SUPPLEMENTARY MATERIAL
SENSITIVITY ANALYSES

METHODS

Sensitivity analyses were carried out to determine the influence of each parameter, for which the values were independent of the running of the model, on the two model outputs of interest: prevalence and mean group size. A list of the parameters for which the sensitivity analyses were performed is provided in Table S1. For each parameter a range of values was obtained by using a Latin-hypercube simulation approach [1]. This involved randomly selecting values from a uniform probability distribution between defined minimum and maximum values. The maximum and minimum values were calculated as 50% and 150%, respectively, of the estimated values derived from the literature. The maximum and minimum values were set as default values which represented plausible but sufficiently wide spans of values. Attempting to determine the edges of these ranges directly from the literature was judged to be unreliable due to the lack of available data. The estimated default values represented a mean value from studies and therefore a central tendency between these studies.  
Table S1. List of parameter values. The parameters were independent of the running of the model

	Parameter
	Estimated value (default value)
	Minimum value
	Maximum value
	Literature used

	Colonisation
	
	
	
	

	Annual probability for adult male
	0.025
	0.01
	0.04
	[3]

	Annual probability for adult female
	0.025
	0.01
	0.04
	[3]

	Dispersal
	
	
	
	

	Annual probability for adult male
	0.060
	0.024
	0.096
	[2] 

	Annual probability for adult female
	0.020
	0.008
	0.032
	[2] 

	Disease-induced mortality

	Adult and yearling males
	0.208
	0.112
	0.3328
	[4]

	Adult and yearling female
	0.093
	0.0372
	0.1488
	[4]

	Cubs – male
	0.208
	0.112
	0.3328
	[4]

	Cubs – female
	0.093
	0.0372
	0.1488
	[4]

	Annual intra-group transmission
	0.175
	0.07
	0.28
	[5]

	Annual inter-group transmission
	0.0075
	0.003
	0.012
	[5]

	Disease dynamics

	Male – latent to infectious
	0.297
	0.1188
	0.4752
	[2]

	Female – latent to infectious
	0.248
	0.0992
	0.3968
	[2]


Two hundred randomly-generated parameter value combinations (simulation configurations) were run in the model 50 times.  Simulation configurations consisted of all possible combinations of the model scenarios with the external infection probability of 0.01 and for three equilibrium group sizes (4, 8 and 12), when vaccination was present. Each simulation run consisted of two hundred iterations (50 years) to stabilise the model. Parameter values for analysis were recorded for the subsequent two hundred iterations. 

In order to assess the output of the sensitivity analysis we used regression analysis to identify which model parameters had the greatest influence on the dependent simulation variables (prevalence and mean group size).  As values for the simulation parameters within the Latin-hypercube process were chosen from independent distributions, values selected for these parameters were orthogonal to each other and therefore colinearity was not an issue.  However, data exploration revealed complex non-linear patterns, indicating that standard linear regression analyses would not have been appropriate.

To cope with the complexities in the structure of the data we used a boosted regression tree (BRT) approach as used by [6] using the gbm package [7] in the R statistical software [8], and supplementary functions provided by [9]. BRTs allow for the calculation of relative influence for each independent variable upon the dependent variable. This method can utilise both non-parametric and linear data more easily than generalised linear models and has the advantage of not requiring the a priori definition of interaction terms to be included; these are identified as part of the tree building process. The method utilises decision trees to partition regions in independent variable space resulting in similar values for the dependent variable.  The boosted part comes from the repeated development of further trees on earlier trees based on model fitting to the residuals of the previous tree structure. For these analyses we used a tree complexity of 5 (i.e. allowing for up to 5-way interaction terms), learning rate (how quickly the method should converge on a solution) of 0.01 and selected a bag size of 0.5. The method is stochastic and utilises a random subsample of the data to produce each ‘branch’ of the tree, with the remaining data being used for cross-validation.  The bag size of 0.5 indicates that at each stage, 50% of the data should be utilised for developing the next ‘branch’ of the tree, and 50% for the cross-validation process. The values used are those recommended by both Elith et al. [10] and Ridgeway [7], generating good tree structures for a variety of test data sets.  Cross-validation avoids over-fitting of the model, by repeatedly testing the accuracy of the ‘branches’ that are being ‘built upon/grown’ [6, 11].

The output from the BRTs were used as measures of the sensitivity of the dependent variable (prevalence and mean group size) to each of the model parameters varied in the sensitivity analysis.

RESULTS

Sensitivity results for prevalence with vaccination


For simulations with equilibrium group sizes of equilibrium group size 4 in the absence of external infectious contact (scenario one), the disease always died out before the end of the simulation run. We therefore did not apply boosted regression tree analysis on this data set.

For all other scenarios and defined equilibrium group sizes, intra-group transmission had the greatest positive impact on prevalence as shown in Figure S1; this reflects the stability of badger social groups.  The second most influential parameter was female adult disease-induced mortality had a greater effect on prevalence than male adult and yearling disease induced mortality, possibly reflecting the fact that they have a lower probabilities of disease-induced mortality than males enabling them to infect more individuals that are susceptible. The next most influential parameter was the change from latent to infectious disease state for both male and female badgers; this is a consequence of the model’s calculation of prevalence which only takes into account infectious and not latent individuals, due to their capacity for transmitting disease. In the smallest defined equilibrium group size (4) female dispersal and colonisation was of importance (Table S1). In small groups, females may move more to find a mate, which is an indication of the decreased stability of small social groups.
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Figure S1. A stacked column chart where each line shows the percentage influence of an independent variable for a given scenario, group size and external transmission probability on prevalence with the presence of vaccination.

Sensitivity results for mean group size with vaccination


For an equilibrium group size of equilibrium group size 4, the only two influential variables were adult female colonisation and dispersal. For group sizes of equilibrium group size 8 and equilibrium group size 12, these two variables had a reduced impact upon mean group size (Figure S2), with intra-group transmission probability and the probability of females transferring from a latent to infectious state becoming increasingly important. Both these variables will result in increasing prevalence and an increase in disease-induced mortality, and therefore have a negative impact on group size. 
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Figure S2. A stacked column chart where each line shows the percentage influence of an independent variable for a given scenario, group size and external transmission probability on mean group size with the presence of vaccination.

CONCLUSIONS AND IMPLICATIONS


Prevalence is affected most significantly across all group sizes by intra-group infections, disease induced mortality of females and by the parameters relating to the transfer of individuals between latent and infectious states. The effect of vaccination on these parameters will be to reduce the number of individuals entering the latent or infectious states and to therefore reduce intra-group infections. Thus, it affects directly the three key parameters in TB dynamics in badgers. Where vaccination can be maintained annually on an ongoing basis, these targeted impacts mean it can be extremely effective in reducing and eliminating TB, although this may still take some time for populations with larger group sizes. However, when vaccination is carried out for only a limited period of time, its constraining effects on these three key parameters are removed, and the disease can recover rapidly as a result. External sources of infection, which help to seed further disease into the badger population, will exacerbate both these effects, reducing the effectiveness of vaccination in the first place and enhancing the recovery of disease following cessation of vaccination. 
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