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Fig. S1. Schematic of the environmental infection transmission system (EITS)-based model including four compartments of (A) susceptible (S)-infected (I)-recovery (R) population dynamics and (B) environmental pathogens (E). (See text for symbol meanings)
Human respiratory tract (HRT) model: To describe the concentration changes of influenza droplet over time by human respiratory tract (HRT) model, the assumption that each HRT is treated as a circular tube and has the same physiological characteristics needs to be made. Generally, HRT model included four major deposition mechanisms which were turbulent diffusive deposition, gravitational settling, inertial impaction, and interception deposition, respectively. Fig. S2 depicts the deposition mechanisms. Based on the principle of mass balance, all the size-dependent dynamic equations of each regional compartment can be represented in a linear state-space model as [1,2],
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 (# cm-3) is the state variable vector of influenza-containing droplet concentration in lung regions ET1, BB, bb, and AI, respectively; 
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 (# cm-3) represents an input vector of droplet concentration in the indoor environment; [L] (s-1) represents the state matrix containing size-specific transport rate coefficients of turbulent diffusive deposition, gravitational settling, and inertial impaction rate in each pulmonary compartment as well as transition coefficients between pulmonary compartments; and [B] (s-1) is the constant input matrix described as diag[Q/V1, 0, 0, 0] where Q is the breathing rate (cm3 h-1) and V1 is the volume of ET1 compartment (cm3). Fig. S3 illustrates the inflows and outflows of each HRT region modified from [2]. 

In this study, four size bins were selected to assess the deposited number concentration in each HRT region which were 0.3 – 0.4, 0.4 – 0.5, 0.5 – 1, and 1 – 5 μm, respectively. Equations needed for estimating particle size-specific deposition rate coefficients were listed in Table S1. Table S2 lists the parameters essential for estimating deposition rate coefficients and input in HRT model. Table S3 gives estimated deposition rate coefficients for different HRT regions and size groups. Table S4 gives particle size-specific slip correction coefficients, terminal settling velocities and the settling rates. On the other hand, this study calculated deposition rate by first estimating droplet diameter size-specific deposition velocity (VDep, m s-1) as,
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where Dd is the diffusion coefficient at specific droplet diameter (m2 s-1). Afterward, deposition rate of droplets can be calculated by dividing VDep with horizontal distance.
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Fig. S2. Schematic of respiratory flow and deposition mechanisms in respiratory tract including gravitation settling, turbulent diffusive deposition, inertial impaction, and interception deposition.
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Fig. S3. Compartmental inflows and outflows in human respiratory tract (HRT) include head airway region of nose (ET1) and of mouth, pharynx, and larynx (ET2), bronchial region (BB), bronchiolar region (bb), and alveolar-interstitial region (AI).

Table S1 Particle size-specific rate equations of deposition mechanisms in human respiratory tract (HRT) model

	Rate equations of deposition mechanisms

	Turbulent diffusive deposition rate (s-1)
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	Gravitational setting rate (s-1)
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	Inertial impaction rate (s-1)
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	Interception deposition efficiency (%)
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a Adopted from Crump and Seinfeld [3].
b Adopted from Hinds [4].

Table S2 Parameters essential for estimating deposition rate coefficients and for human respiratory tract (HRT) model
	Parameters
	Description
	Parameter values

	Lung physiological parameters
	Compartments

	Di a
	Diameter of airways (cm)
	ET1
	BB
	bb
	AI

	
	
	0.5
	1.2
	0.1
	0.05

	ni a
	Number of airways
	1
	1
	6.6×104
	4.5×107

	V
	Volume of compartments in lung (cm3)
	5.8
	94.6
	510.2
	1580.4

	βji
	Transfer coefficient between compartments i and j
	1

	Q
	Breathing rate (cm3 s-1)
	236.1

	CL
	Clearance rate by phagocyte (s-1)
	2.31×10-6 

	Deposition rate parameters
	Diameter of particle ranges (μm)

	D b
	Brownian diffusion coefficient (cm2 s-1)
	0.3–0.4
	0.4–0.5
	0.5–1
	1–5

	
	
	1.0×10-6
	7.2×10-7
	3.8×10-7
	8.3×10-8

	Cc b
	Slip correlation factor
	1.47
	1.35
	1.21
	1.05

	VTS b
	Terminal settling velocity (m s-1)
	3.9×10-6
	6.5×10-6
	1.9×10-5
	4×10-4

	ke d
	Turbulent intensity parameter (s-1)
	0.1

	n e
	Exponent constant
	2

	kB b
	Boltzmann’s constant (dyn cm K-1)
	1.38×10-16

	T
	Ambient temperature (℃)
	25

	η b
	Dynamic viscosity air (kg m-1 s-1)
	1.84×10-5

	ρp b
	Particle density (kg m-3)
	1000

	g b
	Gravitational acceleration constant (m s-2)
	9.81

	α b
	Solidity
	0.005

	Ku b
	Kawabara hydrodynamic factor
	0.19


aAdopted from ICRP [5].

bAdopted from Hinds [4].

cAdopted from Nazaroff and Cass [6].

dAdopted from Nazaroff et al. [7].
Table S3 Estimated values of deposition rate coefficientsa
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	ET1 
	
	
	
	

	0.3–0.4 μm
	5.05×10-3
	4.17×10-3
	2.13×10-3
	8.12×10-13

	0.4–0.5 
	4.28×10-3
	5.46×10-3
	3.25×10-3
	1.04×10-12

	0.5–1 
	3.13×10-3
	1.51×10-2
	8.06×10-3
	1.74×10-12

	1–5 
	1.46×10-3
	3.17×10-1
	1.12×10-1
	6.95×10-12

	BB 
	
	
	
	

	0.3–0.4
	2.1×10-3
	1.74×10-3
	8.88×10-4
	3.38×10-13

	0.4–0.5
	1.78×10-3
	2.28×10-3
	1.36×10-3
	4.35×10-13

	0.5–1
	1.3×10-3
	6.3×10-3
	3.36×10-3
	7.25×10-13

	1–5
	6.09×10-4
	1.32×10-1
	4.68×10-2
	2.9×10-12

	bb 
	
	
	
	

	0.3–0.4
	2.52×10-2
	2.08×10-2
	1.07×10-2
	2.66×10-7

	0.4–0.5
	2.14×10-2
	2.72×10-2
	1.63×10-2
	3.42×10-7

	0.5–1
	1.56×10-2
	7.56×10-2
	4.03×10-2
	5.69×10-7

	1–5
	7.3×10-3
	1.59
	5.62×10-1
	2.27×10-6

	AI 
	
	
	
	

	0.3–0.4
	5.05×10-2
	4.17×10-2
	2.13×10-2
	3.65×10-4

	0.4–0.5
	4.28×10-2
	5.46×10-2
	3.25×10-2
	4.69×10-4

	0.5–1
	3.13×10-2
	1.51×10-1
	8.06×10-2
	7.82×10-4

	1–5
	1.46×10-2
	3.17
	1.12
	3.11×10-3


aEstimated based on Tables S1 and S2.

	Table S4 Particle size-specific slip correction coefficients, terminal settling velocities and the settling rates
Particle size (μm)
	Cc a
	VTS (m s-1) b
	Settling rates (h-1) c

	0.3–0.4
	1.47
	5.41×10-6
	6.49×10-3

	0.4–0.5
	1.35
	8.25×10-6
	9.91×10-3

	0.5–1
	1.21
	2.04×10-5
	2.45×10-2

	1–5
	1.05
	2.85×10-4
	3.42×10-1


a Slip correction coefficients were calculated based on the equation [4]: 
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 where parameter values are adopted from Hinds [4].

c Settling rate was calculated with a vertical distance of 3 m.
Table S5 Probability distributions (N = normal, LN = lognormal) of parameters for environmental infection transmission system (EITS) model a
	Parameters
	Parameter values
	Probability distribution

	ρ b (person-1 day-1)
	ρ = B × (VT / VE) × df × tE × 60
	LN(4.69×10-2, 1.4)

	B c (breath min-1)
	Children
	Adult
	LN(20.48, 1.12)

	
	Male
	Female
	Male
	Female
	

	
	22
	17.5
	23
	20
	

	VT c (L breath-1)
	0.85
	0.72
	1.14
	0.82
	LN(0.86, 1.23)

	df d
	Diameter of particles (μm)
	LN(0.24, 1.27)

	
	0.3–0.4
	0.4–0.5
	0.5–1
	1–5
	

	
	0.2
	0.21
	0.25
	0.33
	

	VE e (L)
	4.54×104
	－

	tE f (h day-1)
	9
	－

	α b (pathogens person-1 day-1)
	α = Ecough × VP × C
	LN(5.91×102, 1.17)

	Ecough g (person-1 day-1)
	1000
	－

	VP h (mL)
	6×10-8
	－

	C i (# m-3)
	Diameter of particles (μm)
	LN(9.84×106, 1.17)

	
	0.3–0.4
	0.4–0.5
	0.5–1
	1–5
	

	
	2.91×107
	9.71×106
	9.92×105
	3.82×104
	

	μ (day-1)
	μ = s + d + k + v
	LN(15.79, 1.15)

	s j (day-1)
	Diameter of particles (μm)
	LN(0.06, 3.33)

	
	0.3–0.4
	0.4–0.5
	0.5–1
	1–5
	

	
	0.006
	0.01
	0.025
	0.34
	

	d j (day-1)
	0.16
	0.12
	0.1
	0.05
	LN(0.1, 1.5)

	k k (day-1)
	Relative humidity (%)
	N(11.7, 2.19)

	
	40
	50
	60
	70
	

	
	6.48
	10.08
	13.44
	16.8
	

	v l (day-1)
	96
	－

	π m (person pathogen-1)
	0.052
	－

	γ n (day-1)
	0.17–0.33
	N(0.25, 0.03)


aSymbol meaning: ρ is the picking up rate, B is the breathing rate, VT is tidal volume, df is deposition fraction in lung regions, VE is the office volume, tE is the exposure duration, α is the pathogen deposition rate, Ecough is the event shedding rate, VP is the droplet volume from one cough, C is the droplet number concentration from one cough, μ is the elimination rate, s is the settling rate, d is the deposition rate, k is the inactivation rate, v is the ventilation rate, π is the probability that a susceptible individual becomes infectious per pathogen, and γ is the recovery rate.
bEstimated based on Li et al. [8]. cEstimated based on ICRP [5]. dEstimated based on human respiratory tract (HRT) model. eEstimated based on a meeting room (5.61 × 3.33 × 2.43 m3) in Chung Shan Medical University. fAssumed. gAdopted from Chen et al. [9]. hAdopted from Nicas et al. [10]. iEstimated based on droplet experiment. jEstimated based on Hinds [4]. kEstimated from Harper [11, 12] Thomas et al. [13], and Bean et al. [14]. lEstimated based on Yang et al. [15]. mAdopted from Li et al. [8]. nEstimated based on Longini et al. [16].
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