Supplementary information

A The single hit model for infection

A.1 Exposure

Simplest we can assume for exposure is Poisson sample, from a suspension
of strength C, sample volume V

(CV)" _cv

Prob(n|C,V) = e (A.1)
n!

Where C'V is the (expected) dose, the probability of exposure

Prob(n > 1|C,V) =1 — Prob(n = 0|C,V) =1 -V (A.2)

A.2 Infection: fixed p,,

Suppose we have a host who has ingested n pathogens, and all pathogens
have equal survival probabilities p,,, then the probability that k£ pathogens
survive is

Prob(k|n, pm) = (Z) PE (1 = pp)F (A3)

if survival is independent.
Infection corresponds to survival of at least 1 pathogen (a ‘single hit’)
with probability

Prob(k > 1|n,pm) =1 —Prob(k =0|n,pm) =1 — (1 —pm)"  (A4)
The marginal probability of infection therefore is

e—CV(cv)n
|

Prob(k > 1|C,V, pp,) = Z -

n=1

A—=(0=pn)"]  (AS)

which can be simplified, by first taking the sum fromn = 0

. e CV(cv)n
PuC Vi) =1 -3 0 e
n=0 ’

and noting that

2 ¢=CV(1=pm) [CV(1 — py)]
n!

=1 (A7)

n=0
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so that

Put(C,V,p) =1 — e CVelVUPm) — 1 _empmCV (A.8)

A.3 Infection: heterogeneous p,,,

In case of heterogeneity in p,,, described by a Beta pdf

F(a + B) pafl
[(a)l(B)"™

the marginal dose response relation for infection becomes

f(pmler, B) = (1—pp)?t (A.9)

o0

Pur(C, Ve, B) = / F (Pl B) (1 — e PmCY) (A.10)

pm=0

which can be written as a (Kummer) confluent hypergeometric function
F’inf(cav‘aw@) = 1F1(Oé,04+ﬂ; _CV) (All)

Furumoto and Mickey [23] have shown how this relation can be simplified
into
cVv

Put(C,Vl]a,8) =1 — (1 + B) h B>La<p) (A12)

B Heterogeneity in the dose

B.1 Exposure, dose variable

In outbreak situations the dose often is inappropriately characterized by a
simple Poisson model. Instead, we may use a Poisson-Gamma mixture to
model extra—Poisson variation. The observed number is again a Poisson

sample

(Cc-V) OV

Prob(n|C, V) = =

(A.13)

Where C'- V is the (expected) dose. The concentration C' now is assumed to
have a Gamma density

AP
9(Clo.N) = 57507 le=C/A (A.14)
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with shape parameter p and scale parameter A. The marginal distribution of
the counts then is negative binomial

_TI'(n+p) 1 r 1 "

And the probability of exposure is

Prob(n > 1|p, A\, V) = 1—Prob(n = 0|p, \,V) = 1—(1 + A\V) ™" (A.16)

which may be written as

_ cv\”
Prob(n > 1|p,¢, V) =1— 1+ — (A.17)
p

where ¢ = Ap is the mean concentration.

B.2 Infection, dose variable, fixed p,,

The marginal probability of infection can be found, as above

[e.e]

r
Prob(k > 1|, t, pm) = > Mup(l — )™ 1= (1= pm)”] (A18)
= nll'(p)
substituting u = 1/(1 + A\V).
This can be simplified by first taking the sum from n = 0

o0
I'(n—+
Par(ptpm) =1 - 3 L)

22 "il(p) Wa—u - A19)

If we note that

[e.9]

2 W [1— (=)l =pa))"[1—u)(I=pn)]" =1 (A20)
n=0 :

then )
1—(1—uw)(l—pn)\
Pue(p,u,pm) =1 — ( ( u)( b )) (A.21)
or
Pot(p, A Vipm) =1 — (1 + AVpp)~° (A.22)
Pant(0, &V, ) = 1 — <1 n Cppm> (A23)
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B.3 Infection: heterogeneous p,,

In case of heterogeneity in p,,, described by a Beta pdf the marginal dose
response relation for infection becomes

o0 =~ —p
Par(p, & Vi, ) = / F(ala.p) (1—<1+vapm> ) (A24)
.

which can be written as another hypergeometric function

Pinf(p, é,V|Oé,B) = 2F1(0470704+55 _6V/p) (A25)

C Sexual reproduction and infection

Suppose we have a host who has ingested of n pathogens, of whom £ fe-
males (¢) and n — k males ().

Infection can occur if and only if 1 or more @ pathogens and 1 or more
J" pathogens survive. Suppose @ and & pathogens have equal survival prob-
abilities p,,,, then the probability that 1 or more ¢ pathogens survive is

Pe=1—(1—pn)F (A.26)
and the probability that 1 or more ¢ pathogens survive
Po=1—(1—pp)" " (A.27)

Suppose @ and & pathogens are present in proportions 7 and 1 — 7 (7 is
the sex ratio: the fraction ¢). Then the numbers of ¢ and & pathogens are
binomial

Prob(ko, n — kJ'|r) = (Z) k(1 -yt (A.28)
and the probability of infection is

n

Pur(nlr) = (Z) P =) R [ (1= p)] [1 = (1= )]

k=0
(A.29)

which can be shown to equal

Pg(nlr) =14 (L= pm)" = [1 = pm(L =7)]" = (1 = pmr)"  (A.30)

C.1 Exposure

Simplest we can assume for exposure is Poisson sample, from a suspension
of strength C', sample volume V. The exposure dose response relation (de-
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scribing the probability of having ingested at least 1 @and 15"organism) can
be written as a linear combination of three terms

Prob(¢ > 1,5 > 1|r,C, V) =1 — e 17CV _e=7CV (A.31)

simply by taking the terms of equation (A.30) for p,,, = 1.
For heterogeneous exposure we can again assume a Poisson—Gamma
mixture, leading to an exposure dose response

= —p = -p
Prob(¢ > 1,5 21|r,p,E,V):1—<1+CV(1—r)) —<1+CVT>
p p
(A.32)

C.2 Infection, fixed p,,
For Poisson exposure and fixed “hit” probability p,, we get
Pt(C - Vpm,r) = 1+ e OVPm o= CVpm(lor) _o=CVomr (A 33)

analogous to the exponential dose response relation for asexually reproduc-
ing pathogens.
For Poisson—-Gamma exposure the relation is

Pinf(p7 C, V|pm> T) =

< —p = —p = —p
1+ <1 + chm> — (1 + ipm(l - r)) - (1 + Cvpmr>
p p p

(A.34)

C.3 Infection, variable p, ,

The model for heterogeneous p,,, can again be written as a linear combina-
tion of hypergeometric relations (see equation (A.11)).

Pinf(c' V|04757T) =1+1F [04705"1'6; _CV]
— 1R ja,a+3;,-C-V(1—r)] —1F|e,a+ ;—C-Vr] (A35)

In case the dose also has extra—Poisson variation, the resulting dose response
relation is a combination of the functions in equation (A.25)

Pinf(pvéavlchﬁar) =1 +2F1(aﬂp7a+ﬁ; —EV/p)

- 2F1(a7p7 o+ ﬁ? _6‘/(1 - T)/IO) - 2F1(047Pa o+ /87 —EVT/p)
(A.36)
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D Hierarchical dose response model

The likelihood is binomial: for each incident K out of N subjects exposed
to adose D = g(p, ¢, V') have been observed to be affected.

Given the hit theory dose response function a single observed attack rate
may allow prediction of the dose response relation [2]. We want to incor-
porate multiple attack rates at various doses. However, such an approach
inevitably involves an additional level of biological variation. While a dif-
ferent human population similar in age and health status might have similar
susceptibility, a different isolate of the pathogen is likely to have completely
different infectivity, if only because of a different history (different food ve-
hicle, different previous host, ... ). Therefore, analysis of data from different
outbreaks requires a hierarchical model (Figure A1).

ol

for(j in 1:ny, (i)

for(iin 1:N

ol utbreuks)

Figure Al: Two-level model for dose response assessment of several outbreaks, each with their
separate pathogen isolates and possibly susceptibility distributions (Noypreaks = Number of out-
breaks; ngoses(j) = 1 for all outbreaks except the first [5], where ngoses(1) = 2).

If there are 7 observations in group ¢ and the dose response model
£(dl6) (A37)

with parameter vector 8 the contribution of group 4 to the likelihood is

:(0) =[] 1f(di

J

0)" [1— f(dijl0)" 7" (A38)

all observations in group 7 share the same parameter set 0
When the joint distribution of 8 over all groups is

h(6|E) (A.39)
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with hyperparameter vector =, the marginal likelihood can be written

Gi(B) = /Ei(O)h(GIE)dG
0
= [ @ lons 1= s o nel=)e aso)
and the hierarchical likelihood, to be evaluated, is

LE) =[]uE) (A41)

The dose is characterized by the expected concentration of pathogens,
and their variation, characterized by the Gamma shape parameter p. These
two parameters are estimated separately using whatever information was
available in the outbreak reports, usually quantiles characterizing location
and spread of intake of contaminated unheated (or inadequately heated)
meat.

Infectivity parameters are transformed as in [2]: since we have only one
data point per outbreak, the parameters («, 3) of the Beta Poisson model are
highly correlated: parameter estimation is improved by transformation to

u=a/(a+p)

v =19%og(a + ) (A42)

so that we are estimating the mean value (u) of the Beta distribution for p,,
and a quantity that is inversely related to its variance (for very large positive
values of v the variance tends to zero). Further v is logit—transformed and v
is log—transformed
w = log[u/(1 — u)] (A43)
z = log(v)
We use normal priors for w and z (mean p, standard deviation \). Uncor-
related non—informative normal (-8,8) hyperpriors were taken for the means
of w and z (rho), gamma (0.001,1000) priors were taken for the standard
deviations of w and z ().
Posterior parameter samples have been obtained using the Metropolis-
Hastings algorithm, implemented in Mathematica [2].
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