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This appendix presents in detail the back-calculation approach used to estimate the prevalence of sheep infected with classical scrapie in Great Britain (GB) and the methods used for parameter estimation.
A.1
Modelling approach

The back-calculation methods were based on those developed to estimate the prevalence in 2002 [1]. However, the approach was extended to incorporate temporal changes in the risk of infection and in the prion protein (PrP) genotype structure of the GB national flock.

Because the risk of infection is greatest during the perinatal period [2, 3] and there is evidence for a decrease in susceptibility with age [4], animals were assumed to become infected at, or close to birth. The probability that an animal of genotype j develops clinical disease in age class a (comprising animals between a-1 and a years of age) in year t is given by,
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where t is the baseline risk of infection for animals born in year t, rj is the relative risk of infection for genotype j and fj is the probability density function for the log-normal incubation period distribution (with genotype-specific parameters, j and j). Three models were considered for the baseline risk of infection: (1) constant, t=0; (2) time-varying, t, with independent values for each year; and (3) time-varying, t=1-exp(-t), with the risk dependent on the prevalence of infection that year, t (defined below; cf. [5]).

The incubation period for scrapie is long relative to the life expectancy of a sheep and, when calculating the probability that an animal will develop clinical disease, it is essential to include survivorship. Moreover, to allow for an increased risk of mortality in animals close to the onset of disease, it was assumed that a proportion of infected animals which survive to disease onset, die on farm prior to clinical signs becoming apparent [1, 6, 7]. Finally, there is under-reporting of cases [8, 9] and, hence, it is necessary to consider the probability of a case being reported. Consequently, the expected number of reported cases in genotype j and age class a, is given by,



[image: image2.wmf],

1

(1)()d,

a

jattajtajtaj

a

RKsBrfvv

--

-

=r-f

ò


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (A.2)

where t is the probability of reporting in year t (assumed to be independent of age and PrP genotype), K is the proportion of infected animals surviving to disease onset, which die on farm before clinical signs become apparent, sa is the probability of surviving to be in age class a, and Bj,t is the number of animals of genotype j in birth cohort t.

The prevalence of infection in the fallen stock survey (FS) has two components: infected animals found dead prior to the onset of clinical disease; and infected animals that survive to disease onset, but which die on farm before clinical signs become apparent. The prevalence of infection in animals of genotype j and age class a found dead on farm in year t is,
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where a is the proportion of uninfected animals which are found dead on farm in age class a. By contrast, the prevalence of infection in animals sent to slaughter (i.e. in the abattoir survey; AS) comprises only infected animals sent to slaughter prior to the onset of clinical disease, which is given by,
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However, not every infected animal will be detected by the diagnostic tests used in the surveys. Assuming that test sensitivity depends on the time to the onset of clinical disease, the detectable prevalence for genotype j and age class a in animals found dead on farm in year t is,
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while for animals sent to slaughter it is,
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where (v,w) is the probability of detecting an infected animal tested at age v given that it would have developed clinical disease at age w. It was assumed that an infected animal would be detected provided it was in the final proportion of the incubation period, so that the probability of detection, (v,w), is given by,
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where  is the preclinical detection proportion (cf. [1, 6, 10]). Finally, the proportion of uninfected animals of genotype j in age class a found dead on farm in year t is,
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while that for animals sent to slaughter is,
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The prevalence of sheep infected with classical scrapie in the GB national flock, t, in year t is given by,
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where,
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is the prevalence of infected sheep of genotype j in age class a in year t.

A.2
Maximum-likelihood methods

Scrapie notifications data from 1993 to 1997 provide the number of cases, Wat, in age class a reported in year t, while those from 1998 to 2006 provide the number of cases, Xjat, of genotype j in age class a reported in year t. In each case, the number of reported cases was assumed to follow a Poisson distribution with a mean given by the expected number of reported cases, so that the log-likelihood for reported cases (lRC) is given by,
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where Rjat is the expected number of reported cases of genotype j and age class a in year t.

FS and AS data provide the number of animals over 18 months of age sampled 
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and the number of positive samples 
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 for genotype j in survey i (FS, AS) during year t. The number of positive samples is drawn from a binomial distribution with the number of animals tested and the probability that a tested animal produces a positive result as parameters. Hence, the log-likelihood for each survey (li) is given by,
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where,
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is the probability that an animal of genotype j tested in year t produces a positive result in survey i, amax is the last age class and  is the specificity of the diagnostic test.
Because the surveillance streams are independent, the log-likelihood for the overall results (l) is found by adding the log-likelihoods for each surveillance source (i.e. l=lRC+lFS+lAS). Maximum likelihood estimates (MLEs) for the parameters were computed in two steps. First, the MLEs were determined using a simplex search method [11] to minimize the negative log-likelihood (-l). Second, a Metropolis-Hastings (MH) algorithm [12, 13] was used to explore parameter space further, both to ensure the MLEs were correctly identified and to allow computation of the 95% confidence limits (CLs) for each parameter. In practice, the MH algorithm did not greatly change the MLEs obtained using the simplex method.
The MH algorithm is a Markov chain-Monte Carlo (MCMC) method which generates a new parameter set (i+1; where  is a vector of the parameters to be estimated) from the previous one (i) by applying the following procedure. A parameter set 
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is proposed by generating a new parameter set from the current one by adding a normal deviate to each parameter (i.e. 
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 where is 2 the variance). The proposed parameter set is accepted (i.e. 
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with probability given by,
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Otherwise, the proposed parameter set is rejected (i.e. i+1=i). For each model, 40 chains of 250000 iterations were run, and each chain was initialised using the MLEs obtained from the simplex algorithm.
The MLEs 
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were calculated from the sequence of accepted parameter sets {i} (comprising all the chains for a model) as follows,
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The 95% confidence limits for each parameter were calculated using the profile log-likelihood (see, e.g. [14]), so that,
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where p is the number of parameters being estimated (i.e. the dimension of ).
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