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Introduction 

The purpose of Modeling Infection Diseases in Healthcare Network (MInD-Healthcare) agent-
based model (ABM) is to simulate agent movement to and from healthcare facilities. Originally 
built to model the natural history of C. difficile infection within a regional health system,1 the 
ABM was adapted in 2020 to forecast hospitalizations for North Carolina during the COVID-19 
pandemic. This supplement accompanies a manuscript detailing an analysis simulating the 
movement of people into acute care settings and SARS-CoV-2 infection rates to compare 
hospital testing policies over one month. Model scenarios were run under conditions reflective of 
North Carolina from December 15, 2021 to January 13, 2022 (Omicron [B.1.1.529 variant] 
dominant, high community-level transmission) under varying assumptions.  

This supplement provides detailed information on modeling processes, parameter sources, 
calibration, and assumptions related to this analysis using NC MInD ABM. As the model is 
frequently updated and contains additional processes not included within this specific analysis, 
users can refer to a posted Overview, Design Concepts, and Details (ODD) protocol at 
https://arxiv.org/abs/2202.06853 for the NC MInD model in general and at 
https://arxiv.org/abs/2202.09243 for additional details on the COVID-19 submodel. Details on 
the model scenarios, analytic overview, sensitivity analyses, and output for the specific analysis 
are included within the manuscript.  
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Entities, State Variables, and Scales 

The base model has two types of entities—agents and locations. Agents represent North 
Carolina residents as informed by a synthetic population of North Carolina. For this analysis, we 
modeled 5 million agents to represent the 10.6 million residents of North Carolina. Locations 
include over 100 nodes that are part of a geospatially explicit network. These nodes represent 
healthcare facilities where agents will seek healthcare during a model run and the community 
(Table S1). Agents moving between these nodes represent North Carolinians moving among 
healthcare facilities and the community. There are two location types: short-term acute care 
hospitals (STACHs) and the community. Data from the Cecil G. Sheps Center for Health 
Services Research, University of North Carolina at Chapel Hill was used to inform facility type, 
location, and bed count.2–4  

Table S1. Location type and count of facilities in the ABM 

Location Type Description Node Count 

STACH Short-term acute care hospitals3,5 104 
Community Everything outside of the healthcare facility types 1 

Agent movement among households is not modeled, nor is agent interaction within a 
household. Agents located in the community node can be conceptualized to be anywhere in the 
community other than a modeled STACH. Healthcare facility locations (i.e., all noncommunity 
nodes) have static variables, including name, physical location (i.e., county and geocode), bed 
count, and a unique identifier (Facility ID) that is used throughout the ABM (Table S2). Agents 
who move to one of these locations are given a specific bed within the healthcare facility. At that 
time, an agent is added to the “Agents” attribute of the location node. STACH nodes have beds 
designated as intensive care unit (ICU) or non-ICU beds. Not all North Carolina counties have a 
modeled healthcare facility. Note that most variables are not relevant to the community node. 

Table S2. Location node specific variables  

Variable Description Dynamic Type Range 

Bed Count non-ICU and ICU No Integer 1-1000+ 
Name Healthcare facility name No String N/A 
Category Healthcare facility category No String N/A 
County North Carolina county of the 

healthcare facility 
No String 1, 3, 5, … 201 

Agents Current agent IDs Yes List N/A 
Facility ID Unique facility identifier No Integer 0-540 

Each time step (i.e., 1 day), an agent’s location state can be updated. The location state 
corresponds to the current location for that agent. An agent’s life state is a binary variable (i.e., 
living or dead). Agents also have several demographic attributes (age, county of residence) 
based on the RTI SynthPop™ and attributes related to SARS-CoV-2 (COVID-19 disease state, 
vaccination) presented in Table S3. Throughout the model run, agents who change locations 
are assigned additional variables. An agent’s LOS, leave healthcare facility day (model date on 
which the agent’s LOS ends if they are at a facility node), previous location, other information 
may be added, updated, or removed throughout the model run.  
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Table S3. Agent state and demographic variables of the ABM 

Variable Description Dynamic Type Range Source 

Unique ID ID for the agent No Integer 0-10,600,822 n/a 

Age Group Age of the agent (<50 
(0), 50-64 (1), 65+ (2)) 

No Integer 0, 1, 2 RTI 
SynthPopTM 
2017 dataset 

County Home county No Integer 1-201 RTI 
SynthPopTM 
2017 dataset 

Concurrent 
conditions (i.e., 
comorbidities) 

Binary variable for 
presence of 
comorbidities  

No Integer 0, 1 Medicare 
Marketscan 
data 2016-
2017 

Location Current location Yes Integer 0-540 RTI 
SynthPopTM 
2017 dataset 

Life Life status Yes Integer 0, 1 n/a 

COVID-19 COVID-19 state: 
Susceptible (1); 
Asymptomatic (2); 
Mild/moderate (3); 
Severe (4); Critical (5); 
Recovered (6) 

Yes Integer 1–6 North Carolina 
Department of 
Health & 
Human 
Services  

Vaccination Boolean for 
vaccination or not 

No Boolean 1, 2 North Carolina 
Department of 
Health & 
Human 
Services 

Temporal and Spatial Resolution and Scales 

The ABM is implemented with a 1-day time step, and there is no sense of daily time in the 
model. A 1-day time step was selected based on the assumption that an agent is primarily at 
one location each day. The number of daily time steps in the model is set by an input 
parameter. This analysis used 30 days for each model run.  

Each facility in the model is geospatially explicit based on the GPS coordinates of the facility’s 
address. Agents in the model are also geospatially explicit because they are from a specific 
North Carolina County. Each county is described by the coordinates at the county’s centroid. 
This spatial resolution was chosen based on data availability and being able to move agents to 
locations based on the distance between an agent’s home county and each facility. 
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Process Overview and Scheduling 

For each time step, agents can go through several different updates, we will call these updates 
actions. Any action that was randomly selected to occur for the current model time, is placed in 
a list of actions for the model to execute. These actions contain the agent’s unique ID and the 
type of action to execute. Examples of actions include an agent seeking hospitalization from the 
community, being transferred from one facility to another, or dying at a facility. Randomizing the 
updates before they are executed is important. Resources in the model (e.g., beds) may be 
limited. Randomizing the actions allows resources to be used in a more realistic manner. 
Randomization also helps maintain a realistic simulation of an agent’s day.  
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Model Initialization 

The model is currently parametrized to conditions from December 15, 2021 to January 13, 
2022. Parameters linked to sources that change over time were taken from those sources as of 
the specified start date. Below we describe model initialization with respect to agent 
demographics, agent location, and hospitalization for non-COVID-19 indications. Initializing 
values for SARS-CoV-2 vaccination, COVID-19 hospitalizations, and community infection with 
SARS-CoV-2 are described within the “SARS-CoV-2 Infection” and “SARS-CoV-2 Vaccination” 
subsections. 

Agent demographics 

Agents for the ABM are created using demographic variables provided by RTI SynthPop™.6 
This synthetic population consists of one anonymized synthetic person per row, containing the 
synthetic person’s home county; Federal Information Processing Standard code (corresponding 
to one of North Carolina’s 100 counties); sex (female, male); and age in years. We completed 
two preprocessing steps on this file to prepare it for model input: 

This baseline population is slightly smaller (~10m) than the estimated population of North 
Carolina for 2020 of 10,600,823.7 Rows in the synthetic population are randomly selected and 
duplicated until we reach the population estimate of North Carolina for 2020. Only agent 
demographic information such as age, sex, and general location are used; duplicating agents is 
acceptable here because no household-specific attributes (e.g., household size) are used. We 
binned the age of the agents into age groups (<50, 50-64, ≥ 65). 

A base model parameter sets the number of agents to include in the model (5 million). Using a 
smaller population reduces the amount of time it takes a model to complete, but also reduces 
the accuracy and consistency of the results. Based on this parameter, rows from the synthetic 
population are randomly selected and an agent is initiated with the values of that row. Each 
agent has the same probability of being selected. Unless selected to start in a facility, all agents 
initially start in the community.  

Agents are assigned two additional variables outside of the variables in the synthetic population: 
Agents are given a unique ID. This value is used to track their movements and record any 
events that take place. Agents are randomly assigned concurrent conditions (i.e., comorbidities) 
(Table S4) based on their age group and data from Medicare Marketscan data from 2016-2017.  

Table S4. Probability of concurrent condition assignment by age group 

Age Group Probability Source 

0 (<50) 0 Medicare Marketscan data 
2016-2017 1 (50-64) 23.74% 

2 (65+) 54.97% 

Location Nodes 

Location entities are created using input data that provide healthcare facility names, locations, 
bed counts, and other attributes based on hospital discharge and inpatient data from the Cecil 
G. Sheps Center for Health Services Research.3 Each facility is assigned a specific number of 
beds based on the input data and the number of agents in the model. The number of beds for 
facility 𝑖,  𝐵𝑖

∗, is equal to the number of beds multiplied by the ratio of agents in the model, 𝑛, to 

the population of North Carolina, 𝑝. Each facility must have at least one bed. 
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𝐵𝑖
∗ = max( 1, 𝐵𝑖 ∗

𝑛

𝑝
 ) 

To fill these beds, starting capacities are determined by input parameters (Table S5).8  

Table S5. Parameters for starting capacities of STACH and LTACH facilities 

Parameter Description Value Source 

Non-ICU fill  Proportion of non-ICU hospital beds filled at initiation .65 Opinion 
ICU fill  Proportion of ICU hospital beds filled at initiation .50 Opinion 

Each STACH is initiated with ICU and non-ICU agents to match starting capacity percentages 
specified by model parameters. Alternatively, in cases where individual hospital capacity data 
are available from another source, the model can initialize non-ICU and ICU capacities to the 
provided levels. Parameters control whether a global fill value is used or if real data are used. 
When using input parameters, STACHs will not all start at the same capacity level. Instead, they 
will start at capacities that reflect both their reported discharge data and the input parameter. On 
average, hospitals will start at capacities equivalent to the fill input parameters for non-ICU and 
ICU beds. The following is used to estimate hospital-specific starting capacities. Let 𝐻𝑁𝐵 be the 

number of non-ICU beds, 𝐻𝑇𝐵be the total number of beds, 𝐻𝑇𝑝be the total number of discharged 

patients, and 𝐻𝐿𝑂𝑆 be the mean LOS for hospital 𝐻. 𝐻𝑐  is the average capacity for non-ICU beds 
of a facility based solely on discharge data.2,3 

𝐻𝑐 =  
𝐻𝑁𝐵

𝐻𝑇𝐵
∗ 𝐻𝑇𝑃 ∗

𝐻𝐿𝑂𝑆

365
 

Let 𝑅 be the ratio of the input parameter, non-ICU fill, and the estimated average capacity of all 
hospitals. Then 𝐻𝑐

∗ , the actual starting capacity of hospital 𝐻 for non-ICU beds given the 

discharge data and the input parameter, is 𝑅 ∗  𝐻𝑐. A similar process is completed for ICU beds.  

We do not model agents that are not North Carolina residents. However, several hospitals have 
large amounts of individuals from states other than North Carolina. Some hospital beds will be 
assigned placeholder agents. These placeholder agents represent agents at each facility that 
are not North Carolina residents. Placeholder agents do not move and do not have attributes 
and the total number at each facility remains constant for a model run. The number of 
placeholder agents is determined by multiplying the capacity of a facility by the proportion of 
discharges that were not North Carolina residents.  

Agents are selected to fill hospital beds based on their home county and the discharge data for 
each hospital.3 The probability that a bed will be filled by an agent from a specific county is 
equal to the number of discharges from that hospital and county divided by the total number of 
discharges from that hospital. After counties have been selected, agents within those counties 
are chosen based on their age (Table S6).2  

Table S6. Probability of hospitalized agent being from a specific age group 

Age Group Probability 

0 (<50) 40.99% 
1 (50-64) 20.12% 
2 (65+) 38.90% 

All agents who were assigned a starting location other than the community are assigned a 
remaining LOS value. This value is drawn from a distribution created by aging facility-specific 
LOS distributions. This process is completed before ABM execution and is solely used to create 
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a remaining LOS distribution. This aging process consists of continuously pulling values from 
the normal LOS distribution as days are simulated. For each day that passes, 1 day is removed 
from the drawn values. After enough time has passed for the distribution to reach a steady 
state, whatever values remain that are greater than 0 are used as the remaining LOS 
distribution. These distributions are only used during model initialization.  
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Agent Movement 

Movement from community to healthcare facility 

Each agent in the community has a daily probability of leaving the community and going to an 
acute care setting for a non-COVID-19 indication or a COVID-19 indication. In the community 
movement step, the probabilities of movement for each agent are compared to random numbers 
to see if that agent will leave the community. When the action is executed, the agent will be 
assigned to a specific location and given an LOS. This “first-choice” location is based on an 
agent’s home county and how often facilities admit patients from that county.   

Movement from healthcare facility to community  

Agents in healthcare facilities only leave that facility when their length-of-stay (LOS) ends. We 
use the location transition probabilities to determine the healthcare facility type of the agent’s 
next destination or to determine if the agent dies. A random probability is generated, and this 
probability is compared to their transition probabilities. Most agents will move to the community 
upon discharge, but some are selected for a facility transfer. Once a healthcare facility type is 
determined, if a non-community node is selected, we compare a second random number to the 
facility transitions to determine the exact facility ID.  

Anytime an agent moves to a new short-term acute care hospital (STACH), they have a 
probability of requiring an ICU bed. This probability is based on patient-level data previously 
used to calculated LOS distributions.9 A logistic regression model was built using an agents age, 
concurrent conditions, and selected LOS, as well as the hospital’s bed count to determine the 
probability of requiring an ICU bed. This probability is also controlled by an input parameter that 
can increase or decrease ICU stays. This input parameter was calibrated to create a steady 
state of ICU patients over the course of a 1-year model run.9 For agents that arrive at an 
STACH, the agent is assigned an LOS based on facility-level distributions. 

Healthcare facilities at capacity 

It is possible that a facility will be at capacity when an agent tries to seek treatment. The 
following set of rules are applied when an agent goes to a facility that is at capacity: 
 

▪ If the facility is a hospital, the agent will try to find any open bed, regardless of whether it 
is an ICU or non-ICU bed, and which type the agent initially sought. 

▪ The agent will try to find a bed at all facilities located in their home county. 
▪ The agent will try any additional North Carolina facilities located within a 200-mile radius 

of the centroid of the agent’s home county; this value is controlled by an input 
parameter. 

If the agent is turned away from their first-choice facility, that agent is added to a list of agents 
containing the date, location, and county. If the agent is turned away from all possible facilities, 
that agent is added to a list of agents who were completely turned away. Agents who are 
randomly selected to transfer from another healthcare facility will only try their first-choice 
facility. If this STACH is at capacity, the agent returns to the community. (Table S7). 

Table S7. Distance Parameters 

Parameters Description Value Source 

Max. Distance The maximum number of miles a facility can be 
located from an agent’s home county 

200 Expert 
opinion  
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SARS-CoV-2 Infection  

At model initiation, we assume that a certain percentage of agents are infected with SARS-CoV-
2, and of those, a percentage are hospitalized for COVID-19. A percentage of agents are in the 
recovered state (i.e., SARS-CoV-2 infection in the last 90 days but not active infection). 
Susceptible-Infectious-Exposed-Recovered-Susceptible (SEIRS) compartmental models are 
used to generate cases of SARS-CoV-2 as model input for the ABM. 

SARS-CoV-2 Infection within the SEIRS Compartmental Models 

The ABM relies on daily SARS-CoV-2 infection projections. A SEIR model is a deterministic 
compartmental model used to simulate the spread of infectious disease. Because the ABM is 
being used to estimate infections during an ongoing pandemic, we altered the SEIRS approach 
to account for available historical data. Using a single effective reproductive number, we run an 
individual SEIRS model for each NC county using the following parameters (Table S8). 

Table S8. SEIRS Parameters 

Parameter Value Description Source 
Initial Case Multiplier 10 

(02/01/20–
06/01/20) 

Multiplier representing unreported 
SARS-CoV-2 infections  

Li et al., CDC, 
Rosenberg et 
al.10–13 

Middle Case Multiplier 4 (10/01/20–
12/15/21) 

Multiplier representing unreported 
SARS-CoV-2 infections 10–13 

Li et al., CDC, 
Rosenberg et 
al.10–13 

Current Case 
Multiplier  

8 (12/15/21-
present 

Multiplier representing unreported 
SARS-CoV-2 infections 

Assumed 

Length of Infection 6 days Average length of infectiousness Hay et al.14 

Time from exposure to 
symptom onset 

5-7 days Average number of days after 
exposure before someone has 
symptoms  

Ferguson et 
al., Jansen et 
al.15,16 

Immunity Length 90 Time after infection before moving 
from recovered to susceptible  

CDC17 

𝑅𝑒 Varies Effective reproductive number Calibrated 

Before running the SEIRS model to create 30-day case forecasts, we estimate the value of each 
compartment. These values are calculated based on the number of reported cases through the 
start date of the ABM using the following process: 

▪ Case counts are smoothed using a 10-day rolling average. The smoothed cases are 
then scaled to ensure that the sum of the smoothed cases equals the sum of the 
reported cases. 

▪ The smooth case counts are multiplied by case multipliers based on the reporting date. 
This multiplier represents the estimated ratio of reported cases to total infections (a 
majority of which are not reported).  

▪ To estimate 𝑆𝑖𝑗 for day 𝑖 and county 𝑗: we subtract the cumulative sum of infections up to 

that date from 1 and add back any infections that were > 200 days from day 𝑖.  

𝑆𝑖𝑗 = 1 − ∑ 𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑑

𝑑=𝑖

𝑑=1

+  ∑ 𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑑

𝑑=𝑖−200

𝑑=1
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To estimate compartment 𝐸𝑖𝑗: we divide the estimated infections for the next day by the 

population and model 𝛼.  

𝐸𝑖𝑗 =
𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑖+𝑖

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑗 ∗  𝛼
;   𝛼 =

1

6
  

To estimate compartment 𝐼𝑖𝑗: we sum the previous 6 days of infections and divide by the county 

population. 

𝐼𝑖𝑗 = ∑
𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑖

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑗

𝑖

𝑖−6

 

To estimate compartment 𝑅𝑖𝑗: 

𝑅𝑖𝑗 = 1 − 𝑆𝑖𝑗 − 𝐸𝐼𝑗 − 𝐼𝑖𝑗 

Once each compartment has been estimated, the compartment model is run for 30 days. Each 
county has its own model. The final estimates of the SEIRS models produce the number of 
estimated infections for each county and day for 30 days after the start date. This output is used 
to drive new SARS-CoV-2 infections for the ABM. Vaccination status is not currently used in the 
SEIRS model but accounted for during the assignment of SARS-CoV-2 infection within the 
ABM. 

Community Infection 

The number of agents starting with a SARS-CoV-2 infection is determined by the start date of 
the model and the output of the SEIRS compartmental models. Each county will have an 
estimate for the proportion of infectious individuals on day 0 of the model. Random individuals 
from the community are selected to match a distribution of case severity. Agents are selected 
based on their age, using the age distribution for reported cases in North Carolina. Since severe 
and critical agents are initialized using known hospital case counts and are immediately 
assumed to be occupying a non-ICU (severe) or ICU (critical) bed, all other community cases 
are assumed to be asymptomatic or mild.18   

COVID-19 Case Counts 

The output of the SEIRS models provides forecasted cases to be created by the model for each 
county and each day of the model run. This forecasted number of cases is then inflated using a 
case multiplier to estimate infections. This parameter represents the underreporting of 
infections. Infections are further inflated to generate COVID-19 exposures for the model to 
create. The inflation of infections to exposures reflects the effectiveness and current level of 
vaccinations given the model’s vaccination parameters. Vaccinated agents have a chance of 
being immune to COVID-19 based on the current estimation for vaccine effectiveness (further 
described in the subsection titled “SARS-CoV-2 Vaccination”). When an agent is selected to be 
exposed to COVID-19, but they are immune, the exposure is “blocked” and ignored in the 
model. Exposures that are not blocked become simulated COVID-19 cases. As an alternative to 
using SEIRS forecasts, models that simulate historical time periods can use actual COVID-19 
case counts.  

To inflate infections for a county, 𝐼𝑛𝑓𝑐, to potential cases for the ABM, 𝑃𝐶𝑐, we use the county 
vaccination rate, 𝑉𝑎𝑐𝑐𝑐, and the overall vaccine effectiveness, 𝑉𝑒𝑓𝑓. When combined, we get an 
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estimate for the proportion of “blocked” cases. Estimated infections are inflated, so that after 
some cases are blocked, the number of estimated infections is created. 

𝑃𝐶𝑐 =
𝐼𝑛𝑓𝑐

(1 − 𝑉𝑎𝑐𝑐𝑐) + 𝑉𝑎𝑐𝑐𝑐 ∗ ( 1 − 𝑉𝑒𝑓𝑓)
 

The number of potential cases for each county, 𝑃𝐶𝑐, will remain the same for each model run 
because the underlying county vaccination rate and underlying vaccine effectiveness do not 
change. However, the number of cases the model creates will change based on the scenario-
specific county vaccination rate and vaccine effectiveness level. 

COVID-19 Hospitalization 

The base model will initialize agents in all healthcare facilities according to the process 
described above. Additional agents from the community are selected to start in hospitals based 
on input parameters specifying how many severe (non-ICU hospital bed) and critical (ICU 
hospital bed) COVID-19 infections at model initialization (Table S9). 

Table S9: Count of Hospitalizations on Model Initiation by COVID Status 

Agents Description Value 
Severe Agents are in an acute (non-ICU) hospital bed on 12/15/21 1,194 19 

Critical Agents start in an ICU hospital bed on 12/15/21 417 19 

This information is not hospital-specific, and agents from the community are selected based on 
hospitalized COVID-19 cases by age for North Carolina (Table S10).18 

Table S10: Proportion of Hospitalized COVID-19 Cases by Age 

Age Percentage of Hospitalized Cases 
0–50 31% 
50 < 65 25% 
65+ 44% 

The purpose of this initialization is to have COVID-19 hospitalizations equal to the input 
parameters. Agents selected for COVID-19–related hospitalization are assigned a remaining 
length of stay (LOS) value. The process for creating this value is described in the original ODD. 
We use a COVID-19–specific LOS distribution when creating the remaining LOS distribution. 
20(p19) 

SARS-CoV-2 Infection within the ABM 

Each day several disease specific steps are taken within the ABM. Any update (action) that 
occurs will be added to the ABM’s list of actions and placed in a random order before execution.  

New SARS-CoV-2 Infection 

The ABM will randomly choose individuals from the community who are susceptible to be given 
a COVID-19 infection. This choice is made using a weighted probability based on an agent’s 
age, using the same distribution used for community infection initiation. 

Infection severity (asymptomatic, mild/moderate, severe, or critical) is assigned according to an 
agent’s age, vaccination status, and reported status (Table S11-12).  
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Table S11. Severity probability for reported cases (12.5% of cases) 

Severity Description Not Vaccinated Vaccinated 
Asymptomatic No symptoms .05 21 .25 21 

Mild/Moderate Some symptoms; no 
hospitalization for COVID-19 

Varies .65 

Severe Hospitalization required Calibrated to NC 
Data 

Calibrated to NC 
Data 

Critical Hospitalization in ICU 
required 

Calibrated to NC 
Data 

Calibrated to NC 
Data 

Table S12. Severity Probability for Nonreported Cases (87.5% of Cases)** 

Severity Description Not Vaccinated Vaccinated 
Asymptomatic See Table 5 .25 .5 
Mild/Moderate See Table 5 .75 .5 

* A case multiple of 8 is used to estimate infections using reported case counts. Therefore, 12.5% of 
cases are reported and 87.5% of cases are not. We assume only reported cases can go to a hospital.  
** There is a lack of literature for nonreported cases. We assume that vaccinated cases will be more 
asymptomatic because reported vaccinated cases are more asymptomatic.  

If an agent is assigned an asymptomatic or mild/moderate case, their infection will last 7 days.14 
They are assigned a recovery day in the model, and their COVID-19 state will be set to 
“recovered” when the model reaches this day.  

If an agent is assigned a severe (non-ICU hospital bed) or critical (ICU hospital bed) case, they 
will immediately go to a hospital. An LOS is assigned to them based on past COVID-19 
hospitalizations (Table S13).20 

Table S13. COVID-19–Related Hospitalization LOS Parameters 

Parameter Description Value 
LOS mean Mean LOS: The average number of days that admitted COVID-19 

agents spend in a hospital. Used in a truncated normal distribution for 
sampling agent LOS. 

3 

LOS std Standard deviation of LOS: The standard deviation in number of days 
that admitted COVID-19 agents spend in a hospital. Used in a 
truncated normal distribution for sampling agent LOS. 

5 

LOS min Minimum LOS: The minimum number of days that admitted COVID-19 
agents spend in a hospital. Used in a truncated normal distribution for 
sampling agent LOS. 

1 

LOS max Maximum LOS: The maximum number of days that admitted COVID-19 
agents spend in a hospital. Used in a truncated normal distribution for 
sampling agent LOS. 

50 

Action 1: Recovery from SARS-CoV-2 

Any agents whose recovery date for COVID-19 is the current date of the model will have their 
COVID-19 state set to “recovered.” Recovered agents are assumed to be immune to infection 
for 200 days and half are assumed to test positively with polymerase chain reaction (PCR) 
testing. 
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SARS-CoV-2 Vaccination Status 

Vaccination status is a binary (vaccinated/not vaccinated), time invariant agent state within the 
ABM. The model initializes with a set percentage of vaccinated agents based on input 
parameters (Table S14). This status does not change for the duration of the model run and no 
additional vaccinations are given. This decision is based on the short time horizon of the model 
(30 days). Vaccination rates for this analysis were based on reported rates at the end of the 
study period (e.g., Jan. 15, 2022) due to reporting delays.  

Table S14. Vaccination Rates by Agent Group 

Agents Description Value 
Community (< 50) All remaining agents (including agents in hospitals) .47 22 

Community (50 < 65) All remaining agents (including agents in hospitals) .74 22 

Community (65+) All remaining agents (including agents in hospitals) .92 22 

Agents receive vaccination assignments based on their ages and home counties. The 
probability of being assigned a vaccination at model initiation is 𝑝𝑎𝑐, where 𝑎 is an agent’s age 

group and 𝑐 is the home county. This value is based on the county’s vaccination rate for a 
specific age group, 𝐶𝑅𝑎𝑐, the state’s vaccination rate for a specific age group 𝑆𝑅𝑎, and the input 

parameter for that age group, 𝐼𝑃𝑎. 

𝑝𝑎𝑐 =
𝐼𝑃𝑎

𝑆𝑅𝑎𝑐
∗ 𝐶𝑅𝑎𝑐 

Vaccine effectiveness 

Due to the heterogenous nature of vaccine immunity attributable to vaccine schedule and 
manufacturers, we implemented a single value for vaccine effectiveness intended as a 
population average. Vaccine effectiveness against infection was informed by the most recent 
data (January 27, 2022) published by the UK Health Security Agency, a pre-print from Ontario, 
Canada applying a test-negative design to provincial data, and a pre-print estimating vaccine 
effectiveness for patients receiving hemodialysis.23–25 Due to lack of data, estimates for vaccine 
effectiveness against infection were informed by estimates of vaccine effectiveness against 
symptomatic disease. 

Vaccine effectiveness against symptomatic disease caused by Omicron for recipients of two 
doses of Pfizer (BNT162b2) or Moderna (mRNA-1273) ranged from 25-70% at 0-3 months after 
last dose to 0-10% for 6 or more months since last dose.23 Vaccine effectiveness for recipients 
of a booster dose of either Pfizer or Moderna ranged from 50-75% at 0-3 months after the last 
dose to 40-50% at 4-6 months after the last dose.23 Buchan et al. reported that while receipt of a 
booster dose confers around 37% vaccine effectiveness against infection with the Omicron 
variant, increased waning immunity was seen for those without a booster (i.e., not up-to-date) 
so that by ten weeks after the last dose, there was no protection against infection.26–29 Similarly, 
Spensley et al. reports a vaccine effectiveness against infection of 58% for patients receiving a 
booster and no protection against infection for those with two doses.25 

Due to uncertainty around this parameter, we chose to average the vaccine effectiveness 
estimates reported for each group (2 doses vs. 3 doses) from the three studies (see Table S15). 
For the population vaccinated with two doses, we averaged reported vaccine effectiveness 
across timing (0-6+months) and settings (United Kingdom, Canada, United States) for an 
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average vaccine effectiveness of 7%. For the population vaccinated with three doses, the 
average vaccine effectiveness was 50%.  

Table S15. Reported estimates for vaccine effectiveness against infection or symptomatic 
disease. 

Number of 
doses 

United Kingdom 
Health Security 
Agency (all time 
periods)23 

Buchan et al. 
(pre-print)24 

Spensley et al. (pre-
print)25 

Average 

2 doses 23% 0% 0% 7% 

3 doses 54% 37% 58% 50% 

We did not model differing vaccine effectiveness dependent on type of vaccine, timing of doses 
or immunosuppression.  

 

With data that 37% of the vaccinated North Carolina population had received a third dose by 
January 5, 2022, we created a weighted vaccine effectiveness of 24%.   

 

 

Table S15. Reported estimates for vaccine effectiveness against infection or symptomatic 
disease. 

Number of 
doses 

United Kingdom 
Health Security 
Agency (all time 
periods)23 

Buchan et al. 
(pre-print)24 

Spensley et al. (pre-
print)25 

Average 

2 doses 23% 0% 0% 7% 

3 doses 54% 37% 58% 50% 

We did not model differing vaccine effectiveness dependent on type of vaccine, timing of doses 
or immunosuppression.  
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SARS-CoV-2 Testing 

Testing for SARS-CoV-2 infection was not simulated in the model but implemented using model 
output. We simulated hospital testing policies for patients admitted to short-term or long-term 
acute care hospitals with the following assumptions: 

▪ Agents with severe and critical SARS-CoV-2 (i.e., requiring a non-ICU or ICU bed) were 
assumed to be known infections upon admission. 

▪ Agents with mild SARS-CoV-2 infection were assumed to have answered positively to 
verbal screening procedures and to be known infections upon admission. 

▪ Agents with asymptomatic SARS-CoV-2 infection were assumed to undergo testing 
either through rapid antigen or polymerase chain reaction (PCR) upon admission with 
the test sensitivity and specificity detailed below. 

 
Rapid antigen test sensitivity and specificity  

Rapid antigen tests are less sensitive for detecting the Omicron variant compared to the Delta 

variant in nasal samples, particularly in the first 1-2 days after infection.30 A recent random-

effects meta-analysis of the sensitivity of rapid antigen testing by the Ontario COVID-19 Science 

Advisory Table estimated a pooled sensitivity for the detection of Omicron infections was only 

37.1%.31 The studies cited range in estimates from 22.2% (Adamson) to 54.5% (Kanjilal 

2022).31 However, other studies have reported higher sensitivity during omicron including a 

preprint reporting on community testing in San Francisco and testing within a Spanish health 

department.32,33 Significant heterogenicity in the performance of antigen testing may exist for 

detecting the Omicron variant34 and this variance may be time varying with decreased sensitivity 

in the first 1-2 days of symptoms.30 Estimated test sensitivity ranged from 37.1 to 97.6% (Table 

S16). Therefore, we used the middle of the range (67.4%) within our main analysis and 

decreased the sensitivity to 37% within a sensitivity. We assumed a test specificity of 98%, the 

negative percent agreement required for approval by the FDA for both antigen and PCR 

testing.35 

Table S16. Reported estimates for rapid antigen test sensitivity for detecting omicron variant 

SARS-CoV-2 infection. 

Source Setting Test Ct 
Threshold 

Sensitivity 

Ontario COVID-
19 Science 
Advisory Table31 

Various settings Various <25 37.1% (23.3-53.0%) 

Preprint: Goodall 
et al.36 

Volunteer-led 
community 
testing site 

Abbott Panbio Not 
reported 

64.50% (95% CI: 
52.1-75.3%) for 
asymptomatic 

Preprint: Schrom 
et al.32 

San Francisco 
community 
testing site 

BinaxNOW <30 89.8% for 
asymptomatic;  
97.6% symptomatic 

Preprint: de 
Michelena et al.33 

Health Center in 
Spain 

TaqPath 
COVID-19 
Combo Kit 

<30 87.2% 
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Drain  Summary of the 
literature 

Not specific Not 
specified 

36-82% for 
asymptomatic 

 
PCR sensitivity and specificity  

PCR testing was assumed to have a test sensitivity of 77% for asymptomatic infection.37,38 We 

assumed a test specificity of 98%, the negative percent agreement required for approval by the 

FDA for both antigen and PCR testing.35 Studies report a range for the percent of individuals 

within the general hospitalized population who have persistent PCR positivity from 16.7% to 

60%.39,40 Increased age and comorbidities appear to increase the probability of persistent 

positivity.40,41 We assumed that 30% of agents within the ‘recovered’ state (i.e., within 90 days 

post-infection) would test positive on PCR but negative on rapid antigen testing.  
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Key Data Sources for the Model 
 
Our model was informed by the peer-reviewed literature, health department reports and data 
dashboards, hospital discharge data, and SARS-CoV-2 case counts from COVID ActNow. 
Severity of infection was informed by the peer-reviewed literature15,42–45 as well as 
hospitalization data from North Carolina Department of Health and Human Services (NC 
DHHS).46 To allow for replication of our analysis, below we describe the different data files used 
in the ABM. After the title of the file, we have provided the location in the code repository where 
the data file is located. 
 
County-Distances (data/geography/…) 
There are three geography files that must be included, one for each facility type. These files 
consist of the distance from each county center to the geocode for each facility in miles, and 
they are used to help select new facilities for agents. The code used to automatically create 
these files is available in the code repository.  
 
Locations (data/locations/…) 
To create appropriate facilities within the model, a file for each facility type is required. The 
hospital file (STACHs) consists of hospital name, location, and the count of ICU and non-ICU 
beds. It was extracted from an online list of North Carolina hospitals.47 However, only hospitals 
that have information in the discharge data will be used. The nursing home file contains facility 
name, bed count, county, and geocode information. The nursing home facilities were taken from 
Centers for Medicare & Medicaid Services (CMS) data8 and geocodes were programmatically 
added. The file for LTACHs was also derived from online data and contains the name, bed 
count, and geocode for each facility.47 
 
Discharge Data (data/sheps_data/2018/…) 
PDFs of the public North Carolina hospital data files are available in the repository. Data were 
automatically extracted from these PDFs and converted to the CSV files that the model reads as 
input. Code and instructions for converting PDFs to CSVs is in the code repository. There are 
three files: 
 

Patient county of residence by hospital provides the list of counties that agents came 
from for each hospital3 
 
Short term acute care hospital patient characteristics provides details on patient age 
group, home state of the patient, and patient disposition2 
 
Short term acute care hospital discharge data provides an LOS estimate for each facility4 

 
Synthetic Population (data/synthetic_population/synthetic_population.parquet) 
The synthetic population file provides agents for the model. It was provided by RTI 
International.6  
 
COVID-19 Reported Cases (submodels/covid19/data/cases/covid19_cases.csv) 
This file contains the number of confirmed COVID-19 cases by county and by day.48 Instructions 
for downloading and cleaning these data are found in the repository. 
 
COVID-19 Vaccinations (submodels/covid19/data/vaccinations/vaccinations_by_age.csv) 
This file contains the number of vaccinations by county and by age.18 Instructions for 
downloading and cleaning these data are found in the repository. 
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Model Calibration 

To calibrate the model, we evaluated the ABM by its ability to reproduce patterns related to 
SARS-CoV-2 case count infection severity levels, COVID-19 related hospitalizations, and 
additional purpose-specific patterns. We also calibrated the model to create realistic agent 
movement to and between all modeled healthcare facilities in North Carolina. To do so, we 
match known length-of-stay (LOS) values, individual facility capacities, transfers between 
different facility types, and agent demographics for agents in each type of facility. The example 
patterns below illustrate this calibration process.  

Pattern 1: SARS-CoV-2 infections. We compared the daily number of forecasted SARS-CoV-2 
infections by NC county to the number of SARS-CoV-2 infections produced in the model 
throughout the 30-day model run. Figure S1 shows this pattern for one county. 

Figure S1. Example output of modeled cases vs. expected cases for a 30-day run. 

 

Pattern 2: COVID-19 Outcomes & Case Counts. We compared the proportion of COVID-19 
case outcomes that occur in the model to the expected outcomes based on input parameters 
and known values. We specifically look at hospitalizations (Table S17) but have created a suite 
of additional unit tests that check additional outcomes. We test the following outcomes: 

 
▪ Proportion of cases that get reported 
▪ Proportion of cases that are post vaccination 
▪ Modeled cases by age and vaccination match expected case counts 
▪ Comparison of case outcomes by vaccination and reported status  
▪ Proportion of vaccinated hospitalizations match reported values 
▪ Proportion of vaccinated ICU hospitalizations match reported values 
▪ Proportion of COVID-19 cases resulting in hospitalizations match reported values 

Table S17 shows example output of the modeled cases by vaccination status, age group, and 
case outcome. The full table is available on the project repository. For this pattern, we are 
comparing the modeled outcome proportion to the target proportion.  
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Table S17: Example COVID-19 case outcomes by vaccination status and age for reported 
cases 

Vaccination 
Status Age COVID State 

Modeled 
Cases 

Modeled 
Proportion 

Target 
Proportion 

Not Vaccinated 0 Asymptomatic 300 0.047 0.050 

Not Vaccinated 0 Mild 5,919 0.936 0.935 

Not Vaccinated 0 Severe 78 0.012 0.012 

Not Vaccinated 0 Critical 24 0.004 0.003 

Not Vaccinated 1 Asymptomatic 80 0.049 0.05 

Not Vaccinated 1 Mild 1,464 0.904 0.904 

Not Vaccinated 1 Severe 56 0.034 0.037 

Not Vaccinated 1 Critical 19 0.012 0.009 

 

Pattern 3: Length of stay. We compared length of stay (LOS) values assigned during a model 
run to the input LOS distribution for each facility. Table S18 is the output for the four largest 
hospitals (by admissions) in the model. We show the modeled and expected value for 
admissions, average LOS, and the LOS standard deviation. Values for all facilities are available 
in the code repository. For this pattern, the modeled and expected values should be almost 
identical.  

Table S18. Example model output for length of stay 

Facility ID 
365-day 
Admissions Average LOS 

Expected 
average LOS 

Sd. 
LOS 

Expected Sd. 
LOS 

23 49,304 5.72 5.77 2.48 2.5 
31 37,448 4.91 4.96 2.13 2.13 
66 36,942 6.02 6.07 2.66 2.64 
89 36,151 7.21 7.29 3.21 3.21 

 

Pattern 4: Average capacity. We compared the average capacity value for each facility over the 
duration of a model run to the average capacity specified as input for each facility (Table S19). 
We also check that average capacity is consistent over the model run and does not steadily 
increase or decrease over time for each facility. For this pattern, we expect all large facilities to 
be within 5% of the expected value. 

Table S19. Example model output for average capacity 

Facility ID Average Capacity Min Max Sd. Expected Capacity 

23 885.14 809 960 25 894 

36 740.18 677 713 25 738 

89 738.26 678 799 23 723 

62 639.72 578 692 21 629 

 

Pattern 5: Agent movement between healthcare locations. We aggregate agent movement 
between different facility types and compare these values to aggregate North Carolina 
discharge data.2 To do this, the number of all movements from one location type to another is 
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recorded and compared to the expected number of movements for those two location types 
(Table S20). Movement between certain location types (e.g., community to community) is not 
possible. For this pattern, we expected all larger targets to be within 5%. 

Table S20. Example model output for agent movement between healthcare locations 

Location Type New Location Type Target Modeled Value 

Community Community 0 0 
Community Hospital 825,150 815,414 
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