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Model representation. In the main article, the complete-data likelihood

for a given stratum (age group×region) in one season is presented as a

product of binomials:

P (M,m,H, h, I, i|S; p, s, g, αM , αI , αH) =

Binom(M +H + I|S; , p)× Binom(H + I|M +H + I; s)× Binom(I|H + I; g)

Binom(m|M ;αM )× Binom(h|H;αH)× Binom(i|I;αI).

This likelihood is equivalent to a multinomial model with 7 entries (6 free

entries) (Figure S1):

P (M,m,H, h, I, i|S; p, s, g, αM , αI , αH) = Multinom(U, m, M−m, h, H−h, i, I−i|

S; 1−p, p(1−s)αM , p(1−s)(1−αM ), ps(1−g)αH , ps(1−g)(1−αH), psgαI , psg(1−αI)).

Here U = S−M −H− I stands for uninfected individuals. The equivalence

of the two model formulations can be proved using the rule for combining

the marginals of the multinomial:
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It can be clearly seen from the multinomial formulation that the model has

3 observations and 6 parameters for a single stratum. The parameters define

the outcome probabilities in a product form, which explains the hyperbolic

posterior dependence between pairs of parameters (see Figure S2). However,

the use of the Bayesian model with the assumption about the equality of the

parameters between different strata helps “borrowing strength” acrossstrata

sharing the same age in the parameter estimation, in addition to the impact

of the prior distributions.

The numbers of prevented cases. The expected number of mild infections

for a given ‘age group×region’ stratum in the second season is

M (2) = S(2)p(2)(1− s) = N(1− p(1))(1− v)p(2)(1− s).

The hypothetical number of infections in the absence of vaccination (assuming

the vaccination had no effect of attack rate per susceptible in the second

season p(2)) can be estimated as

M∗(2) = N(1− p(1))p(2)(1− s).

Then the number of prevented cases is
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1− v

The number of prevented hospitalized and IC infections was estimated in the

similar way.

Computational methods. The posterior distribution of the model parameters

was explored using a Gibbs sampler [1]. Due to the fact that the complete-data

likelihood is a product of binomials the full conditional distribution of each of

the parameters is a Beta distribution and the full conditional distribution of

the other model unknowns (numbers of infections) is a Binomial distribution.

For example, the full conditional for probability s (hospitalization/infection

ratio) is

p(sa|∗) = Beta

(
sa

∣∣∣∣∣∑
r

Ha,r +
∑
r

Ia,r + α,
∑
r

Ma,r + β

)
here α and β are the parameters of the prior Beta distribution for s. The

number of unobserved hospitalized cases H−h has the following distribution:

p(Ha,r−ha,r|∗) = Binom

(
Ha,r − ha,r

∣∣∣Na,r −Ma,r − ha,r − Ia,r;
ps(1− αHa)

ps(1− αHa) + (1− p)

)

We run the algorithm for 107 iterations recording values at every 10th

iteration. The first 1% samples were discarded as “burn-out” iterations. The

Gibbs sampler was implemented in Python 2.7.1 with the NumPy external

library for sampling from random distributions and the Python Image Library

(PIL) for visualization.
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Posterior uncertainty. Figure S2 presents an example of the joint posterior

distribution of parameters p, s, αM , g in one stratum (Helsinki region, age

15-20 years). There was a clear posterior dependence among the parameters

p, s and αM . Nevertheless, the peak area of the posterior was still identifiable.

Similar patterns were evident in all strata.

Sensitivity to the prior distributions. Table S1 presents the impact of

different prior choices on the estimated number of A(H1N1)pdm09 infections

in the two seasons.
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Tables and figures

Table S1. The impact of prior distributions on the estimated number

of all influenza A(H1N1)pdm09 infection in the two seasons. The results are

obtained be changing one prior at a time. SD = standard deviation.
Parameters Prior Mode Mean SD Total Severe

Base-case analysis 258000 3000

Incidence p Beta(2,4) 0.25 0.33 0.17 base case

Uniform(0,1) - 0.50 0.28 -8300 (-3%) 0

Beta(3,6) 0.28 0.33 0.14 +12000 (+5%) 0

Severity s Beta(1.33,34) 0.01 0.04 0.032 base case

Uniform(0,1) - 0.5 0.28 0 +50 (+2%)

Beta(1.13,15) 0.01 0.07 0.06 0 +30 (+1%)

Beta(1,50) 0 0.02 0.02 +3700 (+1%) -60 (-2%)

Beta(1,99) 0 0.01 0.01 +8300 (+3%) -140 (-5%)

IC/hospitalization ratio q Beta(5.3,40) 0.1 0.11 0.047 base case

Uniform(0,1) - 0.5 0.28 0 +150 (+5%)

Beta(1,9) 0 0.1 0.09 0 +210 (+7%)

Beta(10,90) 0.09 0.1 0.029 0 -40 (-4%)

Ascertainment Beta(1.33,34) 0.01 0.04 0.032 base case

probability αM Uniform(0,1) - 0.5 0.28 -234000 (-90%) -290 (-10%)

of the mild cases Beta(1.13,15) 0.01 0.07 0.06 -120000 (-45%) -50 (-2%)

Beta(1,50) 0 0.02 0.02 +240000 (+90%) +30 (+1%)

Beta(1,99) 0 0.01 0.01 +700000 (+270%) +50 (+3%)

Ascertainment Beta(9.6,3.9) 0.75 0.71 0.119 base case

probability αH Uniform(0,1) - 0.5 0.28 0 +180 (+6%)

of the hospitalized cases Beta(50,1) 1 0.98 0.02 0 -700 (-24%)

Beta(99,1) 1 0.99 0.01 0 -700 (-24%)
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Figure 1: Fig S1. The model as a directed acyclic graph. The dotted lines
present deterministic relations and the solid lines present stochastic relations.
The rectangles and circles represent known and unknown parameters,
respectively.
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Figure 2: Fig S2. Joint posterior distribution of parameters p, s, αM , g in
one stratum (Helsinki region, age 15-20 years)
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