Supplemental Table S1.

	2018(n=3	0203)	2019(n=3	32184)	2020(n=29592)		2021(n=9716)	
	Case	Non-case	Case	Non-case	Case	Non-case	Case	Non-
Variable	(n=220)	(n=29983)	(n=199)	(n=31985)	(n=223)	(n=29369)	(n=70)	case
								(n=9646)
Race, n (%)								
White	191	22352	152	23549	182	21647	54	7235
	(86.8)	(74.5)	(76.4)	(73.6)	(81.6)	(73.7)	(77.1)	(75.0)
Black	20	6115	30	6839	32	6252	14	1945
	(9.1)	(20.4)	(15.1)	(21.4)	(14.3)	(21.3)	(20)	(20.2)
Other	9	1516	17	1597	9	1470	2	466
	(4.1)	(5.1)	(8.5)	(5.0)	(4.0)	(5.0)	(2.9)	(4.8)
Age, Mean	61.2	58.1	62.7	58.7	60.7	59.1	60.9	59.9
Ethnicity, n								
(%)								
Not	220	29276	190	31248	219	28589	68	9405
Hispanic	(100)	(97.6)	(95.5)	(97.7)	(98.2)	(97.3)	(97.1)	(97.5)
Hispanic	0	505	7	543	4	557	2	190
		(1.68)	(3.5)	(1.7)	(1.8)	(1.9)	(2.9)	(2.0)
Unknown	0	202	2	194	0	223	0	51
		(0.7)	(1.0)	(0.6)		(0.8)		(0.5)
Sex, n (%)								
Female	112	14748	107	15648	101	14036	33	4706
	(50.9)	(49.2)	(53.8)	(48.9)	(45.3)	(47.8)	(47.1)	(48.8)
Male	108	15235	92	16337	122	15332	37	4940
	(49.1)	(50.8)	(46.2)	(51.1)	(54.7)	(52.2)	(52.9)	(51.2)
Charlson	4.2	3.9	3.9	3.9	4.7	3.9	4.3	3.8
score, Mean								
Length of								
stay, n (%)								
4-9 days	41	20734	27	21775	30	19936	14	6611
	(18.6)	(69.2)	(13.6)	(68.1)	(13.5)	(67.9)	(20.0)	(68.5)
10+ days	179	9249	172	10210	193	9433	56	3035
	(81.4)	(30.8)	(86.4)	(31.9)	(87.7)	(32.1)	(80.0)	(31.5)
Previous								
C.diff								
positive, n								
(%)		1=0						
Yes	18	470	14	409	8	446	2	157
	(8.2)	(1.6)	(7.0)	(1.3)	(3.6)	(1.5)	(2.9)	(1.6)
No	202	29513	185	31576	215	28923	68	9489
	(91.8)	(98.4)	(93.0)	(98.7)	(96.4)	(98.5)	(97.1)	(98.4)

Table S1.	Patient	characteristic	s from	n 2018 to	2021	(HO-CDI	vs. Non-	-HO-CDI)

Total	4.1	3.6	4.3	3.5	4.4	3.4	4.0	3.1
number of								
rooms								
transfer,								
Mean								
Number of								
classes of								
antibiotic								
used, n (%)								
0	35	8230	36	9366	25	7933	9	2824
	(15.9)	(27.4)	(18.1)	(29.3)	(11.2)	(27.0)	(12.9)	(29.3)
1	51	6747	39	7232	48	6501	19	2199
	(23.2)	(22.5)	(19.6)	(22.6)	(21.5)	(22.1)	(27.1)	(22.8)
2	64	6896	61	7369	64	7263	23	2346
	(29.1)	(23.0)	(30.7)	(23.0)	(28.7)	(24.7)	(32.9)	(24.3)
3	40	4640	40	4642	51	4612	13	1436
	(18.2)	(15.5)	(20.1)	(14.5)	(22.9)	(15.7)	(18.6)	(14.9)
4	23	2398	17	2349	22	2158	6	604
	(10.5)	(8.0)	(8.5)	(7.3)	(9.9)	(7.3)	(8.6)	(6.3)
5+	7	1072	6	1027	13	902	0	237
	(3.2)	(3.6)	(3.0)	(3.2)	(5.8)	(3.1)		(2.5)
Risk of								
antibiotic								
used, n (%)								
High	169	19036	148	19537	185	19000	55	5978
	(76.8)	(63.5)	(74.4)	(61.1)	(83.0)	(64.7)	(78.6)	(62.0)
Low	16	2717	15	3078	13	2435	6	843
	(7.3)	(9.1)	(7.5)	(9.6)	(5.8)	(8.3)	(8.6)	(8.7)
No	35	8230	36	9370	25	7934	9	2825
antibiotic	(15.9)	(27.4)	(18.1)	(29.3)	(11.2)	(27.0)	(12.9)	(29.3)
Days on	4.9	3.8	4.8	3.7	6.3	3.9	4.4	3.7
high-risk								
antibiotic,								
Niean Desilation on a								
Buildings, n								
(70)	26	3200	25	2408	10	2210	7	1000
A	(11.8)	(10.7)	(12.6)	(10.7)	(8.5)	(10, 0)	$\binom{1}{(10.0)}$	(11.4)
D	(11.0)	2745	21	(10.7)	(0.3)	(10.9)	(10.0)	(11.4) 1140
D	(10.5)	(12.5)	(15.6)	(12.6)	(15.2)	(12.7)	$\begin{vmatrix} 0 \\ (11 \ 4) \end{vmatrix}$	(11.8)
C	4	962	0	920	7	884	$\left(11.4\right)$	254
	(1.8)	(3 2)	0	(2.9)	(31)	(30)		(2.6)
П	23	3985	23	4069	16	3815	10	1200
	(10.5)	(13.3)	(11.6)	(12.7)	(7.2)	(13.0)	(14.3)	(13.5)
F	101	9316	74	10382	83	9158	26	2038
	(101)	(31.1)	(37.2)	(325)	(37.2)	(31.2)	(37.1)	(30.5)
	(43.7)	(31.1)	(37.4)	(34.3)	(37.2)	(31.2)	$\left(\frac{3}{1}, 1 \right)$	(30.5)

F	18	5098	27	5606	36	5165	12	1750
	(8.2)	(17.0)	(13.6)	(17.5)	(16.1)	(17.6)	(17.1)	(18.1)
G	25	3652	19	3541	28	3397	7	1162
	(11.4)	(12.2)	(9.5)	(11.1)	(12.6)	(11.6)	(10.0)	(12.0)

Figure S 1

Figure S 2

Statistical Details

As described in the Methods section of the main paper, the main goal of the analysis is to compare the observed number of monthly HO-CDI with the expected number from January 2018 to May 2021. To do so, we use a standard Bayesian Poisson regression model to estimate the SIRs and their uncertainty and to assess trends over time. We assume the following data model:

$$Y_i \stackrel{ina}{\sim} \text{Poisson}(E_i \lambda_i)$$

where Y_i is the observed count of HO-CDI for month *i*, E_i is the expected count of HO-CDI for month *i*, and λ_i is the SIR for month *i*.

To compute E_i , we assume the probability of HO-CDI for a patient is constant over the study time period (i.e., no temporal heterogeneity). This implies that the SIR is comparing each month to the average over the time period. Thus, $E_i = \sum_{j=1}^{n_i} p_{j[i]}$ where n_i is the number of patients admitted in month *i* and $p_{j[i]}$ is the probability of HO-CDI for patient *j* admitted in month *i*. For the full Bayesian model, E_i is assumed to be known, as is typical for these models (Cressie and Wikle, 2011). We estimate p_j using the following logistic regression model:

$$Z_j \stackrel{ind}{\sim} \text{Bernoulli}(p_j)$$
$$\text{logit}(p_j) = \mathbf{X}'_j \boldsymbol{\beta}$$

where Z_j is an indicator of whether patient j had HO-CDI, \mathbf{X}_j is a vector of the covariates as described in the main text, and $\boldsymbol{\beta}$ is a vector of fixed effects. Through use of a logistic regression to compute p_j and thus E_i , we effectively adjust the expected count of HO-CDI for differences in the characteristics of the hospitalized patient population over time, which is particularly important during 2020 as hospitalization patterns were altered by the COVID-19 pandemic. In other words, assuming that patient risk of HO-CDI does not change over time given the covariates in \mathbf{X} , we are able to compute the expected count of HO-CDI cases for the set of patients actually hospitalized during any given month in a way that enables a fair comparison over time.

To model λ_i , we assume the following generalized linear model:

$$\log(\lambda_i) = \alpha_i + \epsilon_i$$

where α_i is the contribution at month *i* from a penalized cubic spline and ϵ_i is a random effect to account for overdispersion and temporal autocorrelation. The cubic spline was defined using the jagam function in the mgcv package in R (Wood, 2016). The spline is defined by $\alpha_i = \mu + \mathbf{B}_i \kappa$ where μ is the intercept, \mathbf{B}_i is vector of basis functions evaluated at time *i*, and κ is the vector of coefficients. We apply the penalty by assuming $\kappa \sim N(\mathbf{0}, \tau \mathbf{S}^{-1})$ where \mathbf{S} is a non-diagonal matrix multiplied by the smoothing parameter τ such that smaller values of τ result in a smoother function. To capture additional variation and temporal autocorrelation, we assume an autoregressive of order 1 structure for ϵ_i . That is, we assume

$$\begin{cases} \epsilon_i \sim N(0, \sigma^2) & i = 1\\ \epsilon_i \sim N(\rho \epsilon_{i-1}, \sigma^2) & i > 1 \end{cases}$$

where σ^2 is a variance and ρ is an autoregressive parameter.

Since we fit the model within the Bayesian paradigm, we must specify prior distributions on all unknown parameters. We assume $\mu \sim N(0, 100)$ and $\rho \sim \text{Uniform}(-1, 1)$. For σ^2 and τ , we assume independent inverse gamma distributions with shape and scale equal to 0.5.

References

Cressie, N. and Wikle, C. K. (2011). Statistics for Spatio-Temporal Data. John Wiley & Sons.

Wood, S. N. (2016). Just Another Gibbs Additive Modeler: Interfacing JAGS and mgcv. *Journal of Statistical Software*, 75:1–15.

Figure S3: Posterior mean estimate of the log SIR by month with the associated 90% credible interval. Ex-pected case counts were computed using a logistic regression with cubic spline effects for all continuous covariates.

Figure S4: Posterior mean estimate of the log SIR by month with the associated 90% credible interval. HO-CDI infections are indexed to the date the lab test was ordered.