed as

F (r) =



c(1,1)
N(1,r)

N(1,·)
· · · c(1,7)

N(1,r)

N(7,·)

c(2,1)
N(2,r)

N(1,·)
· · · c(2,7)

N(2,r)

N(7,·)

...
. . .

...

c(7,1)
N(7,r)

N(1,·)
· · · c(7,7)

N(7,r)

N(7,·)


, F

(r)
i,j = c(i,j)

N(i,r)

N(j,·)
.

Similarly, we can find the matrix V . Compute

∂V E
(a′,r′)

∂E(a,r)
= π,

∂V E
(a′,r′)

∂x(a,r)
= 0 where x = NA,MA,NT,H

∂V NA
(a′,r′)

∂E(a,r)
= −

(
1− s(r)

)
π,

∂V NA
(a′,r′)

∂NA(a,r)
= θ,

∂V NA
(a′,r′)

∂x(a,r)
= 0 where x = MA,NT,H

∂V MA
(a′,r′)

∂E(a,r)
= −s(r)π,

∂V MA
(a′,r′)

∂MA(a,r)
= δ,

∂V MA
(a′,r′)

∂x(a,r)
= 0 where x = NA,NT,H

∂V NT
(a′,r′)

∂MA(a,r)
= −δ,

∂V NT
(a′,r′)

∂NT(a,r)
= τ,

∂V NT
(a′,r′)

∂x(a,r)
= 0 where x = E,NA,H

∂V H
(a′,r′)

∂NT(a,r)
= −h(r)τ,

∂V H
(a′,r′)

∂H(a,r)
= µ,

∂V H
(a′,r′)

∂x(a,r)
= 0 where x = E,NA,MA

Then V can be separated in 14× 14 block matrices

V =



Diag[π] 0 0 0 0

−Diag
[(

1− s(1)
)
π,
(
1− s(2)

)
π
]

Diag[θ] 0 0 0

−Diag
[
s(1)π, s(2)π

]
0 Diag[δ] 0 0

0 0 −Diag[δ] Diag[τ ] 0

0 0 0 −Diag[h(1)τ, h(2)τ ] Diag[µ]


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where Diag[z] is a 14×14 diagonal matrix with entries equal to z and Diag[z1, z2] is also a diagonal
matrix with its first 7 entries equal to z1 and the remaining 7 equal to z2. To find the inverse of V
we use the formula [

A 0
C D

]−1
=

[
A−1 0

−D−1CA−1 D−1

]
twice. This gives us

V −1 =



Diag
[
1
π

]
0 0 0 0

Diag
[
1−s(1)
θ ,

1−s(2)
θ

]
Diag

[
1
θ

]
0 0 0

Diag
[ s(1)
δ ,

s(2)
δ

]
0 Diag

[
1
δ

]
0 0

Diag
[ s(1)
τ ,

s(2)
τ

]
0 Diag

[
1
τ

]
Diag

[
1
τ

]
0

Diag
[
s(1)h(1)

µ ,
s(2)h(2)

µ

]
0 Diag

[
h(1)

µ ,
h(2)

µ

]
Diag

[
h(1)

µ ,
h(2)

µ

]
Diag

[
1
µ

]



To complete step 4 we compute

FV −1 =


0 F ∗ F ∗ F ∗ F ∗

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





Diag
[
1
π

]
0 0 0 0

Diag
[
1−s(1)
θ ,

1−s(2)
θ

]
∗ 0 0 0

Diag
[ s(1)
δ ,

s(2)
δ

]
0 ∗ 0 0

Diag
[ s(1)
τ ,

s(2)
τ

]
0 ∗ ∗ 0

Diag
[
s(1)h(1)

µ ,
s(2)h(2)

µ

]
0 ∗ ∗ ∗



=



F ∗
(

Diag
[
1−s(1)
θ +

s(1)
δ +

s(1)
τ +

s(1)h(1)

µ ,
1−s(2)
θ +

s(2)
δ +

s(2)
τ +

s(2)h(2)

µ

])
∗ ∗ ∗ ∗

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


The entries ∗ have not been computed because those will not be relevant when finding the eigenvalues of
FV −1.

Finally, we must compute the eigenvalues of FV −1. To find the nonzero eigenvalues it is enough to focus
on the first block matrix M = F ∗ (Diag[(1− s)/θ + s/δ + s/τ ] + Diag[sh(1)/µ, sh(2)/µ]

)
.

M = F ∗
(

Diag

[
1− s(1)

θ
+
s(1)

δ
+
s(1)

τ
+
s(1)h(1)

µ
,

1− s(2)
θ

+
s(2)

δ
+
s(2)

τ
+
s(2)h(2)

µ

])

= β

[
F (1) F (1)

F (2) F (2)

]
Diag

[
1− s(1)

θ
+
s(1)

δ
+
s(1)

τ
+
s(1)h(1)

µ
,

1− s(2)
θ

+
s(2)

δ
+
s(2)

τ
+
s(2)h(2)

µ

]

=

[
aF (1) bF (1)

aF (2) bF (2)

]
,

where

a = β

(
1− s(1)

θ
+
s(1)

δ
+
s(1)

τ
+
s(1)h(1)

µ

)
and b = β

(
1− s(2)

θ
+
s(2)

δ
+
s(2)

τ
+
s(2)h(2)

µ

)
.
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The matrix M cannot be simplified further, so there is not a simple formula for its eigenvalues and numeric
methods must be used to compute R0.
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