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1. Supplementary Methods
1.1 Sample 
1.1.1 Recruitment 
All participants, regardless of diagnosis, were recruited into the study via local distribution of flyers and online advertisements in the New York City Metropolitan area, and referrals from schools, brochures, the internet, other programs, and the community. The process was the same at both recruitment sites.
For individuals at clinical high risk for psychosis, inclusion criteria were based on meeting criteria for Attenuated Positive Syndrome as described in the main text. Healthy individuals were selected to be free of personal lifetime history of psychiatric disorders based on the Structured Clinical Interview (SCID) for DSM-51 and absence of family history in first degree relatives. Adopted individuals were thus excluded.
Further eligibility criteria for all participants were: (a) age 14-35 years; (c) no imminent risk of harm to self or others; (d) no past or current substance use disorder; (c) no major medical or neurological disorder; (e) no intellectual disability (IQ < 70); (f) no vision deficits not amenable to correction by wearing glasses; (g) no hearing deficits; (h) no contraindication to MRI (e.g., metal implants or paramagnetic objects. Additional exclusion criteria for women were pregnancy or nursing.

1.1.2 Sample characteristics by site
Patients and healthy participants were recruited at Columbia University, and at the Icahn School of Medicine at Mount Sinai (ISMMS) in New York. The same eligibility criteria were followed at both sites. 

	Supplementary Table S1. Demographic and clinical characteristics of the sample recruited at each site 

	
	Columbia University
	ISMMS

	Variable
	CHR
 Individuals
N=17
	Healthy 
individuals
N=13
	CHR Individuals
N=29
	Healthy individuals
N=9

	Age (years)1
	 22.43 (4.53)
	26.03 (3.96)
	23.63 (5.42)
	27.12 (3.26)

	Sex (Male/Female)
	8/9
	9/4
	14/15
	4/5

	Education (years)1
	13.18 (2.24)
	15.92 (1.71)
	14.21 (2.18)
	16.78 (1.2)

	Handedness2
	
	
	
	

	     Right (%)
	16 (94.12%)
	11 (84.62%)
	28 (96.55%)
	6 (66.67%)

	     Left (%)
	0
	2 (15.38%)
	1 (3.45%)
	3 (33.33%)

	     Mixed (%)
	1 (5.88%)
	0
	0
	0

	Antipsychotic medication use (%)
	8 (47.06%)
	-
	6 (20.69%)
	-

	SIPS/SOPS
	
	
	
	

	Total Positive Symptoms1,2,4
	16.35 (2.67)
	2.62 (2.72)
	13.52 (3.46)
	0.89 (0.78)

	     P1 – Unusual 
     Thought   
     content1,2,3
	4.00 (0.87)
	0.54 (0.88)
	3.45 (0.63)
	0.11 (0.33)

	     P2 –      
     Suspiciousness1,2
	3.71 (0.85)
	0.54 (0.88)
	3.28 (1.13)
	0

	     P3 – 
     Grandiosity1
	2 (1.66)
	0.31 (0.48)
	1.17 (1.42)
	0.22 (0.44)

	     P4 – Perceptual 
     abnormalities1,2,3
	3.88 (0.33)
	0.69 (1.11)
	3.17 (1.39)
	0.33 (0.71)

	     P5 – Disorganized communication1,2
	2.77 (0.66)
	0.54 (0.66)
	2.45 (1.15)
	0.22 (0.67)

	Total Negative Symptoms1,2,3
	18.94 (5.46)
	1.69 (1.55)
	12.35 (6.22)
	0.89 (1.54)

	     N1 – Social    
     isolation or 
     withdrawal1,2
	3.35 (1.22)
	0.31 (0.63)
	2.59 (1.38)
	0.33 (0.5)

	     N2 – Avolition1,2,3
	3.88 (1.54)
	0.15 (0.38)
	2.03 (1.24)
	0.11 (0.33)

	     N3 – Decreased 
     expression of    
     emotion1,2
	1.88 (1.17)
	0.46 (0.97)
	1.69 (1.28)
	0.11 (0.33)

	     N4 – Decreased 
     experience of 
     emotion1,2
	3.29 (1.83)
	0
	2.62 (1.57)
	0

	     N5 – Decreased 
     ideational 
     richness1,2,3
	2 (1.27)
	0.69 (0.63)
	1.21 (1.21)
	0.22 (0.67)

	     N6 –    
     Deterioration of 
     occupational functioning1,2,3
	4.53 (1.5)
	0.08 (0.28)
	2.21 (1.92)
	0.11 (0.33)

	Total Disorganization Symptoms3
	12.18 (2.77)
	1.31 (1.49)
	4.9 (2.93)
	0.33 (0.71)

	     D1 – Odd 
     behavior or 
     appearance1,2,3
	3.00 (1.12)
	0.69 (0.95)
	1.00 (1.04)
	0.22 (0.44)

	     D2 – Bizarre    
     thinking1,2,3
	3.41 (0.62)
	0.08 (0.28)
	1.1 (1.14)
	0.11 (0.33)

	     D3 – Trouble with 
     focus and 
     attention1,2,3
	3.77 (1.03)
	0.31 (0.63)
	2.03 (1.4)
	0

	     D4 – Impairment 
     in personal 
     hygiene1,3
	2 (1.77)
	0.23 (0.44)
	0.76 (1.3)
	0

	Total General Symptoms1,2,3
	14.88 (4.09)
	1.85 (1.99)
	8.14 (4.76)
	0.78 (0.83)

	     G1 – Sleep 
     disturbance1,2,3
	3.59 (1.46)
	0.46 (1.13)
	1.69 (1.61)
	0.33 (0.71)

	     G2 – Dysphoric 
     mood1,2,3
	4.82 (1.38)
	0.54 (0.78)
	3.1 (1.47)
	0.33 (0.5)

	     G3 – Motor 
     disturbance1,2,3
	1.88 (1.45)
	0.46 (0.88)
	0.93 (0.88)
	0.11 (0.33)

	     G4 – impaired 
     tolerance to 
     stress1,2,3
	4.59 (1.84)
	0.38 (0.65)
	2.41 (1.92)
	0

	GFS
	
	
	
	

	     Role1,2
	5.06 (1.71)
	8.23 (0.93)
	6.07 (2.17)
	8.44 (1.01)

	     Social1,2
	5.18 (1.47)
	8.31 (1.03)
	5.66 (1.49)
	8.33 (0.87)

	[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Continuous variables are shown as mean (standard deviation); CHR=Clinical high risk; SIPS/SOPS = Structured Interview for Prodromal Syndromes/Scale of Prodromal Symptoms; GFS = Global Functioning Scale. 1significant case-control differences at Columbia at p<0.05 uncorrected; 2significant case-control differences at ISMMS; 3site differences in healthy individuals at p<0.05 uncorrected; 4site differences in CHR individuals at p<0.05 uncorrected




1.1.3. Clinical assessment
Participants were initially screened by phone.  Potentially eligible participants were assessed in person to confirm eligibility. Clinical assessments were undertaken by certified research assistants and were reviewed by the principal investigator. The Structured Interview for Prodromal Syndromes/Scale of Prodromal Symptoms (SIPS/SOPS)2 was used to assess positive, negative, disorganized, and general symptoms and the Global Functioning Scale (GFS)3 to assess general functioning (Supplementary Table S2).

	Supplementary Table S2. Clinical measures 

	Structured Interview for Prodromal Syndromes/Scale of Prodromal Symptoms

	Positive Symptoms
	

	P1 – Unusual thought content/Delusional ideas
	Symptom score ranges from 0-6  

	P2 – Suspiciousness/Persecutory ideas
	Symptom score ranges from 0-6  

	P3 – Grandiose ideas
	Symptom score ranges from 0-6  

	P4 – Perceptual abnormalities/Hallucinations
	Symptom score ranges from 0-6  

	P5 – Disorganized communication
	Symptom score ranges from 0-6 

	Negative Symptoms
	

	N1 – Social isolation or withdrawal
	Symptom score ranges from 0-6  

	N2 – Avolition
	Symptom score ranges from 0-6  

	N3 – Decreased expression of emotion
	Symptom score ranges from 0-6  

	N4 – Decreased experience of emotion
	Symptom score ranges from 0-6  

	N5 – Decreased ideational richness
	Symptom score ranges from 0-6  

	N6 – Deterioration of occupational functioning
	Symptom score ranges from 0-6  

	Disorganization Symptoms
	

	D1 – Odd behavior or appearance 
	Symptom score ranges from 0-6  

	D2 – Bizarre thinking
	Symptom score ranges from 0-6  

	D3 – Trouble with focus and attention
	Symptom score ranges from 0-6  

	D4 – Impairment in personal hygiene
	Symptom score ranges from 0-6 

	General Symptoms
	

	G1 – Sleep disturbance
	Symptom score ranges from 0-6  

	G2 – Dysphoric mood
	Symptom score ranges from 0-6 

	G3 – Motor disturbance
	Symptom score ranges from 0-6 

	G4 – impaired tolerance to stress
	Symptom score ranges from 0-6 

	Global Functioning Scale

	Social 
	Functioning score ranges from 1-10  

	Role 
	Functioning score ranges from 1-10 




1.1.4 Language assessment
Language assessment was undertaken in a quiet, private room. Interviews took place at Columbia University, New York and at the Icahn School of Medicine at Mount Sinai (ISMMS). Open-ended, narrative interviews of ~30-45 minutes were obtained from participants by interviewers trained by an expert in qualitative interviewing and phenomenological research4. All interviews were prompted with the question, “How have things been going for you lately”. If necessary, participants may have been probed into the past or future. Speech samples were audio-recorded with a Snowball microphone by Blue (https://www.bluedesigns.com/) using Audacity (https://www.audacityteam.org/). Following the interview, the recorded speech samples were transferred to local on-site computers and transcribed by an independent company (https://sftp.transcribeme.com). Subsequently, speech samples were manually examined and deidentified of any personal or identifying information by trained research assistants.

1.1.5 Speech Processing
The language features were computed from the speech samples using the Natural Language Toolkit (NLTK)5. Content from the interviewer were removed from all speech samples. First, individual words were identified in the text, and punctuation marks were discarded, resulting in a list of words for each text, with repetitions. Each interview was then parsed into sentences, and the parts of speech (e.g., nouns) were identified using the Treebank tagger supplied by NLTK. Each word was lemmatized using the WordNet lemmatizer from NLTK: which corresponds to converting words into the root from which they are inflected. Previous studies have shown that word lemmatizing facilitates robust measurement of abstract concepts and topological features in texts6,7. Preprocessing resulted in a list of lemmatized words, each one in a new line maintaining original order, in lowercase and without punctuation marks or symbols. Each interview thus resulted in a string of N tokens {wi}={w1,w2,…,wN} to be use for the semantic and structural analyzers.

1.1.6 Speech Analyses
For semantic analyses, we used latent semantic analysis (LSA)8,9, a well-validated approach to automated text analysis previously used to analyze speech in schizophrenia10 and CHR11. LSA was used to convert each transcript from a series of words into a series of semantic vectors, maintaining the original order of the transcribed text. In this analysis, a high‐dimensional semantic vector is assigned to each word in the lexicon based on its co‐occurrence with other words in a very large corpus of text, specifically the Touchstone Applied Science Associates (TASA) corpus, a collection of educational materials.
Automated analysis provides a construction of meaning in language that resembles what the human mind does, i.e. to learn the meaning of words in terms of prior experience with those words in different contexts. The computer “learns” the meaning of words computationally, by scanning a very large corpus of text and determining the frequency of co‐occurrence of each word with every other word in the lexicon. Words that co‐occur more frequently are considered to have greater semantic similarity (e.g., “cat”/“dog” vs. “cat”/“pencil”), and the direction of their vectors will be more aligned. Aggregates of words (e.g., sentences) have semantic vectors that are the sum of semantic vectors for all the words they contain. Semantic coherence between words, or between aggregates (e.g., successive sentences), can be indexed by calculating the cosine between successive semantic vectors (from −1.0 for incoherence to 1.0 for coherence). As in our prior studies11,12, we calculated typical statistical measures of coherence, such as mean, standard deviation, minimum, and maximum, “normalized” or adjusted for sentence length. Similarly, we calculated statistical measures of sentence length including mean, median, standard deviation, minimum, and maximum values. As the measures for semantic coherence did not include the median, we excluded median sentence length in all subsequent analyses. 
Just as each word in every transcript was assigned a semantic vector, each word was also tagged in respect to its grammatical function, using the POS‐Tag procedures in the open‐access Natural Language Toolkit (www.nltk.org) in reference to a hand‐tagged corpus called the Penn Treebank5. For example, the sentence “The dog is near the fence” would be tagged as (“The”, “DT”), (“dog”, “NN”), (“is”, “VBZ”), (“near”, “IN”), (“the”, “DT”), (“fence”, “NN”), where DT is the tag for determiners, NN for nouns, VBZ for verbs, and IN for prepositions. The Penn Treebank has thirty‐six part‐of‐speech tags, which include types of nouns, verbs, adjectives, adverbs, determiners, prepositions and pronouns. 
1.1.7 Code availability
Code for speech preprocessing (WordNet lemmatizer) and POS-Tag (Penn Tree Bank) is available open access through the NLTK (http://www.nltk.org/)5.

	Supplementary Table S3. Definition of linguistic features extracted via Latent Semantic Analysis and Part Of Speech tagging using the Natural Language Toolkit (NLTK)

	Amount of Speech 

	Mean sentence length 
	NLTK tokenization first split sentences into words; the mean number of words was computed across all sentences. 

	Median sentence length
	NLTK tokenization first split sentences into words; the mean number of words was computed across all sentences

	Standard deviation sentence length
	This is the standard deviation of sentence length.

	Minimum sentence length
	Following the process defined above, the minimum number of words was computed across all sentences.

	Maximum sentence length
	 Following the process defined above the maximum number of words was computed across all sentences.

	Sematic Properties 

	Mean semantic coherence
	Latent Semantic Analysis (LSA) was used to analyze sentence-to-sentence coherence. After separating the text into sentences, the vector for each sentence was computed (as the weighted sum of it its weighted terms) and was compared to the vector for the next sentence in the text. The cosine value of two vectors represents the semantic coherence between two sentences, ranging from −1.0 (incoherence) to 1.0 (coherence). We then computed the mean semantic coherence measures for all consecutive sentence pairs. 

	Standard deviation semantic coherence
	This is the standard deviation of sentence-to-sentence semantic coherence as defined above. 

	Minimum semantic coherence
	Following the process defined above we computed the minimum semantic coherence for all consecutive sentence pairs.

	Maximum semantic coherence
	Following the process defined above we computed the maximum semantic coherence for all consecutive sentence pairs

	Parts of Speech Tagging
	

	Coordinating conjunction (CC)
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The CC variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Cardinal number (CD)
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The CD variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Determiner (DT)
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The DT variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Existential there (EX)
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The EX variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Foreign word (FW)
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The FW variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Preposition or subordinating conjunction 
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The preposition variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Adjective
	 NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The adjective variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Adjective, comparative
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The comparative adjective variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Adjective, superlative
	 NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The superlative adjective variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	List item marker
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The list item marker variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Modal verb
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The modal verb variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Noun, singular or mass
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The singular or mass noun variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Noun, plural
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The plural noun variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Proper noun, singular
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The proper singular noun variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Proper noun, plural
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The proper plural noun variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Predeterminer
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The predeterminer variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Possessive ending
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The possessive ending variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Personal pronoun
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The personal pronoun variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Possessive pronoun
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The possesive pronoun variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Adverb
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The adverb variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Adverb, comparative
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The comparative adverb variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Adverb, superlative
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The superlative adverb variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Particle
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The particle variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	“To”
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The “To” variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Interjection
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The interjection variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Verb, base form
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The base form verb variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Verb, past tense
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The past tense verb variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Verb, gerund or present participle 
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The gerund/present particle verb variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Verb, past participle
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The past particle verb variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Verb, non-3rd person singular present
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The non-3rd person singular present verb variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Verb, 3rd person singular present
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The 3rd person singular present verb variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Wh-determiner
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The Wh-determiner variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Wh-pronoun
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The Wh-pronoun variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Possessive wh-pronoun
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The possessive Wh-pronoun variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.

	Wh-adverb
	NLTK was used to label each word by its grammatical function based on Part of Speech tagging (POS-tag). The Wh-adverb variable was computed as the sum of occurrences of this POS-tag in a given sentence, divided by its length and averaged across all sentences.




1.2 Neuroimaging
1.2.1 Neuroimaging Acquisition
Columbia University: Participants were scanned at the MRI Research Unit at Columbia University Medical Center using a GE MR750 3T scanner (GE Medical Systems, Milwaukee, WI) with a 32-channel receiver coil. Structural data were acquired using the following parameters: Field of View (FOV): 240x240 mm, matrix size: 300×300, 0.8 mm isotropic resolution, Repetition Time (TR)= 2500 ms,  Time to Echo (TE)=3.1 ms, Inversion Time (TI)=450 ms, 12 degree flip angle, total acquisition time (TA) = 7 min 30 sec. Resting-state functional data were acquired using the following parameters with eyes open, fixating on a central cross: 394 volumes, TE/TR = 25/850 ms, 2.0 mm isotropic resolution, no gap, 11 slices for whole brain coverage, FOV: 192x192 mm, matrix size: 96×96, 60 degree flip angle, TA = 5 min 35 sec.

ISMMS:  All participants were scanned at the Leon and Norma Hess Center for Science and Medicine using a 3T Siemens Skyra scanner (Siemens Medical Systems, Erlangen, Germany) with a 32 channel receiver coil. Structural data were acquired using the following parameters: FOV: 256×256 mm, matrix size: 320×320, 0.8 mm isotropic resolution, TR = 2400 ms,  TE = 2.07 ms, TI = 1000 ms, 8 degree flip angle, TA = 7 min 2 sec. Resting-state functional data were acquired with eyes fixating on a central cross. A single shot echo planar gradient echo T2* imaging sequence was used for the resting-state scan with eyes open, fixating on a central cross with the following parameters: 394 volumes, TE/TR=40.6/850 ms, 2.1 mm isotropic resolution, no gap, 54 slices for whole brain coverage, FOV: 192×192 mm, matrix size: 92×92, 60 degree-flip angle, and TA: 5 min 43 sec. 

1.2.2 Resting-state Functional MRI data processing
All rs-fMRI data were preprocessed using the Statistical Parametric Mapping (SPM) 12 Toolbox (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) version 7487. The preprocessing included the following steps: discarding of the first 3 volumes, motion correction to the first volume with rigid-body alignment; coregistration between the functional scans and the anatomical T1 scan; spatial normalization of the functional images into MNI stereotaxic standard space; spatial smoothing with a 6-mm at full-width at half-maximum Gaussian kernel. Data were additionally preprocessed to correct for head motion using the following steps: wavelet despiking (removing signal transients related to small amplitude (<1 mm) head movements)13; detrending; and multiple regression of motion parameters and their derivatives (24-parameter model)14, as well as white matter (WM), cerebro-spinal fluid (CSF) time series and their linear trends. Lastly, a bandpass filter (0.01-0.08Hz) was applied15. 

The time course of head motion was obtained by estimating the translations in each direction and the rotations in angular motion about each axis for each volume. Framewise displacement (FD), which indexes the volume-to-volume changes in head position, was calculated for each subject16. FD for the first volume of a run is by convention zero. Subjects with a mean FD of > 0.50 mm were excluded from further analyses. 

Resting-state networks were defined in each participant using the functional templates available through the Functional Imaging in Neuropsychiatric Disorders Lab at Stanford University, USA (https://findlab.stanford.edu/functional_ROIs.html) (Supplementary Figure S1)17. We specifically examined the executive control network (ECN), the salience network (SAL), the somatosensory network (SMN), the auditory network (AN), and the language network (LAN). For these analyses, the sub-divisions of the DMN [dorsal DMN (dDMN), ventral DMN (vDMN), the precuneus network (PN)] were merged into a single network. The left and right ECN were merged into a single bilateral network, and the anterior and posterior SAL were also merged to form a single network. Fisher Z-transformed Pearson’s correlation coefficients were computed to calculate the cohesiveness of each network (i.e., within-network functional connectivity) and the integration of the LAN (i.e., between network connectivity) with the DMN, ECN, SAL, SMN and AN networks. Cohesiveness was computed as the average correlation of each voxel’s blood-oxygen-dependent-level (BOLD) signal time series with every other gray matter voxel within each network. Integration was computed as the correlation between the average time-series of each pair of networks. These computations yielded 11 connectivity measures which are shown in Supplementary Table S4.
Figure S1: Spatial distribution of the resting-state networks and subnetworks based on the functional templates available through the Functional Imaging in Neuropsychiatric Disorders Lab at Stanford University, USA17. 
[image: ]

	Supplementary Table S4. Definition functional imaging measures; all networks were defined using parcellation templates provided by Shirer et al, 2012


	LAN-Cohesiveness
	Within-network connectivity of the language network (LAN) network 

	DMN-Cohesiveness
	Within-network connectivity of the default-mode network (DMN)

	ECN-Cohesiveness
	Within-network connectivity of the executive control network (ECN)

	SAL-Cohesiveness
	Within-network connectivity of the salience network (SAL)

	SMN-Cohesiveness
	Within-network connectivity of the sensorimotor network (SMN)

	AN-Cohesiveness
	Within-network connectivity of the auditory network (AN)

	LAN-DMN
	Integration (i.e., between-network connectivity) between the language (LAN) and the default-mode network (DMN)

	[bookmark: _Hlk42377962]LAN-ECN
	Integration (i.e., between-network connectivity) between the language (LAN) and the executive control network (ECN)

	LAN-SAL
	Integration (i.e., between-network connectivity) between the language (LAN) and the salience network (SAL)

	LAN-SMN
	Integration (i.e., between-network connectivity) between the language (LAN) and the sensorimotor network (SMN)

	LAN-AN
	 Integration (i.e., between-network connectivity) between the language (LAN) and the auditory network (AN)



1.2.3 Structural MRI data processing 
Structural imaging data were analysed using FreeSurfer 6.0 (http://surfer.nmr.mgh.harvard.edu/). The steps included removal of non-brain tissue using a hybrid watershed/surface deformation procedure18, automated Talairach transformation, segmentation of the subcortical white matter and deep gray matter volumetric structures19,20 intensity normalization21, tessellation of the boundary between the gray and white matter, automated topology correction22,23, and surface deformation following intensity gradients to optimally place the gray/white matter boundaries and gray/cerebrospinal fluid borders at the location where the greatest shift in intensity defines the transition to the other tissue class. Subsequently, subcortical volume and of cortical thickness (calculated as the closest distance from the gray/white boundary to the gray/CSF boundary at each vertex on the tessellated surface) measures were extracted. . This process yielded 68 cortical thickness measures and 20 subcortical volume measures (Supplementary Table S5). Prior to being entered into further analyses, subcortical volumes were adjusted for variation in intracranial volume (ICV) in accordance to Pintzka et al.24 using the following equation: , where Voladj is the ICV-adjusted volume, Vol is the original uncorrected volume, β is the slope from the linear regression of Vol on ICV, ICV is the ICV of a study participant and  is the mean ICV across all study participants. The same approach was used for correcting for cortical thickness using mean cortical thickness for each hemisphere. 

	Supplementary Table S5. Definition of the morphometric measures derived from Freesurfer 6.0


	Cortical Thickness 

	Banks superior temporal gyrus
	left and right measures were considered separately

	Caudal anterior cingulate cortex
	left and right measures were considered separately

	Caudal middle frontal gyrus
	left and right measures were considered separately

	Cuneus
	left and right measures were considered separately

	Entorhinal cortex
	left and right measures were considered separately

	Fusiform gyrus
	left and right measures were considered separately

	Inferior parietal lobule
	left and right measures were considered separately

	Inferior temporal gyrus
	left and right measures were considered separately

	Isthmus cingulate cortex
	left and right measures were considered separately

	Lateral occipital gyrus
	left and right measures were considered separately

	Lateral orbitofrontal gyrus
	left and right measures were considered separately

	Lingual gyrus
	left and right measures were considered separately

	Medial orbitofrontal gyrus
	left and right measures were considered separately

	Middle temporal gyrus
	left and right measures were considered separately

	Parahippocampal gyrus
	left and right measures were considered separately

	Paracentral gyrus
	left and right measures were considered separately

	Pars opercularis
	left and right measures were considered separately

	Pars orbitalis
	left and right measures were considered separately

	Pars triangularis
	left and right measures were considered separately

	Pericalcarine gyrus
	left and right measures were considered separately

	Postcentral gyrus
	left and right measures were considered separately

	Posterior cingulate cortex
	left and right measures were considered separately

	Precentral gyrus
	left and right measures were considered separately

	Precuneus
	left and right measures were considered separately

	Rostral anterior cingulate cortex
	left and right measures were considered separately

	Rostral middle frontal gyrus
	left and right measures were considered separately

	Superior frontal gyrus
	left and right measures were considered separately

	Superior parietal lobule
	left and right measures were considered separately

	Superior temporal gyrus
	left and right measures were considered separately

	Supramarginal gyrus
	left and right measures were considered separately

	Frontal pole
	left and right measures were considered separately

	Temporal pole
	left and right measures were considered separately

	Transverse temporal gyrus
	left and right measures were considered separately

	Insula
	left and right measures were considered separately

	Subcortical Volumes

	Thalamus
	left and right measures were considered separately following ICV correction

	Hippocampus
	left and right measures were considered separately following ICV correction

	Caudate nucleus
	left and right measures were considered separately following ICV correction

	Nucleus Accumbens
	left and right measures were considered separately following ICV correction

	Pallidum
	left and right measures were considered separately following ICV correction

	Putamen 
	left and right measures were considered separately following ICV correction

	Amygdala
	left and right measures were considered separately following ICV correction

	Ventral diencephalon
	left and right measures were considered separately following ICV correction

	Cerebellum
	left and right measures were considered separately following ICV correction

	Lateral ventricles 
	left and right measures were considered separately following ICV correction



1.3 Case-Control differences in structural and functional connectivity
All imaging data were harmonized for site using ComBat. Group differences in brain structure and connectivity were assessed after regressing the effect of age and sex. Differences were considered significant at p<0.05 using FDR-correction, and were assessed at the level of the total sample and within each site.

1.4 Sparse Canonical Correlation Analysis
[bookmark: _GoBack]Sparse Canonical correlation analysis (sCCA)25 is a multivariate approach that acts as dimensionality reduction technique, reducing each dataset to a number of linear combinations of canonical variables also known as canonical variates. Each pair of canonical variates (or modes) are calculated so that the correlations are maximized between them. The steps involved in each sCCA performed were as follows: 
 (1) Residualization of imaging, clinical, and language measures for age and sex for all participants; the language and clinical measures were also residualised for site while the imaging measures were harmonized for site with ComBat26. For the sCCA model that included the rsfMRI data, data were also residualised for head motion based on mean framewise displacement. 
(2) Data were normalized by calculating Z-scores for each variable;
(3) sCCA models were implemented in MatlabR2018b using an in-house script according to our previously published work27-29, to identify the linear combination of variables in each dataset in each model (i.e., language-clinical features; language-functional connectivity and language-brain structure);
(4) Calculation of exact P-values for canonical correlations were based on 10000 randomly permuted datasets; 
(5) False Discovery Rate (FDR) correction30 was used to control for testing of multiple variates and a p<0.05 was considered statistically significant.
 


2. Supplementary Results
2.1 Language 
	Supplementary Table S6. Linguistic characteristics of the sample recruited at each site

	
	Columbia University
	ISMMS

	Linguistic Variable
	CHR
 Individuals
N=17
	Healthy 
individuals
N=13
	CHR Individuals
N=29
	Healthy individuals
N=9

	Amount of Speech 
	
	
	
	

	Sentence length, mean
	13.71 (3.18)
	12.23 (2.86)
	13.41 (2.69)
	14.44 (4.98)

	Sentence length, standard deviation
	10.65 (3.22)
	9.31 (2.18)
	9.9 (2.14)
	11.11 (3.55)

	Sentence length, maximum
	68.71 (23.3)
	66.23 (17.22)
	60.34 (13.79)
	67.78 (13.87)

	Semantic Properties 
	
	
	
	

	Semantic coherence, mean
	0.81 (0.04)
	0.78 (0.05)
	0.81 (0.05)
	0.8 (0.04)

	Semantic coherence, standard deviation
	0.18 (0.03)
	0.19 (0.03)
	0.18 (0.04)
	0.18 (0.02)

	Semantic coherence, minimum
	-0.06 (0.16)
	-0.09 (0.16)
	0.07 (0.18)
	0.046 (0.15)

	Semantic coherence, maximum
	0.99 (0.01)
	1 (0.01)
	0.99 (0.01)
	1 (0.005)

	Parts of Speech-Tagging
	
	
	
	

	Coordinating conjunction
	0.03 (0.01)
	12.23 (2.86)
	0.04 (0.01)
	0.03 (0.01)

	Cardinal number
	0.004 (0.003)
	9.31 (2.18)
	0.01 (0.004)
	0.01 (0.002)

	Determiner
	0.06 (0.01)
	66.23 (17.22)
	0.06 (0.01)
	0.06 (0.01)

	Existential there
	0.002 (0.001)
	0.78 (0.05)
	0.002 (0.001)
	0.003 (0.001)

	Preposition or subordinating conjunction
	0.07 (0.01)
	0.19 (0.03)
	0.07 (0.01)
	0.07 (0.01)

	Adjective
	0.04 (0.01)
	-0.09 (0.16)
	0.04 (0.01)
	0.04 (0.01)

	Adjective, comparative
	0.002 (0.001)
	1 (0.01)
	0.002 (0.002)
	0.002 (0.001)

	Adjective, superlative
	0.001 (0.001)
	0.03 (0.01)
	0.001 (0.001)
	0.001 (0.0005)

	Modal verb
	0.01 (0.005)
	0.01 (0.004)
	0.01 (0.003)
	0.01 (0.003)

	Noun, singular or mass
	0.08 (0.01)
	0.06 (0.005)
	0.08 (0.01)
	0.08 (0.01)

	Noun, plural
	0.02 (0.01)
	0.002 (0.001)
	0.02 (0.005)
	0.02 (0.005)

	Proper noun, singular
	0.02 (0.01)
	0.06 (0.01)
	0.017 (0.01)
	0.02 (0.01)

	Predeterminer
	0.001 (0.001)
	0.04 (0.01)
	0.001 (0.001)
	0.001 (0.001)

	Possessive ending
	0.0003 (0.0003)
	0.002 (0.001)
	0.0003 (0.0003)
	0.0004 (0.001)

	Personal pronoun
	0.11 (0.01)
	0.001 (0.001)
	0.11 (0.01)
	0.1 (0.01)

	Possessive pronoun
	0.01 (0.003)
	0.01 (0.003)
	0.01 (0.003)
	0.01 (0.003)

	Adverb
	0.08 (0.01)
	0.09 (0.01)
	0.09 (0.01)
	0.08 (0.01)

	Adverb, comparative
	0.002 (0.001)
	0.02 (0.01)
	0.002 (0.001)
	0.002 (0.001)

	Adverb, superlative
	0.0001 (0.0002)
	0.03 (0.01)
	0.0003 (0.0003)
	0.0002 (0.0003)

	Particle
	0.003 (0.001)
	0.001 (0.001)
	0.004 (0.001)
	0.004 (0.001)

	“To”
	0.02 (0.003)
	0.001 (0.0004)
	0.02 (0.004)
	0.02 (0.003)

	Interjection
	0.04 (0.02)
	0.11 (0.01)
	0.04 (0.02)
	0.05 (0.03)

	Verb, base form
	0.03 (0.01)
	0.01 (0.003)
	0.04 (0.01)
	0.04 (0.01)

	Verb, past tense
	0.03 (0.01)
	0.08 (0.01)
	0.03 (0.01)
	0.03 (0.01)

	Verb, gerund or present participle 
	0.02 (0.004)
	0.001 (0.001)
	0.018 (0.01)
	0.02 (0.004)

	Verb, past participle
	0.01 (0.002)
	0.0002 (0.0002)
	0.01 (0.003)
	0.01 (0.003)

	Verb, non-3rd person singular present
	0.05 (0.01)
	0.004 (0.002)
	0.05 (0.01)
	0.04 (0.01)

	Verb, 3rd person singular present
	0.03 (0.01)
	0.02 (0.003)
	0.03 (0.01)
	0.03 (0.01)

	Wh-determiner
	0.003 (0.002)
	0.05 (0.03)
	0.002 (0.001)
	0.004 (0.002)

	Wh-pronoun
	0.01 (0.003)
	0.03 (0.01)
	0.01 (0.003)
	0.01 (0.002)

	Wh-adverb
	0.01 (0.002)
	0.03 (0.01)
	0.01 (0.002)
	0.005 (0.001)

	Continuous variables are shown as mean (standard deviation); CHR=Clinical high risk  



2.2 sCCA for language-and clinical features
This analysis identified a single significant mode as described in the main text. The best sparsity parameters were 0.5 for the clinical dataset and 0.8 for the language dataset. Supplementary Tables S7 and S8 show the weights of all the variables considered in the sCCA model.
	Supplementary Table S7. Weights of the linguistic features in the significant mode of the sparse canonical correlation of linguistic and clinical measures in the CHR sample

	Amount of Speech 

	Sentence length, mean
	0.13

	Sentence length, standard deviation
	0.17

	Sentence length, maximum
	0.13

	Sematic Properties 

	Semantic coherence, mean
	0.03

	Semantic coherence, standard deviation
	-0.11

	Semantic coherence, minimum
	0.16

	Semantic coherence, maximum
	-0.04

	Parts of Speech Tagging

	Coordinating conjunction
	0.23

	Cardinal number
	-0.04

	Determiner
	-0.18

	Existential there
	-0.30

	Preposition or subordinating conjunction
	0.06

	Adjective
	0.02

	Adjective, comparative
	0.02

	Adjective, superlative
	0.07

	Modal verb
	-0.26

	Noun, singular or mass
	0.01

	Noun, plural
	-0.09

	Proper noun, singular
	-0.04

	Predeterminer
	0.10

	Possessive ending
	-0.03

	Personal pronoun
	-0.17

	Possessive pronoun
	0.14

	Adverb
	0.22

	Adverb, comparative
	-0.01

	Adverb, superlative
	-0.13

	Particle
	-0.10

	“To”
	0

	Interjection
	0.09

	Verb, base form
	-0.16

	Verb, past tense
	0.23

	Verb, gerund or present participle 
	0.17

	Verb, past participle
	0.30

	Verb, non-3rd person singular present
	-0.35

	Verb, 3rd person singular present
	-0.09

	Wh-determiner
	0.09

	Wh-pronoun
	-0.39

	Wh-adverb
	-0.08



	Supplementary Table S8. Weights of the clinical features in the significant mode of the sparse canonical correlation of linguistic and clinical measures in the CHR sample

	Structured Interview for Prodromal Syndromes/Scale of Prodromal Symptoms

	Positive Symptoms
	0

	P1 – Unusual thought content
	0

	P2 – Suspiciousness
	0

	P3 – Grandiosity
	0

	P4 – Perceptual abnormalities
	0

	P5 – Conceptual disorganization
	0

	Negative Symptoms
	

	N1 – Social isolation or withdrawal
	0

	N2 – Avolition
	0.35

	N3 – Decreased expression of emotion
	0

	N4 – Decreased experience of emotion
	0.28

	N5 – Decreased ideational richness
	-0.35

	N6 – Deterioration of role functioning
	0

	Disorganization Symptoms
	

	D1 – Odd behavior or appearance 
	0

	D2 – Bizarre thinking
	-0.62

	D3 – Trouble with focus and attention
	0

	D4 – Impairment in personal hygiene
	0

	General Symptoms
	

	G1 – Sleep disturbance
	0.12

	G2 – Dysphoric mood
	0.06

	G3 – Motor disturbance
	0

	G4 – impaired tolerance to stress
	0.52

	Global Functioning Scale

	Social 
	0

	Role 
	0



2.3 sCCA for language-and resting-state network connectivity
This analysis identified a single significant mode as described in the main text. The best sparsity parameters were 0.7 for the functional imaging dataset and 0.6 for the language dataset. Supplementary Tables S9 and S10 show the weights of all the variables considered in the sCCA model.

	Supplementary Table S9. Weights of the linguistic features in the significant mode of the sparse canonical correlation of linguistic and brain functional measures in the whole sample

	Amount of Speech 

	Sentence length, mean
	0

	Sentence length, standard deviation
	0

	Sentence length, maximum
	0

	Sematic Properties 

	Semantic coherence, mean
	0

	Semantic coherence, standard deviation
	0

	Semantic coherence, minimum
	0

	Semantic coherence, maximum
	0.53

	Parts of Speech Tagging

	Coordinating conjunction
	-0.10

	Cardinal number
	-0.16

	Determiner
	0.09

	Existential there
	0

	Preposition or subordinating conjunction
	0

	Adjective
	0.11

	Adjective, comparative
	0.10

	Adjective, superlative
	-0.47

	Modal verb
	0

	Noun, singular or mass
	-0.032

	Noun, plural
	0

	Proper noun, singular
	-0.09

	Predeterminer
	-0.14

	Possessive ending
	-0.26

	Personal pronoun
	0

	Possessive pronoun
	-0.22

	Adverb
	-0.06

	Adverb, comparative
	0.25

	Adverb, superlative
	0

	Particle
	0

	“To”
	0

	Interjection
	0.23

	Verb, base form
	-0.13

	Verb, past tense
	-0.01

	Verb, gerund or present participle 
	-0.23

	Verb, past participle
	0

	Verb, non-3rd person singular present
	0.12

	Verb, 3rd person singular present
	0

	Wh-determiner
	-0.28

	Wh-pronoun
	0.03

	Wh-adverb
	-0.07



	Supplementary Table S10. Weights of the functional features in the significant mode of the sparse canonical correlation of linguistic and brain functional measures in the whole sample

	LAN Cohesiveness
	0.57

	DMN Cohesiveness
	0.17

	ECN Cohesiveness
	0.64

	SAL Cohesiveness
	0.37

	SMN Cohesiveness
	0

	AN Cohesiveness
	0.19

	LAN-DMN
	0

	LAN-ECN
	0

	LAN-SAL
	0.09

	LAN-SMN
	0

	LAN-AN
	0.21



2.4 sCCA for language-and brain structure 
This analysis identified a single significant mode as described in the main text. The best sparsity parameters were 0.8 for both the structural imaging and language datasets. Supplementary Tables S11 and S12 show the weights of all the variables considered in the sCCA model.

	Supplementary Table S11. Weights of the linguistic features in the significant mode of the sparse canonical correlation of linguistic and brain structural measures in the whole sample

	Amount of Speech 

	Mean sentence length 
	0.34

	Standard deviation sentence length
	0.31

	Maximum sentence length
	0.25

	Sematic Properties 

	Mean semantic coherence
	0.37

	Standard deviation semantic coherence
	-0.25

	Minimum semantic coherence
	0.09

	Maximum semantic coherence
	0.08

	Parts of Speech Tagging
	

	Coordinating conjunction
	0.18

	Cardinal number
	-0.12

	Determiner
	0.20

	Existential there
	0.10

	Preposition or subordinating conjunction
	0.31

	Adjective
	0.09

	Adjective, comparative
	0.22

	Adjective, superlative
	-0.06

	Modal verb
	0.08

	Noun, singular or mass
	0.10

	Noun, plural
	-0.02

	Proper noun, singular
	-0.20

	Predeterminer
	-0.03

	Possessive ending
	0.00

	Personal pronoun
	0.07

	Possessive pronoun
	0.00

	Adverb
	0.13

	Adverb, comparative
	-0.04

	Adverb, superlative
	0.08

	Particle
	-0.04

	“To”
	0.17

	Interjection
	-0.21

	Verb, base form
	0.06

	Verb, past tense
	0.00

	Verb, gerund or present participle 
	0.10

	Verb, past participle
	0.17

	Verb, non-3rd person singular present
	0.07

	Verb, 3rd person singular present
	0.13

	Wh-determiner
	0.11

	Wh-pronoun
	0.14

	Wh-adverb
	0.01



	Supplementary Table S12. Weights of the morphometric  features in the significant mode of the sparse canonical correlation of linguistic and brain structural measures in the whole sample

	Cortical Thickness 
	Left hemisphere
	Right hemisphere

	Banks superior temporal gyrus
	-0.09
	0.01

	Caudal anterior cingulate cortex
	-0.07
	-0.09

	Caudal middle frontal gyrus
	0.02
	-0.06

	Cuneus
	-0.06
	0.03

	Entorhinal cortex
	0.06
	0.08

	Fusiform gyrus
	-0.02
	0.10

	Inferior parietal lobule
	-0.003
	0.11

	Inferior temporal gyrus
	0.01
	0.14

	Isthmus cingulate cortex
	0.05
	-0.05

	Lateral occipital gyrus
	-0.05
	0.01

	Lateral orbitofrontal gyrus
	0.15
	0.02

	Lingual gyrus
	-0.02
	-0.03

	Medial orbitofrontal gyrus
	0.09
	0.17

	Middle temporal gyrus
	0.06
	0.09

	Parahippocampal gyrus
	-0.01
	-0.03

	Paracentral gyrus
	-0.002
	0.01

	Pars opercularis
	0.12
	0.04

	Pars orbitalis
	-0.02
	0.02

	Pars triangularis
	0.11
	-0.05

	Pericalcarine gyrus
	-0.09
	-0.07

	Postcentral gyrus
	0.04
	-0.01

	Posterior cingulate cortex
	0.03
	-0.07

	Precentral gyrus
	0.06
	0.04

	Precuneus
	-0.01
	-0.03

	Rostral anterior cingulate cortex
	0.13
	0.18

	Rostral middle frontal gyrus
	0.04
	-0.06

	Superior frontal gyrus
	0.02
	0.02

	Superior parietal lobule
	-0.10
	-0.08

	Superior temporal gyrus
	0.12
	0.13

	Supramarginal gyrus
	-0.06
	0.09

	Frontal pole
	0.08
	0.21

	Temporal pole
	0.07
	0.14

	Transverse temporal gyrus
	0.05
	0.09

	Insula
	-0.02
	-0.05

	Subcortical Volumes

	Thalamus
	-0.24
	-0.20

	Hippocampus
	-0.10
	-0.15

	Caudate nucleus
	-0.07
	-0.15

	Nucleus Accumbens
	-0.27
	-0.25

	Pallidum
	-0.20
	-0.14

	Putamen 
	-0.18
	-0.17

	Amygdala
	-0.11
	-0.06

	Ventral diencephalon
	-0.15
	-0.15



2.5 sCCA for language and all neuroimaging features
There were no significant modes for this analysis across all sparsity levels (P > 0.05). 

2.6 Case-Control differences in morphometry and functional connectivity

Brain Structure: There were no significant case-control differences in brain morphometry at FDR corrected p<0.05 noted in 1) the entire sample, 2) the sample recruited at Columbia University and 3) the sample recruited at ISMMS. 
Functional Connectivity:  There were no significant case-control differences in brain functional connectivity at FDR corrected p<0.05 noted in 1) the entire sample, 2) the sample recruited at Columbia University and 3) the sample recruited at ISMMS. 
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