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SUPPLEMENTARY MATERIAL
This supplementary material provides additional information on the data and statistical methods used.
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1. STATISTICAL MODEL
We used time series regression model to model influenza associated excess deaths based on a proxy measure of influenza activity. The influenza activity were included as the form ILI×LABs, where ILI is the proportion of outpatients with influenza-like illness and LABs is the proportion of specimens that tested positive for a particular influenza type/subtype (Figure S1). We applied the regression model to the time series of cardio-respiratory death rates (Figure S2). In the model, we included a linear predictor of the form {βtXt} where βt represents a matrix of regression parameters and Xt is a matrix of covariates:
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for week t = 1, …, 531 (excluded the SARS period and with lag 1 assumption), where β1,t-β3,t represent the regression coefficients of the effect from the activities of different influenza types/subtypes, and β4,t represents the regression coefficient of the effect associated with respiratory syncytial virus activity. β5,t-β7,t represent the regression coefficients of the linear and non-linear effect of temperature, β8,t-β10,t represent the linear and non-linear effect of humidity. [image: image3.png]FLUHIN
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 represent influenza A(H1N1), A(H3N2) and B activities in week t-1 respectively since we assumed a time lag of one week between influenza virus activity and mortality in the model. We included an interaction term “[image: image9.png]FLUM
LUZ" PDM,



”, where [image: image11.png]PDM,



 is a dummy variable with value of 1 during the pandemic and 0 otherwise, to take into the account the effect of increase in laboratory capacity during H1N1pdm09.
The model is described by the following equations:
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for j=1, 2, 3, and k=4, 5, …, 16. Dt represents the number of deaths in week t, and Nt represents the population size in week t. The dynamic linear model is used to describe changes over time in an outcome variable, such as the mortality rate, by relating the observed data to an underlying random walk. The random walk has a changing level over time represented by β0,t, which fluctuates with weekly disturbances w0,t, which are assumed to be independent and identically distributed random variables that follow normal distribution with zero mean and variances W0. In this model, the level (β0,t ) and influenza (βj,t )components are allowed to vary over time. Level and influenza components in week t depend on the components in week t-1 and the disturbances in week t. The observations (weekly mortality rates) are then related to the underlying random walk plus measurement error that follows an observation variance V. The observation variance (V) and state disturbance at jump point p (Wj,p) are to be estimated in the model. Table S1 listed all the components of the model.
Table S1. Components of the model.
	Component
	Role

	Dt
	Weekly mortality

	Nt
	Weekly population size
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	Weekly influenza A(H1N1) proxy
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	Weekly influenza A(H3N2) proxy
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	Weekly influenza B proxy
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	Weekly RSV proxy
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	Weekly linear and non-linear effect of temperature
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	Weekly linear and non-linear effect of humidity
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	Seasonal pattern in weekly mortality rate
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	Weekly effect of increase in laboratory capacity during the 2009 influenza pandemic (1 during the pandemic, 0 otherwise)

	β0,t
	Weekly unobserved level

	β1,t - β3,t
	Regression coefficients for [image: image38.emf],[image: image40.emf]and [image: image42.emf] respectively[image: image44.emf] QUOTE  



	β4,t
	Regression coefficients for [image: image46.emf]

	β5,t - β7,t
	Regression coefficients for [image: image48.emf], [image: image50.emf] and [image: image52.emf] respectively

	β8,t - β10,t
	Regression coefficients for [image: image54.emf], [image: image56.emf] and [image: image58.emf] respectively

	β11,t
	Regression coefficients for[image: image60.emf]

	β12,t - β15,t
	Regression coefficients for [image: image62.emf], [image: image64.emf], [image: image66.emf] and [image: image68.emf] respectively

	β16,t
	Regression coefficient for [image: image70.emf]

	vt
	Observation disturbance

	w0,t
	Level disturbance

	w1,t - w3,t
	Influenza activity disturbances


2. CHANGE POINTS
We selected potential changes points in influenza A that occurred before and after at least three influenza seasons in our study period: H3N2 in 2005 and 2007, and H1N1 in 2008. We used Akaike Information Criteria (AIC) and AIC difference as model selection criteria. AIC difference of < 2 is a common threshold used to show that models do not have significant difference 1[]
.   

Among models with lag 1 week, three models (H3N2 in 2005, H3N2 in 2005 + H3N2 in 2007, and H3N2 in 2005 + H3N2 in 2008) had AIC difference of < 2. As all of these models have a change point of H3N2 in 2005, and the model considered only the change point in H3N2 in 2005 had the smallest AIC, we used it as our main model. The comparison of the AIC and AIC difference of the alternative models is shows in Table S2. AIC is defined as:
AIC = -2 log L + 2k 

where log L is the log-likelihood function of the model, and k is the number of estimated parameters of the model. 
AIC difference for model i is defined as:

AIC differencei = AICi - AICmin
where AICi is the AIC for model i and AICmin is the minimum AIC among all fitted models.
R2 is defined as:
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where yj and fj are the observed value and the fitted value for the jth observation respectively.
Table S2. Goodness of fit between models different combinations of change points in influenza A using AIC and R2 statistics, assuming 1 weeks lag between infections and deaths. The model with the lowest AIC is highlighted in bold.

	Model
	No. of parameters
	AIC
	AIC difference*
	R2

	No change point
	1
	2437.6
	2.7
	0.799

	H3N2 in 2005
	2
	2434.9
	0.0
	0.802

	H3N2 in 2007
	2
	2439.6
	4.7
	0.799

	H1N1 in 2008
	2
	2439.6
	4.7
	0.799

	H3N2 in 2005 + H3N2 in 2007
	3
	2436.2
	1.3
	0.803

	H3N2 in 2005 + H1N1 in 2008
	3
	2436.9
	2.0
	0.802

	H3N2 in 2007 + H3N2 in 2008
	3
	2441.6
	6.7
	0.799

	H3N2 in 2005 + H3N2 in 2007 + H1N1 in 2008
	4
	2438.2
	3.3
	0.803


* Relative to the lowest AIC (2434.9)
In sensitivity analyses, we considered 0.5 and 1.5 weeks lags between infections and deaths. Model considered the change point in H3N2 in 2005 also had the minimum AIC (Table S3).

Table S3. Goodness of fit between models different combinations of change points in influenza A using AIC, assuming 0.5 and 1.5 weeks lag between infections and deaths. The model with the lowest AIC in each column is highlighted in bold.

	
	
	Lag 0.5 week
	Lag 1.5 weeks

	Model
	No. of parameters
	AIC
	AIC difference*
	AIC
	AIC difference*

	No change point
	1
	2427.2
	2.3
	2432.4
	1.0

	H3N2 in 2005
	2
	2424.9
	0.0
	2431.4
	0.0

	H3N2 in 2007
	2
	2429.2
	4.3
	2434.4
	3.0

	H1N1 in 2008
	2
	2429.2
	4.3
	2434.4
	3.0

	H3N2 in 2005 + H3N2 in 2007
	3
	2425.7
	0.8
	2433.0
	1.6

	H3N2 in 2005 + H1N1 in 2008
	3
	2426.9
	2.0
	2433.4
	2.0

	H3N2 in 2007 + H3N2 in 2008
	3
	2431.2
	6.3
	2436.4
	5.0

	H3N2 in 2005 + H3N2 in 2007 + H1N1 in 2008
	4
	2427.7
	2.8
	2435.0
	3.6


* Relative to the lowest AIC (2424.9 for lag 0.5 week and 2431.4 for 1.5 weeks)

3. SEASONALITY

The model considered the effect on the association between influenza activity and mortality from the model with trigonometric components of 12 months + 6 months which was found to be the best fitting model with the smallest mean squared error (MSE) and is defined as:
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where n represents the number of observations in the time series. ft represents the one-step-ahead forecasts based on data up to week t-1. Dt represents the number of deaths in week t, and Nt is the population size in week t. The comparison of the MSE of alternative models is shown in the Table S4. 

There are 53 weeks in the year 2006. We deleted week 45, which has the lowest seasonal influenza activity, to permit the model to be fitted with trigonometric components of 52 weeks across the entire study period.
Table S4. Model assessment by 6 combinations of trigonometric components. The model with lowest MSE and AIC is highlighted in bold.

	Trigonometric components*
	MSE
	AIC

	12m
	31.7
	2432.9

	12m + 6m
	31.5
	2434.9

	12m + 6m + 4m
	35.7
	2463.1

	12m + 6m + 4m + 3m
	42.9
	2488.2

	12m + 6m + 4m + 3m + 2m
	96.9
	2523.5

	12m + 6m + 4m + 3m + 2m + 1m
	68.9
	2541.6


* Trigonometric components were added to time series regression model with change point in A(H3N2) in 2005, assuming 1-week lag between influenza incidence and death.
4. SARS PERIOD
In our primary model, we applied the regression model to the time series of cardio-respiratory death rates from 2001 through 2011, excluding January-September 2003 which was affected by the Severe Acute Respiratory Syndrome (SARS) epidemic. We conducted sensitivity analysis to investigate the influence of the SARS epidemic on the association between mortality rates and influenza activity, choosing instead to include the SARS period. The result is shown in Figure S3. The regression coefficients for H1N1, H3N2 and B when including the SARS period gave similar estimates to those when excluding the SARS period (Figure 1).
5. AGE EFFECT

In addition, we conducted sensitivity analysis to see the difference in the estimated time-varying regression coefficients for influenza A and B viruses between non-elderly (<65y) and elderly (≥65y). The results are shown in Figures S4-S5. The regression coefficients for H1N1, H3N2 and B when fitting with elderly cardio-respiratory death rates gave similar estimates to those when fitting with overall cardio-respiratory death rates (Figure 1). However, patterns of non-elderly death rates look different.
6. ALL-CAUSE DEATH RATES

We also investigated the influence of cause-specific death rates on the association between mortality rates and influenza activity, choosing instead to fit the model with the all-cause death rates. The result is shown in Figure S6. The change points of regression coefficients for H1N1, H3N2 and B identified from the model were not substantially different from those when fitting with cardio-respiratory death rates (Figure 1).
7. RESPIRATORY DEATH RATES
Similar to Section 6, we investigated the influence of cause-specific death rates on the association between mortality and influenza activity, choosing instead to fit the model with the respiratory death rates. The result is shown in Figure S7. The change points of regression coefficients for H1N1, H3N2 and B identified from the model fitted to respiratory death rates were not different from those when fitting with cardio-respiratory death rates (Figure 1). The upstroke of the coefficients for H1N1 after 2009 estimated from the model on respiratory death (Figure S7) might indicate increased seriousness of the H1N1pdm09 which echoes the findings from our previous study that the second wave of the H1N1pdm09 was associated with higher excess mortality impact than the first wave although the virus activity was not substantially high during the second wave 2[]
. 
FIGURE LEGENDS

Figure S1. ILI and LAB data from 2001-11 in Hong Kong. A) Weekly proportion of outpatient consultations with influenza-like illness. B) Weekly proportion of laboratory specimens that tested positive for seasonal influenza A(H1N1) (yellow areas), A(H3N2) (dark blue areas) and B (green areas) and A(H1N1)pdm09 (red areas).
Figure S2. Cardio-respiratory death rates per 100,000 per week from 2001-11 in Hong Kong: observed, fitted and baseline (with no influenza A and B activity). Time series regression model was used for fitting the death data.
Figure S3. Influenza activity and influenza associated regression coefficients in Hong Kong, 2001-2011, including SARS period.
Figure S4. Influenza activity and regression coefficients for the associations between type/subtype-specific influenza virus activity and cardio-respiratory death rates among 0-64 years individuals in Hong Kong, 2001-2011.

Figure S5. Influenza activity and regression coefficients for the associations between type/subtype-specific influenza virus activity and cardio-respiratory death rates among 65+ years adults in Hong Kong, 2001-2011.
Figure S6. Influenza activity and regression coefficients for the associations between type/subtype-specific influenza virus activity with all-cause death rates in Hong Kong population, 2001-2011.

Figure S7. Influenza activity and regression coefficients for the associations between type/subtype-specific influenza virus activity with respiratory death rates in Hong Kong population, 2001-2011.
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