
Supplementary information
A The single hit model for infection
A.1 Exposure
Simplest we can assume for exposure is Poisson sample, from a suspension
of strength C, sample volume V

Prob(n|C, V ) =
(CV )n

n!
e−CV (A.1)

Where CV is the (expected) dose, the probability of exposure

Prob(n ≥ 1|C, V ) = 1− Prob(n = 0|C, V ) = 1− e−CV (A.2)

A.2 Infection: fixed pm

Suppose we have a host who has ingested n pathogens, and all pathogens
have equal survival probabilities pm, then the probability that k pathogens
survive is

Prob(k|n, pm) =

�
n

k

�
pkm(1− pm)n−k (A.3)

if survival is independent.
Infection corresponds to survival of at least 1 pathogen (a ‘single hit’)

with probability

Prob(k ≥ 1|n, pm) = 1− Prob(k = 0|n, pm) = 1− (1− pm)n (A.4)

The marginal probability of infection therefore is

Prob(k ≥ 1|C, V, pm) =
∞�

n=1

e−CV (CV )n

n!
[1− (1− pm)n] (A.5)

which can be simplified, by first taking the sum from n = 0

Pinf(C, V, pm) = 1−
∞�

n=0

e−CV (CV )n

n!
(1− pm)n (A.6)

and noting that

∞�

n=0

e−CV (1−pm) [CV (1− pm)]n

n!
= 1 (A.7)
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so that

Pinf(C, V, pm) = 1− e−CV eCV (1−pm) = 1− e−pmCV (A.8)

A.3 Infection: heterogeneous pm

In case of heterogeneity in pm, described by a Beta pdf

f(pm|α,β) = Γ(α+ β)

Γ(α)Γ(β)
pα−1
m (1− pm)β−1 (A.9)

the marginal dose response relation for infection becomes

Pinf(C, V |α,β) =
� ∞

pm=0
f(pm|α,β)

�
1− e−pmCV

�
(A.10)

which can be written as a (Kummer) confluent hypergeometric function

Pinf(C, V |α,β) = 1F 1(α,α+ β;−CV ) (A.11)

Furumoto and Mickey [23] have shown how this relation can be simplified
into

Pinf(C, V |α,β) = 1−
�
1 +

CV

β

�−α

(β � 1;α � β) (A.12)

B Heterogeneity in the dose
B.1 Exposure, dose variable
In outbreak situations the dose often is inappropriately characterized by a
simple Poisson model. Instead, we may use a Poisson-Gamma mixture to
model extra–Poisson variation. The observed number is again a Poisson
sample

Prob(n|C, V ) =
(C · V )n

n!
e−C·V (A.13)

Where C ·V is the (expected) dose. The concentration C now is assumed to
have a Gamma density

g(C|ρ,λ) = λ−ρ

Γ(ρ)
Cρ−1e−C/λ (A.14)
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with shape parameter ρ and scale parameter λ. The marginal distribution of
the counts then is negative binomial

Prob(n|ρ,λ, V ) =
Γ(n+ ρ)

n!Γ(ρ)

�
1

1 + λV

�ρ�
1− 1

1 + λV

�n

(A.15)

And the probability of exposure is

Prob(n ≥ 1|ρ,λ, V ) = 1−Prob(n = 0|ρ,λ, V ) = 1−(1 + λV )−ρ (A.16)

which may be written as

Prob(n ≥ 1|ρ, c̃, V ) = 1−
�
1 +

c̃V

ρ

�−ρ

(A.17)

where c̃ = λρ is the mean concentration.

B.2 Infection, dose variable, fixed pm

The marginal probability of infection can be found, as above

Prob(k ≥ 1|ρ, u, pm) =
∞�

n=1

Γ(n+ ρ)

n!Γ(ρ)
uρ(1−u)n [1− (1− pm)n] (A.18)

substituting u = 1/(1 + λV ).
This can be simplified by first taking the sum from n = 0

Pinf(ρ, u, pm) = 1−
∞�

n=0

Γ(n+ ρ)

n!Γ(ρ)
uρ(1− u)n(1− pm)n (A.19)

If we note that
∞�

n=0

Γ(n+ ρ)

n!Γ(ρ)
[1− (1− u)(1− pm)]ρ [(1− u)(1− pm)]n = 1 (A.20)

then

Pinf(ρ, u, pm) = 1−
�
1− (1− u)(1− pm)

u

�−ρ

(A.21)

or
Pinf(ρ,λ, V, pm) = 1− (1 + λV pm)−ρ (A.22)

Pinf(ρ, c̃, V, pm) = 1−
�
1 +

c̃V

ρ
pm

�−ρ

(A.23)
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B.3 Infection: heterogeneous pm

In case of heterogeneity in pm, described by a Beta pdf the marginal dose
response relation for infection becomes

Pinf(ρ, c̃, V |α,β) =
� ∞

pm=0
f(pm|α,β)

�
1−

�
1 +

c̃V

ρ
pm

�−ρ
�

(A.24)

which can be written as another hypergeometric function

Pinf(ρ, c̃, V |α,β) = 2F 1(α, ρ,α+ β;−c̃V/ρ) (A.25)

C Sexual reproduction and infection
Suppose we have a host who has ingested of n pathogens, of whom k fe-
males (♀) and n− k males (♂).

Infection can occur if and only if 1 or more ♀ pathogens and 1 or more
♂ pathogens survive. Suppose ♀ and ♂ pathogens have equal survival prob-
abilities pm, then the probability that 1 or more ♀ pathogens survive is

p♀ = 1− (1− pm)k (A.26)

and the probability that 1 or more ♂ pathogens survive

p♂ = 1− (1− pm)n−k (A.27)

Suppose ♀ and ♂ pathogens are present in proportions r and 1− r (r is
the sex ratio: the fraction ♀). Then the numbers of ♀ and ♂ pathogens are
binomial

Prob(k♀, n− k♂|r) =
�
n

k

�
rk(1− r)n−k (A.28)

and the probability of infection is

Pinf(n|r) =
n�

k=0

�
n

k

�
rk(1− r)n−k

�
1− (1− pm)k

� �
1− (1− pm)n−k

�

(A.29)
which can be shown to equal

Pinf(n|r) = 1 + (1− pm)n − [1− pm(1− r)]n − (1− pmr)n (A.30)

C.1 Exposure
Simplest we can assume for exposure is Poisson sample, from a suspension
of strength C, sample volume V . The exposure dose response relation (de-
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scribing the probability of having ingested at least 1 ♀and 1♂organism) can
be written as a linear combination of three terms

Prob(♀ ≥ 1,♂ ≥ 1|r, C, V ) = 1− e−(1−r)CV − e−rCV (A.31)

simply by taking the terms of equation (A.30) for pm = 1.
For heterogeneous exposure we can again assume a Poisson–Gamma

mixture, leading to an exposure dose response

Prob(♀ ≥ 1,♂ ≥ 1|r, ρ, c̃, V ) = 1−
�
1 +

c̃V

ρ
(1− r)

�−ρ

−
�
1 +

c̃V

ρ
r

�−ρ

(A.32)

C.2 Infection, fixed pm

For Poisson exposure and fixed “hit” probability pm we get

Pinf(C · V |pm, r) = 1 + e−C·V pm − e−C·V pm(1−r) − e−C·V pmr (A.33)

analogous to the exponential dose response relation for asexually reproduc-
ing pathogens.

For Poisson–Gamma exposure the relation is

Pinf(ρ, c̃, V |pm, r) =

1 +

�
1 +

c̃V

ρ
pm

�−ρ

−
�
1 +

c̃V

ρ
pm(1− r)

�−ρ

−
�
1 +

c̃V

ρ
pmr

�−ρ

(A.34)

C.3 Infection, variable pm

The model for heterogeneous pm can again be written as a linear combina-
tion of hypergeometric relations (see equation (A.11)).

Pinf(C · V |α,β, r) = 1 + 1F1 [α,α+ β;−C · V ]

− 1F1 [α,α+ β;−C · V (1− r)]− 1F1 [α,α+ β;−C · V r] (A.35)

In case the dose also has extra–Poisson variation, the resulting dose response
relation is a combination of the functions in equation (A.25)

Pinf(ρ, c̃, V |α,β, r) = 1 + 2F 1(α, ρ,α+ β;−c̃V/ρ)

− 2F 1(α, ρ,α+ β;−c̃V (1− r)/ρ)− 2F 1(α, ρ,α+ β;−c̃V r/ρ)
(A.36)
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D Hierarchical dose response model
The likelihood is binomial: for each incident K out of N subjects exposed
to a dose D = g(ρ, c̃, V ) have been observed to be affected.

Given the hit theory dose response function a single observed attack rate
may allow prediction of the dose response relation [2]. We want to incor-
porate multiple attack rates at various doses. However, such an approach
inevitably involves an additional level of biological variation. While a dif-
ferent human population similar in age and health status might have similar
susceptibility, a different isolate of the pathogen is likely to have completely
different infectivity, if only because of a different history (different food ve-
hicle, different previous host, . . . ). Therefore, analysis of data from different
outbreaks requires a hierarchical model (Figure A1).

ρα

λα

ρβ

λβ

α(i)

β(i)

dose(j)

P
inf

(i,j)

n(i,j)

k(i,j)

for(j in 1:ndoses(i))

for(i in 1:Noutbreaks)

Figure A1: Two-level model for dose response assessment of several outbreaks, each with their
separate pathogen isolates and possibly susceptibility distributions (Noutbreaks = number of out-
breaks; ndoses(j) = 1 for all outbreaks except the first [5], where ndoses(1) = 2).

If there are j observations in group i and the dose response model

f(d|θ) (A.37)

with parameter vector θ the contribution of group i to the likelihood is

�i(θ) =
�

j

[f(di,j |θ)]ki,j [1− f(di,j |θ)]ni,j−ki,j (A.38)

all observations in group i share the same parameter set θ
When the joint distribution of θ over all groups is

h(θ|Ξ) (A.39)
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with hyperparameter vector Ξ, the marginal likelihood can be written

�i(Ξ) =

�

θ
�i(θ)h(θ|Ξ)dθ

=

�

θ
[f(di,j |θ)]ki,j [1− f(di,j |θ)]ni,j−ki,j h(θ|Ξ)dθ (A.40)

and the hierarchical likelihood, to be evaluated, is

L(Ξ) =
�

i

�i(Ξ) (A.41)

The dose is characterized by the expected concentration of pathogens,
and their variation, characterized by the Gamma shape parameter ρ. These
two parameters are estimated separately using whatever information was
available in the outbreak reports, usually quantiles characterizing location
and spread of intake of contaminated unheated (or inadequately heated)
meat.

Infectivity parameters are transformed as in [2]: since we have only one
data point per outbreak, the parameters (α,β) of the Beta Poisson model are
highly correlated: parameter estimation is improved by transformation to

u = α/(α+ β)
v = 10 log(α+ β)

(A.42)

so that we are estimating the mean value (u) of the Beta distribution for pm
and a quantity that is inversely related to its variance (for very large positive
values of v the variance tends to zero). Further u is logit–transformed and v
is log–transformed

w = log[u/(1− u)]
z = log(v)

(A.43)

We use normal priors for w and z (mean ρ, standard deviation λ). Uncor-
related non–informative normal (-8,8) hyperpriors were taken for the means
of w and z (rho), gamma (0.001,1000) priors were taken for the standard
deviations of w and z (λ).

Posterior parameter samples have been obtained using the Metropolis-
Hastings algorithm, implemented in Mathematica [2].
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