ONLINE APPENDICES

APPENDIX 1. Model structure

The model is expressed in the following PDEs:
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APPENDIX 2. Parameterisation of the force of infection

An ordinary differential equation (ODE) model was developed in Excel to estimate the force of infection and duration of immunity in unimmunised individuals.  Transitions between compartments were calculated using a modified Euler approximation.
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Model outputs were compared with population observations of Hib carriage prevalence and immunity using log likelihood:







              Observed Positive


Deviance = 2 x [ (Observed Positive x ln ( Model Positive x Denominator ) ) +






         (Denominator – Observed Positive) 

((Denominator – Observed Positive) x ln ((1-Model Positive) x Denominator) ) ]

Deviance between observed and expected estimates was summed across age classes for carriage and seroepidemiology data, and minimised by simultaneously varying the estimates of duration of high level immunity ((H(a)), low level immunity ((L) and force of infection (((a)) across all age classes while keeping other parameters fixed.  Best model fit is shown in Figures 2 and 3.
APPENDIX 3. Estimation of the ‘Who Acquires Infection from Whom’ (WAIFW) matrices

The difficulty in parameterising contact patterns for the purposes of epidemiological models is the inability to quantify the true proportional significance of social interactions to infection risk.  To estimate the most feasible contact assumptions for this disease process, baseline epidemiology was recreated for a range of mixing assumptions, and the effects of imposing immunisation were examined.  

The most extreme cases were purely assortative mixing and homogeneous mixing.  The former resulted in rapid and complete eradication of Hib infections in children under 5 years of age after immunisation was introduced; the latter made disease control impossible.  A range of matrices was therefore tested, each of which incorporated a strong assortative element with different degrees of mixing between other age groups.  Of note, ecological studies of Hib infection implicate school-aged siblings as an important risk factor for Hib disease in infants and toddlers, suggesting asymmetry of household transmission (C23>C32).  The final matrix employed was able to reproduce a dramatic reduction in infections in the younger age classes after vaccine introduction, with a late rebound occurring from 1999 onwards:
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APPENDIX 4. Parameterisation of the age dependent risk of progression to invasive disease

The quasi steady state approximations used to calculate progression to invasive disease are defined below.  Instantaneous incidence of Hib disease was determined by the balance between the age dependent risk of progression to bacterial invasion (((a)) and rate of recovery from illness.  Duration of invasive disease (1/() was estimated at one week.  Efficacy of low levels of detectable antibody (0.15-1.0 (g/ml) at preventing progression to bacterial invasion at the point of exposure to Hib was designated (, and protection due to memory after antibody has waned was denoted (, where 0 ≤ ( < ( ≤ 1.
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The case per carrier ratio was calculated in Excel, based on weekly model outputs of infection prevalence prior to vaccine introduction.  Deviance between model and observed values was minimized using a log-likelihood method by simultaneously solving for optimal values of ((a), ( and (.
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