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1. Expectation Maximization: Technical Details1

The expectation maximization algorithm searches for an optimal solution2

to the log-likelihood function through iteratively maximizing the expected log-3

likelihood function of the complete data, that is where the latent variable denoting4

that a given subject is disease positive is assumed known. At step 0, an initial5

“guess” for the model parameters provides estimates of the probabilities of being6

disease positive, these probabilities are then fed into the expected log-likelihood7

function which is then maximized with respect to the model parameters. This8

proceeds iteratively until the algorithm converges to an optimal solution. From9

[1] if the latent variable D - true disease status (true=1, false=0) - were observed10

the log-likelihood for the ith subject Yi is11

logLc
i(πi, θ) = Di log{πiPθ(Yi | Di = 1)}+ (1−Di) log{(1− πi)Pθ(Yi | Di = 0)}

(1)

where c denotes an individual case, Pθ(.) the probability mass function with12

parameters θ = (φ, ψ), where φ and ψ are the true and false positive rates respec-13

tively (φ=sensitivity, ψ=1-specificity), and πi is the true latent prevalence of dis-14

ease P (Di = 1). Given values for πi = π�
i , e.g. π

�
i = exp{xT

i β
�}/(1+exp{xT

i β
�}),15

where πi is parametrized as a function of covariates βT = (β0, . . . , βm). The trans-16

posed vector xT
i represents the ith row of the design matrix X. The expected17

log-likelihood is18

Eπ�
i ,θ

�(πi, θ) =

n∑
i=1

E(logLc
i(πi, θ) | Yi),

=

n∑
i=1

[
P (Di = 1 | Yi, π�

i , θ
�){log πi + logPθ(Yi | Di = 1)}

+ P (Di = 0 | Yi, π�
i , θ

�){log(1− πi) + logPθ(Yi | Di = 0)}
]
, (2)
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and note that P (Di = 1 | Yi, π�
i , θ

�) = 1 − P (Di = 0 | Yi, π�
i , θ

�) are known19

constants with20

P (Di = 1 | Yi, π�
i , θ

�) =
Pθ�(Yi | Di = 1)π�

i

Pθ�(Yi | Di = 1)π�
i + Pθ�(Yi | Di = 0)(1− π�

i )

where π�
i =

exp{xT
i β

�}
1 + exp{xT

i β
�} .

Using a logistic link function between πi and β then21

log(πi) = log

(
exp{xT

i β
�}

1 + exp{xT
i β

�}
)

= xT
i β − log(1 + exp{xT

i β})

and log(1− πi) = log

(
1

1 + exp{xT
i β

�}
)

= − log(1 + exp{xT
i β})

The expected log-likelihood, the function to be maximized is therefore22

lE =

n∑
i=1

[
c1i(x

T
i β − log(1 + exp{xT

i β}) + Yi logφ+ (1− Yi) log(1− ψ))

+(1− c1i)(− log(1 + exp{xT
i β}) + Yi logψ + (1− Yi) log(1− ψ))

]
, (3)

where c1i = P (Di = 1 | Yi, π�
i , θ

�).23

At each step in the EM algorithm the function in (3) is maximized to give a24

new solution, (β0, . . . , βm, φ, ψ), which is then used to calculate new estimates for25

c1i = P (Di = 1 | Yi, πi, θ), and then the process is repeated. Note that for this26

model the maximization at each iteration must be done numerically rather than27

analytically. A reasonably reliable numerical method for this optimization applied28

to the data presented in the main manuscript was the quasi-Newton method with29

box constraints[2].30

1.1. R scripts31

R scripts for running the above EM algorithm with the model log(π)/ log(1−32

π) = β0 + β1X1 are available in the accompanying files functions R.r and33
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runEM R.r. The results in the main manuscript, including profile likelihoods,34

were produced using analogous code but with the functions compiled in C and35

dynamically loaded into R for improved computational efficiency.36

2. Bayesian Analyzes37

The following files: binom.bug; inits 1.r; script 1.r; binom dat n 100.r38

can be run in JAGS using the command “jags script 1.r” which will run the39

MCMC estimation and produce output files which can then be read into R with40

the CODA library.41

2.1. Diagnostic outputs42

As mentioned in the main text some of the Markov chains got “stuck” at a sub-43

optimal node. Figure 1 shows four separate MCMC chains for the latent variable44

binomial regression model for salmonella data. An additional four chains were45

run and in total three sampled around one node and five around another with46

lower log-likelihood. Visual inspection, as can be seen from the figure, suggests47

adequate mixing across all the chains, and the Gelman and Rubin diagnostic was48

1.00 for all the parameters in the three chains sampling around the node with49

highest log-likelihood, and similarly for the five chains sampling around the node50

with lower log-likelihood.51

52
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Figure 1: MCMC trace output for latent variable binomial regression model for Salmonella

data. (a)-(d) four separate runs (burn-in of 1 × 106 not shown) with (a) and (c) sampling

around a node with log-likelihood of approximately -2902, and (b) and (d) sampling around a

node with log-likelihood of approximately -2915.
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3. Additional Figures53

3.1. Contour plot for (φ, ψ) = (S, 1− C)54

Figure 2: Profile likelihood surface for true and false positive errors rates in Salmonella data.

The MLE is (φ, ψ) = (0.99, 0.093) with the critical value for a 95% confidence set within this

surface at -2904.61
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4. Some comments on method applicability and model identifiability56

The application and estimation of latent variable binomial regression models57

to epidemiological studies does requires some care and may not be suited to all58

types of studies which seek to identify correlates to disease. Model identifiability59
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is an important consideration, which is essential for a ML analyzes, and desirable60

although not essential for Bayesian estimation. Conditions for the identifiability61

of latent variable models containing covariates is an open question and will likely62

be problem specific. For example, if time were treated as a fully continuous63

variable in the analyses presented - which does not make biological sense in this64

example - then only single Bernoulli observations would be available at each time65

point and it is unclear whether such a model would or would not be identifiable,66

as fitting a linear model would still only use the same number of parameters67

but there is less information available per covariate pattern, but, much more68

information is available at many more different patterns. As mentioned, if using69

a model which is not identifiable then model sensitivity to priors in a Bayesian70

analyzes is of particular importance. Although as demonstrated, it is likely that71

for such latent variable models to be of most practical use, relatively strong prior72

information may be necessary. Considering ML estimation as well as a Bayesian73

approach may be useful in diagnosing any issues of robustness with the latter.74

The analyzes presented in the main manuscript have only considered a single75

imperfect test, however, the methods used could be readily extended to consider76

multiple tests along with all of the additional complications which that entails,77

for example covariance between tests. Estimation with multiple imperfect tests is78

well studied in the literature and any of the established parameterizations could79

be readily incorporated into the regression estimation framework (either ML or80

Bayesian) presented. Other complexities could include for example allowing the81

sensitivity and specificity of the diagnostic test to be dependent[3]. These are all82

obvious areas for future application.83
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