SUPPLEMENTARY APPENDIX

Hierarchical time series models

We assume that 
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  An autoregressive operator of order  
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Thus, an autoregressive process of order  
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 can be written as
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Equivalently, 
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and equivalently, 
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To ensure  stationarity,  
[image: image18.wmf]1

|

|

1

<

f

.

AR(2) model

                                      
[image: image19.wmf]3

),

,

(

~

,...,

|

2

2

2

1

1

1

1

³

+

-

-

-

t

A

A

Normal

A

A

A

t

t

t

t

s

f

f


                               
[image: image20.wmf]))

1

)(

1

)(

1

/(

)

1

(

,

0

(

~

2

1

2

1

2

2

2

1

f

f

f

f

f

s

f

-

+

-

-

+

-

Normal

A


                                                   
[image: image21.wmf]))

,

(

~

2

1

2

2

2

1

1

2

s

s

f

f

+

A

A

Normal

A

.

For stationarity, 
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The solution  to an 
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  linear system of equations relating the correlations at lags 1 to 8 with 
[image: image28.wmf]1

f

 and 
[image: image29.wmf]7

f

 gives the analytical distributions of the first 8 elements of the process. 
Prior specifications

We give non-informative prior distributions to the regression coefficients.  
[image: image30.wmf]2

2

1

1

)

(

,

,

,

,

7

,...,

0

)

(

;

b

a

b

a

d

=

t

d

t

d

  all follow Normal distributions with mean zero and variance 1000 and the precision parameter 
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.  To reflect our prior belief that φ1 is positive and less than one, and thus that there is a positive dependence on the past but the process is stationary, we assign 
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Predictions

In model (4) the 
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process is of order one, and it can thus be written as 
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 Future forecasts of daily number of food poisoning cases

Making future forecasts involves simulation from the conditional distribution of daily incidence, conditioning on the daily incidence of days up to time t. Thus, to make predictions for a future time point 
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Instead of calculating the integral, which requires analytical expression of the distributions involved, we apply an empirical method. Allowing for parameter estimation uncertainty, and thus not using the posterior means, we simulate a large number of values (100000) from the posterior distributions of the parameters 
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 is used as the prediction 
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 and the 5 and 95% quintiles to construct a 95% confidence interval for the prediction. We should note that since we use a Poisson distribution which has long right tail by averaging we lose some information, which however is contained in the confidence interval, and this is the reason that this is considerably wide. 
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