
Supplementary Methods 

Subjects 

Over a 12 months period, 15 patients with ASD were recruited for the study in the CRC 

Balbuzie center in Rome (Italy). Inclusion criteria for enrollment were: a) patients who did 

not receive either cognitive and behavioral or medication treatment; b) range age 30-60 

months; c) availability of the patient's history from the birth until the time of the diagnosis. 

The exclusion criteria included: a) presence of neurological defects or neurological 

deterioration; b) a genetic or metabolic disease. All subjects were selected to participate in 

the study, considering inclusion criteria; reasons of exclusion were: refusal to participate 

(n=4), and drop out of the study for noncompliant treatment (n=6). The authors assert that 

all procedures contributing to this work comply with the ethical standards of the relevant 

national and institutional committees on human experimentation and with the Helsinki 

Declaration of 1975, as revised in 2008. The final sample consisted of 5 subjects (1 female, 

4 males; mean age=39.4 months; SD=2.7; range 32–45 months). Autism diagnosis was 

done using the Autism Diagnostic Observation Schedule (ADOS-2) (Lord et al., 2012), the 

Vineland Adaptive Behavior Scales Second Edition (VABS-II) (Sparrow et al., 2005), the 

Psychoeducational profile–Third edition (PEP-3) (Davis, 2014) and the Griffiths Mental 

Developmental Scales-Extended Revised (GMDS-ER). Psychodiagnostic tests were 

administered before the therapeutic intervention (time 0) and after 12 months of treatment 

(time 1). Raters were blinded to child treatment status (pre/post intervention). 

The therapeutic intervention, according to the treatment model used, was based on 

(1) 10 weekly hours of cognitive-behavioral therapy (naturalistic developmental behavioral 

intervention approach, 5 sessions of two hours) (Schreibman et al., 2015) integrated with 



10 weekly hours of speech (2 sessions of two hours) and psychomotor (3 sessions of two 

hours) therapies; (2) parent support following diagnosis communication and parent training 

to implement specific programs in the familiar context and (3) psychoeducational 

intervention and meetings with teachers to facilitate child integration in the school context. 

The total number of hours per week was 20. Every child receive treatment by the same 

operators (speech and psychomotor therapist, psychologist) during the entire study. 

Educational efforts focusing on autistic symptoms and its management were discussed in 

encouraging adherence to treatment model. All parents were adherent to prescribed 

therapies. All parents gave written informed consent for their children. The consent form 

was approved by the Ethical Committee.  

 

RNA sequencing 

Whole blood was collected just before the beginning of the therapeutic intervention and 

after 12 months of therapy. Samples were collected in the morning between 9 am and 12 

am at both time 0 and time 1. In order to preserve RNA integrity, DNA/RNA ShieldTM 

(Zymo research) was immediately added to the blood tube. The MagMAXTM for 

stabilized Blood Tubes RNA isolation kit (Ambion, Life Techonologies) was used to purify 

total RNA. RNA sequencing was conducted at NovoGene Corporation INC 

(https://en.novogene.com/; Sacramento, CA) using Globin-Zero Gold rRNA Removal Kit 

& NEB directional library, at 20 million raw reads per sample.  After sequencing,  reads 

were aligned to the Human reference genome (GRCh37) using the Spliced Transcripts 

Alignment to a Reference (STAR) software v2.5 (Dobin et al., 2013). Aligned reads were 

summarized as gene-level counts using featureCounts 1.4.4 (Liao et al., 2014). Outliers 



detection was conducted through Principal Component Analysis (PCA), using R v3.3.1 (R 

Core Team, 2016). Gene expression differential analysis between post- and pre-treatment 

was conducted using the R package DESeq2 v1.14.1 (Love et al., 2014) with a paired 

model including RIN values as covariate. The method implemented in DESeq2 fits a 

generalized linear model (GLM) for each gene, modeling reads counts following a negative 

binomial distribution. The Logarithmic Fold Change (FC), expressed as Log2 Fold 

Change, is estimated with an Empirical Bayes procedure, whereas the significance is 

assessed with a Wald Test (Love et al., 2014). The p-values were corrected for multiple 

testing using the False Discovery Rate (FDR) method (Benjamini and Hochberg, 1995), 

and genes were annotated using the R-package BioMart v2.30.0 (Durinck et al., 2005). We 

considered as significant all the genes with adjusted p-value (adj-p) < 0.05. A total of 5 

patients were included in the study, and their RNA was sequenced before and after 

treatment. We sequenced a total of 487 million (M) of reads (median: 47.3 M, Range: 42.6 

– 58.1 M), with 89.9% mapping rate. PCA analysis conducted using the top 2 Principal 

Components did not show any outlier (Figure S3). We excluded the low responder patient 

before the differential analysis between post- and pre-treatment. We adjusted for RIN 

values since we noted larger values in the post-treatment group, although not significant (p 

< 0.500).  Additionally, we correlated the variation of ADOS-2 measurements with the 

changes in gene expression, computing a Pearson’s correlation. The expression profiling 

matrix (raw counts) was transformed using the variance stabilizing transformation method 

as implemented in DESeq2 (vst function), and adjusted regressing out RIN, age and sex 

values using the adjustBatchEffect function as implemented in the R-package limma 

(Ritchie et al., 2015). Then, we computed the ADOS-2 and expression profiling difference 



from post to pre-preatment, and we estimated the correlation between the expression of 

each genes identified and the ADOS-2 changes as absolute values using the function 

cor.test in R. 

 

Validation datasets 

We compared our differential analysis results with RNA profiling publicly available 

datasets from whole blood and post-mortem brains. We hypothesized that associated genes 

with the treatment should be significantly different in our dataset (post vs pre-treatment) 

but have an opposite direction when comparing patients vs controls. 

As comparison dataset from whole blood we considered the large meta-analysis 

conducted by Tylee et al. (2017), using the complete results of the meta-analysis included 

in Supplementary Table S3 of their manuscript. In this study the authors combined the 

results from 7 different ex vivo blood or lymphocytes microarray expression profiling 

studies totally including 626 affected and 447 controls. We considered both the models run 

including the covariates (non-sva), and the model run with sva, with p-values adjusted with 

the BH method. We considered “validated” genes if: 1) were significant at the unadjusted 

p < 0.05 in one of the two model (non-sva and sva), 2) with discordant log2 Fold Change 

direction with our results. Furthermore, we analyzed an additional dataset to investigate 

whether the DEGs detected in our dataset were related to age changes. The RNA 

sequencing in our study was conducted when the patients were 3.5 and 4.5 years old (pre 

and post-treatment, respectively), so potentially some observed changes could be a 

consequence of the difference in age and not due to the treatment. To further investigate 

this potential confounding factor, we downloaded the dataset GSE18123 (Kong et al., 



2012) including 104 ASD and 184 non-affected characterized with the Affymetrix array 

HuGene-1_0-st. We selected the sub-dataset GPL6244 because the cohort included both 

females and males, similarly to our study, and we downloaded the raw data (CEL files) for 

the ASD patients between 3 and 5 years old (n = 29). Data were normalized using the 

Robust Multi-array Average (RMA) algorithm (Irizarry et al., 2003) with the R-package 

oligo (Carvalho and Irizarry, 2010) and quality controls were conducted using the R-

package arrayqualitymetrics  (Kauffmann et al., 2009). We classified and excluded outliers 

significant in 2 out of 3 metrics computed from the normalized expression values (distances 

between arrays, Boxplots, and MAplots). Finally, we run a linear model using age as 

predictor for the gene expression and including sex as covariate. Results were adjusted for 

multiple testing using the False Discovery Rate method (Benjamini and Hochberg, 1995). 

We also compared the results with one publicly available post-mortem brain 

dataset, including RNA profiling from 13 ASD cases and 39 controls from dorsolateral 

prefrontal cortex (GSE102741) (Wright et al., 2017). FASTQs files were download from 

the Sequencing Reads Archive (#PRJNA398545), and reads were aligned with STAR 

v2.7.5b (Dobin et al., 2013) using GrCh38 as reference genome. Counts were summarized 

at the gene level using the function featureCounts as implemented in the R-package 

Rsubread (Liao et al., 2019). All the downstream analysis were conducted using the R-

Package DEseq2 (Love et al., 2014). We removed genes with less than 10 total counts 

across all samples, and we applied variance-stabilized transformation (vst function) before 

conducting PCA to detect outliers. Finally, we ran a differential expression analysis using 

the raw counts and adjusting for: pH, RIN, sex, race and age. Results were adjusted for 

multiple testing with the FDR method (Benjamini and Hochberg, 1995).  Statistical 



enrichment of our list of DEGs in Tylee et al., (2017) and GSE102741 was computed using 

Fisher’s exact test, as implemented in the R-package bc3net (de Matos Simoes and 

Emmert-Streib, 2012), and with a gene set enrichment analysis, using the R-package fgsea.  

 

Enrichment analysis 

Differentially Expressed genes (DEGs, adj p < 0.05) were used for the pathway analysis. 

We referenced to the REACTOME database (Fabregat et al., 2016) adjusting the p-values 

for multiple testing using the FDR method. We also conducted the Gene Set Enrichment 

analysis (GSEA). This type of analysis uses as input the entire list of genes (significant and 

non-significant) ranked by log2 (FC). The goal is to determine whether members of a 

specific functional gene set tend to occur toward the top (upregulated genes) or bottom 

(downregulated genes) of the input list (Subramanian et al., 2005). The analyses were 

conducted using the R-package ReactomePA (Yu and He, 2016), referencing to the 

REACTOME database. Finally, we conducted a functional network analysis blood-specific 

using HumanBase web tool (https://hb.flatironinstitute.org/gene).



Supplementary results 
 
Figure S1. Plots reporting the results of the clinical assessment conducted with ADOS-2 
at pre and post-treatment time-points. 
Treatment responders are indicated in blue (R), and the low responder is indicated in red 
(LR). 
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Figure S2. Plots reporting the results of the clinical assessment conducted with GMDS-
ER at pre and post-treatment. 
(Treatment responders in blue (R) and the low responder is indicated in red (LR). 
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Figure S3. PCA analysis conducted using the components 1 and 2 for all samples (top) and only the 
responders (bottom). Colors and shape are time-point and patients specific, respectively. 
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Figure S4. Enrichment of the differentially expressed genes detected in the present study in the 
dataset GSE102741, including RNA profiling from 13 ASD and 39 controls. We detected a non 
significant enrichment of our genes (mostly upregulated) among downregulated genes from 
GSE102714 (p = 0.343; normalized enrichment score = -1.022) 
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Figure S5. Correlation between ADOS-2 and gene expression changes between post and pre-
treatment using all the 5 patients, including the non-responder. 
 
(A) Barplot showind the distribution of R correlation strengh classes(Wuensch and Evans, 1996) 
found for both the DEGs (adj p < 0.05) and non-DEGs (adj p ≥ 0.05). The distribution between the 
two groups was statistically significant (p < 1.0E-06). 
 
(B) Scatterplot showing the correlation between log2FC (differential analysis high-responders) and 
correlation coefficient ADOS-2/gene expression (all patients). DEGs are reported in red (R = 0.718; 
p < 2.2E-16). 
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Figure S6.  Functional blood-specific network obtained using the 109 DEGs. A total of 5 functional 
modules were identified (M1-M5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure S7. Heatmap representing the expression of the 22 candidate genes in whole blood and 
different brain regions in GTEx. Complete data are reported in Table S5. 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure S8. Heatmap representing the expression of the 22 candidate genes in different brain regions 
in GTEx. Complete data are reported in Table S5. We removed the whole blood to better highlight 
the variation across brain regions 
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